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Summary. We study the non-negative garrotte estimator from three different aspects: con-
sistency, computation and flexibility. We argue that the non-negative garrotte is a general pro-
cedure that can be used in combination with estimators other than the original least squares
estimator as in its original form. In particular, we consider using the lasso, the elastic net and
ridge regression along with ordinary least squares as the initial estimate in the non-negative
garrotte. We prove that the non-negative garrotte has the nice property that, with probability
tending to 1, the solution path contains an estimate that correctly identifies the set of impor-
tant variables and is consistent for the coefficients of the important variables, whereas such a
property may not be valid for the initial estimators. In general, we show that the non-negative
garrotte can turn a consistent estimate into an estimate that is not only consistent in terms of
estimation but also in terms of variable selection. We also show that the non-negative garrotte
has a piecewise linear solution path. Using this fact, we propose an efficient algorithm for com-
puting the whole solution path for the non-negative garrotte. Simulations and a real example
demonstrate that the non-negative garrotte is very effective in improving on the initial estimator
in terms of variable selection and estimation accuracy.

Keywords: Elastic net; Lasso; Least angle regression selection; Non-negative garrotte; Path
consistency; Piecewise linear solution path

1. Introduction

Consider a multiple linear regression problem where we have n observations on a dependent
variable Y and p predictors X1, X2, . . . , Xp, and

Y =Xβ + ", .1/

where X = .X1, X2, . . . , Xp/, " ∼N .0, σ2In/ and β = .β1, . . . , βp/′. Throughout this paper, we
centre each input variable so that the observed mean is 0, and scale each predictor so that the
sample standard deviation is 1. The underlying notion behind variable selection is that some
of the predictors are redundant and therefore only an unknown subset of the β-coefficients are
non-zero. By effectively identifying the subset of important predictors, variable selection can
improve the accuracy of estimation and enhance model interpretability.

Classical variable selection methods, such as Cp, Akaike’s information criterion AIC and
the Bayes information criterion BIC, choose between possible models by using penalized
sum-of-squares criteria, with the penalty being an increasing function of the dimension
of the model. These methods, however, are computationally infeasible for even moderate
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numbers of predictors since the number of candidate models increases exponentially as the num-
bers of predictors increases. In practice, this type of method is implemented in stepwise fashion,
through forward selection or backward elimination. Because of the myopic nature of the stepwise
algorithm, these implementations are known to be suboptimal in many applications (Chen et al.,
1998). Various other variable selection methods have been introduced in recent years (George
and McCulloch, 1993; Foster and George, 1994; Breiman, 1995; Tibshirani, 1996; George and
Foster, 2000; Fan and Li, 2001; Shen and Ye, 2002; Efron et al., 2004; Yuan and Lin, 2005;
Zou and Hastie, 2005). In particular, Breiman (1995, 1996) proposed the non-negative garrotte
estimator, which he showed to be a stable variable selection method that often outperforms its
competitors including subset regression and ridge regression.

The original non-negative garrotte estimator that was introduced by Breiman (1995) is a
scaled version of the least square estimate. The shrinking factor d.λ/ = .d1.λ/, . . . , dp.λ//′ is
given as the minimizer to

1
2
‖Y −Zd‖2 +nλ

p∑
j=1

dj, subject to dj > 0, ∀j, .2/

where Z= .Z1, : : : , Zp/, Zj =Xjβ̂
LS
j and β̂

LS
j is the least square estimate based on equation (1).

Here λ > 0 is a tuning parameter. The non-negative garrotte estimate of the regression coeffi-
cient is subsequently defined as β̂

NG
j .λ/=dj.λ/β̂

LS
j , j = 1, . . . , p. Hereafter, we omit subscript

or/and superscript n if no confusion occurs.
The mechanism of the non-negative garrotte can be illustrated under orthogonal designs,

where X′X= In. In this case, the minimizer of expression (2) has an explicit form:

dj.λ/=
⎛
⎝1− λ

β̂
LS2

j

⎞
⎠

+

, j =1, . . . , p: .3/

Therefore, for those coefficients whose full least square estimate is large, the shrinking factor
will be close to 1. But, for a redundant predictor, the least square estimate is likely to be small
and consequently the shrinking factor will have a good chance of being exactly 0.

A drawback of the original non-negative garrotte is its explicit reliance on the full least squares
estimate. Obviously, with a small sample size, least squares may perform poorly, and the non-
negative garrotte is expected to suffer as well. In particular, the original non-negative garrotte,
as proposed by Breiman (1995) cannot be applied when the sample size is smaller than the num-
ber of predictors. However, we argue that the idea of the non-negative garrotte can also be used
in combination with estimators other than least squares. We consider, in particular, using the
lasso (Tibshirani, 1996), ridge regression and the elastic net (Zou and Hastie, 2005) as alterna-
tive initial estimates for the non-negative garrotte. We prove that, as long as the initial estimate
is consistent in terms of estimation, the non-negative garrotte estimate is consistent in terms of
both estimation and model selection given that the tuning parameter λ is appropriately chosen.
In other words, the non-negative garrotte can turn a consistent estimate into an estimate that
is not only consistent in terms of estimation but also in terms of variable selection. In contrast,
such a path consistency property does not always hold for the initial estimators.

A potential hurdle when using the non-negative garrotte estimator for large scale problems
is the computational cost. The non-negative garrotte is so far computed by using the standard
quadratic programming technique for a given tuning parameter, which can be computationally
demanding for high dimensional problems, especially if a fine grid of tuning parameters is to
be considered. In this paper, we show that the solution path of the non-negative garrotte is
piecewise linear, regardless of the initial estimate, and use this to construct a more efficient
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algorithm for building the non-negative garrotte solution path. The algorithm proposed com-
putes the whole solution path of the non-negative garrotte with the computational load of the
same magnitude as ordinary least squares.

The rest of the paper is organized as follows. In the next section, we investigate the path con-
sistency of the non-negative garrotte estimator as well as several other popular variable selection
and estimation methods. An efficient algorithm for computing the non-negative garrotte solu-
tion path is introduced in Section 3. Sections 4 and 5 present some simulations and a real data
example to support the theoretical results. We conclude the paper with a summary in Section 6.
All technical proofs are relegated to Appendix A.

