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The analysis of experiments in which numerous potential variables are examined is driven by the prin-
ciples of effect sparsity, effect hierarchy, and effect heredity. We propose an efficient variable selection
strategy to specifically address the unique challenges faced by such analysis. The proposed methods are
natural extensions of the LARS general-purpose variable selection algorithm. They can be computed very
rapidly and can find sparse models that better satisfy the goals of experiments. Simulations and real ex-
amples are used to illustrate the wide applicability of the proposed methods.
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1. INTRODUCTION

We consider the analysis of experiments in which numerous
potential variables are examined. In most practical situations,
however, only a relatively small number of observations are
affordable. Because of their run size economy and flexibility,
fractional factorial designs are widely used in such experiments.
But the analysis of such designs is complicated by the alias-
ing of effects. The analysis is driven by the principles of effect
sparsity, effect hierarchy, and effect heredity (Wu and Hamada
2000). The effect sparsity principle states that only a small
number of effects are significant. The effect hierarchy principle
states that lower-order effects are more important than higher-
order effects. Using this principle, we can focus on lower-order
effects, say, main effects and two-factor interactions, assum-
ing that the higher-order interactions are negligible. The effect
heredity principle, indicates that an interaction can be active
only if one or both of its parent effects are also active. For ex-
ample, a two-factor interaction can be active only if one or both
of the corresponding main effects are active. These principles
have proven to be effective tools for resolving the aliasing pat-
terns.

The analysis of experiments can be formulated in the form of
the general linear regression where we have n observations on
a response Y and p explanatory variables (X1,X2, . . . ,Xp), and

Y = Xβ + ε, (1)

where ε ∼ Nn(0, σ 2I) and β = (β1, β2, . . . , βp). Throughout
this article, we center the response and each variable so that
the observed mean is 0, and scale each variable so that the sam-
ple standard deviation is 1. Because each variable corresponds
to an effect in the experiments (main effects, two-factor interac-
tions, and so on), we use the two terms interchangeably in later
discussions.

The principle of effect sparsity can be achieved by the vari-
able selection, the goal of which is to search for the model
that best describes the data-generating mechanism among the
2p candidate models. However, as pointed out by Chipman,
Hamada, and Wu (1997), the analysis of designed experiment
poses several new challenges for variable selection. First, the
number of explanatory variables greatly exceeds the number of

runs; for example, in the 12-run Plackett–Burman design de-
scribed in Table 1, 11 main effects and 55 two-factor interac-
tions are considered. Second, due to the large number of poten-
tial variables, the number of candidate models usually is huge,
which calls for computationally efficient methods. Third, the
effects are always related due to the presence of interactions or
polynomial terms of factors; consequently, the principle of ef-
fect heredity is required to achieve a reasonable model. For ex-
ample, a general-purpose variable selection method may select
two-factor interactions without the corresponding main effects.
Such models are difficult to interpret in practice. This problem
can be avoided by conforming with the effect heredity principle.
Effect heredity is also closely related to the notion of marginal-
ity (Nelder 1977, 1994; McCullagh and Nelder 1989) which
ensures that the response surface is invariant under scaling and
translation of the factors of an experiment.

Classical variable selection methods, such as Cp, the Akaike
information criterion, and Bayes information criterion, choose
among possible models using penalized sum of squares criteria,
with the penalty being an increasing function of the model di-
mension. But these methods are computationally infeasible, and
their stepwise implementation is inappropriate for analyzing the
designed experiments (Westfall, Young, and Lin 1998). Vari-
ous other variable selection methods also have been introduced
in recent years (e.g., George and McCulloch 1993; Foster and
George 1994; Breiman 1995; Tibshirani 1996; George and Fos-
ter 2000; Fan and Li 2001; Shen and Ye 2002; Efron, Johnston,
Hastie, and Tibshirani 2004; Yuan and Lin 2005). In particu-
lar, the stochastic search variable selection method developed
by George and McCulloch (1993) has been adopted by Chip-
man et al. (1997) to analyze experiments with complex aliasing
patterns. As noted by Chipman et al. (1997), their proposal re-
mains computationally demanding. More recently, Li and Lin
(2002) applied the variable selection procedure of Fan and Li
(2001) to analyze supersaturated designs. Despite its nice theo-
retical properties, their approach does not impose the heredity
principle.
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Table 1. A 12-run Plackett–Burman design for Example 1

Run A B C D E F G H I J K

1 + + − + + + − − − + −
2 + − + + + − − − + − +
3 − + + + − − − + − + +
4 + + + − − − + − + + −
5 + + − − − + − + + − +
6 + − − − + − + + − + +
7 − − − + − + + − + + +
8 − − + − + + − + + + −
9 − + − + + − + + + − −

