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Abstract

Covariance structure plays an important role in high dimensional statistical inference. In

a range of applications including imaging analysis and fMRI studies, random variables are

observed on a lattice graph. In such a setting it is important to account for the lattice structure

when estimating the covariance operator.

In this paper we consider both minimax and adaptive estimation of the covariance operator

over collections of polynomially decaying and exponentially decaying parameter spaces. We

first establish the minimax rates of convergence for estimating the covariance operator under

the operator norm. The results show that the dimension of the lattice graph significantly affects

the optimal rates convergence, often much more so than the dimension of the random variables.

We then consider adaptive estimation of the covariance operator. A fully data driven block

thresholding procedure is proposed and is shown to be adaptively rate optimal simultaneously

over a wide range of polynomially decaying and exponentially decaying parameter spaces. The

adaptive block thresholding procedure is easy to implement and numerical experiments are

carried out to illustrate the merit of the procedure.
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1 Introduction

In many high-dimensional inference problems, random variables are observed on a lattice graph.

For example, in imaging analysis the intensity values are observed on pixels that form a two

dimensional lattice, and in fMRI studies the observations are made at voxels that can be described

as a three dimensional lattice graph. In these applications, the covariance structure, which needs to

be estimated from the data, often plays a critical role. For covariance estimation in such settings, it

is important to account for the structural information because the covariance between two random

variables often depends on where they are observed. Simply vectorizing the observations and

estimating the covariance as a matrix typically does not lead to satisfactory results as the lattice

structure is ignored.

Consider, for example, extracting eigenimages from a training set. This is a standard task in

imaging analysis, especially for the purpose of face recognition (see, e.g., Sirovich and Kirby, 1987;

Turk and Pentland, 1991). Figure 1 gives a simple illustration of the importance of accounting

for the lattice structure of images. Eigenimages are the eigenvectors of the covariance operator of

images. Typically eigenimages are estimated directly from the sample covariance operator which

does not account for the lattice structure of an image. See, e.g., Turk and Pentland (1991). With

a relatively small sample size, such an estimate may be unreliable. In this example, four hundred

images of resolution 25×25 were simulated from a Markov random field model whose corresponding

eigenimage is given in the left panel of Figure 1. The eigenimage estimated based on the sample

covariance operator is given in the middle panel. The correlation between the truth and the sample

eigenimage is 41% which indicates a rather poor estimate. As a comparison, we also applied the

covariance operator estimation procedure developed in this paper which is specifically designed to

account for the lattice structure. The right panel of Figure 1 provides the corresponding eigenimage.

The correlation between this estimate and the true eigenimage is 81%, which represents a significant

improvement over the one based on the sample covariance operator. More detailed discussion on

this example is given in Section 4.

Let G(q1, . . . , qd) = {1, 2, . . . , q1}×· · ·×{1, 2, . . . , qd} be a d-dimensional lattice. Assume without

loss of generality that q1 ≤ q2 ≤ · · · ≤ qd. Hereafter, we shall use Gd as a shorthand notation for

the d-dimensional lattice G(q1, . . . , qd) when no confusion occurs. Let X = (X(t) : t ∈ Gd) be a

stochastic process defined on the lattice graph Gd. Suppose we observe n independent realizations

of X, denoted by X1,X2, . . . ,Xn. We are interested in estimating the covariance operator of X,

Σ = (σ(s, t))s,t∈Gd
where σ(s, t) = cov(X(s),X(t)), based on the random sample {X1,X2, . . . ,Xn}.

Note that the covariance operator Σ is defined over the Cartesian product space of Gd × Gd, i.e.,

Σ ∈ R
Gd×Gd . A particularly interesting case here is when the number of variables p := q1q2 · · · qd is

moderate or large when compared with the sample size n. Estimating a covariance operator in the

high-dimensional setting is difficult and it is crucial to take advantage of the special structure of the

problem. In particular, it is often the case that the covariance between X(s) and X(t) diminishes

as their distance D(s, t) increases. Note that Σ corresponds to a compact operator from ℓ2(Gd) to
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Figure 1: Importance of accounting for the lattice structure of images – the true eigenimage,

along with the estimate derived from sample covariance operator, and a covariance operator that

appropriately account for the lattice structure.

itself. Let ‖Σ‖ be its operator norm. We shall consider the setting where the covariance operator

Σ ∈ Fd({ak};M) for some non-increasing sequence ak ↓ 0 and a constant M > 0 where

Fd({ak};M0) =






Σ : Σ ≻ 0, ‖Σ‖ ≤ M0,

∑

s:D(s,t)≥k

|σ(s, t)| ≤ ak, ∀k > 0 and t ∈ Gd






. (1)

To fix ideas, in what follows, we shall take D(·, ·) to be the Manhattan or equivalently ℓ1 distance

on Gd, a natural metric for lattice graph (Krause, 1987). Our development, however, can be easily

generalized to deal with other distance measures on Gd.

We study in this paper optimal and adaptive estimation of Σ ∈ Fd({ak};M0) under the operator

norm ‖ · ‖. In particular we shall focus on two specific choices of {ak : k ≥ 1}, namely, ak = Mk−α

and ak = M exp(−α0k
α) for some constantsM,α0, α > 0. For brevity, in what follows, we denote by

Fd(α;M0,M) the first class of covariance operators and F∗
d (α0, α;M0,M) the class that corresponds

to ak = M exp(−α0k
α). It is clear that the former describes a class of covariance operators where

the covariance between two random variables decays polynomially in their distance whereas the

latter consists of covariance operators where the covariances decay exponentially fast with their

distances. We shall consider subgaussian variables X which satisfy, for some constant ρ > 0,

P







∣
∣
∣
∣
∣
∣

∑

t∈Gd

u(t)(X(t) − EX(t))

∣
∣
∣
∣
∣
∣

> t






≤ e−ρt2/2, for all t > 0 and ‖u‖ = 1. (2)

Denote by Pd(α;M0,M) the collection of subgaussian distributions with the covariance operator

Σ ∈ Fd(α;M0,M) and similarly, P∗
d (α0, α;M0,M) is the collection of subgaussian distributions

with Σ ∈ F∗
d (α0, α;M0,M). We write an ≍ bn if there are constants 0 < c1 ≤ c2 such that

c1 ≤ an/bn ≤ c2 for all n. Combining the upper and lower bound results given in Section 2, we

establish the following minimax rates of convergence for estimating Σ under the operator norm.
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Theorem 1. Let X be a random variable defined on a lattice graph G(q1, . . . , qd) with q1 ≤ · · · ≤ qd.

Given a random sample X1, . . . ,Xn from the distribution of X. The minimax risk for estimating

the covariance operator Σ under the operator norm ‖ · ‖ satisfies

inf
Σ̃(data)

sup
Pd(α;M0,M)

E‖Σ̃− Σ‖2 ≍
log p

n
+min







(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d






, (3)

where q0 := 1; and

inf
Σ̃(data)

sup
P∗

d
(α0,α;M0,M)

E‖Σ̃− Σ‖2 ≍
log p

n
+

1

n

d∏

k=1

(min{qk, (log n)
1/α}). (4)

The minimax rates of convergence given in Theorem 1 quantify how well the covariance operators

can be estimated. The optimal rates are established in two steps. We first obtain lower bounds for

the minimax risk by applying Fano’s lemma to a carefully constructed finite subset of the parameter

spaces. A blockwise banding estimator is then proposed and is shown to attain the same rates of

convergence as those of the minimax lower bounds and it is thus rate optimal.

Theorem 1 shows that the optimal rate of convergence for estimating the covariance operator

depends not only on the total number p of variables but also on the individual dimensions q1, . . . , qd

of the lattice. In the case of exponentially decaying covariance operators, the rate is determined

jointly by p and those dimensions that are smaller than (log n)1/α. The effect of dimensions on the

optimal rate of convergence for polynomially decaying covariance operator is more profound. A

revealing example is the case when d = 2. The optimal rate for estimating polynomially decaying

covariance operator is given by

inf
Σ̃(data)

sup
Σ∈F2(α;M0,M)

E‖Σ̃− Σ‖2 ≍
log(q1q2)

n
+min

{

n− α
α+1 ,

(q1
n

) 2α
2α+1

,
q1q2
n

}

. (5)

We note an interesting phase transition behavior in the effect of the dimensionality of the lat-

tice: the optimal rate of convergence does not depend on the specific value of q2 whenever q2 ≫

(n/q1)
1/(2α+1); and the rate does not depend on either q1 or q2 when q1 ≫ n1/(2α+2).