2. Path consistency

After an initial estimate has been obtained, the non-negative garrotte proceeds in two steps in
practice. First the solution path that is indexed by the tuning parameter λ is constructed. The
second step, which is often referred to as tuning, selects the final estimate on the solution path.
Since the final estimate comes from the solution path, it is of great importance to make sure
that the solution path indeed contains at least one ‘desirable’ candidate estimate. In our context,
an estimate β̂ is considered desirable if it is consistent in terms of both coefficient estimate and
variable selection. We call a solution path ‘path consistent’ if it contains at least one such desir-
able estimate. In this section, we investigate the path consistency property for the non-negative
garrotte together with several other popular variable selection methods, namely, the lasso, least
angle regression selection (LARS) (Efron et al., 2004) and the elastic net.

2.1. Non-negative garrotte
The following theorem states that the non-negative garrotte is always path consistent given that
the initial estimate is consistent in estimation.

Theorem 1. Assume that

(a) the initial estimate is δn consistent, i.e. maxj|β̂init
j −βj|=Op.δn/ for some δn →0 and

(b) the design matrix is non-degenerate, i.e. the smallest eigenvalue of X′X=n is bounded
from below by a positive constant with probability tending to 1.

If λ→0 in a fashion such that δn =o.λ/, then P{β̂
NG
j .λ/=0}→1 for any j =∈I, and β̂

NG
j .λ/=

βj +Op.λ/ for any j ∈I where I ={j :βj �=0}.

During the preparation of this paper, it was brought to our attention that Zou (2006) also
independently obtained that the original non-negative garrotte with the least squares estimate
as the initial estimate is consistent in variable selection if p is held fixed as n→∞. His result can
be viewed as a special case of theorem 1 with the choice δn =√

n. Theorem 1 is more general
because it also indicates that the non-negative garrotte estimator is consistent in estimation.
More importantly, it is worth pointing out that we do not require p to be held fixed and allow
for more general initial estimates in theorem 1.

In achieving the consistency in variable selection, we show in theorem 1 that the non-negative
garrotte estimate of a non-zero coefficient converges at a slower rate than its initial estimate. It
is not clear to us whether this is the unavoidable price that we must pay for variable selection
in general. The numerical results that are presented in Section 5 clearly suggest otherwise but
theoretical justification has so far eluded us. As a partial answer, the following lemma demon-
strates that sharper convergence rates may be available for the coefficient estimate at least in
some special cases.
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Lemma 1. Assume that the design matrix satisfies X′
IcXI =0. Under the conditions of theorem

1, if λ → 0 in a fashion such that δ2
n = o.λ/, then P{β̂

NG
j .λ/ = 0} → 1 for any j =∈ I, and

β̂
NG
j .λ/=βj +Op{max.δn, λ/} for any j ∈I.

This path consistency property of the non-negative garrotte is to be contrasted with the
following results for several other modern variable selection methods.

2.2. Lasso
The popular lasso that was proposed by Tibshirani (1996) is defined as

β̂
LASSO

.λ/=arg min
β

( 1
2‖Y −Xβ‖2 +nλ‖β‖l1

)
, .4/

where λ is a tuning parameter and ‖·‖l1 stands for the vector l1-norm. By using the l1-penalty,
minimizing equation (4) yields a sparse estimate of β if λ is chosen appropriately. Consequently,
a submodel of equation (1) which contains only the covariates corresponding to the non-zero
components in β̂

LASSO
.λ/ is selected as the final model. The lasso has exploded in popular-

ity since its introduction because of its great success in a wide range of applications.
Despite its superior performance in prediction, the following theorem suggests that the lasso

must be used with caution as a variable selection method. The path consistency property holds
for the lasso only under restrictive conditions of the design matrix.

Theorem 2. The sufficient and necessary condition for the lasso to be path consistent is

max
j �∈I

{cov.Xj, XI/ cov .XI/−1}sI < 1, .5/

where s is a p-dimensional vector with the jth element being sgn.βj/.

The fact that the lasso may not be consistent in variable selection was first noted in Meinshau-
sen and Bühlmann (2006) who, in the context of Gaussian graphical model selection, argued
that a condition similar to inequality (5) is required to ensure the consistency in variable selec-
tion for a lasso-type procedure. Several other researchers have also independently discovered
results that are similar to theorem 2 during the preparation of this paper. In particular, Zou
(2006) showed that a necessary condition for the lasso to be consistent in variable selection is

max
j �∈I

{cov.Xj, XI/ cov.XI/−1}sÅI �1, .6/

for some sign vector sÅ. The necessity result that is reported here is stronger in that it implies
condition (6). Zhao and Yu (2006) also considered conditions that were similar to inequality (5),
but their focus was on sign consistency, i.e. sgn.β̂j/ agrees with the sign of the true regression
coefficient. The necessity of condition (5) in our theorem 2 follows directly from their theorem
2 because sign consistency is weaker than consistency in both variable selection and estimation.
Similarly, their sufficiency result for sign consistency also follows immediately from the suffi-
ciency of condition (5) in our theorem 2. For this reason, we omit the proof of the necessity and
only present that of the sufficiency in Appendix A.

Theorem 2 indicates that, if condition (5) is not satisfied, we cannot use the lasso to select the
right variables even with the freedom of choosing the tuning parameter λ. It is therefore of clear
importance to be able to determine in practice when the lasso can be used for variable selection.
Of course the condition that is given in theorem 2 cannot be checked since it involves the true
regression coefficient β. For this purpose, a stronger condition can be enforced to ensure the
path consistency of the lasso:
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max
j �∈I

‖cov.Xj, XI/ cov.XI/−1‖l1 < 1: .7/

In fact, following the same proof as that of theorem 2, one can show that inequality (7) is the
sufficient condition that the lasso solution path contains an estimate β̂ such that β̂j �= 0 if and
only if j ∈I. In contrast, it is easy to see that, if condition (7) is violated, then there is always a
β such that condition (5) is not satisfied. By theorem 2, the lasso is not path consistent at least
for such β.

2.3. Least angle regression selection
The LARS method that was proposed by Efron et al. (2004) is a method which is closely related
to the lasso. The LARS method uses a variable selection strategy which is similar to forward
selection. Starting with all coefficients equal to 0, the algorithm finds the predictor that is most
correlated with the response variable and proceeds in this direction. Instead of taking a full step
towards the projection of Y on the variable, as would be done in forward selection, the LARS
algorithm only takes the largest step possible in this direction until some other variable has as
much correlation with the current residual. Then this new predictor is entered and the process is
continued. Readers are referred to Efron et al. (2004) and Osborne et al. (2000) for the detailed
LARS algorithm. The great computational advantage of LARS comes from the fact that the
LARS path is piecewise linear and all that we need to do is to locate the changepoints. Once a
variable enters the LARS solution path, it will stay on the solution path. Therefore, the LARS
method cannot be path consistent if a redundant variable is the first to be selected.

