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Abstract

Quantile smoothing splines provide nonparametric estimation of conditional quantile functions.
Like other nonparametric smoothing techniques, the choice of smoothing parameters considerably
affects the performance of quantile smoothing splines. The robust cross-validation (RCV) has been
commonly used as a tuning criterion in practice. To explain its success, Oh et al. (J. Roy. Statist.
Soc. Ser. A, in press) argued that the RCV curve, as a function of smoothing parameters in quantile
smoothing splines, differs from the mean squared error (MSE) curve only by a constant. In this arti-
cle, we consider an alternative loss function, the generalized comparative Kullback–Leibler distance
(GCKL) for the quantile smoothing spline.We argue that RCV is an estimator of GCKL.A disadvan-
tage of RCV is its computational intensity. To reduce the associated computational cost, Nychka et
al. (J. Amer. Statist. Assoc. 90 (432) (1995) 1171) has previously proposed an approximation to RCV,
namely ACV. However, we find in our simulations that the ACV-based tuning method will often fail
in practice. We first reexamine the theoretical basis for ACV. This exercise enables us to explain the
failure of ACV. Then we continue to propose a remedy, the generalized approximate cross-validation
(GACV) as a computable proxy for the GCKL. Some preliminary simulations suggest that the GACV
score is a good estimate of the GCKL score and that the GACV-based tuning technique compares
favorably with bothACV and another commonly used criteria, Schwartz information criterion. A real
dataset is examined to illustrate the empirical performance of the proposed method.
© 2004 Published by Elsevier B.V.
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1. Introduction

The focusofmostnonparametric regressionmethodologiescentersaround theconditional
mean.However, conditional quantile functionsmay providemore complete information and
often uncover additional features between the responses and the corresponding covariates.
For practical examples, the readers are referred toKoenker andHallock (2001)amongmany
other recent review articles.
In a typical regression setting, we are interested in the functional dependence between

a univariate responsey and itsp-variate covariatex = (
x1, . . . , xp

)
. To uncover the rela-

tionship,n independent copies of(x, y), (xi , yi) , i = 1, . . . , n are observed. Now suppose
the functional dependence which we are interested in is the�th quantile of the conditional
distribution ofy given x, f (x). A popular nonparametric estimator off can be obtained
through regularization.
Following the pioneering article ofKoenker and Bassett (1978), define the check

function as

��(u) = (�I (u>0) + (1− �)I (u<0))|u|, (1.1)

whereI (·) is an indicator function. This check function highlights the basic difference
between theconditionalmeanand theconditional quantile function.Themeanminimizes the
expected squared loss; whereas, the�th quantile minimizes the expectation of the weighted
absolute loss defined by (1.1). A quantile spline estimator off can then be given as the
minimizer of

1

n

n∑
i=1

�� (yi − f (xi )) + �J (f ) (1.2)

over a reproducing kernel Hilbert spaceH, whereJ is a quadratic functional defined over
H. The first term of (1.2) measures the fidelity to the observations. The second term shrinks
the solution toward the null space ofJ. Different variants of the quantile splines have been
studied by several authors recently.
For univariate covariates, following the traditional smoothing splines,Nychka et al.

(1995)choseJ (f ) = ∫ ∣∣f ′′∣∣2. A pseudo-data algorithm was also proposed in the same
paper to carry out the minimization efficiently. AlternativelyKoenker et al. (1994)set