It is also instructive to examine carefully the special case when q1 = · · · = qd =: q and hence

p = qd. In this case the minimax rates given in (3) and (4) can be more explicitly expressed as

inf
Σ̃(data)

sup
Σ∈Fd(α;M0,M)

E‖Σ̃− Σ‖2 ≍ min

{

n− 2α
2α+d +

d log q

n
,
qd

n

}

, (6)

and

inf
Σ̃(data)

sup
Σ∈F∗

d
(α0,α;M0,M)

E‖Σ̃− Σ‖2 ≍ min

{

(log n)d/α

n
+

d log q

n
,
qd

n

}

. (7)

It is interesting to note the different roles played by the two measures of dimensionality d and p.

Except for the case when the number p of variables is very small relative to the sample size n, the

optimal rates depend on p only through its logarithm. Therefore, quality estimates can be obtained
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with a relatively small sample size even if the number of variables is large. The dimension d of the

lattice, on the other hand, has a much more severe impact on the optimal rate of convergence. For

both classes of covariance operators, the rate of convergence quickly deteriorates when d increases,

in a way reminiscent of the so-called “curse of dimensionality” often associated with the classical

multivariate nonparametric regression (see, e.g., Tsybakov, 2009). As a result, a lot of more

observations are needed to yield a good estimate as the dimension of the lattice increases.

In addition to the minimax optimality, we also study the problem of adaptive estimation of

covariance operators for random variables observed on a lattice graph. A fully data driven block

thresholding procedure is introduced in Section 3 and is shown to adaptively attain the optimal

rate of convergence over Fd(α;M0,M) and F∗
d (α0, α;M0,M) simultaneously for all α0, α > 0. The

block thresholding procedure first carefully divides the sample covariance operator into blocks of

varying sizes and then applies thresholding to each block depending on its size and operator norm.

The idea of adaptive estimation through block thresholding can be traced back to nonparametric

function estimation (see, e.g., Efromovich, 1985 and Cai, 1999), and has been recently applied to

covariance matrix estimation (Cai and Yuan, 2011). The setting here is, however, more complicated

due to the lattice structure.

Our work relates to a fast growing literature on estimation of sparse covariance and precision

matrices. See, for example, Ledoit and Wolf (2004), Huang et al. (2006), Yuan and Lin (2007),

Bickel and Levina (2008a, b), El Karoui (2008), Fan, Fan and Lv (2008), Friedman et al. (2008),

Rothman et al. (2008), Lam and Fan (2009), Rothman, Levina and Zhu (2009), Yuan (2010), Cai

and Liu (2011), Cai, Liu and Luo (2011), Cai and Yuan (2011), Cai, Liu and Zhou (2011), Cai and

Zhou (2012), among many others. In particular, a commonly considered class of covariance matrices

is the so-called bandable covariance matrices which amounts to a special case of Fd(α;M0,M) with

d = 1. It can be easily deduced from (6) that the minimax rate of convergence for estimating

bandable covariance matrices over F1(α;M0,M) is

inf
Σ̃(data)

sup
Σ∈F1(α;M0,M)

E‖Σ̃−Σ‖2 ≍ min

{

n− 2α
2α+1 +

log p

n
,
p

n

}

,

which was first established by Cai, Zhang and Zhou (2010). More recently, Cai and Yuan (2011)

showed that a carefully devised block thresholding procedure can adaptively achieve the optimal

rate of convergence over F1(α;M0,M) simultaneously for all α > 0. But unlike these earlier

developments where the analysis techniques are specifically tailored for covariance matrices, our

treatment here is more general and can handle not only higher dimensional lattices but also covari-

ance operators with arbitrarily decaying rates.

The rest of the paper is organized as follows. After introducing basic notations and definitions,

Section 2 establishes the minimax rates of convergence for estimating both polynomially decaying

and exponentially decaying covariance operators. It is shown that a blockwise banding estimator

attains the optimal rate of convergence. Section 3 considers adaptive estimation. A fully data-

driven block thresholding estimator is constructed by first carefully dividing the sample covariance

operator into blocks and then simultaneously estimating the entries in a block by thresholding.
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This estimator is shown to attain the optimal rate of convergence adaptively over the collections of

both polynomially decaying and exponentially decaying covariance operators. Section 4 considers

the performance of the proposed method through numerical studies. Extensions to other related

problems are discussed in Section 5. Section 6 contains the proofs of a main result and some

technical lemmas.

2 Optimal Rates of Convergence

In this section, we establish the optimal rates of convergence for estimating the covariance operator

Σ. We begin by introducing some basic notations and definitions. Throughout the paper, for r ≥ 1

and u ∈ R
Gd , denote ‖u‖r = (

∑

t∈Gd
|u(t)|r)1/r. In the special case of r = 2 we denote ‖u‖ for

the usual Euclidean norm of u. For the covariance operator Σ of a random variable X defined on

the lattice Gd, we define ‖Σ‖ℓr→ℓr = max‖u‖r=1 ‖Σu‖r for the operator norm from ℓr(Gd) to ℓr(Gd).

When r = 2, we simply denote ‖Σ‖ for the norm ‖Σ‖ℓ2→ℓ2 .

2.1 Minimax Lower Bounds

A key step in establishing the optimal rate of convergence is the derivation of the minimax lower

bounds. We obtain separately the lower bounds for the collection of polynomially decaying covari-

ance operators Fd(α;M0,M) and for the collection of exponential decaying covariance operators

F∗
d (α0, α;M0,M). Note that any lower bound for a specific case yields immediately a lower bound

for the general case. It therefore suffices to consider the case when X is normally distributed. The

upper bounds derived in Section 2.2 show that these lower bounds are minimax rate optimal.

2.1.1 Polynomially decaying covariance operators

We have the following lower bound for the minimax risk of estimating Σ over the collection of

polynomially decaying covariance operators Fd(α;M0,M).

Theorem 2. Suppose that we observe a random sample X1, . . . ,Xn ∼iid N (0,Σ) and wish to

estimate Σ ∈ R
Gd×Gd under the operator norm ‖ · ‖. Then there exists a constant C > 0 not

depending on p or n such that

inf
Σ̃(data)

sup
Σ∈Fd(α;M0,M)

E‖Σ̃− Σ‖2 ≥ C




log p

n
+min







(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d









 , (8)

where q0 = 1.

Proof. Recall that q1 ≤ q2 ≤ · · · ≤ qd. Denote by

k∗ = argmin
k







(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d






.
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It then suffices to show that

inf
Σ̃(data)

sup
Σ∈Θ1

E‖Σ̃− Σ‖2 ≥
C log p

n
, (9)

and

inf
Σ̃(data)

sup
Σ∈Θ2

E‖Σ̃− Σ‖2 ≥ C

(

n−1
k∗∏

l=0

ql

) 2α
2α+d−k∗

, (10)

for some carefully designed classes of covariance operators Θ1,Θ2 ⊂ Fd(α;M0,M).

Assume without loss of generality that M0 > 1. Let Σ0 be the identity operator, that is,

σ0(s, t) = δst where δ is the Kronecker’s delta. Denote by

Θ1 = {Σ0}
⋃







Σ : ∃t0 ∈ Gd such that σ(s, t) =







1 + a
√

n−1 log p if s = t = t0

1 if s = t 6= t0

0 otherwise







,

where 0 < a < 1/8 is a small enough constant such that Θ1 ⊂ Fd(α;M0,M). Denote by PΣ the

joint distribution of n iid centered Gaussian processes X1, . . . ,Xn with covariance operator Σ. It

is clear that for any Σ 6= Σ0 ∈ Θ1, the Kullback-Leibler distance from PΣ to PΣ0
is given by

K(PΣ|PΣ0
) =

n

2

[

a
√

n−1 log p− log(1 + a
√

n−1 log p)
]

.

Note that log(1 + x) ≥ x− x2/2 for any x ≥ 0. Therefore,

K(PΣ|PΣ0
) ≤

a2 log p

4
.

Lower bound (9) then follows from Fano’s lemma and the fact that ‖Σ1 − Σ2‖ = a
√

n−1 log p, for

any Σ1 6= Σ2 ∈ Θ1.

To prove (10), we consider separately the cases when (a) k∗ = 0; (b) k∗ = d; and (c) 1 ≤ k∗ < d.