10 + − + + − + + + − − −
11 − + + − + + + − − − +
12 − − − − − − − − − − −

The lack of a fully satisfactory variable selection strategy
for analyzing experiments motivates our work here. We con-
sider the extension of an effective variable selection algo-
rithm, LARS (least angle regression), proposed by Efron et al.
(2004). The LARS algorithm is very fast and is closely con-
nected with boosting and another popular variable selection
method, the LASSO (Tibshirani 1996). Whereas the LARS en-
joys great computational advantages and excellent predictive
performance, it is devised for general-purpose variable selec-
tion and often produces models that are hard to interpret in
practice. In this article we propose modified LARS algorithms
so that the heredity principle can be taken into account in the
variable selection. It is demonstrated that incorporating such
constraints in variable selection often leads to a model better
satisfying the goals of experiment.

The rest of the article is organized as follows. We review
the LARS methodology in the next section. In Section 3 we
present different modifications to the LARS algorithm so that
the heredity principles can be taken into account. Although our
main focus in this article is on main effects and their two-factor
interactions, in Section 4 we also explain how the methods
can be extended to the case of more complicated situations.
We demonstrate the wide applicability of the proposed meth-
ods through three examples in Section 5, and conclude with a
discussion in Section 6.

2. LARS

The LARS algorithm uses a variable selection strategy simi-
lar to forward selection. Starting with all coefficients equal to 0,
the algorithm finds the variable that is most correlated with the
response and proceeds in that direction. Instead of taking a full
step toward the projection of Y on the variable, as would be
done in forward selection, LARS takes the largest step possi-
ble in this direction only until some other variable has as much
correlation with the current residual. Then this new variable is
entered, and the process is continued. The great computational
advantage of LARS comes from the fact that the LARS path is
piecewise linear, and all we need to do is to locate the change
points. More specifically, the LARS algorithm can be described
as follows:

LARS algorithm.

1. Start from β[0] = 0, k = 1, and r[0] = Y .

2. Find a variable, Xj, that is most correlated with r[0] and
set Bk = {j}.

3. Compute the current direction, γ , which is a p-dimension-
al vector with γBc

k
= 0 and

γBk = (
X′
Bk

XBk

)−
X′
Bk

r[k−1]. (2)

4. For every i /∈ Bk, compute how far the algorithm will
march in direction γ before Xi has the same amount of
correlation with the residual as the variables in Bk. This
can be measured by the smallest αi ∈ [0,1] such that

∣
∣X′

i

(
r[k−1] − αiXγ

)∣∣ = ∣
∣X′

B1

(
r[k−1] − αiXγ

)∣∣. (3)

5. If Bk �= {1, . . . ,p}, then let α = mini/∈Bk αi ≡ αi∗ and up-
date Bk+1 = Bk ∪ {i∗}. Otherwise, set α = 1.

6. Update β[k] = β[k−1] + αγ , r[k] = Y − Xβ[k], and
k = k + 1. Go back to step 3 until α = 1.

Here Bk keeps track of the variables that are included in the
model at the kth stage, γ determines the direction in which the
coefficient estimate will move along, and α measures how far
the algorithm will march along that direction. Note that (3) is
equivalent to

X′
i

(
r[k−1] − αiXγ

) = ±X′
B1

(
r[k−1] − αiXγ

)
, (4)

which can be easily solved for αi. (See Efron et al. 2004 for
more details.)

3. LARS UNDER HEREDITY PRINCIPLES

A LARS-type algorithm is driven by the measurement of
“predictability.” In its original form, “predictability” is mea-
sured by the correlation with the residual. At any point on the
solution path of the LARS algorithm, the variables selected are
the those that are the most correlated with the current resid-
ual. Define θ(r,Xi) as the angle between the two n-vectors, r
and Xi. It is clear that the squared correlation between Xi and
r can be written as cos2(θ(r,Xi)) = ‖X′

ir‖2/‖r‖2. This is also
the proportion of the total variation in r that is explained by the
regression on Xi, that is, the R2 when r is regressed on Xi. In
other words, a variable enters the LARS path if it has the high-
est “predictability” on its own. Now that the heredity principles
are in place, some adjustment to the LARS algorithm is needed.