J (f ) = (∫ ∣∣f ′′∣∣p)1/p. It has been shown that solutions of (1.2) under this setting are linear
splines whenp=1. This enables us to express (1.2) as a linear programming problem. Both
results have been extended to two-dimensional covariates cases, namely elastic and plastic
splines, as termed byKoenker and Mizera (2002).
Like other nonparametric smoothing methods, smoothing parameter� plays a crucial

role on determining the trade-off between the fidelity to the data and the penalty. When�
is too large, there is too much penalty placed on the estimate. As a consequence, the data
is oversmoothed. On the other hand, when� is too small, we tend to interpolate the data
more and this will lead to undersmoothing. The main goal here is to pick a� such that
the distance between the resulting estimate and the true function is minimized. The major
difficulty is that we do not observe the true function. Therefore we cannot directly evaluate
the distance. Instead, we should rely on some other proxies.
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One standard proxy is the robust cross-validation (RCV). The problem with RCV is its
high computational cost.To reduce the computational burden incurredbyRCV, approximate
cross-validation (ACV) was proposed byNychka et al. (1995)as an approximation to
RCV. However, as our simulation in this paper reveals, ACV fails frequently as a tuning
method. The reason is that it seriously overestimates the loss. To explain this failure, we
first reexamine the theoretical motivations of ACV based on a linearization argument first
introduced byXiang and Wahba (1996). Using the insight gained from this exercise, we
proposeGACV as a remedy toACV. Simulation results suggest that GACV has a fairly high
statistical efficiency and compares favorably with another commonly used tuning method,
namely SIC.
In this paper, we estimate the quantile smoothing spline by the iteratively reweighting

scheme introduced byNychka et al. (1995). The approach will be formulated in the next
section. InSection3,wewill introduceGCKL.Weargue thatRCVandACVareapproximate
unbiased estimates ofGCKL.This notion leads to the definition ofGACV,whichwe suggest
to be used to tune smoothing parameters. Section 4 presents simulations to evaluate the
performance of GACV as a smoothing parameter tuning technique. In the final section a
real dataset is analyzed to illustrate the method.

2. Quantile smoothing splines

Quantile smoothing splines defined in (1.2) can be viewed analogously to the traditional
smoothing spline for estimating the conditional mean

1

n

n∑
i=1

(yi − f (xi ))2 + �J (f ). (2.1)

Denotef (xi ) by fi and letK be then × n semi-positive definite matrix associated with
the penaltyJ such thatJ (f )= f ′Kf , wheref = (f1, . . . , fn)

′. Using these notation, we can
re-express (2.1) as

1

n

n∑
i=1

(yi − fi)
2 + �f ′Kf . (2.2)

The solution of (2.2) satisfies

1

n
(yi − fi) + �(Kf )i = 0, ∀i. (2.3)

Now if we pretend that�� is differentiable for a moment, then the solution of (1.2) will
satisfy similar equations as (2.3)

1

n
(yi − fi)

�′
� (yi − fi)

2 (yi − fi)
+ �(Kf )i = 0, ∀i. (2.4)

Comparing (2.4) and (2.3),Nychka et al. (1995)proposed to minimize (1.2) by iteratively
solving a weighted smoothing spline problem with weights

{
�′

� (yi − fi)
/
2 (yi − fi )

}
.
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To get around the nondifferentiability of�� at 0, they suggested to approximate�� by a
differentiable function��,�, which differs from�� only in the region(−�, �), where

��,�(u) = (�I (u>0) + (1− �)I (u<0)) u2/�. (2.5)

By setting� small enough, we can get a good approximate solution to (1.2).
To sumup theprocedure, anapproximate solution to (1.2) for a fixedsmoothingparameter

can be computed in the following way:

(a) Set an approximation threshold�.
(b) Initialize a solutionf (0).
(c) Given the current estimatef (k), fit a weighted smoothing spline with response{yi},

covariates{xi} and weights
{
�′

�,�

(
yi − f

(k)
i

)/
2
(
yi − f

(k)
i

)}
. Denote the solution

by f (k+1).
(d) Iterate step (c) until sequence

{
f (k)

}
meets certain convergence criteria.