In each case, we appeal to the Varshamov-Gilbert bound (see, e.g., Tsybakov, 2009) to construct

Θ2. Consider first the case when k∗ = 0. Simple calculation indicates that in this case,

n− 2α
2α+d ≤ (q1/n)

− 2α
2α+d−1 ,

which implies that q1 ≥ n
1

2α+d .

Write k = ⌈n1/(2α+d)⌉. Denote by {0, 1}G(k,...,k) the collection of all functions that map from a

d-dimensional lattice G(k, . . . , k) to {0, 1}. Then Varshamov-Gilbert bound indicates that for any

k such that kd ≥ 8, there exist a subset Ω := {ω1, . . . , ωN} of {0, 1}G(k,...,k) obeying N ≥ 2k
d/8 and

‖ωj′ − ωj‖1 ≥ kd/8, ∀0 ≤ j 6= j′ ≤ N

where ω0 = (0, . . . , 0). With slight abuse of notation, write ωj : Gd 7→ {0, 1} such that ωj(s) = 0

for any s such that ‖s‖∞ > k, and its restriction ωj|G(k,...,k) ∈ Ω. Denote by

Σj := Σ(ωj) = δst +

{

an−1/2k−d/2 if ωj(s) = ωj(t) = 1

0 otherwise
,
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where 0 < a < 1/4 is a small enough constant such that Σj ∈ Fd(α;M0,M). It is not hard to see

that for any 1 ≤ j 6= j′ ≤ N ,

max
{
‖I(ωj > ωj′)‖1, ‖I(ωj < ωj′)‖1

}
≥

1

2
‖ωj′ − ωj‖1 ≥ kd/16.

Thus,

‖Σj′ −Σj‖ ≥ max
{
‖Σ(I(ωj > ωj′))‖, ‖Σ(I(ωj < ωj′))‖

}
≥

akd/2

16n1/2
≥

a

16
nα/(2α+d).

Note that if the covariance operator of a Gaussian process X is Σj, then the covariance matrix

of vec(X), the vectorized process, is given by Ip + an−1/2k−d/2vec(ωj)vec(ωj)
T. It can then be

computed that

K(PΣj
|PΣ0

) =
n

2

[

trace(Ip + an−1/2k−d/2vec(ωj)vec(ωj)
T)

− log det(Ip + an−1/2k−d/2vec(ωj)vec(ωj)
T)− p

]

=
n

2

[

an−1/2k−d/2‖ωj − ω0‖1 − log(1 + an−1/2k−d/2‖ωj − ω0‖1)
]

,

by the matrix determinant lemma. It follows from the fact log(1 + x) ≥ x− x2/2 for x ≥ 0 that

K(PΣj
|PΣ0

) ≤
a2

4kd
‖ωj − ω0‖

2
1 ≤

a2kd

4
<

logN

8
.

An application of Fano’s lemma yields (10) by defining Θ2 = {Σj : 0 ≤ j ≤ N} .

Now consider the case k∗ = d where a similar argument can be used. Observe that in this case,

(
n−1q1 · · · qd−1

) 2α
2α+1 ≥ (n−1q1 · · · qd),

which, together with the fact that q1 ≤ · · · ≤ qd, implies that qd ≤ n
1

2α+d .

Let Θ2 be defined in a similar fashion as before except that now ωj are defined over Gd. More

specifically let Ω := {ω1, . . . , ωN} of {0, 1}Gd obeying N ≥ 2p/8 and

‖ωj′ − ωj‖1 ≥ p/8, ∀0 ≤ j 6= j′ ≤ N,

which is possible thanks to another application of Varshamov-Gilbert bound. It can be calculated

as before,

‖Σj′ − Σj‖ ≥
a

16

√
p

n
,

for any Σj 6= Σj′ ∈ Θ2; and

K(PΣ|PΣ0
) ≤

logN

8
,

for any Σ 6= Σ0 ∈ Θ2. Fano’s lemma then yields

inf
Σ̃(data)

sup
Σ∈Θ2

E‖Σ̃− Σ‖2 ≥
Cp

n
. (11)
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It remains to consider the case when 1 ≤ k∗ < d. Observe that in this case,

(

n−1
k∗∏

l=0

ql

) 2α
2α+d−k∗

≤

(

n−1
k∗+1∏

l=0

ql

) 2α
2α+d−k∗−1

,

which implies that qk∗+1 ≥
(

n/
∏k∗

l=0 ql

) 1

2α+d−k∗

.

We need to modify the construction of Θ2. Similar to before, by Varshamov-Gilbert bound,

there exists a subset Ω := {ω1, . . . , ωN} of {0, 1}G(q1,...,qd) such that

(a) ωj(s) = 0 for any s such that max{sk∗+1, . . . , sd} > k;

(b) N ≥ 2q1···qk∗k
d−k∗/8;

(c) for any 0 ≤ j 6= j′ ≤ N , ‖ωj′ − ωj‖1 ≥ q1 · · · qk∗k
d−k∗/8, ∀0 ≤ j 6= j′ ≤ N, where ω0 = 0.

Take

k =







(

n/

k∗∏

l=0

ql

) 1

2α+d−k∗






. (12)

Let Θ2 = {Σj : 0 ≤ j ≤ N} where

Σj := Σ(ωj) = δst +

{

an−1/2k−d/2 if ωj(s) = ωj(t) = 1

0 otherwise
.

Here 0 < a < 1/4 is a small enough constant such that Σj ∈ Fd(α;M0,M). Then, by Fano’s

lemma, as before, it can be shown that

inf
Σ̃(data)

sup
Σ∈Θ2

E‖Σ̃− Σ‖2 ≥ C

(

n−1
k∗∏

l=0

ql

) 2α
2α+d−k∗

. (13)

The lower bound (8) for estimating Σ ∈ Fd(α;M0,M) then follows from (9) and (10).

2.1.2 Exponentially decaying covariance operators

We now turn to the exponentially decaying covariance operators. Similar to Theorem 2, we have

the following lower bound for the minimax risk of estimating Σ over the collection of exponentially

decaying covariance operators F∗
d (α0, α;M0,M).

Theorem 3. Suppose that we observe a random sample X1, . . . ,Xn ∼iid N (0,Σ) and wish to

estimate Σ ∈ R
Gd×Gd under the operator norm ‖ · ‖. Then there exists a constant C > 0 not

depending on p or n such that

inf
Σ̃(data)

sup
Σ∈F∗

d
(α0,α;M0,M)

E‖Σ̃− Σ‖2 ≥ C

(

log p

n
+

1

n

d∏

k=1

(min{qk, (log n)
1/α})

)

. (14)
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Proof. The argument is similar to the polynomially decaying ones. Let q∗ > 1 be the solution to

log n+ d log x = 2α0x
α. (15)

It is clear that q∗ ≍ (log n)1/α. More precisely,

(
1

2α0
log n

)1/α

< q∗ <

((
1

2α0
+ δ

)

log n

)1/α

for any δ > 0. The case when q1 ≥ q∗ can be treated in the same fashion as the case when k∗ = 0

for polynomially decaying covariance operators by taking k = ⌈q∗⌉. Similarly the case when qd ≤ q∗

can be treated in the same fashion as the case when k∗ = d; and the case when q1 < q∗ < qd can

be treated in the same fashion as the case when 1 ≤ k∗ < d.

2.2 Upper Bounds

We now show the lower bounds given in Theorems 2 and 3 are indeed tight. Without loss of

generality, we shall assume in the rest of the paper that X is centered, for the covariance operator

is invariant to the mean. Recall that the sample covariance operator is given by

S = (S(s, t))s,t∈Gd
:=

(

1

n

n∑

i=1

Xi(s)Xi(t)− X̄(s)X̄(t)

)

s,t∈Gd

,

where X̄(s) = 1
n

∑n
i=1Xi(s). We first state the following result on the sample covariance operator.

Lemma 1. Assume that X1, . . . ,Xn are independent copies of a subgaussian random process X

defined over Gd with covariance operator Σ. Then there exists a constant C > 0 such that

E‖S − Σ‖2 ≤
Cp

n
.