Theorem 3. If

max
j �∈I

|cov.Xj, XI/β|�max
j∈I

|cov.Xj, XI/β|, .8/

then the LARS method is not path consistent with a non-vanishing probability.

2.4. Elastic net
The elastic net was recently proposed by Zou and Hastie (2005) to combine the strength of the
lasso and ridge regression. The elastic net estimate is defined as

β̂
ENET

.λ/=arg min
β

(
1
2
‖Y −Xβ‖2 +nλ‖β‖l1 + n

2
τ‖β‖2

l2

)
, .9/

where λ and τ are tuning parameters and ‖·‖l2 stands for the vector l2-norm. Clearly, the elastic
net has both the lasso (τ =0) and ridge regression (λ=0) as special cases. Similar to the lasso,
the l1-penalty encourages sparse estimates of β, and the squared l2-penalty encourages highly
correlated predictors to have similar coefficient estimates. It has been demonstrated in Zou and
Hastie (2005) that the elastic net often enjoys better prediction performance than both the lasso
and ridge regression in simulations. Like the lasso and LARS, the elastic net is not always path
consistent.

Theorem 4. A necessary and sufficient condition for the elastic net to be path consistent is

max
j �∈I

(
lim inf

c1,c2→0+

[
cov.Xj, XI/{cov.XI/+ c1I}−1

(
sI + c1

c2
βI

)])
< 1: .10/

To gain further insight into conditions (10), consider the special case when cov.XI/= I and
βI =bsI for some scalar b> 0. The left-hand side of inequality (10) becomes
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max
j �∈I

(
lim inf

c1,c2→0+

[
cov.Xj, XI/{cov.XI/+ c1I}−1

(
sI + c1

c2
βI

)])

=max
j �∈I

{
lim inf

c1,c2→0+

(
1+bc1=c2

1+ c2

)
cov.Xj, XI/cov.XI/−1sI

}

=max
j �∈I

{cov.Xj, XI/ cov.XI/−1}sI : .11/

Now condition (10) is the same as condition (5).

3. Algorithm

For most methods of regularization, it is very expensive, if not impossible, to compute the exact
solution path. We must approximate the solution path by evaluating the estimate for a fine
grid of tuning parameters and there is a trade-off between the accuracy of the approximation
and the computational cost in determining how fine a grid of tuning parameters to be consid-
ered. In particular, given the initial estimate, the non-negative garrotte solution path can be
approximated by solving the quadratic programming problem (2) for a series of λs, as done
in Breiman (1995). We show that, similarly to the lasso, the solution path of the non-negative
garrotte is piecewise linear, and we use this to construct an efficient algorithm of building the
exact non-negative garrotte solution path.

Let β̂
NG

.λ/= .d1.λ/βinit
1 , d2.λ/βinit

2 , . . . , dp.λ/βinit
p / be the solution of equation (2) where βinit

is the initial estimate. A simple application of the Karush–Kuhn–Tucker condition yields

1
n
βinit′

j X′
j{Y −X β̂

NG
.λ/}=λ, if β̂

NG
j .λ/ �=0, .12/

1
n
βinit′

j X′
j{Y −X β̂

NG
.λ/}<λ, if β̂

NG
j .λ/=0: .13/

Such characteristics of the solution path are similar to those of LARS and can be used to build
the solution path. Starting with all coefficients equal to 0, the algorithm finds the predictor such
that the covariance between Xjβ

init
j and the response variable is maximized and proceeds in this

direction. Then, we can take the largest step possible in this direction until one of the following
situations occurs:

(a) some other variable enters the model because it also maximizes the covariance between
Xjβ

init
j and the current residual;

(b) a variable should be dropped because the non-negativity constraint dj �0 would be vio-
lated if we continue in this direction.

It turns out that both situations can be handled with ease. The former can be dealt with by add-
ing this variable to the model and recomputing the direction with the updated set of variables
so that conditions (12) and (13) continue to hold. The latter occurs if a non-zero coefficient
reaches 0. In this case, we can simply drop the variable and again recompute the direction with
the updated set of variables. To sum up, we propose the following algorithm to compute the
non-negative garrotte solution path.

3.1. Algorithm—non-negative garrotte

Step 1: start from d[0] =0, k =1 and r[0] =Y .
Step 2: compute the current active set
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C1 =arg max
j

.Z′
jr[k−1]/,

where Zj =Xjβ
init
j .

Step 3: compute the current direction γ, which is a p-dimensional vector defined by γCc
k
= 0

and

γCk
= .Z′

Ck
ZCk

/−1Z′
Ck

r[k−1]:

Step 4: for every j �∈ Ck, compute how far the group non-negative garrotte will progress in
direction γ before Xj enters the active set. This can be measured by an αj such that

Z′
j.r[k−1] −αjZγ/=Z′

j′.r[k−1] −αjZγ/ .14/

where j′ is arbitrarily chosen from Ck.
Step 5: for every j ∈ Ck, compute αj = min.βj, 1/ where βj = −d

[k−1]
j =γj, if non-negative,

measures how far the group non-negative garrotte will progress before dj becomes 0.
Step 6: if αj � 0, ∀j or minj:αj>0.αj/ > 1, set α= 1. Otherwise, denote α= minj:αj>0.αj/ ≡
αjÅ . Set d[k] = d[k−1] + αγ. If jÅ �∈ Ck, update Ck+1 = Ck ∪ {jÅ}; otherwise update Ck+1 =
Ck −{jÅ}.
Step 7: set r[k] =Y −Zd[k] and k =k +1. Go back to step 3 until α=1.

Such an algorithm is quite similar to the LARS or the modified LARS algorithm (Efron et al.,
2004) for the LASSO and has a computational cost that is of the same magnitude as ordinary
least squares. A complicating factor for the non-negative garrotte is the non-negativity con-
straints in model (2). We shall show in the next theorem that these constraints are automatically
enforced and the whole solution path of the non-negative garrotte indeed can be constructed
by using the procedure that was described above.