Let f̂�,� be the�th quantile spline with smoothing parameter� and f̂
[−i]
�,� be defined

similarly asf̂�,� but with theith observation omitted. For simplicity, we will abbreviate the
subscripts� and/or� when no notational confusion occurs.
To choose an appropriate smoothing parameter�, a commonly used technique is to

minimize the cross-validation score, which is defined as

RCV (�) = 1

n

n∑
i=1

��

(
yi − f̂

[−i]
� (xi )

)
. (2.6)

In principle (2.6) could be evaluated and used as a tuning criterion. But the computational
cost associated with (2.6) is formidable since for each candidate smoothing parameter�,
(n + 1) quantile splineŝf�,�, f̂

[−1]
�,� , . . . , f̂

[−n]
�,� should be evaluated.

To reduce the computational burdenof (2.6),Nychkaet al. (1995)suggested the following
approximation to RCV:

ACV (�) = 1

n

n∑
i=1

��

(
yi − f̂� (xi )
1− hii

)
, (2.7)

wherehii = �f̂�,� (xi ) /�yi .
The basic rationale behind the above approximation is a similar identity for the smoothing

splines (Craven and Wahba, 1979). RCV enjoys a great success when applied in practice.
Oh et al. (2002)argued that it is becauseRCV (�) − MSE(�) is approximately a constant
not depending on�, where

MSE(�) = 1

n

n∑
i=1

(
f (xi ) − f̂ (xi )

)2
.

In the next section, we will take a different approach to explain its success. Then we will
check the theoretical basis for approximating RCV by ACV. The discussion leads us to a
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modification ofACV, which is shown to be preferable toACV both from intuition and from
our simulations of Section 4.

3. Generalized approximate cross-validation

Instead of minimizingMSE(�), we aim at a smoothing parameter� which minimizes
the risk

GCKL(�) = 1

n

n∑
i=1

Ez��
(
zi − f̂� (xi )

)
, (3.1)

wherezi is an independent copy ofyi and (3.1) is also known as GCKL. However, this
quantity is not computable since the true distribution ofyi is unknown. To tackle this
problem, we can minimize an exact or approximately unbiased estimate of GCKL instead.
In general, it is not clear whether there exists an exact unbiased estimate of GCKL. Thus,
approximately unbiased estimates are commonly used. There are many different options to
derive approximately unbiased estimates of GCKL. The most popular choice is the cross-
validation score.
Comparing (3.1) with (2.6), we can see that for large enough sample sizes,

Ez(RCV (�)) ≈ GCKL(�). (3.2)

In other words, RCV is an approximate unbiased estimate of GCKL. Although RCV is
quite hard to compute, it is very intuitive and provides an accurate estimate to GCKL. To
preserve these two virtues, we can start with RCV to search for a more computable estimate
of GCKL.
A first-order Taylor expansion gives

1

n

n∑
i=1

��

(
yi − f̂ [−i] (xi )

)
= 1

n

n∑
i=1

��
(
yi − f̂ (xi )

)+ 1

n

n∑
i=1

[
��

(
yi − f̂ [−i] (xi )

)
− ��

(
yi − f̂ (xi )

)]
≈ 1

n

n∑
i=1

��
(
yi − f̂ (xi )

)+ 1

n

n∑
i=1

�′
�,�

(
yi − f̂ (xi )

)
×
(
f̂ (xi ) − f̂ [−i] (xi )

)
. (3.3)

Our strategy is to approximate the second term of right-hand side of (3.3) so that it does not
rely on f̂ [−i], i = 1, . . . , n but only onf̂ . Before proceeding, we first need the following
version of the leaving-out-one lemma.