In the light of Lemma 1, the lower bound (8) for polynomially decaying covariance operators

is attained by the sample covariance operator whenever q ≤ n1/(2α+d). Similarly, the sample

covariance operator achieves the lower bound (14) for exponentially decaying covariance operator

if q ≤ q∗ where q∗ is defined as the solution to (15). It therefore suffices to focus on the cases when

q > n1/(2α+d) for Σ ∈ Fd(α;M0,M); and when q > q∗ for Σ ∈ F∗
d (α0, α;M0,M). Our approach

is constructive and in particular, we shall introduce a simple “blockwise banding” procedure for

estimating Σ and show that it can attain the rates from Theorem 2 under these settings.

2.2.1 Blockwise Banding Estimator

We start by dividing the lattice Gd into blocks of size b× · · · × b for some b. More specifically, let

I
(l)
j = {(j − 1)b + 1, (j − 1)b + 2, . . . , jb} for j = 1, 2, . . . , Nl − 1 and I

(l)
Nl

= {(Nl − 1)b + 1, . . . , ql}

where Nl = ⌈ql/b⌉ for l = 1, . . . , d. Define a “block”

Bj = I
(1)
j1

× I
(2)
j2

× . . .× I
(d)
jd

,

10



for j = (j1, j2, . . . , jd) ∈ G(N1, . . . , Nd). For a linear operator A : ℓ2(Gd) 7→ ℓ2(Gd), we shall define

Ajj′ := ABj×Bj′
= (a(s, t))s∈Bj,t∈Bj′

.

We then proceed to estimate all blocks Σjj′ where j, j′ ∈ G(N1, . . . , Nd) based upon their sample

version. In particular, let

Σ̂jj′ =

{

Sjj′ if ‖j− j′‖∞ ≤ 1

0 otherwise
. (16)

In other words, we estimate Σjj′ by its sample counterpart if and only if the two blocks Bj and Bj′

are “neighbors”, as illustrated in Figure 2.

Figure 2: Blocks and their “neighbors” – A two dimensional example of the blocking scheme. In

this case, k = 3 and the blocks are represented with red dashed lines as boundary. The grey blocks

are the “neighbors” of the solid black block.

2.2.2 Polynomially decaying covariance operators

We now show that with appropriate choice of k, the proposed estimator Σ̂ can achieve the optimal

rate of convergence. Consider first the case when Σ ∈ Fd(α;M0,M). Recall that

k∗ = argmin
k







(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d






.

Define the size of the block by

b =







(

n/

k∗∏

l=0

ql

) 1

2α+d−k∗






.

Theorem 4. Suppose that we observe a random sample X1, . . . ,Xn consisting of independent copies

of a subgaussian random process X defined over Gd and wish to estimate its covariance operator

11



Σ ∈ R
Gd×Gd with q > n1/(2α+d). Let Σ̂ be the blockwise banding estimate defined as above. Then

there exists a constant C > 0 not depending on p or n such that

sup
Σ∈Fd(α;M0,M)

E‖Σ̂− Σ‖2 ≤ C




log p

n
+min







(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d









 . (17)

Proof. Define Σ1 = (σ1(s, t))s,t∈Gd
such that σ1(s, t) = σ(s, t) if s ∈ Bj, t ∈ Bj′ and ‖j− j′‖∞ ≤ 1,

and 0 otherwise. Let Σ2 = Σ− Σ1. Then

‖Σ̂− Σ‖ ≤ ‖Σ̂− Σ1‖+ ‖Σ2‖.

It is easy to see that

‖Σ2‖ ≤ ‖Σ2‖ℓ1→ℓ1 ≤ max
s∈Gd

∑

t:D(s,t)≥b

|σ(s, t)| ≤ M

(

n−1
k∗∏

l=0

ql

) α
2α+d−k∗

.

To bound ‖Σ̂− Σ1‖, note that

‖Σ̂− Σ1‖ = sup
u∈ℓ2(Gd):‖u‖=1

∣
∣
∣〈u, (Σ̂ − Σ1)u〉

∣
∣
∣ .

For any u ∈ ℓ2(Gd) with ‖u‖ = 1,
∣
∣
∣〈u, (Σ̂ −Σ1)u〉

∣
∣
∣ ≤

∑

‖j−j′‖∞≤1

∣
∣
∣

〈

uBj
,
(
Sjj′ − Σjj′

)
uBj′

〉∣
∣
∣

≤
∑

‖j−j′‖∞≤1

‖uBj
‖‖uBj′

‖‖Sjj′ − Σjj′‖

≤




∑

‖j−j′‖∞≤1

‖uBj
‖‖uBj′

‖



×

(

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖

)

where for any a ∈ ℓ2(Gd), aB = (a(t))t∈B . The Cauchy-Schwartz Inequality yields

∑

‖j−j′‖∞≤1

‖uBj
‖‖uBj′

‖ ≤
1

2

∑

‖j−j′‖∞≤1

(

‖uBj
‖2 + ‖uBj′

‖2
)

≤ 3d
∑

j∈G(N1,...,Nd)

‖uBj
‖2 = 3d.

Therefore ‖Σ̂− Σ1‖ ≤ 3d max‖j−j′‖∞≤1 ‖Sjj′ − Σjj′‖ and hence

‖Σ̂− Σ‖ ≤ ‖Σ̂ −Σ1‖+ ‖Σ2‖ ≤ 3d max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖+M

(

n−1
k∗∏

l=0

ql

) α
2α+d−k∗

.

Consequently

E‖Σ̂−Σ‖2 ≤ 2 · 32dE

(

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖

)2

+ 2M2

(

n−1
k∗∏

l=0

ql

) 2α
2α+d−k∗

. (18)

It remains to bound the expectation on the right hand side. We shall make use of the following

result:

12



Lemma 2. Let I, J ⊆ Gd with card(I), card(J) ≤ s, then there exist constants c1, c2 > 0 such that

P {‖SI×J − ΣI×J‖ ≥ x} ≤ c125
s exp(−c2nx

2).

Recall that when k∗ = 0,

n− 2α
2α+d ≤ (q1/n)

− 2α
2α+d−1 ,

and as a result q1 ≥ b = ⌈n1/(2α+d)⌉. Then

N1 · · ·Nd ≤ Cq1 · · · qd/b
d ≤ Cpn−d/(2α+d)

for some constant C > 0. An application of Lemma 2 and union bound yields

P

{

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖ ≥ x

}

≤ c1C3dpn−d/(2α+d)25b
d

exp
(
−c2nx

2
)
,

which implies that for any x > 0

E

(

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖

)2

≤ x2P

{

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖ < x

}

+

∫ ∞

x2

P

{

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖ ≥ u

}

du

≤ x2 + c1C3dpn−d/(2α+d)25b
d

∫ ∞

x2

exp(−c2nu)du

≤ x2 + c1C3dpn−d/(2α+d)25b
d

(c2n)
−1 exp(−c2nx

2).

If log p ≤ nd/(2α+d), we take x = cn−α/(2α+d) for a sufficiently large constant c > 0 which yields

E

(

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖

)2

≤ Cn− 2α
2α+d

for some constant C > 0. When log p > nd/(2α+d), it follows by taking x = c
√

log p
n for a sufficiently

large constant c > 0 that

E

(

max
‖j−j′‖∞≤1

‖Sjj′ −Σjj′‖

)2

≤ C
log p

n
,

for some constant C > 0. These two bounds together with (18) implies (17) in this case.

When k∗ = d, simple algebraic manipulation shows that

qd ≤ n1/(2α+d) ≤ b.

Therefore, N1 = · · · = Nd = 1. By Lemma 2 and union bound, we get

P

{

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖ ≥ x

}

≤ c1C3d25p exp
(
−c2nx

2
)
,

which, following the same calculations as before, implies that for any x > 0,

E

(

max
‖j−j′‖∞≤1

‖Sjj′ − Σjj′‖

)2

≤ x2 + c13
d25p(c2n)

−1 exp(−c2nx
2).
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The claim (17) follows by taking x = cp/n for a large enough constant c > 0.

Finally when 1 ≤ k∗ < d, it can be shown that

qk∗ ≤ b ≤ qk∗+1.

Therefore, N1 = · · · = Nk∗ = 1. By Lemma 2 and union bound, we now get

P

{

max
‖j−j′‖∞≤1

‖Sjj′ −Σjj′‖ ≥ x

}

≤ c1C3dNk∗+1 · · ·Nd25
q1···qk∗b

d−k∗

exp
(
−c2nx

2
)
.

The desired result then follows from the same calculations as before.

