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Professors Cai and Zhou are to be congratulated for making yet another

important contribution to the development of theory and methodology for high-

dimensional covariance matrix estimation. In this article, hereafter referred to as

CZ, they considered large covariance matrix estimation under the matrix ℓ1 loss

for both sparse and bandable covariance matrices. As is common in the current

literature, the results from CZ are derived under the subgaussian assumption

as characterized by their (4). Thus far, it remains unknown how essential this

assumption is. To partially address this intriguing question, I shall illustrate

through a simple example that subgaussianity may not play a fundamental role

in determining the difficulty of estimating a large covariance matrix.

Consider here the problem of estimating a large scale matrix for elliptically

contoured distributions, a more general problem than estimating the covariance

matrix for multiavariate normal distributions. Let X ∈ R
p have an elliptically

contoured distribution in that there exist parameters µ ∈ R
p and Σ ∈ R

p×p such

that

X =d µ+ rAU

where r ≥ 0 is a random variable, U is uniformly distributed over the unit sphere

in R
n and is independent of r, and A ∈ R

p×p is a constant matrix such that

AAT = Σ. In particular when r has a density, the density of X is

f(x) = |Σ|−1/2g((x− µ)TΣ−1(x− µ)), x ∈ R
p,

where g is the so-called kernel function uniquely determined by the distribution

of r. Notable examples of elliptically contoured distribution are the multivariate

normal, t, and the stable distributions. Note that many elliptically contoured

distributions are not subgaussian and some do not even have finite second mo-
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ments. For brevity, we assume that µ = 0 and that Σ is a correlation-like matrix

with ones on its diagonal. Our goal is to estimate Σ given a sample X1, . . . ,Xn

consisting of independent copies of X. To fix ideas, wel focus on estimating

sparse matrices. Write

G̃q(ρ, cn,p) = {Σ ∈ Gq(ρ, cn,p) : Σii = 1 ∀i}.

Denote by E(G̃q(ρ, cn,p) the collection of centered elliptically contoured distribu-

tions with Σ ∈ G̃q(ρ, cn,p). By the argument of CZ and Cai and Zhou (2011),

inf
Σ̂

sup
L(X)∈E(G̃q(ρ,cn,p)

‖Σ̂− Σ‖2 & c2n,p

(

log p

n

)1−q

, (1.1)

where ‖ ·‖ is the matrix ℓα norm with any α ≥ 1. The question of interest here is

whether or not this lower bound remains tight despite the lack of subgaussianity

for many distributions from E(G̃q(ρ, cn,p). Interestingly, the answer is affirmative.

To this end, we need to construct a rate optimal estimator. We appeal to a

useful property of elliptically contoured distributions. Let Y = (Y1, Y2)
T follow

an elliptically contoured distribution with

Σ =

(

1 σ

σ 1

)

.

Let τ = P {(Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) > 0} − P {(Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) < 0} be the popu-

lation version of Kendall’s τ statistic, where Y ∗ = (Y ∗
1 , Y

∗
2 )

T is an independent

copy of Y . Then (see, e.g., Fang, Fang and Kotz (2002))

τ =
2

π
arcsin(σ).

Using this fact, we can estimate Σ in three steps.

(1) Estimate τ(Xi,Xj) by the sample Kendall’s τ , denoted by τ̂ij.

(2) Estimate Σij by

Σ̃ij = sin
(π

2
τ̂ij

)

, ∀i 6= j.

(3) Let Σ̃ii = 1 and apply thresholding to (Σ̃ij):

Σ̂ij = Σ̃ijI

(

∣

∣

∣
Σ̃ij

∣

∣

∣
≥ c

√

log p

n

)

for some numerical constant c > 0.
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We argue that the resulting estimate Σ̂ is indeed rate optimal. A careful

examination of the proof of CZ reveals that it suffices to establish bounds for

|Σ̃ij − Σij| similar to their (24). This, as shown in Liu et al. (2012), can be

achieved using Hoeffding’s inequality for U-statistics. More specifically, we have

P(|Σ̃ij − Σij| ≥ t) ≤ exp

(

−
nt2

2π2

)

.

Using this in place of (24) of CZ, it can then be shown that

sup
L(X)∈E(G̃q(ρ,cn,p)

‖Σ̂− Σ‖2 ≤ sup
L(X)∈E(G̃q(ρ,cn,p)

‖Σ̂− Σ‖21 . c2n,p

(

log p

n

)1−q

. (1.2)

Combining (1.1) and (1.2), we can conclude that

inf
Σ̂

sup
L(X)∈E(G̃q(ρ,cn,p)

‖Σ̂− Σ‖2 ≍ c2n,p

(

log p

n

)1−q

.

In this particular exercise, the subgaussian assumption is irrelevant. Of

course, it is also a very specific example. The exact role of subgaussianity in

high-dimensional covariance matrix estimation remains to be seen.
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