Lemma 3.1. Let f̃ [i]
�,� be defined in the same way aŝf�,� except that the ith responseyi is

replaced byf̂ [−i]
�,� (xi ). Thenf̃

[i]
�,� = f̂

[−i]
�,� .
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Proof. Denoteỹj = yj for all j �= i andỹi = f̂
[−i]
�,� (xi ). For anyf ∈ H,

1

n

n∑
j=1

��
(
ỹj − f

(
xj
))+ �J (f )

� 1

n

n∑
j=1,j �=i

��
(
yj − f

(
xj
))+ �J (f )

� 1

n

n∑
j=1,j �=i

��

(
yj − f̂ [−i] (xj ))+ �J

(
f̂ [−i])

= 1

n

n∑
j=1

��

(
ỹj − f̂ [−i] (xj ))+ �J

(
f̂ [−i])

� 1

n

n∑
j=1

��
(
ỹj − f̂

(
xj
))+ �J

(
f̂
)
, (3.4)

where the first inequality holds by the nonnegativity of�� and the last two inequalities hold
according to the definitions of̂f [−i] andf̂ , respectively. Thus, the proof is completed by
replacingf with f̂� in (3.4). �

The leaving-out-one lemma suggests that,

f̂ (xi ) − f̂ [−i] (xi ) ≈ �f̂ (xi )

�yi

(
yi − f̂ [−i] (xi )

)
. (3.5)

Thus,

�′
�,�

(
yi − f̂ (xi )

) (
f̂ (xi ) − f̂ [−i] (xi )

)
≈ �′

�,�

(
yi − f̂ (xi )

) �f̂ (xi )

�yi

(
yi − f̂ [−i] (xi )

)
= �′

�,�

(
yi − f̂ (xi )

) �f̂ (xi )

�yi

yi − f̂ (xi )

1− f̂ (xi )−f̂ [−i](xi )
yi−f̂ [−i](xi )

≈ �′
�,�

(
yi − f̂ (xi )

) �f̂ (xi )

�yi

yi − f̂ (xi )

1− �f̂ (xi ) /�yi

≈ ��,�
(
yi − f̂ (xi )

) �f̂ (xi ) /�yi

1− �f̂ (xi ) /�yi

≈ ��
(
yi − f̂ (xi )

) �f̂ (xi ) /�yi

1− �f̂ (xi ) /�yi

. (3.6)
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Now, (3.3) can be approximated by

1

n

n∑
i=1

��

(
yi − f̂ [−i] (xi )

)
≈ 1

n

n∑
i=1

��
(
yi − f̂ (xi )

)+ 1

n

n∑
i=1

��
(
yi − f̂ (xi )

) �f̂ (xi ) /�yi

1− �f̂ (xi ) /�yi

= 1

n

n∑
i=1

��
(
yi − f̂ (xi )

) 1

1− �f̂ (xi ) /�yi

. (3.7)

The right-hand side is ACV proposed byNychka et al. (1995). However,ACV (�) is not a
good approximate unbiased estimate to GCKL. Although it is much more computable than
RCV, it loses the accuracy of RCV. To see this, we simulated a dataset using the setting of
Section 4.1 with sample size 200. We computed the median smoothing splines using the
qsregfunction of theR packagefieldsfor 80 different smoothing parameters whose loga-
rithms are equally spaced on[−32,−12]. This specific interval for smoothing parameters
is chosen based on empirical evidences. In general, more sophisticated optimization tools
could be employed to automate this procedure instead of grid search. For the sake of brevity,
we are not going to explore this possibility in this paper.
The top left panel ofFig. 1gives the GCKL and ACV curves. We can see that the ACV

seriously overestimate the loss unless� is very small. To understand how this happens, let
us go back to (3.5). The performance of ACV depends on how good this approximation is.
More specifically, we would want the approximation error of (3.5) to be of a smaller order
than the first-order term of Taylor expansion, i.e.

f̂ (xi ) − f̂ [−i] (xi ) =
(

�f̂ (xi )

�yi

(
yi − f̂ [−i](xi )

))
(1+ o(1)). (3.8)

The approximation error of (3.5) depends on the relative magnitude of the second-order
term of the Taylor expansion to the first-order term. If�f̂ (xi ) /�yi is too close to 0, the
second-order term, which has been omitted in approximation (3.5) may dominate the first-
order approximation. Thus, (3.8) will be violated and the accuracy of (3.5) may not be
guaranteed. To see the effect of this, we picked three different�’s. The kernel density
estimates of