2.2.3 Exponentially decaying covariance operators

We turn to estimation of exponentially decaying covariance operators in F∗
d (α0, α;M0,M). We

shall take b = ⌈q∗⌉ to be the block size where q∗ is the solution to (15). Similar to Theorem 4, we

have the following upper bound.

Theorem 5. Suppose we observe a random sample X1, . . . ,Xn consisting of independent copies of a

subgaussian random process X defined over the lattice graph Gd and wish to estimate its covariance

operator Σ ∈ R
Gd×Gd. Let Σ̂ be the blockwise banding estimate defined as above. Then there exists

a constant C > 0 not depending on p or n such that

sup
Σ∈F∗

d
(α0,α;M0,M)

E‖Σ̂− Σ‖2 ≤ C

(

log p

n
+

1

n

d∏

k=1

(min{qk, (log n)
1/α})

)

. (19)

Together with the lower bound given in Theorem 3, this shows that the optimal rate of conver-

gence for estimating Σ ∈ F∗
d (α0, α;M0,M) is log p

n + 1
n

∏d
k=1(min{qk, (log n)

1/α}) and the blockwise

banding estimator is rate optimal. The proof of Theorem 5 is identical to that of Theorem 4 by

taking b = ⌈q∗⌉, and is therefore omitted for brevity.

Although the blockwise banding estimator proposed here is capable of achieving the optimal

rate of convergence, it is evident from its construction that doing so requires explicit knowledge

of α which is typically unknown in practice. This makes the concept of adaptive estimation – a

single estimator, not depending on the decay rate α, that achieves the optimal rate of convergence

simultaneously – of great practical importance. In the next section, we shall introduce a fully data-

driven adaptive estimator Σ̂ and show that it is simultaneously rate optimal over the collection of

the parameter spaces Fd(α;M0,M) and F∗
d (α0, α;M0,M) for all α > 0.

3 Adaptive Estimation

The blockwise banding estimator constructed in Section 2.2 has been shown to attain the optimal

rate of convergence. However, the estimator depends on the decaying rate α, which is typically

unknown in practice, and the estimator is thus not adaptive. In this section we consider adaptive
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estimation and construct an adaptive estimation procedure which does not require the knowledge

of α, M0 or M . The estimator will be shown to attain the optimal rate of convergence over

Fd(α;M0,M) and F∗
d (α0, α;M0,M) simultaneously for all α0, α,M0,M > 0.

The main idea in our construction is block thresholding. We first carefully divide the sample

covariance operator into blocks of varying sizes and then apply thresholding to each block depending

on its size and operator norm. The idea of adaptive estimation through block thresholding can be

traced back to nonparametric function estimation (see, e.g., Efromovich, 1985 and Cai, 1999), and

has been recently applied to covariance matrix estimation (Cai and Yuan, 2011). To fix ideas, we

first treat hypercubic lattices and follow with discussions on how to accommodate the more general

hyperrectangular lattices.

We shall adopt the following notation. Let B1, B2, . . . , Bk ⊆ G2, write

B1 ⊙B2 ⊙ · · · ⊙Bk = {((i1, . . . , ik), (j1, . . . , jk)) ∈ Gk × Gk : (i1, j1) ∈ B1, . . . , (ik, jk) ∈ Bk}

and

B⊙k
1 = B1 ⊙B1 ⊙ · · · ⊙B1

︸ ︷︷ ︸

k times

.

In addition, for two collections, B and B′, of subsets from Gd, we shall write

B ⊙ B′ = {B ⊙B′ : B ∈ B, B′ ∈ B′}.

3.1 Block Thresholding Estimator

Recall that Σ is defined over Gd × Gd. A main challenge in adopting the strategy for our purpose

is to fill the domain Gd × Gd by blocks of different sizes depending on the distance between the

coordinates. The task becomes especially hard for d > 1 when it is no longer possible to visualize

the blocking scheme.

To gain insights, let us first review the scheme developed by Cai and Yuan (2011) for covariance

matrices which corresponds to the case d = 1. Note that a covariance matrix is defined over the

Cartesian product space of {1, . . . , q} × {1, . . . , q}. The construction begins by dividing the two

dimensional lattice into blocks of size s0 × s0 with s0 ∼ log q. The choice of s0 for our purpose

will become clear later. The blocks are then consolidated systematically to yield a blocking of

{1, . . . , q} × {1, . . . , q} as shown in Figure 3. Interested readers are referred to Cai and Yuan

(2011) for details. Here we shall point out several key properties of the blocking. Denote by

B1 = {B1, B2, . . .} the blocks constructed for {1, . . . , q} × {1, . . . , q}, i.e.,

Bi ∩Bj = ∅, and ∪B∈B1
B = {1, . . . , q} × {1, . . . , q}.

For a block B ∈ B1, there exist I, J ∈ {1, . . . q} such that B = I × J . We refer to the maximum of

the cardinality of I and J as the size of B, denoted by s(B). It is clear that s(B) = 2l−1s0 for some

l ≥ 1. Denote by B1(l) the subset of B1 consisting of all blocks of size 2l−1s0. In particular, B1(1)

and B2(2) are shown in Figure 3 as the solid back squares and the grey squares with red boundary
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respectively. One of the most important property of this construction is so that blocks of large size

are necessarily far away from the diagonal. More specifically, if (i, j) ∈ B and s(B) > 2s0, then

|i− j| ≥ s(B).

Figure 3: Blocking scheme for covariance matrices – Blocks are with increasing sizes away from the

diagonal. The solid black blocks are of size s0 × s0. The gray ones are of size 2s0 × 2s0.

Now consider dividing Gd × Gd, the space suitable for covariance operator Σ, into blocks. It is

tempting to simply use a product space B⊙d
1 . Recall that

B⊙d
1 = {B := B1 ⊙ · · · ⊙Bd : B1, . . . , Bd ∈ B1} .

In other words, for any i = (i1, . . . , id), i
′ = (i′1, . . . , i

′
d) ∈ Gd, (i, i

′) ∈ B if and only if (il, i
′
l) ∈ Bl

for l = 1, . . . , d. Unfortunately, it turns out that there are too many blocks in B⊙d
1 and we need to

consolidate these blocks.

For a block B = B1 ⊙ · · · ⊙ Bd ∈ B⊙d
1 , write s(B) = max{s(B1), . . . , s(Bd)}. Denote by A(l)

the collection of blocks B from B⊙d
1 such that s(B) = 2l−1s0. It is clear that B

⊙d
1 = ∪l≥1A(l). Our

strategy is to consolidate the blocks within A(l) for a given l > 0.

To fix ideas, consider first the case of d = 2. Note that A(l) = A1(l) ∪ A2(l) ∪ A12(l) where

A12(l) = B1(l)⊙ B1(l), and

A1(l) = B1(l)⊙ B̄1(l), and A2(l) = B̄1(l)⊙ B1(l).

where B̄1(l) = ∪l′<lB1(l
′) is the collection of blocks in B1 with size smaller than 2l−1s0. To reduce

the number of blocks in A1(l) and A2(l), a new blocking scheme is needed for the area covered by

them. Due to symmetry, we consider only A1(l). The main idea is to reconfigure the area from

{1, . . . , q} × {1, . . . , q} covered by B̄1(l), denoted by

C(l) = {(i, j) ∈ G2 : (i, j) ∈ B for some B ∈ B̄1(l)}.

16



To this end, consider a regular blocking at {((k − 1)2l−1 + 1)s0, (k2
l−1 − 2)s0 : k = 1, 2, . . .},

i.e., blocks of one of the following four configurations:

{((k − 1)2l−1 + 1)s0, . . . , (k2
l−1 − 3)s0} × {((k′ − 1)2l−1 + 1)s0, . . . , (k

′2l−1 − 3)s0};

{(k2l−1 − 2)s0, (k2
l−1 − 1)s0, k2

l−1s0} × {((k′ − 1)2l−1 + 1)s0, . . . , (k
′2l−1 − 3)s0};

{((k − 1)2l−1 + 1)s0, . . . , (k2
l−1 − 3)s0} × {(k′2l−1 − 2)s0, (k

′2l−1 − 1)s0, k
′2l−1s0};

{(k2l−1 − 2)s0, (k2
l−1 − 1)s0, k2

l−1s0} × {(k′2l−1 − 2)s0, (k
′2l−1 − 1)s0, k

′2l−1s0}.