Theorem 5. Under the ‘one at a time’ condition that is discussed below, the trajectory of this
algorithm coincides with the non-negative garrotte solution path.

The same condition as we assumed in theorem 1, referred to as one at a time, was used in
deriving the connection between the lasso and LARS by Efron et al. (2004). With the current
notation, the condition states that jÅ in step 6 is uniquely defined. This assumption basically
means that

(a) the addition occurs only for one variable a time at any stage of the above algorithm,
(b) no variable vanishes at the time of addition and
(c) no two variables vanish simultaneously.

This is generally true in practice and can always be enforced by slightly perturbing the
response. For more detailed discussions, readers are referred to Efron et al. (2004).

4. Simulation

In this section, we investigate the finite sample properties of the non-negative garrotte estimator.
Our discussion in the previous sections applies to any consistent estimate as the initial estimate.
In practice, the accuracy of the non-negative garrotte estimate depends on the choice of the
initial estimate. We consider four choices of the initial estimate in this paper: the ordinary least
squares estimate, the ridge estimate, the lasso and the elastic net. Except for the ordinary least
squares estimate, the other initial estimates all involve tuning parameters, which are chosen by
tenfold cross-validation in our numerical examples.
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4.1. Example 1
In the first set of simulations, we demonstrate the path consistency of the non-negative garrotte
procedure in contrast with the lasso, LARS and the elastic net. We consider a simple model:

Y =X1 +X2 +0 ·X3 + ", .15/

where "∼N .0, 1/. The two active predictors X1 and X2 were independently simulated from a
standard normal distribution. An additional noisy variable X3 was also included in the anal-
ysis. Conditionally on X1 and X2, X3 was generated from a normal distribution with mean
α.X1 +X2/ and variance 1−2α2. Therefore, the marginal distribution of X3 is also N .0, 1/. We
consider four different αs: 0.35, 0.45, 0.55 and 0.65. For each α-value, we consider 20 equally
spaced sample sizes: 25, 50, . . . , 500. For each combination of α and sample size, 100 data sets
were simulated, and we counted how many times different solution paths cover the true model,
i.e. how many times the path contains at least one estimate β̂ such that β̂1 �=0, β̂2 �=0 and β̂3 =0.
To fix ideas, we consider only the ordinary least squares estimate as the initial estimate of the
non-negative garrotte in this example. Fig. 1 depicts the frequency for each method to cover the
true model. It is worth noting that, in this example, the elastic net and lasso have indistinguish-
able performance, which can be expected from the equivalence between conditions (5) and (10)
in this case.

When α=0:35, all estimating procedures are consistent in variable selection. But the non-neg-
ative garrotte selects the correct model more often than the others for smaller sample sizes. When
α increases, the convergence of the coverage probabilities for both the non-negative garrotte and
the other methods slows down. For α=0:55 or α=0:65, the lasso, LARS and the elastic net do
not seem to be consistent in variable selection any more. In contrast, the non-negative garrotte is
still very capable of selecting the right model for α as large as 0.65. It is worth pointing out that
such empirical evidence agrees with our theoretical results that were presented before. According
to theorems 2–4, the lasso, LARS and the elastic net can be path consistent only if α< 0:5.

4.2. Example 2
In the second set of simulations, we consider a model that was used in Tibshirani (1996). 20, 50
or 100 observations were simulated from model (1) where p= 8, β = .3, 1:5, 0, 0, 2, 0, 0, 0/′ and
σ = 3. The correlation between Xi and Xj is ρ|i−j| with ρ= 0:5. For the non-negative garrotte,
we use the algorithm that was presented in Section 3 to construct the non-negative garrotte
solution path and, following Yuan and Lin (2006), we use the following Cp-type criterion to
determine λ:

Cp.μ̂/= ‖Y − μ̂‖2

σ2 −n+2d̃fμ,σ2 , .16/

where

d̃f=2
∑
j

I.dj > 0/−∑
j

dj:

For the lasso, LARS and the elastic net, tenfold cross-validation was used to determine the
corresponding tuning parameters. For each sample size, we repeat the experiment 200 times
and compare different methods in terms of model error, model size and false positive and false
negative results in variable selection. The model error of an estimate β̂ is given by

ME.β̂/= .β̂ −β/′V.β̂ −β/,

where V =E.X′X/ is the population covariance matrix of X.
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Table 1. Simulation example 2—averaged model error ME, model size SIZE, false positive results FP and
false negative results FN based on 200 runs†

Method Results for the following values of n:

n=20 n=50 n=100

ME SIZE FP FN ME SIZE FP FN ME SIZE FP FN

LASSO 4.41 4.22 1.56 0.34 1.52 4.92 1.92 0.00 0.67 5.24 2.24 0.00
(0.21) (0.12) (0.10) (0.04) (0.06) (0.11) (0.11) (0.00) (0.03) (0.11) (0.11) (0.00)

GLASSO 4.07 2.98 0.64 0.66 1.21 3.48 0.64 0.16 0.55 3.64 0.64 0.00
(0.21) (0.09) (0.07) (0.05) (0.06) (0.06) (0.06) (0.03) (0.03) (0.07) (0.07) (0.00)

RIDGE 5.76 8.00 5.00 0.00 1.83 8.00 5.00 0.00 0.88 8.00 5.00 0.00
(0.29) (0.00) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00)

GRIDGE 5.09 4.26 1.74 0.48 1.36 4.10 1.22 0.12 0.61 4.02 1.02 0.00
(0.31) (0.14) (0.13) (0.05) (0.07) (0.11) (0.11) (0.02) (0.02) (0.09) (0.09) (0.00)

ENET 4.05 4.70 1.98 0.28 1.60 5.18 2.18 0.00 0.74 5.20 2.20 0.00
(0.19) (0.12) (0.11) (0.04) (0.08) (0.11) (0.11) (0.00) (0.04) (0.11) (0.11) (0.00)

GENET 3.94 3.34 0.90 0.56 1.22 3.92 1.02 0.10 0.56 3.80 0.80 0.00
(0.19) (0.10) (0.08) (0.05) (0.06) (0.10) (0.10) (0.02) (0.03) (0.08) (0.08) (0.00)

OLS 5.83 8.00 5.00 0.00 1.83 8.00 5.00 0.00 0.88 8.00 5.00 0.00
(0.29) (0.00) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00)

GOLS 5.07 4.24 1.72 0.48 1.36 4.10 1.22 0.12 0.61 4.02 1.02 0.00
(0.31) (0.15) (0.13) (0.05) (0.07) (0.11) (0.11) (0.02) (0.02) (0.09) (0.09) (0.00)

†OLS, ordinary least squares.