We consider two versions of the heredity principle (Chip-
man 1996). Under strong heredity, for a two-factor interaction
to be active both its parent effects should be active, whereas
under weak heredity, only one of its parent effects need to be
active. We now propose modifications to the LARS algorithm
so that the selected models will obey either the strong heredity
or the weak heredity principles. This will lead to better mod-
els, provided that the true model, which is unknown to the ex-
perimenter, obeys the heredity principles. Exceptions are possi-
ble, but many empirical studies have confirmed the use of these
principles. A Bayesian justification of the effect heredity has
been provided by Joseph (2006).

To develop the idea, we consider only the main effects and
two-factor interactions for the moment. The methods can also
be applied to more general cases of models with an arbitrary
number of terms, each of arbitrary order. We give such exten-
sions in a later section.
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3.1 Strong Heredity Principle

We begin with the strong heredity principle. In this case, the
corresponding parent effects should be selected if an interaction
is selected. To account for such dependence, when determining
whether an interaction should be entered, it is natural to mea-
sure the average “predictability” of all variables that must be
included. Adopting the idea of the original LARS algorithm,
the predictability of a set of variables can be measured by the
squared cosine of the angle between the residual and the linear
space spanned by the set of variables. This idea is illustrated
by Figure 1. To measure the predictability of X1 = (X11,X12),
which is bivariate, we look at the squared cosine of α1, the an-
gle between Y∗ and the two-dimensional linear space spanned
by the two components of X1. This is a natural extension of the
idea behind LARS. When the variable is one-dimensional, such
as X2 in the diagram, LARS looks at the squared cosine of α2,
which is the angle between two vectors, Y∗ and X2.

Once the measure of predictability for a set of variables is
obtained, we have to adjust for the fact that different sets of
variables have different numbers of degrees of freedom. It is
clear that the more variables a set has, the better it can explain
the residual for the given data. One way to adjust for this is
to measure the predictability per degree of freedom, which can
be defined as cos2(θ(r,XA))/nA, where r is the current resid-
ual, XA is the set of variables to be entertained, and nA is the
cardinality of A. Recall that cos2(θ(r,XA)) is the R2 when r
is regressed on XA, which can be computed by fitting one lin-
ear regression. A similar idea was also used by Yuan and Lin
(2006) in a different context.

In so defining the measure of predictability, we implicitly as-
sume that adding any variable, interaction or main effect, in-
creases the model complexity in the same way. Although this
can be motivated by the definition of degrees of freedom in
the ANOVA analysis as elaborated by Yuan and Lin (2006),
in practice, it might be desirable to ascribe different weights to
different variables, that is, to distinguish between main effects
and interactions. One possibility is to associate each variable
with a different degree of freedom, then define the measure of

Figure 1. Predictability measure for a set of variables.

predictability as cos2(θ(r,XA))/
∑

j∈A nj, where nj is the de-
gree of freedom for the jth effect. For example, by the hierarchy
principle, two-factor interactions are less important than main
effects. To incorporate this principle, one may set greater de-
grees of freedom for a two-factor interaction than for main ef-
fects. Clearly, this extension reduces to the average predictabil-
ity if nj = 1 for all j. To fix ideas, in the rest of this article, we
assume that nj = 1.

With such a notion of average “predictability,” the proposed
LARS-type algorithm proceeds in the following way:

Strong heredity algorithm.

0. For main effects, initialize the dependence set D as an
empty set. For interactions, let the dependence set D be
the set of corresponding parent effects.

1. Start from β[0] = 0, k = 1, and r[0] = Y .
2. Compute the “prediction score” for each candidate vari-

able i,

si = cos2(θ(r[0],X{i}∪Di))

1 + nDi

. (5)

Denote i∗ = arg maxi si. Define the current “most pre-
dictive variable” as A1 = {i∗} and the “active set” as
B1 = A1 ∪Di∗ .

3. Compute the current direction γ , which is a p-dimen-
sional vector with γBc

k
= 0 and

γBk = (
X′
Bk

XBk

)−
X′
Bk

r[k−1]. (6)

4. For every i /∈ Bk, update Di = Di ∩Bc
k and compute how

far the algorithm will march in direction γ before Xi

enters the most predictive set. This can be measured by
the smallest αi ∈ [0,1] such that

‖X′
{i}∪Di

(r[k−1] − αiXγ )‖2

1 + nDi

≥ ‖X′
B1

(r[k−1] − αiXγ )‖2

nB1

.

(7)

5. If Bk �= {1, . . . ,p}, then let α = mini/∈Bk αi ≡ αi∗ and up-
date Ak+1 = Ak ∪ {i∗} and Bk+1 = Bk ∪ {i∗} ∪Di∗ . Oth-
erwise, set α = 1.