It is clear that the first three types of blocks are of size (2l−1 − 3)s0 whereas the fourth type is of

size 3s0. The only exception occurs when l < 3 where the blocks are of smaller sizes. We shall

neglect such a caveat in what follows for brevity. The reconfiguration for l = 3 and 4 are given in

Figure 4 for illustration.

(a) l = 3 (b) l = 4

Figure 4: Reconfiguration of blocks of size smaller than 2l−1s0: the left panel corresponds to the

case when l = 3, no reconfiguration is necessary; the right panel represents the case when l = 4.

Original blocks of size s0 are represented as black whereas the area covered by blocks of original

size 2s0 is in grey. Dashed lines show the reconfigured blocks.

It is clear that a subset of these blocks, denote by B̃1(l), can cover C(l), i.e.,
⋃

B∈B̃1(l)
B = C(l).

The advantage of new blocking scheme B̃1(l) over B̄1(l) is in the reduced number of blocks. For

example, an inspection of the case of l = 4 as show in Panel (b) of Figure 4 suggests that the

maximum number of blocks needed on a particular row or column is 11 for B̄1(l) and 9 for B̃1(l).

Such a reduction may not be striking. But in general, the number of blocks needed on a particular

row or column increases linear in l for B̄1(l) and remains bounded for (̃B)1(l), a fact that will prove to

be the key to achieve adaptation. We shall then define A′
1(l) = B1(l)⊙B̃1(l), A

′
2(l) = B̃1(l)⊙B1(l),

and A′(l) = A′
1(l) ∪ A′

2(l) ∪ A12(l). Let B2 :=
⋃

l>0A
′(l). It is clear that B2 is a valid blocking of

G2 × G2 in that for any B 6= B′ ∈ B2, B ∩B′ = ∅, and ∪B∈B2
B = G2 × G2.
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The construction can be generalized to d > 2. With slight abuse of notation, define

A(l) = (∪1≤k≤dAk(l))
⋃

(∪1≤k1<k2≤dAk1k2(l))
⋃

· · ·
⋃

A12...d(l),

where

Ak(l) = B̄1(l)
⊙(k−1) ⊙ B1(l)⊙ B̄1(l)

⊙(d−k),

Ak1k2(l) = B̄1(l)
⊙(k1−1) ⊙ B1(l)⊙ B̄1(l)

⊙(k2−k1−1) ⊙ B1(l)⊙ B̄1(l)
⊙(d−k2),

. . . . . . . . .

A12···d(l) = B1(l)
⊙d.

We then replace Ak(l) with

A′
k(l) =

(

B̃1(l)
)⊙(k−1)

⊙ B1(l)⊙
(

B̃1(l)
)⊙(d−k)

,

and Ak1k2(l) with

A′
k1k2(l) =

(

B̃1(l)
)⊙(k1−1)

⊙ B1(l)⊙
(

B̃1(l)
)⊙(k2−k1−1)

⊙ B1(l)⊙
(

B̃1(l)
)⊙(d−k2)

,

and etc., leading to a blocking scheme for Gd × Gd:

Bd :=
⋃

l>0

((
∪1≤k≤dA

′
k(l)
)⋃(

∪1≤k1<k2≤dA
′
k1k2(l)

)⋃

· · ·
⋃

A12...d(l)
)

.

Once the blocking is defined, we then proceed to estimate the covariance operator Σ block by

block. It is clear that for any B ∈ Bd, there exist I = I1 × · · · × Id, J = J1 × · · · × Jd such that

I1, . . . , Id, J1, . . . , Jd ⊂ {1, . . . , q} and B = I × J . Write ΣB = (σ(s, t))(s,t)∈B for a block B, and let

SB be defined similarly. If B is a diagonal block, i.e., Il = Jl for l = 1, . . . , d, we shall estimate ΣB

by its sample counterpart. If B is large in that sd(B) > n/ log n, we estimate ΣB simply by zero.

For other blocks, we estimate ΣB by SB if

‖SB‖/(‖SI×I‖‖SJ×J‖)
1/2 ≥ λ0n

−1/2(sd(B) + log p)1/2,

and 0 otherwise where λ0 > 0 is a turning parameter. Similar to the covariance matrix case, our

theoretical development indicates that the resulting block thresholding estimator is optimally rate

adaptive whenever λ0 is a sufficiently large constant. In particular, it can be taken as fixed at

λ0 = 6 when X follows a multivariate normal distribution. In practice, a data-driven choice of λ0

could potentially lead to further improved finite sample performance.

3.2 Adaptivity

It is clear from the construction, the proposed block thresholding estimator Σ̂ does not rely on

the knowledge of any particular parameter space. The following theorem shows that it simulta-

neously achieves the optimal rate of convergence over F(α;M0,M) and F∗(α0, α;M0,M) for all

α0, α,M0,M > 0.
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Theorem 6. Let Σ̂ be the block thresholding estimate defined above with s0 = ⌈(log p)1/d⌉. Then

there exists a constant C > 0 such that

sup
P(α;M0,M)

E‖Σ̂− Σ‖2 ≤ Cmin

{

n− 2α
2α+d +

log p

n
,
p

n

}

, (20)

and

sup
P∗(α0,α;M0,M)

E‖Σ̂− Σ‖2 ≤ Cmin

{

(log n)d/α

n
+

log p

n
,
p

n

}

(21)

over all α > 0.

The main idea behind the proof of Theorem 6 is to consider separately “small” blocks and

“large” blocks. Interestingly, for our purposes, whether a block is large or small is not determined

by its volume, but by its maximum side length. We call a block B large if s(B) > 2L−1s0 where

L is a natural number to be determined later. The detailed proof of Theorem 6 is postponed to

Section 6.

3.3 Hyperrectangular Lattices

The block thresholding procedure introduced above can be applied to hyperrectangular lattices

to achieve adaptivity as well. Recall that we start by dividing the lattice into blocks of size

(log p)1/d × · · · × (log p)1/d. When dealing with hyperrectangular blocks, we only need to avoid the

case when some of the dimension qs that are smaller than s0 = (log p)1/d. More specifically, if q1 ≤

· · · ≤ qk∗ < s0 ≤ qk∗+1 ≤ · · · ≤ qd, we shall begin by dividing the lattice {1, . . . , q1}×· · ·×{1, . . . , qd}

into blocks of size q1 × · · · × qk∗ × s1 × · · · × s1 where

s1 =

(

(log p)/
k∗∏

l=1

ql

)1/(d−k∗)

.

We then follow a similar procedure to construct the final blocking scheme:

B∗
d := {{1, . . . , q1} × {1, . . . , q1}} ⊙ · · · ⊙ {{1, . . . , qk∗} × {1, . . . , qk∗}} ⊙ Bd−k∗ .

Similar to Theorem 6, it can be shown that the block thresholding estimator is adaptive under the

hyperrectangular lattices.

Theorem 7. Let Σ̂ be the block thresholding estimate defined above with s0 = ⌈(log p)1/d⌉, and

assume that q1 ≤ q2 ≤ · · · ≤ qd. Then there exists a constant C > 0 such that

sup
Σ∈F(α;M0,M)

E‖Σ̂− Σ‖2 ≤ C




log p

n
+min







(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d









 ,

where q0 = 1, and

sup
Σ∈F∗(α0,α;M0,M)

E‖Σ̂− Σ‖2 ≤ C

(

1

n

d∏

k=1

(min{qk, (log n)
1/α}) +

log p

n

)

,

over all α > 0.
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The proof follows in a similar fashion as the hypercubic case by considering separately the

“large” blocks and “small” blocks with the additional complication that it is not possible to make

most blocks close to be cubic since the length along some directions may not be large enough. More

precisely, we shall now refer to block B ∈ B∗
d “large” if

s(B) ≥ C

(

n/

k∗∏

l=0

ql

) 1

2α+d−k∗

for some constant C > 0. The details are omitted for brevity.

4 Numerical Experiments

The adaptive block thresholding procedure is easy to implement. We now conduct numerical

experiments to illustrate the merits of the proposed adaptive block thresholding approach. We first

consider a simple simulation study where the observations were generated from a Markov random

field of order one. In particular, we simulate the stochastic process X(t1, t2) (t1, t2 ∈ {1, . . . , q})

such that

X(t1, t2) = 0.2 (X(t1 − 1, t2) +X(t1, t2 − 1) +X(t1 + 1, t2) +X(t1, t2 + 1)) + ǫ(t1, t2)

where ǫ(t1, t2)
iid
∼ N(0, 1). For each q = 15, 25, 35 or 45, 400 realizations of X were simulated. We

computed both the sample covariance operator and the proposed block thresholding estimates with

λ = 1, 2 or 6. One typical example when q = 25 was presented in Figure 1 in the introduction. For

each choice of q, the experiment was repeated for 200 times, and for each run, the estimation error

measured in terms of the operator norm is evaluated for each estimate. The results are summarized

in Figure 5 where boxplots for each estimator are given.