{
�f̂ (xi ) /�yi

}
for these three different smoothing parameters are provided in

the remaining three panels ofFig. 1. From this figure, we can see that ACV approximates
GCKL better if

{
�f̂ (xi ) /�yi

}
are more evenly spread between 0 and 1. Our experiences

with other examples also supported this finding.
To alleviate this problem, we borrow a trick from the derivation of GCV in (Craven and

Wahba, 1979). Replace�f̂ (xi ) /�yi by their averagetr(H)/n in (3.7), whereH is the
so-called hat matrix with the(i, j) entry�f̂ (xi ) /�yj . This gives us

1

n

n∑
i=1

��

(
yi − f̂ [−i] (xi )

)
≈
∑n

i=1��
(
yi − f̂ (xi )

)
n − tr(H)

. (3.9)
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ACV and GCKL vs ln (lambda)
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ln (lambda) =-13.0
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0
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20

30

40

ln (lambda) =-23.2

0.0 0.5 1.0

0.0

0.5

1.0

ln (lambda) =-32.0

GCKL ACV

Fig. 1.Failure of ACV: This figure shows how ACV fails to be a good estimate of GCKL. The bottom left panel
gives the GCKL and ACV curves. From this plot, we see that ACV overestimates GCKL. This problem becomes
mitigated for small�’s. In the rest three panels, we give kernel density estimates of the diagonal elements of the
“Hat” matrices for three different�’s. The circles of these density plots correspond to the diagonal elements. From
this figure, we see that ACV approximates GCKL badly if the diagonal elements concentrate around 0.

We call the right-hand side of (3.9) GACV. It is interesting to notice that (3.9) shares a
similar form with GCV for usual smoothing splines. The differences are that GACV has
the sum of absolute deviations as the numerator while GCV has the sum of squared losses.
Also, the denominator of GACV is the square root of the denominator of GCV.
In the next section, we will compareACV and GACV through Monte Carlo simulations.

We also include another popular method, SIC in our comparisons.
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4. Monte Carlo simulations

4.1. Approximately unbiased risk estimate

In the last section, we argued that the main motivation of ACV and GACV is to esti-
mate GCKL given by (3.1). In our first set of simulations, we will examine how good the
approximations are. Consider the following model:

yi = f (xi) + �i , i = 1, . . . ,200, (4.1)

where

f (x) = sin(2�x) (4.2)

andxi ’s are independently sampled fromU(0,1). The errors�’s are independent and iden-
tically distributed random variables from a double exponential distribution, whose density
function is given by

1
2 exp(−|�|), � ∈ (−∞,+∞).

The double exponential distribution allows a closed form evaluation of (3.1).

1

n

n∑
i=1

Ez��
(
zi − f̂ (xi)

)
≡ 1

n

n∑
i=1

Ee��
(
ei + �i

)
= 1

n

n∑
i=1

Ee

(
� − I

(
ei + �i <0

)) (
ei + �i

)
= 1

n

n∑
i=1

[
�Ee

(
ei + �i

)− Ee

(
ei + �i

)
I
(
ei + �i <0

)]
= 1

n

n∑
i=1

[
��i −

(
−1

2
exp

(− ∣∣�i

∣∣)+ �iI
(
�i <0

))]
, (4.3)

whereei is an independent copy of�i and

�i = f (xi ) − f̂ (xi ) .