6. Update β[k] = β[k−1] + αγ , r[k] = Y − Xβ[k], and k =
k + 1. Go back to step 3 until α = 1.

As in the LARS algorithm, here we start with all coefficients
being 0, then compare the candidate variables in terms of the
average predictability (5). For main effects, the average pre-
dictability is defined as the magnitude of the correlation be-
tween the variable and the residual. For two-factor interactions,
this is defined as the average predictability of all variables from
{i} ∪Di, because all of them must enter the model as a group if
the ith variable is selected. After identifying the most predictive
variable, we form two different sets to keep track of the most
predictive variables and the variables that enter the model (i.e.,
Ak and Bk). In the case of LARS, the two sets coincide. But in
our case, the two sets may differ, because some variables enter
the model only because its child is highly predictive. The algo-
rithm continues along the least squares estimate with only the
variables from the active set, a direction that reduces the resid-
ual sum of squares the most. We march in this direction until
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another variable has at least the same amount of predictability
as the variables from the current most predictive set.

By the definition of γ , (7) holds when αi = 1, because its
right side equals 0 in this case. Therefore, αi in step 4 is always
well defined. Different from (3), finding αi amounts to solving a
quadratic equation, which also can be obtained in explicit form.

Another difference from the LARS algorithm is that the
amount of progression measured by α is now defined through
an inequality (7) rather than an equality. Such a modification
is necessary because Di may change in the process. The av-
eraged predictability for the ith variable can increase as a re-
sult of the inclusion of an element of Di. For example, consider
the case of two main effects A and B and a two-factor interac-
tion AB. In the beginning, the predictability of AB is measured
by sAB,1 = cos2(θ(Y,X{A,B,AB}))/3. Suppose that sAB,1 is dom-
inated by the predictive score of A, sA ≡ cos2(θ(Y,X{A})). Be-
cause A enters the model, the predictability of AB should now
be measured by sAB,2 = cos2(θ(Y,X{B,AB}))/2, which might be
even greater than sA. In this case the solution to (7) is α = 0, and
{AB,B} enter the model immediately after A enters the model.

Alternative approaches for incorporating the strong hered-
ity principle in the LARS algorithm also have been introduced
by Efron et al. (2004) and Turlach (2004). Efron et al. (2004)
suggested a two-step procedure in which the main effects are
considered first and their interactions are examined only in a
subsequent step. As illustrated by Turlach (2004), such a pro-
cedure may exhibit less-than-optimal behavior in certain non-
trivial situations. Turlach’s proposal is similar in spirit to our
proposal here. Using our notation, he suggested measuring the
predictability of variables {i}∪Di by |X′

ir|. Unlike the averaged
predictability that we used, this criterion does not account for
the number of variables that enter simultaneously and also may
lead to a suboptimal solution. Also note that Efron et al. (2004)
and Turlach (2004) considered only strong heredity, not weak
heredity.

3.2 Weak Heredity Principle

Unlike the strong heredity principle, here it is not predeter-
mined which main effect must be included so that an interac-
tion can be entered. Therefore, any element from Di can enter
the model together with the ith variable. We pick the one that
yields the highest predictive score. More specifically, the pre-
dictive score for the ith variable is now defined as

max
j∈Di

cos2(θ(rk−1,X{i,j}))
2

. (8)

Thus we have the following algorithm:

Weak heredity algorithm.

0. Initialize Di = φ if the ith variable is a main effect. Oth-
erwise, let Di be the set of the main effects corresponding
to the ith variable.

1. Start from β[0] = 0, k = 1, and r[0] = Y .
2. If Di = φ, then define the “predictive score” of a candi-

date variable as si = cos2(θ(rk−1,Xi)). If Di �= φ, then
compute the “prediction scores” for each candidate vari-
able i and each variable in Di,

sij = cos2(θ(rk−1,X{i,j}))
2

, (9)

and define si = maxj sij. Denote i∗ = arg maxi si. Define
the current “most predictive set” as A1 = {i∗}. If Di∗ = φ,
then define the “active set” as B1 = A1. Otherwise, denote
j∗ = arg maxj si∗j and define B1 = {i∗, j∗}.

3. Compute the current direction, γ , which is a p-dimension-
al vector, with γBc

k
= 0 and

γBk = (
X′
Bk

XBk

)−
X′
Bk

r[k−1]. (10)

4. For every i /∈ Bk, update Di = Di ∩ Bc
k . Compute how

far the algorithm will march in direction γ before Xi en-
ters the most predictive set. This can be measured by
αi ∈ [0,1], defined as follows:

a. If Di = φ, then αi is the smallest value such that

∥∥X′
i

(
r[k−1] − αiXγ

)∥∥2 ≥ ‖X′
B1

(r[k−1] − αiXγ )‖2

nB1

. (11)

b. If Di �= φ, then, for each j ∈ Di, define αij as the
smallest value in [0,1] such that

‖X′{i,j}(r[k−1] − αijXγ )‖2

2
≥ ‖X′

B1
(r[k−1] − αijXγ )‖2

nB1

.