It is evident that the block thresholding improves over the sample covariance operator. The

improvement is particularly significant for large scale problem, that is when q is large. It is also

interesting to note that in this simulation setting, λ = 2 appears to be a sensible choice.

Next, we apply the block thresholding estimator to the AT&T database of faces, a benchmark

database in image analysis and face recognition. The data set contains a set of 400 face images taken

between April 1992 and April 1994 at the AT&T laboratories in Cambridge, England. The images

are taken for a total of 40 individuals. Each subject has 10 images of size 46×56 pixels (coalesced

from original pictures of size 92×112), with 256 grey levels per pixel. The readers are referred

to Samaria and Harter (1994) for further details about the database. Following the observations

from the simulation study, we chose λ = 2 in this experiment. To visualize the resulting covariance

operator estimate, Figure 6 gives the first 9 eigenimages corresponding to our estimate.

Several observations can be made from these eigenimages. First of all, it can be observed that

most leading eigenimages pertain to local facial characteristics. In particular, most weights of the

top three eigenimages are given to top portion of image, perhaps reflecting the different hairstyles

or illumination on the forehead. To further appreciate the merits of our estimate, we compare
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Figure 5: Each panel corresponds to a particular value of q. Reported here are the boxplots of the

estimation error measured in operator norm for the block thresholding estimator with λ = 1, 2 or

6, along with the sample covariance operator corresponding to λ = 0.

the leading eigenimage from the block thresholding estimate with that from the sample covariance

operator, hereafter referred as the sample eigenimage. Both eigenimages are given in the top panels

of Figure 7: the left panel corresponds to the sample covariance operator whereas the right panel

to the block thresholding estimator.

It is clear from Figure 7 that the sample eigenimage assigns weight over a broader area than

the eigenimage estimated from the block thresholding estimate. The localization of loadings for

our method could be more interpretable. We also remark that such localization does not come at

the cost of capturing facial variation among individuals. The bottom panels of Figure 7 give the

boxplots of the scores of the 10 images from each individual. It is clear that both estimates are

fairly similar qualitatively. More precisely, ANOVA analysis shows that 90% of the variation of

scores obtained from either method can be explained as the subject effect.
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Figure 6: Estimated eigenimage – first 9 eigenimages corresponding to the block thresholding

estimate, from left to right and top to bottom. The grey scale in each panel corresponds to the

weight (absolute value) at each pixel, with the largest value represented by the brightest, and

smallest value (0) represented by the darkest.

5 Discussions

In this article, we studied the minimax and adaptive estimation of covariance operators for random

variables observed on a lattice graph. The framework is quite general. The more conventional co-

variance matrix estimation problem can be regarded as a special case where the random variables

are observed on a one-dimensional lattice. To fix ideas, we focused in the present paper on two

classes of covariance operators, those with polynomially decaying entries and those with exponen-

tially decaying entries. We should note that the construction of the estimators and the technical

tools developed in this paper are general and can be applied to other settings.

Consider for example the general parameter space Fd({ak};M) defined in (1). Our results can

be extended to other choices of {ak : k ≥ 1}. Let us focus on the hypercubic lattices. Define the
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Figure 7: Leading eigenimage from the sample covariance operator and the block thresholding

estimate – top panels show the weights (absolute value) assigned to each pixel. Bottom panels give

the boxplots of the scores of the 10 images for each of the 40 subjects. Left panel corresponds to

the sample covariance operator and right panel to the block thresholding estimate.

quantity k(q) by

k(q) = min{1 ≤ k ≤ q : ak ≤ n−1/2kd/2−1}

if the set on the right hand side is non-empty, and k(q) = q otherwise. Then following the same

argument, it can be shown that the minimax rate of convergence is intimately related to the quantity

k(q). Under mild regularity conditions, the minimax risk for estimating the covariance operator

over Fd({ak};M) satisfies

inf
Σ̃(data)

sup
Σ∈Fd({ak};M)

E‖Σ̃− Σ‖2 ≍
[k(q)]d + log p

n
.

Similar but more complicated rates can also be established for hyperrectangular lattices.

The techniques and results developed in this paper can also be used to solve other related

problems. One such problem is the analysis of spatial data where X is a stochastic process defined
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in a general metric space (T ,D) with T of cardinality p. Taking into account the spatial structure

when estimating the covariance operator is important in spatial analysis. A feature of spatial data

that is distinct from the setting of the present paper is that the random variables are typically not

observed on a regular lattice. For r > 0, define

N(r) = max
t∈T

card{s ∈ T : D(s, t) ≤ r},

the largest number of elements of T contained in a ball of radius r. Assuming that

max
t∈T

∑

s:D(s,t)≥k

|σ(s, t)| ≤ ak,

then the minimax rate of convergence for estimating the covariance operator can also be established

under certain regularity conditions. We shall report the details of the results elsewhere in the future

as a significant amount of additional work is still needed.

6 Proofs

In this section we prove Theorem 6 and the technical lemmas used in the proof of the main results.

6.1 Proof of Theorem 6

We first consider polynomially decaying covariance operators F(α;M0,M).

6.1.1 Large blocks

The following result is a consequence of the construction of Bd and the properties of B1.

Lemma 3. If (i, j) ∈ B ∈ Bd and s(B) ≥ 2s0, then D(i, j) > ‖i− j‖∞ ≥ s(B).

Let B = I × J ∈ Bd. By Lemma 3, if s(B) > 2L−1s0 with L > 1, then

‖ΣB‖ ≤ ‖ΣB‖ℓ1→ℓ1 ≤ max
s∈Gd

∑

t:D(s,t)≥s(B)

|σ(s, t)| ≤ Ms−α(B).

On the other hand, by Lemma 2, there exists a constant C > 1 such that

‖SI×I − ΣI×I‖ ≤ C‖ΣI×I‖n
−1/2 (s(B) + log p)1/2 ,

‖SJ×J − ΣJ×J‖ ≤ C‖ΣJ×J‖n
−1/2 (s(B) + log p)1/2 ,

‖SB − ΣB‖ ≤ C(‖ΣI×I‖‖ΣJ×J‖)
1/2n−1/2 (s(B) + log p)1/2 ,

with probability at least 1− p−6. As a result,

‖SB‖ ≤ Ms−α(B) +C(‖ΣI×I‖‖ΣJ×J‖)
1/2n−1/2 (s(B) + log p)1/2

≤ 2C(‖ΣI×I‖‖ΣJ×J‖)
1/2n−1/2

(

sd(B) + log p
)1/2

≤ 4C(‖SI×I‖‖SJ×J‖)
1/2n−1/2

(

sd(B) + log p
)1/2
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provided that

2L−1s0 ≥ (M/M0)
2/(2α+d)n1/(2α+d). (22)

Taking λ0 ≥ 4C ensures Σ̂B = 0. By union bound, with probability at least 1 − p−4, Σ̂B = 0 for

all B ∈ Bd such that s(B) > 2L−1s0. Let WL ∈ {0, 1}Gd×Gd such that wL(s, t) = 1 if and only if

(s, t) ∈ B ∈ Bd. Then

E‖(Σ̂− Σ) ◦WL‖
2 = E

(

‖(Σ̂ − Σ) ◦WL‖
2
I((Σ̂ −Σ) ◦WL 6= 0)

)

≤
(

E‖(Σ̂− Σ) ◦WL‖
4
)1/2

P
1/2{(Σ̂− Σ) ◦WL 6= 0}

≤ p−2
(

E‖(Σ̂− Σ) ◦WL‖
4
)1/2

≤ p−2
(

E‖(Σ̂− Σ) ◦WL‖
4
F

)1/2
,

where ◦ stands for the Schur product, i.e., elementwise product, and ‖ · ‖F denotes the Frobenius

norm. Observe that

E‖(Σ̂− Σ) ◦WL‖
4
F = E




∑

B∈Bd:s(B)>2L−1s0

‖Σ̂B − ΣB‖
2
F





2

≤ 2E




∑

B∈Bd:s(B)>2L−1s0

‖SB − ΣB‖
2
F





2

+ 2




∑

B∈Bd:s(B)>2L−1s0

‖ΣB‖
2
F





2

≤ 2M4p4n−2 + 2M4(2L−1s0)
−4α.