We consider quantile regression with four different�’s: 20%,30%,40% and 50%. Because
the double exponential distribution is symmetric, the study of these lower quantiles should
also be representative of the upper quantiles 60%,70%and80%.Onehundred datasetswere
generated. Four quantile regressions were computed for each simulated dataset. Then for
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Fig. 2.GACV and ACV: We compare the biases of GACV andACV as estimates of GCKL. In each panel, we plot
the average GACV, ACV and GCKL curves for a given quantile from 100 simulated datasets. From these plots,
we conclude that GACV is a better estimate of GCKL. It has a very small bias for percentiles close to 50%. It still
preserves the shape of GCKL curve even for percentiles far from 50%.

each quantile, the GCKL scores together with GACV scores were evaluated for 80 different
smoothing parameters. The natural logarithm of the 80 smoothing parameter are equally
spaced in the interval[−32,−12]. We averaged the scores over all simulated datasets.Fig.
2 depicts the average curves of GCKL, GACV and ACV versus the natural logarithm of
the smoothing parameters. From the figure, we find that the average GACV curves are very
close to the average GCKL curves. The closer� is to 50%, the better GACV approximates
GCKL. But for all four quantiles, the shape of the average GACV curves are very similar
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Fig. 3.Performance of GACV: This figure presents individual GACV, ACV and GCKL curves for the median
smoothing splines from 100 simulated datasets. From this figure, we notice that GACV provides good estimates
to GCKL. We also find that ACV fails to capture the minimizer of GCKL very often.

to GCKL curves. In contrast, the average ACV curves have a shape different from GCKL
curves and overestimate GCKL all the time.
To examine this issue more closely. We plot individual GACV, ACV, and GCKL curves

for � = 50% from each simulated dataset inFig. 3. First, we find that for most datasets,
ACV fails to pick a reasonable smoothing parameter. On the other hand, GACV is quite
successful for most datasets.
It is also worth noting that for extreme quantiles, although GACV andACV curves have

very different shape, they both overestimate the GCKL curve. This similarity, however,
vanishes as� gets closer to 50% when the bias of GACV quickly diminishes. According
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Table 1
MSE comparisons for different criteria

MSE GACV SIC

DE 0.0324(0.0190) 0.0498(0.0289) 0.1701(0.3377)
Normal 0.0372(0.0223) 0.0528(0.0306) 0.3522(0.3828)
t3 0.0481(0.0273) 0.0645(0.0345) 0.2421(0.7808)
Mixture 0.0410(0.0250) 0.0589(0.0370) 0.1619(0.2538)
Slash 0.1303(0.0722) 0.3342(0.1248) 0.4054(0.0837)

to our experience, it is generally true that GACV and ACV are relatively more alike for
extreme quantiles.

4.2. MSE comparison

In this set of simulations,we focuson theMSEperformanceof quantile smoothing splines
with the smoothing parameter automatically tuned using GACV. We compare GACV and
another commonly used criterion, which is defined as

SIC(�) = ln

(
1

n

n∑
i=1

��
(
yi − f̂ (xi )

))+ ln n

2n
tr(H).

Datasets were stimulated from (4.1) with

f (x) = 2
[
exp

(
−30(x − 0.25)2

)
+ sin

(
�x2

)]
.

This time, we consider five different error distributions from which�’s are sampled: double
exponential, standard normal,t-distributionwith degree of freedom3, amixture distribution

0.05N(0,25) + 0.95N(0,1)

and a distribution known as the slash distribution, N(0,1)/U(0,1). For each of these five
error distributions, 100 datasetswere simulated.Given a simulated dataset, we computed the
50%quantile smoothing spline for 80 different smoothing parameters as in the last example.
GACV, and SIC scores were computed together with MSE. A GACV-based tuning method
will pick smoothing parameter�GACV such that the associated GACV score is minimized.
Similarly,wedefine�SIC.We recorded the trueMSEfor f̂�,�GACV andf̂�,�SIC. For thepurpose
of contrast, we also reported the minimum ofMSE, which represents the optimal estimate.
Table 1summarizes the sample mean and sample standard deviation (figures in the bracket)
for each combination of error distributions and tuning methods.
First, we find thatGACV is superior to SIC in all cases both in terms ofmean and standard

deviation. We also notice that the GACV-based tuning method enjoys a performance close
to the optimal.
In Fig. 4we provide the pairwise comparison between GACV and SIC. Each point in

the plot corresponds to a simulated dataset. They-axis isMSE(�GACV) and thex-axis
is MSE(�SIC). From this figure we see that GACV has better performance than SIC for
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Fig. 4.GACV versus SIC: For five different error distributions, we simulated 100 datasets as described in Section
4.2. Each panel presents the MSEs of a GACV-based median smoothing spline versus the MSEs of a SIC-based
median smoothing spline. We see a better performance of GACV in terms of MSE.

almost all simulated datasets. An interesting phenomenon is that for each error distribution,
SIC broke down for some of the simulated datasets.