Table 1 summarizes the results from the simulation. We use ENET to denote the elastic net
and prefix G to indicate the non-negative garrotte estimate with certain initial estimates. The
figures in parentheses are the standard errors. A few observations can be made from Table 1.
The true model contains a moderate number of moderate size effects, and the signal-to-noise
ratio is approximately 5.7. In terms of the accuracy of estimation, all versions of the non-nega-
tive garrotte improve on the initial estimate. It is also clear from Table 1 that the non-negative
garrotte is more effective in reducing both the false positive and the false negative results.

4.3. Example 3
The set-up of the third example is the same as for example 2 except that the true regression
coefficients are βj =0:85, j =1, 2, . . . , 8. The true model contains all variables each with a small
effect, and the signal-to-noise ratio is approximately 1.7. Table 2 documents the results from the
simulation. On the basis of Table 2, the non-negative garrotte tends to be less accurate than the
initial estimates because it often selects models with sizes that are too small. It is worth pointing
out that such suboptimal performance is not in contradiction to our theoretical results and may
be partially attributed to the inefficiency of the tuning criterion.

4.4. Example 4
The set-up of the last example is also the same as for example 2 except that the true regres-
sion coefficient is β = .5, 0:5, 0:5, 0:5, 0, 0, 0, 0/′. The true model contains one large effect and
several small effects. Table 3 gives a summary of the simulation results. A clear advantage of
the non-negative garrotte over its initial estimate can be observed. Note that, as the sample size
increases, the number of false negative results from the non-negative garrotte reduces.
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Table 2. Simulation example 3—averaged model error ME, model size SIZE, false positive results FP and
false negative results FN based on 200 runs†

Method Results for the following values of n:

n=20 n=50 n=100

ME SIZE FP FN ME SIZE FP FN ME SIZE FP FN

LASSO 5.35 4.98 0.00 3.02 1.82 7.14 0.00 0.86 0.86 7.90 0.00 0.10
(0.24) (0.15) (0.00) (0.15) (0.07) (0.07) (0.00) (0.07) (0.03) (0.02) (0.00) (0.02)

GLASSO 5.95 3.16 0.00 4.84 2.42 5.34 0.00 2.66 1.06 7.08 0.00 0.92
(0.21) (0.12) (0.00) (0.12) (0.07) (0.09) (0.00) (0.09) (0.05) (0.08) (0.00) (0.08)

RIDGE 5.67 8.00 0.00 0.00 1.75 8.00 0.00 0.00 0.83 8.00 0.00 0.00
(0.27) (0.00) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00)

GRIDGE 5.69 4.16 0.00 3.84 2.38 5.60 0.00 2.40 1.03 7.12 0.00 0.88
(0.19) (0.14) (0.00) (0.14) (0.08) (0.09) (0.00) (0.09) (0.04) (0.07) (0.00) (0.07)

ENET 4.57 5.70 0.00 2.30 1.73 7.26 0.00 0.74 0.88 7.86 0.00 0.14
(0.20) (0.15) (0.00) (0.15) (0.07) (0.06) (0.00) (0.06) (0.03) (0.02) (0.00) (0.02)

GENET 5.86 3.74 0.00 4.26 2.22 5.74 0.00 2.26 1.04 7.20 0.00 0.80
(0.20) (0.14) (0.00) (0.14) (0.07) (0.09) (0.00) (0.09) (0.04) (0.07) (0.00) (0.07)

OLS 5.74 8.00 0.00 0.00 1.75 8.00 0.00 0.00 0.83 8.00 0.00 0.00
(0.27) (0.00) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00)

GOLS 5.69 4.14 0.00 3.86 2.38 5.60 0.00 2.40 1.03 7.12 0.00 0.88
(0.19) (0.14) (0.00) (0.14) (0.08) (0.09) (0.00) (0.09) (0.04) (0.07) (0.00) (0.07)

†OLS, ordinary least squares.

Table 3. Simulation example 4—averaged model error ME, model size SIZE, false positive results FP and
false negative results FN based on 200 runs†

Method Results for the following values of n:

n=20 n=50 n=100

ME SIZE FP FN ME SIZE FP FN ME SIZE FP FN

LASSO 4.08 3.34 1.04 1.70 1.62 4.04 1.28 1.24 0.72 4.98 1.50 0.52
(0.20) (0.13) (0.09) (0.06) (0.08) (0.13) (0.09) (0.06) (0.03) (0.10) (0.08) (0.04)

GLASSO 2.72 2.12 0.44 2.32 1.32 2.54 0.56 2.02 0.65 2.94 0.40 1.46
(0.15) (0.10) (0.06) (0.05) (0.06) (0.09) (0.06) (0.05) (0.02) (0.08) (0.05) (0.05)

RIDGE 5.96 8.00 4.00 0.00 1.96 8.00 4.00 0.00 0.89 8.00 4.00 0.00
(0.28) (0.00) (0.00) (0.00) (0.07) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00)

GRIDGE 3.53 3.54 1.42 1.88 1.34 3.08 0.90 1.82 0.69 3.48 0.78 1.30
(0.23) (0.18) (0.11) (0.08) (0.06) (0.13) (0.09) (0.06) (0.02) (0.11) (0.08) (0.06)

ENET 4.35 3.74 1.32 1.58 1.70 4.00 1.14 1.14 0.80 4.94 1.40 0.46
(0.22) (0.14) (0.10) (0.07) (0.09) (0.11) (0.08) (0.06) (0.03) (0.12) (0.10) (0.04)

GENET 2.70 2.24 0.54 2.30 1.29 2.64 0.54 1.90 0.66 3.04 0.40 1.36
(0.16) (0.10) (0.07) (0.05) (0.05) (0.10) (0.06) (0.05) (0.02) (0.09) (0.05) (0.05)

OLS 6.02 8.00 4.00 0.00 1.96 8.00 4.00 0.00 0.89 8.00 4.00 0.00
(0.29) (0.00) (0.00) (0.00) (0.07) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00)

GOLS 3.47 3.52 1.42 1.90 1.34 3.08 0.90 1.82 0.69 3.48 0.78 1.30
(0.23) (0.17) (0.11) (0.07) (0.06) (0.13) (0.09) (0.06) (0.02) (0.11) (0.08) (0.06)

†OLS, ordinary least squares.
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In summary, we found from examples 2–4 that the non-negative garrotte performs very well
when the true model is relatively sparse, and it should be favourable in many applications on
the basis of the bet-on-sparsity principle that was advocated by Friedman et al. (2004).