(12)

and αi = minj αij.

5. Denote i∗ = arg mini αi and update Ak+1 = Ak ∪ {i∗}. If
Di∗ = φ, then set Bk+1 = Bk ∪{i∗}. Otherwise, define j∗ =
arg minj αi∗j and update Bk+1 = Bk ∪ {i∗, j∗}.

6. Denote α = mini/∈Bk αi and update β[k] = β[k−1] + αγ ,
r[k] = Y − Xβ[k], and k = k + 1. Go back to step 3 until
α = 1.

Not every variable in Di necessarily enters the model to-
gether with the ith variable under the weak heredity principle.
Only the parent effect that yields the high predictability score
together with the ith variable enter the active set Bk. The al-
gorithm proceeds in the same fashion as that under the strong
heredity principle.

3.3 Further Discussions

To incorporate the effect heredity principles, we took advan-
tage of the nice geometric interpretation of the LARS. But this
property is not shared by its cousin, the LASSO, which is given
as a constrained least squares estimate. Despite the LASSO’s
close connection with the LARS, it is not immediately clear
how the LASSO can accommodate the effect heredity princi-
ples. Because the LASSO shares a similar geometric interpre-
tation with the LARS (Osborne, Presnell, and Turlach 2000;
Efron et al. 2004), it is tempting to make adjustments to the so-
lution path of the LASSO similar to those proposed here. But
then it loses the interpretation as a constrained least squares es-
timate, and, as noted by Turlach (2004), such a modification is
not trivial.

While incorporating the effect heredity principles, the pro-
posed modifications also inherit the main advantages of the
original LARS. In contrast to the “winner takes all” strategy
adopted by the subset selection (i.e., regressors are either re-
tained or dropped from the model), our methods yield a contin-
uous solution path like the original LARS. It is known (Breiman
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1996) that a discrete estimating procedure such as the subset se-
lection can be extremely variable; that is, small changes in the
data may lead to quite different models. Although a group of
variables may enter the model simultaneously in our proposals
due to heredity, they are entered in an incremental fashion as
the original LARS and thus retains its stability.

Similar to the original LARS, the proposed algorithms are
computationally thrifty. After the dependence sets, D’s, are de-
termined, the entire solution path is constructed in O((p∧n)3 +
np(p ∧ n)) computations, where p ∧ n = min(p,n). Note that
this is also the cost of a least squares fit on all p variables when
p ≤ n. More specifically, let m denote the number of total steps.
In the original LARS, m = p ∧ n. Because multiple variables
can enter simultaneously, m ≤ p∧n in our proposals. At the kth
step, there are at most p − k candidates for the next active vari-
able. Thus identification of the next active variable requires the
computation of O(p − k) inner products between the candidate
variables and the residual. After the active variable is selected,
we need to invert the Gram matrix of all of the selected variables
to find the next direction. The same as for the original LARS,
all m such calculations can be viewed as a Cheolesky factoriza-
tion with all variables ordered appropriately (Efron et al. 2004)
and can be done with a total of O((p ∧ n)3) computations. In
practice, we observe that the proposed algorithms are compa-
rable with or even faster than the original LARS in terms of
computational speed. For example, the computational times for
constructing the whole solution path in Example 1 of Section 5
were .19, .10, and .16 second for the original LARS, LARS
with strong heredity, and LARS with weak heredity when the
program was run on the same desktop computer.

4. BEYOND TWO–WAY INTERACTIONS

Generally, we can represent the heredity principles by sets
{Di : i = 1, . . . ,p}, where Di contains a set of variables. So that
the ith variable can be considered for inclusion, all elements of
Di must be included under the strong heredity principle, and
at least one element of Di should be included under the weak
heredity principle. It is worth pointing out that our definitions of
strong and weak heredity principles are more general than their
traditional versions. For example, Nelder (1998) mentioned a
heredity principle that requires inclusion of a certain main effect
so that an interaction can be considered. Such a partial heredity
principle can be induced by the strong heredity principle with
the choices of DAB = {A} or DAB = {B}. In our previous discus-
sion, we focused on dealing with two-factor interactions. More
generally, both algorithms work for the case in which a variable
does not depend on any other variables if it is in the dependent
set of some variables, that is, Dj = φ if j ∈ Di for any i. If this
is not the case (e.g., in the case when the polynomial factor in-
teraction such as A2B2 is also entertained), then modifications
to the foregoing algorithms are necessary.