4.3. A two-dimensional example

In the last set of simulations, a two-dimensional example is considered. To compute the
quantile smoothing splines, we used the thin-plate spline penalty in (1.1)

J (f ) =
∫ ∫ (

�2f
�u2

+ 2
�2f
�u�v

+ �2f
�v2

)2
dudv.
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Fig. 5.Bivariate example: This figure features a bivariate example described in Section 4.3. The top right panel
gives the true test function. Hundred datasets were simulated and GACV-based median smoothing splines were
computed. The estimates were ranked by the MSE. The 5th, 50th and 95th best fits are given in the rest three
panels.

We chose the following test function

f (x1, x2) = 40 exp
(
8
(
(x1 − 0.5)2 + (x2 − 0.5)2

))
exp

(
8
(
(x1 − 0.2)2 + (x2 − 0.7)2

))+ exp
(
8
(
(x1 − 0.7)2 + (x2 − 0.2)2

)) .
One hundred datasets were generatedwith the following procedure: 200 independent copies
of x = (x1, x2) are sampled fromU(0,1)2. Then responseyi ’s were sampled according to
(4.1) with the double exponential error distribution. For each dataset the 50% quantile
smoothing spline was computed with� chosen to minimize the GACV score. For each
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Fig. 6.Quantile fits for baseball data: The bottom right panel presents the scatterplot of the Baseball data. The rest
three panels give the quantile smoothing splines with smoothing parameters chosen by minimizing GACV scores.
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Fig. 7.GACV for baseball data: This figure gives the GACV curves for three quartiles from the Baseball example.
The minimizers are marked by crosses.

estimate, we calculated the corresponding MSE. Among these 100 quantile smoothing
splines, we plotted the true test function together with the 5th, 50th and 95th best fits in
terms of MSE inFig. 5. From this figure, we can see that the GACV-based tuning method
has a fairly high statistical efficiency. Even the 95th fit is very close to the true value.

5. Real data analysis

In this section, we considered a real application. We evaluated the annual salary (in
thousands of dollars) of baseball players as a function of performance and seniority. The
data was obtained fromHe et al. (1998). It consists of records of 263 NorthAmericanMajor
League players for the 1986 season. FollowingHe et al. (1998), we used the number of
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home runs in the latest year to measure performance, and the number of years played as the
seniority variable. The bottom right panel ofFig. 6gives the scatterplot of this dataset.
Quantile smoothing splines were fitted to the dataset for the first quartile, median and

third quartile.Fig. 7 gives the GACV curves corresponding to each quartile.Fig. 6 gives
the quantile smoothing spline estimates with smoothing parameters picked by GACV.
From the fitted quantile smoothing splines we can see that lower income players tended

to get higher salary if the performance they had in the last season is better. Also, for lower
paid players there is a positive effect of the seniority. Players with more experience made
more money. However, for higher paid players, the income pattern is somewhat different.
They got better paid if they had played for 10–15 years. This agrees with our intuition. For
players with higher performance, they usually get paid better at their “golden ages”.
ACV- and SIC-based tuning methods have also been experimented on this dataset. Al-

though the shape of the fitted surfaces are roughly the same, AIC selects rather smaller
tuning parameters and gives more wiggly estimate. This echoes our findings in the simu-
lations. SIC performs more similarly to GACV except that it selects the tuning parameter
slightly larger than GACV.
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