5. Real data

To illustrate our results further, we reanalyse the prostate cancer data set from the study by
Stamey et al. (1989). This data set, which was previously used in Tibshirani (1996), consists
of the medical records of 97 male patients who were about to receive a radical prostatectomy.
The response variable is the level of prostate specific antigen. The predictors are eight clinical
measures: log(cancer volume) (lcavol), log(prostate weight) (lweight), age, log(benign prostatic
hyperplasia amount) (lbph), seminal vesicle invasion (svi), log(capsular penetration) (lcp), Glea-
son score (gleason) and percentage Gleason scores 4 or 5 (pgg45).

One of the main interests here is to identify which predictors are more important in predicting
the response. Figs 2(a), 2(c) and 2(e) give the solution paths of the lasso and LARS (the lasso
and LARS share the same solution path in this example), the non-negative garrotte and the
elastic net. For illustration, we used the ordinary least squares estimate as the initial estimate
for the non-negative garrotte. For the elastic net, as suggested in Zou and Hastie (2005), we
fix nτ at 1000 and the solution path corresponds to different values of λ. In each panel, the
dotted vertical line indicates the tuning parameter that was chosen by tenfold cross-validation.
All methods indicate that gleason may be an unimportant predictor whereas lcavol is the most
important predictor. To demonstrate the path consistency results from Section 2, we replace
gleason with an artificial variable 2lcavol + gleason. This new variable again contains little
extra information for predicting the response and a path consistent method should be able to
recognize this fact. The solution paths of the four methods on the new data set are given in
Figs 2(b), 2(d) and 2(f). Comparing with the original solution path, the non-negative garrotte
is the least disturbed by such change. Both the lasso and LARS and the elastic net select the
artificial variable as an important predictor. This observation supports the theory from Section
2 that the path consistency of the lasso and LARS and the elastic net depends on the correlation
of the design matrix whereas the non-negative garrotte is always path consistent.

To gain further insights, we estimate the prediction error of each method on both the original
data set and the perturbed data set by using fivefold cross-validation. On the original data, the
prediction error is 0.571, 0.558 and 0.623 respectively for the lasso and LARS, the non-negative
garrotte and the elastic net. After modifying the gleason variable, the prediction error becomes
0.579, 0.560 and 0.666 respectively for the lasso and LARS, the non-negative garrotte and the
elastic net. This agrees with our findings from Fig. 2.

6. Conclusion

In this paper we proved that the non-negative garrotte estimator is path consistent given an
appropriate initial estimate. It can turn a consistent estimate into an estimate that is consistent
in terms of both variable selection and coefficient estimation. We showed that the solution path
of the non-negative garrotte is piecewise linear, and the whole path can be computed quickly. We
have also shown by simulations and a real example that the non-negative garrotte is an effective
tool to improve the variable selection and estimation accuracy of a given estimator. The encour-
aging results that are presented here suggest that the idea of the non-negative garrotte might be
useful in a wider range of applications. For example, one can consider an extension to multivar-
iate nonparametric regression and devise a variable selection and estimation procedure using
the non-negative garrotte. Further studies are needed to explore this and other possibilities.
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Appendix A

A.1. Proof of theorem 1
For brevity, we suppress the dependence on λ in the proof. Let

Λ01 ={j : dj =0, βj �=0},
Λ00 ={j : dj =0, βj =0},
Λ11 ={j : dj > 0, βj �=0},
Λ10 ={j : dj > 0, βj =0},

and pij = #.Λij/. Denote event A= {p10 > 0}. First we show that P.A/ → 0 as n →∞. Write dij = dΛij
,

i, j = 0, 1, and let other vectors and matrices be defined in the same fashion unless otherwise indicated.
Note that d1· is also the unconstrained minimizer of

1
2
‖Y −Z1·γ‖2 +nλ

∑
j

γj , .17/

where γ ∈Rp1· . Therefore (
d11
d10

)
=

(
Z′

11Z11=n Z′
11Z10=n

Z′
10Z11=n Z′

10Z10=n

)− (
Z′

11Y=n−λ1p11

Z′
10Y=n−λ1p10

)
:

Denote

A=Z′
1·Z1:,

Aij =Z′
1iZ1j , i, j =0, 1,

A00:1 =A00 −A01A
−
11A10:

Then

A− =
(

Å Å
−A−

00:1A01A
−
11 A−

00:1

)
:

This implies that

d10 =−A−
00:1A01A

−
11.Z

′
11Y=n−λ1p11 /+A−

00:1.Z
′
10Y=n−λ1p10 /≡A−

00:1w: .18/

Rewrite w as

w =Z′
10{Ip11 −Z11.Z

′
11Z11/

−Z′
11}Y=n−λ1p10 +λA01A

−
111p11 : .19/

Because β̂
init

is δn consistent, for any i, j ∈{1, . . . , p},

|β̂init
i β̂

init
j −βiβj|= |β̂init

i .β̂
init
j −βj/+βj.β̂

init
i −βi/|

� .|β̂init
i |+ |βj|/|β̂init

j −βj|
=Op.δn/: .20/

This entails

A11 = 1
n

Δ11X
′
11X11Δ11 +Op.δn/, .21/

A01 =Op.δn/, .22/

where Δ is a diagonal matrix with diagonal elements β. Consequently,

w =Z′
10{Ip11 −Z11.Z

′
11Z11/

−Z′
11}Y=n−λ{1+Op.δn/}1p10 : .23/
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Now note that

‖{Ip11 −Z11.Z
′
11Z11/

−Z′
11}Y‖2 �Y ′Y =Op.n/, .24/

since Z11.Z
′
11Z11/

−Z′
11 is a projection matrix. Thus, by the Cauchy–Schwartz inequality,

‖Z′
10{Ip11 −Z11.Z

′
11Z11/

−Z′
11}Y‖�‖Z10‖‖{Ip11 −Z11.Z

′
11Z11/

−Z′
11}Y‖

=Op.
√

n‖Z10‖/

=Op.n max
j �∈I

|β̂init
j |/

=Op.nδn/

=op.nλ/: .25/

This leads to w=−λ{1+op.1/}1p10 . Since dj >0 for any j ∈Λ10, we have w′d10 <0. This is in contradiction
with equation (18), which implies that w′d10 =w′A−