It is helpful to think of the dependence structure described by
the D’s as a directed graph where all p variables are the nodes
and an edge from i to j is present if and only if j ∈ Di. To han-
dle the strong heredity principle, we first reevaluate the depen-
dence set D′s so that Di contains all nodes that can be reached
from the ith node. This is can be done efficiently using, for ex-
ample, the breadth first algorithm (Cormen, Leiserson, Rivest,

Figure 2. Dependence structure for two-way interaction between
three-level factors.

and Rivest 1990). After this step, the LARS algorithm with the
strong heredity principle presented earlier can be applied.

The situation for the weak heredity principle is more compli-
cated, because we need to first determine which variables are
to be included together with the ith variable. We first determine
which nodes are terminal nodes, that is, the nodes whose de-
pendence set is empty. Then the candidate variable sets to be
considered for the ith variable to be included can be described
by all of the possible paths from it to any of the terminal nodes.
This can be done efficiently using the depth first algorithm (Cor-
men et al. 1990). Let {P1, . . . ,Pk} denote the collection of such
paths. We compare these paths again using the averaged predic-
tive scores when all nodes on the path are included. The vari-
ables on the path with the highest averaged predictive score will
enter the model, and these variables will be eliminated from the
dependence sets of the remaining variables. The process then
continues as the weak heredity principle algorithm presented in
Section 3.2.

To elaborate, consider two three-level factors, A and B. The
hierarchy among all variables can be described by the diagram
in Figure 2 (Chipman 1996).

Under the strong heredity principle, the algorithm developed
in Section 3.1 can be applied directly with

DB2 = {B},
DAB = {A,B},
DA2 = {A},
DAB2 = {B2,AB,A,B},
DA2B = {AB,A2,A,B},

and

DA2B2 = {AB2,A2B,B2,AB,A2,A,B}.
Under the weak heredity principle, the candidate paths for

each interaction also can be obtained easily,

B2: {(B,B2)},
AB: {(A,AB), (B,AB)},
A2: {(A,A2)},

AB2: {(A,AB,AB2), (B,AB,AB2), (B,B2,AB2)},
A2B: {(A,AB,A2B), (B,AB,A2B), (A,A2,A2B)},
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and

A2B2:
{
(A,AB,AB2,A2B2), (B,AB,AB2,A2B2),

(B,B2,AB2,A2B2), (A,A2,A2B,A2B2)
}
,

where the variables within each pair of parentheses compose
one candidate path. Now the weak heredity algorithm presented
in Section 3.2 can be applied.

5. EXAMPLES

In this section we demonstrate the proposed variable selec-
tion strategy using three examples. The first example uses a
12-run, 2-level nonregular design; the second uses a 16-run,
2-level regular design; and the third uses an 18-run, nonregu-
lar, mixed-level design. These examples are selected to show
the wide applicability of our method.

Example 1. This is a simulated example proposed by Hama-
da and Wu (1992). Eleven two-level factors and their second-
order interactions are considered. The design is given in Ta-
ble 1. The response is simulated according to the following lin-
ear model:

Y = A + 2AB + 2AC + ε, (13)

where ε ∼ N (0, .252).

There are a total of 66 candidate effects (11 main effects and
55 2-factor interactions). Figure 3 compares the solution paths
obtained by the new methods and the LARS algorithm. The
figure plots the traces of the estimated regression coefficients.
Here the weak heredity version of the new method is able to
pick up the correct effects in only two steps, whereas the LARS
algorithm could not identify the main effect of A. In this exam-
ple the strong heredity version did not work, which should be
expected because the true model does not contain the main ef-
fects of B and C. In practice, we will not know which version of
the heredity principle to use; therefore, we should run both of
them. It will be easy to select the right one by looking at the so-
lution paths. Ideally, we want to choose paths in which a small
number of coefficients increase quickly at the early stages. In
this example, comparing the solution paths generated by the
strong and weak heredity versions of the algorithm, we can im-
mediately understand that we should be using the weak heredity
version. We also note that one of the ordinary forward-selection
methods proposed by Hamada and Wu (1992) could not iden-
tify any of the important effects. This clearly shows the advan-
tages of the proposed method.

Example 2. Consider a 29−5 experiment reported by
Raghavarao and Altan (2003). The design and data are given
in Table 2.

The results of the analysis are plotted in Figure 4. The effects
selected in the first five steps are given in Table 4. We see that

(a) (b) (c)

Figure 3. Solution paths of the new method and the LARS for the simulated experiment. (a) Heredity; (b) weak heredity; (c) strong heredity.
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Table 2. The 29−5 design and data for Example 3

Run A B C D E F G H J Y

1 − − − − − − − − − 136.475
2 + + − + + − − − − 147.775
3 + − − + − − + + − 142.425
4 + − + + + − + + + 141.800
5 + + + + − − − − + 136.675
6 − + − − + − + + − 150.725
7 − + + − − − + + + 142.800
8 − − + − + − − − + 135.825
9 + + + − − + − + − 143.476

10 − + − + + + + − + 145.150
11 + − + − + + + − − 142.600
12 − − − + − + − + + 139.375
13 + + − − + + − + + 139.650
14 + − − − − + + − + 144.775
15 − − + + + + − + − 148.275
16 − + + + − + + − − 141.075

LARS identifies AH, J, E, G, and CH as significant. In a 29−5

design, the effects are either orthogonal or completely aliased
with others. Ignoring three- and higher-order interactions, we
can obtain the following aliasing relationships for the foregoing

Table 3. OA(18,2137) and data from the blood glucose experiment

Run A G B C D E F H Y

1 1 1 1 1 1 1 1 1 97.94
2 1 1 2 2 2 2 2 2 83.40
3 1 1 3 3 3 3 3 3 95.88
4 1 2 1 1 2 2 3 3 88.86
5 1 2 2 2 3 3 1 1 106.58
6 1 2 3 3 1 1 2 2 89.57
7 1 3 1 2 1 3 2 3 91.98
8 1 3 2 3 2 1 3 1 98.41
9 1 3 3 1 3 2 1 2 87.56

10 2 1 1 3 3 2 2 1 88.11
11 2 1 2 1 1 3 3 2 83.81
12 2 1 3 2 2 1 1 3 98.27
13 2 2 1 2 3 1 3 2 115.52
14 2 2 2 3 1 2 1 3 94.89
15 2 2 3 1 2 3 2 1 94.70
16 2 3 1 3 2 3 1 2 121.62
17 2 3 2 1 3 1 2 3 93.86
18 2 3 3 2 1 2 3 1 96.10

five effects:

AH = EJ = DG = BG,

J = −CF,

(a) (b) (c)

Figure 4. Solution paths for the 29−5 factorial experiment. (a) No heredity; (b) weak heredity; (c) strong heredity.
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Table 4. Effects selected at the first five steps

Simulated Factorial Blood Glucose

Step None Weak Strong None Weak Strong None Weak Strong

1 AC A, AC E AH J, EJ J BH2 B, BH, BH2, B2H2 E, F, EF
2 AB AB I, K, IK J E E, EJ B2H2 E, EF E2

3 GJ E H E G G EF E2 F2

4 DF H A, C, AC G DE GJ AH2 GE All of B, H
5 HJ G, GJ B, AB CH H H GE BE2

E = −BC,

G = −FH = −AB,

and

CH = GJ = DE.

Thus the effect AH could actually be EJ, DG, or BG. Any one of
these effects can produce the same fit; thus which one to choose
is unclear. LARS selected AH because it appears before EJ,
DG, and BG in the list of effects (they are listed in alphabetical
order). Thus the foregoing selection is inconclusive. The same
is true with the selection of J, E, G, and CH. In the literature,
follow-up experiments are usually recommended for dealiasing
the effects (see Meyer, Steinberg, and Box 1996). On the other
hand, Wu and Hamada (2000) suggested that by applying effect
hierarchy and effect heredity principles, some of the effects can
be dealiased. Our methods incorporate both of these principles,
and thus will entail less confusion due to aliasing.

As given in Table 4, the first five effects identified by strong
heredity are J, E, EJ, G, and GJ. Note that this is the only set
of effects from the five aliasing relationships that satisfy strong
heredity. Thus our method has no ambiguity in selecting the ef-
fects. The final model from our method seems to be more mean-
ingful and interpretable. Applying the weak heredity algorithm,
we obtained the same effects except the last one. Instead of GJ,
it identifies DE. But note that these two effects are completely
aliased. Weak heredity cannot break it, because one of the par-
ent effects from both of these interactions is significant. In such
a situation, we recommend using strong heredity. Although DE
can be significant under weak heredity, GJ is more likely to be
significant because both of its parent effects, G and J, are sig-
nificant. Interestingly, the heuristic analysis of Raghavarao and
Altan (2003) also identified the same five effects, J, E, EJ, G,
and GJ, as significant.