00:1w �0. Thus, when n→∞, P.A/→0.
Denote B = {p10 = 0}. It now suffices to show that P.B|Ac/ → 1. Assume that p10 = 0. Let du be the

unconstrained minimizer of
1
2 ‖Y −Z:1γ‖2 +nλγ ′1p:1 , .26/

where γ ∈Rp·1 . Note that

du = .Z′
:1Z:1=n/−.Z′

:1Y=n−λ1p:1 /: .27/

Following the same argument as for equation (21), we have

1
n

Z′
:1Z:1 = 1

n
Δ:1X

′
:1X:1Δ:1 +Op.δn/: .28/

Consequently,

du = .Δ:1X
′
:1X:1Δ:1=n/−.Z′

:1Y=n−λ1p:1 /{1+Op.δn/}: .29/

Furthermore, for any j ∈Λ:1,∣∣∣ 1
n

..Z:1 −X:1Δ:1/
′Y/j

∣∣∣=O{|.β̂init
:1 −β:1/j|}=Op.δn/: .30/

Thus,

du = .Δ:1X
′
:1X:1Δ:1=n/−.Δ:1X

′
:1Y=n−λ1p:1 /{1+Op.δn/}: .31/

Combining equation (31) and the fact that

.Δ:1X
′
:1X:1Δ:1=n/−Δ:1X

′
:1Y=n=1p:1 ,

we obtain

du =1p:1 −λ.Δ:1X
′
:1X:1Δ:1=n/−1p:1 +Op.δn/

=1p:1{1+Op.λ/}:
.32/

Thus, with probability tending to 1, du →1p:. In other words β̂
NG
j .λ/= β̂

init
j {1+Op.λ/} for j ∈I as n→∞.

Now the proof is completed since β̂
init
j →p βj .

A.2. Proof of lemma 1
In the proof of lemma 1, the first term on the left-hand side of equation (23) can be expressed as Z′

10Y =
Δ10.X

′
10X10/Δ10 =Op.δ2

n/=op.λ/. Therefore, w=−λ{1+op.1/}. The rest of the proof is exactly the same
as for the proof of theorem 1.

A.3. Proof of theorem 2
Recall that the lasso with tuning parameter λ is given as the minimizer to

1
2
‖Y −Xγ‖2 +nλ

p∑
j=1

|γj|: .33/
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The Karush–Kuhn–Tucker theorem suggests that a necessary and sufficient condition for any p-dimen-
sional vector β̃ to be on the LASSO solution path is

1
n

X′
j.Y −Xβ̃/=λ sgn.β̃j/, if β̃j �=0, .34/

∣∣∣ 1
n

X′
j.Y −Xβ̃/

∣∣∣�λ, if β̃j =0: .35/

Now suppose that condition (5) holds. Let β̃I be the minimizer to

1
2
‖Y −XIγ‖2 +nλ

∑
j

|γj|, .36/

where λ= 1=ln.n/. It is easy to see that β̃j →p βj for any j ∈I and therefore, with probability tending to
1, β̃j �= 0 for any j ∈I. Let β̃Ic = 0. It now suffices to show that, with probability tending to 1, such a β̃
is also on the solution path of expression (33). Note that, from expression (36),

1
n

X′
I.Y −XI β̃I/=λ sgn.β̃I/: .37/

However, because X′X=n= cov.X/+Op.1=
√

n/ and β̂
LS =β +Op.1=

√
n/,

1
n

X′
I.Y −XI β̃I/= 1

n
X′

IXI.β̂
LS
I − β̃I/+ 1

n
X′

IXIc β̂
LS
Ic

= cov.XI/.βI − β̃I/+Op.n−1=2/: .38/

Combining equations (37) and (38),

β̃I =βI −λ cov.XI/−1 sgn.β̃I/+Op.n−1=2/: .39/

Therefore,

1
n

X′
Ic .Y −XI β̃I/= 1

n
X′

Ic XI.βLS
I − β̃I/+ 1

n
X′

Ic XIc βLS
Ic

= cov.XIc , XI/.βI − β̃I/+Op.n−1=2/

=λ cov.XIc , XI/ cov.XI/−1 sgn.β̃I/+Op.n−1=2/: .40/

From equation (40), for any positive constant " and ∀j �∈I, then with probability tending to 1∣∣∣ 1
n

X′
j.Y −XI β̃I/

∣∣∣� cλ+ " .41/

where c < 1 is the quantity on the left-hand side of equation (7). By choosing " < .1 − c/λ in inequality
(41), together with equation (37), we have, with probability tending to 1, that β̃ satisfies conditions (34)
and (35). Hence it is on the lasso solution path.

The necessity of condition (5) follows immediately from theorem 2 of Zhao and Yu (2006) and is therefore
omitted here.

A.4. Proof of theorem 3
The proof of theorem 3 is obvious from the fact that

1
n

X′
jY → cov.Xj , XI/β:

A.5. Proof of theorem 4
The proof of theorem 4 proceeds in the same fashion as that of theorem 2. The Karush–Kuhn–Tucker
theorem suggests that a necessary and sufficient condition for any p-dimensional vector β̃ to be on the
elastic net solution path is

1
n

X′
j.Y −Xβ̃/− τ β̃j =λ sgn.β̃j/, if β̃j �=0, .42/
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n

X′
j.Y −Xβ̃/

∣∣∣�λ, if β̃j =0: .43/

We first show that inequality (10) is a sufficient condition for the elastic net to be path consistent. For
this, define β̃Ic =0 and β̃I as the minimizer of

1
2
‖Y −XIγ‖2 +nλ

∑
j

|γj|+nτ
∑

j

γ2
j , .44/

where λ, τ →0 satisfy n1=2λ→∞ and c1 = τ and c2 =λ are such that

max
j �∈I

(
lim

n

[
cov.Xj , XI/{cov.XI/+ τI}−1

(
sI + τ

λ
βI

)])
< 1: .45/

It is not difficult to check that

β̃I =βI − cov.XIc , XI/{cov.XI/+ τI}−1 {λ sgn.β̃I/+ τβI}+Op.n−1=2/: .46/

It now suffices to show that β̃ satisfies condition (43). Similarly to equation (40), we have
1
n