Example 3. The blood glucose experiment was studied by
Hamada and Wu (1992), among many others. It has one two-
level factor and seven three-level factors. The experimental de-
sign is the mixed-level orthogonal array, OA(18,2137). The de-
sign and the response are given in Table 3.

Each three-level factor is divided into linear and quadratic ef-
fects using the orthogonal polynomial coding (Wu and Hamada
2000); thus there are 15 main effects and 96 2-factor interac-
tions. We use this example to illustrate how complicated hered-
ity principles as described in Figure 2 can be handled using the
proposed methodology.

Figure 5 gives the solution paths of the LARS and the two
proposed methods. The plot indicates that the weak heredity

principle is more likely to be true and that the corresponding
result is also in accordance with the previous analysis (Hamada
and Wu 1992; Chipman et al. 1997), whereas LARS identifies
a model that does not satisfy any of the heredity principles (see
Table 4).

Because of the frequentist nature of our approach, the hered-
ity rule that we considered is deterministic, and we search only
models that satisfy heredity principles. In this sense, our ap-
proach is not as flexible as the Bayesian formulation of Chip-
man et al. (1997), which, through different prior specifications,
can identify a model that does not satisfy heredity with strong
support from the data. But our approach is faster than that of
Chipman et al. (1997). Moreover, our approach is more user
friendly in that it does not need sophisticated prior elicitation
and avoids convergence issues of the Gibbs sampling.

6. DISCUSSION

Because of the large number of candidate variables, it is
imperative to use an efficient variable selection algorithm for
the analysis of experiments. The LARS algorithm is a good
choice. But because the effects in experiments are related due
to the presence of polynomial and interaction terms, the ordi-
nary application of LARS may lead to models that are not inter-
pretable. To overcome this problem, we have proposed a novel
extension of the LARS algorithm that incorporates the effect
heredity principles. Two versions of the algorithm, weak and
strong heredity, have been presented. The proposed algorithms
are computationally efficient and are able to select models that
better satisfy the goals of the experiment.

We have demonstrated the advantages of the new algorithm
by analyzing a wide range of experimental designs. In some
cases the weak heredity version performed better, whereas in
other cases the strong heredity version performed better. In
practice, we do not know which version to use. Therefore, our
recommendation is to apply both and select the best one based
on the solution paths generated by them.

The analysis of the 29−5 fractional factorial design reiterated
the importance of using heredity principle in the analysis of
experiments. The ordinary LARS algorithm produced a set of
aliased effects that could not be distinguished; in contrast, our
proposed approach could identify a unique model. Ambiguities
are possible with the application of our algorithm, but the like-
lihood is much lower.

It is important to be able to select the final model after a
solution path is constructed using the proposed method. This
is commonly done by minimizing the unbiased risk estimate
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(a) (b) (c)

Figure 5. Solution paths for the blood glucose experiment. (a) No heredity; (b) weak heredity; (c) strong heredity.

or its proxies, such as the cross-validation score. In principle,
these approaches can be applied to our methods as well. But the
limited run size often makes these automatic selection meth-
ods questionable in practice. To illustrate the difficulty, again
consider the simulation example for which we know the true
model. The top panels of Figure 6 give the leave-out-one cross-
validation scores together with their error bars (± one standard
deviation). The horizontal axis represents the fraction of move-
ment, defined as

∑
j

∫ t |β ′
j (s)|ds/

∑
j

∫ ∞ |β ′
j (s)|ds. Clearly, all

indicate that either a null mode or a model with 12 effects
should be chosen, which certainly is not true. A practical so-
lution is to look at the solution path, as we illustrated in the ex-
amples of the previous section. One may wish to choose paths
in which a small number of coefficients increase quickly at the
early stages, and the optimal model may be the point at which
the increase slows significantly. According to our experience,
this simple strategy works very well in practice. Other practi-
cal approaches also can be taken. For example, one may con-
sider using the so-called “one standard error rule” (Breiman,
Friedman, Stone, and Olshen 1984), where instead of choos-
ing the model that minimizes the cross-validation score, one
chooses the simplest model with a cross-validation score within
one standard error from the smallest. Alternatively, one may use
criteria that put more penalty on complicated models than the
cross-validation. We leave a more thorough and rigorous inves-
tigation for future research.

Finally, we want to point out that the techniques developed
here apply to the general linear regression variable selection
problems. We focused on the analysis of designed experiments
here only because effect heredity is most commonly applied in
this context.
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