X′
Ic .Y −XI β̃I/=λ cov.X′

Ic /{cov.XI/+ τI}−1 {sgn.β̃I/+βI}+Op.n−1=2/, .47/

which is smaller than λ with probability tending to 1.
Next we show that the elastic net is not path consistent if condition (10) is violated. Without loss of

generality, assume that β1 =0 and

lim inf
c1,c2→0+

[
cov.X1, XI/{cov.XI/+ c1I}−1

(
sI + c1

c2
βI

)]
�1: .48/

Assume the contrary, that, with probability tending to 1, we can find a desirable estimate on the elastic net
solution path. Denote β̃ a desirable estimate that satisfies conditions (42) and (43). Then, with probability
tending to 1, sgn.β̃j/= sgn.βj/ for any j ∈I. From condition (42),

β̃I =βI − cov.XIc , XI/{cov.XI/+ τI}−1 {λ sgn.β̃I/+ τβI}+Op.n−1=2/: .49/

Together with the fact that β̃Ic =0, we have, with probability tending to 1,
1
n

X′
1.Y −XI β̃I/=λ cov.X1, XI/{cov.XI/+ τI}−1

{
sgn.β̃I/+ τ

λ
βI

}
+ ξ .50/

where P.ξ >0/ is bounded below by a positive constant. This implies that, with a non-vanishing probability,
β̃ cannot satisfy condition (43), which contradicts the construction of β̃.

A.6. Proof of theorem 5
The Karush–Kuhn–Tucker theorem suggests that a necessary and sufficient condition for a point d to be
on the solution path of model (2) is that there is a λ�0 such that, for any j =1, . . . , p,

{−Z′
j.Y −Zd/+λ}dj =0, .51/

−Z′
j.Y −Zd/+λ�0, .52/

dj �0: .53/

In what follows we show that conditions (51)–(53) are satisfied by any point on the solution path con-
structed by the algorithm, and any solution to conditions (51)–(53) for certain λ�0 is also on the solution
path constructed.

We verify conditions (51)–(53) for the solution path by induction. Obviously, they are satisfied by d [0].
Now suppose that they hold for any point before d [k]. It suffices to show that they are also true for any
point between d [k] and d [k+1]. There are three possible actions at step k:

(a) a variable is added to the active set, jÅ �∈Ck;
(b) a variable is deleted from the active set, jÅ ∈Ck;
(c) α=1.
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It is easy to see that conditions (51)–(53) will continue to hold for any point between d [k] and d [k+1] if α=1.
Now we consider the other two possibilities.

First consider additions. Without loss of generality, assume that Ck − Ck−1 = {1}. Note that a point
between d [k] and d [k+1] can be expressed as dα ≡ d [k] +αγ, where α∈ .0, α1] and γ is a vector defined by
γCc

k
=0 and

γCk
= .Z′

Ck
ZCk

/−1Z′
Ck

r[k]: .54/

It is not difficult to show that conditions (51) and (52) are true for dα. It now suffices to check condition
(53). By the construction of the algorithm, it boils down to verify that γ1 > 0.

By the definition of Ck and Ck−1, we know that, for any j ∈Ck−1,

Z′
jr

[k−1] >Z′
1r

[k−1], .55/

Z′
jr

[k] =Z′
1r

[k]: .56/

Therefore,

Z′
1.r

[k−1] − r[k]/<Z′
j.r

[k−1] − r[k]/:

Because there is a positive constant b such that

r[k−1] − r[k] =bZCk−1 .Z′
Ck−1

ZCk−1 /−1Z′
Ck−1

r[k−1],

we conclude that

Z′
1ZCk−1 .Z′

Ck−1
ZCk−1 /−1Z′

Ck−1
r[k−1] <Z′

jZCk−1 .Z′
Ck−1

ZCk−1 /−1Z′
Ck−1

r[k−1]:

Write s=1p. Since Z′
Ck−1

r[k−1] = .Z′
jr

[k−1]/sCk−1 , we have

Z′
1ZCk−1 .Z′

Ck−1
ZCk−1 /−1sCk−1 < 1: .57/

Together with equation (54),

γ1 = {1−Z′
1ZCk−1 .Z′

Ck−1
ZCk−1 /−1sCk−1}Z′

jr
[k]

Z′
1{In −ZCk−1 .Z′

Ck−1
ZCk−1 /−1Z′

Ck−1
}Z1

> 0: .58/

Now let us consider the case of deletion. Without loss of generality, assume that Ck−1 − Ck = {1}. In
this case, a point between d [k] and d [k+1] can still be expressed as dα ≡ d [k] + αγ, where α ∈ .0, α1] and
γ is still defined by equation (54). It is readily possible to show that conditions (51) and (53) are true
with λ = Z′

j.Y − Zdα/ where j is arbitrarily chosen from Ck. It suffices to verify condition (52). By the
construction of the solution path, it suffices to show that condition (52) holds for j =1.

Note that any point between d [k−1] and d [k] can be written as d [k−1] + cγ̃, where c > 0 and γ̃ is given by
γ̃Cc

k−1
=0 and

γ̃Ck−1 = .Z′
Ck−1

ZCk−1 /−1Z′
Ck−1

r[k−1]: .59/

Clearly, γ̃1 < 0. Similarly to equation (58), we have

γ̃1 = {1−Z′
1ZCk

.Z′
Ck

ZCk
/−1sCk

}Z′
jr

[k]

Z1{In −ZCk
.Z′

Ck
ZCk

/−1Z′
Ck

}Z1
, .60/

where j is arbitrarily chosen from Ck. Therefore,

Z′
1ZCk

.Z′
Ck

ZCk
/−1sCk

= .pj=Z′
jr

[k]/Z′
1Zγ < 1:

In other words, Z′
1Zγ < Z′

jr
[k] = Z′

jZγ. Since Z′
1r

[k] = Z′
jr

[k], we conclude that Z′
1.Y − Zdα/ < Z′

j.Y −
Zdα/=λ.

Next, we need to show that, for any λ�0, the solution to conditions (51)–(53) is on the solution path. By
the continuity of the solution path and the uniqueness of the solution to equation (2), it is evident that, for
any λ∈ [0, maxj.Z

′
jY/], the solution to conditions (51)–(53) is on the path. The proof is now completed by

the fact that, for any λ> max.Z′
jY/, the solution to conditions (51)–(53) is 0, which is also on the solution

path.
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