Thus,

E‖(Σ̂ − Σ) ◦WL‖
2 = O

(
n−1

)
. (23)

6.1.2 Small blocks

Now consider the smaller blocks. With slight abuse of notation, denote by Wl ∈ {0, 1}Gd×Gd where

wl(s, t) = 1 if and only if (s, t) ∈ B ∈ Bd such that s(B) = l. By triangular inequality,

‖Σ̂− Σ‖ ≤

∥
∥
∥
∥
∥
(Σ̂− Σ) ◦

L−1∑

l=1

Wl

∥
∥
∥
∥
∥
+ ‖(Σ̂− Σ) ◦WL‖.

Therefore,

E‖Σ̂− Σ‖2 ≤ 2E

∥
∥
∥
∥
∥
(Σ̂− Σ) ◦

L−1∑

l=1

Wl

∥
∥
∥
∥
∥

2

+ 2E‖(Σ̂ − Σ) ◦WL‖
2.

Observe that
∥
∥
∥
∥
∥
(Σ̂ −Σ) ◦

L−1∑

l=1

Wl

∥
∥
∥
∥
∥

≤
L−1∑

l=1

∥
∥
∥(Σ̂− Σ) ◦Wl

∥
∥
∥

≤
L−1∑

l=1




∑

1≤k≤d

∥
∥
∥(Σ̂− Σ) ◦Wl,k

∥
∥
∥+ . . .+

∥
∥
∥(Σ̂ − Σ) ◦Wl,1···d

∥
∥
∥



 ,

25



where wl,k(s, t) = 1 if and only if (s, t) ∈ B ∈ Bd for some B ∈ A′
k(l) and so on. The terms on the

right hand side can be bounded in a similar fashion. We shall focus on ‖(Σ̂−Σ) ◦Wl,1‖ for brevity.

Recall that

A′
1(l) = B1(l)⊙ (B̃1(l))

⊙(d−1).

Hence, for any u ∈ ℓ2(Gd),

〈

u, (Σ̂ − Σ) ◦Wl,1u
〉

=
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

〈

uI1×···×Id, (Σ̂B1⊙···⊙Bd
− ΣB1⊙···⊙Bd

)uJ1×···×Jd

〉

≤
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

‖Σ̂B1⊙···⊙Bd
− ΣB1⊙···⊙Bd

‖‖uI1×···×Id‖‖uJ1×···×Jd‖

≤
1

2
sup

B∈A′

1
(l)

‖Σ̂B − ΣB‖
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

(
‖uI1×···×Id‖

2 + ‖uJ1×···×Jd‖
2
)
.

It is clear from the construction of Bd that if (I1 × · · · × Id)× (J1 × · · · × Jd) ∈ Bd, then (J1 × · · · ×

Jd)× (I1 × · · · × Id) ∈ Bd. Therefore,

∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

(
‖uI1×···×Id‖

2 + ‖uJ1×···×Jd‖
2
)

= 2
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

‖uI1×···×Id‖
2.

In other words,

∥
∥
∥(Σ̂− Σ) ◦Wl,1

∥
∥
∥ ≤ sup

B∈A′

1
(l)

‖Σ̂B − ΣB‖
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

‖uI1×···×Id‖
2.

Similarly, it can be shown that

∥
∥
∥(Σ̂− Σ) ◦Wl,k1k2

∥
∥
∥ ≤ sup

B∈A′

k1k2
(l)

‖Σ̂B − ΣB‖
∑

B1,...,Bd∈B̃1(l)
Bk1

,Bk2
∈B1(l)

‖uI1×···×Id‖
2

and so on. As a result,

∥
∥
∥
∥
∥
(Σ̂− Σ) ◦

L−1∑

l=1

Wl

∥
∥
∥
∥
∥
≤ sup

B∈Bd:s(B)=l
‖Σ̂B − ΣB‖

∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

‖uI1×···×Id‖
2.

We now appeal to the following result.

Lemma 4. Let u ∈ ℓ2(Gd) such that ‖u‖ = 1. Then

∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

‖uI1×···×Id‖
2 ≤ 13d.
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By Lemma 4, we get
∥
∥
∥
∥
∥
(Σ̂− Σ) ◦

L−1∑

l=1

Wl

∥
∥
∥
∥
∥
≤ 13d sup

B∈Bd:s(B)<2L−1s0

‖Σ̂B − ΣB‖.

Again by Lemma 2, there exists a constant C > 0 such that

‖SB − ΣB‖ ≤ CM0n
−1/2(sd(B) + log p)1/2

for all B ∈ Bd with probability at least 1− p−8. By the definition of Σ̂, with the same probability,

‖Σ̂B − ΣB‖ ≤ CM0n
−1/2(sd(B) + log p)1/2

Therefore, with probability at least 1− p−8,
∥
∥
∥
∥
∥
(Σ̂− Σ) ◦

L−1∑

l=1

Wl

∥
∥
∥
∥
∥
≤ Cn−1/2

L−1∑

l=1

2d(l−1)/2s
d/2
0 ≤ Cn−1/2s

d/2
0 2dL/2. (24)

6.1.3 Adaptivity over Fd(α;M0,M)

The adaptivity of the block thresholding follows from the bounds for large blocks and small blocks.

More specifically, we call a block large if

s(B) ≥ (M/M0)
2/(2α+d)n1/(2α+d).

When p < (M/M0)
2/(2α+d)n1/(2α+d), there are no large block. By the bound (24) for small

blocks, we have ‖Σ̂ − Σ| ≤ C
√

p
n with probability at least 1 − p−8. Denote E the even that the

above inequality holds. Then

E

(∥
∥
∥Σ̂− Σ

∥
∥
∥

2
I(E)

)

≤ E
1/2

(∥
∥
∥Σ̂− Σ

∥
∥
∥

4
)

P
1/2(E) ≤ E

1/2




∑

B∈Bd

∥
∥
∥Σ̂B − ΣB

∥
∥
∥





4

P
1/2(E).

We shall use the following lemma.

Lemma 5. Let Σ̂ be the block thresholding estimate defined above with s0 = ⌈(log p)1/d⌉, then there

exists a constant C > 0 such that

E




∑

B∈Bd

∥
∥
∥Σ̂B − ΣB

∥
∥
∥





4

≤ Cn−2p10.

Lemma 5 yields that E(‖Σ̂−Σ‖2 ≤ E(‖Σ̂−Σ‖2I(E))+Cp/n = O(p/n). When s0 = ⌈(log p)1/d⌉ ≥

(M/M0)
2/(2α+d)n1/(2α+d), only blocks of size s0 will be preserved as small blocks and all block of

size greater than s0 will be treated as large blocks. In this case, following the small block bound

(24), we have, with probability at least 1− p−8, ‖(Σ̂−Σ) ◦W1‖ ≤ C
√

log p
n . Again denote by E the

event that this inequality holds. Then by Lemma 5,

E

(∥
∥
∥(Σ̂− Σ)

∥
∥
∥

2
I(E)

)

≤ E
1/2

(∥
∥
∥Σ̂− Σ

∥
∥
∥

4
)

P
1/2(E) = O(p/n),
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which implies that E‖(Σ̂− Σ) ◦W1‖
2 = O

(
log p
n

)

. Together with (23), we conclude that

E

∥
∥
∥Σ̂− Σ

∥
∥
∥

2
= O

(
log p

n

)

.

Similarly, when there are both large and small blocks by definition (22), it follows from (24)

that

E

∥
∥
∥
∥
∥
(Σ̂− Σ) ◦

L−1∑

l=1

Wl

∥
∥
∥
∥
∥

2

≤ Cn− 2α
2α+d .

Together with (23), this yields E‖Σ̂−Σ‖2 = O(n− 2α
2α+d ).

6.1.4 Adaptivity over F∗(α0, α;M0,M)

This case can be proved in the exactly same way except that now a “large” block B satisfies

s(B) ≥ 2s0 and exp(2α0s
α(B))s2d(B) ≥ Cn for some constant C > 0.

6.2 Proof of Auxiliary Results

6.2.1 Proof of Lemma 1

Similar to earlier work (see, e.g., Cai et al. 2010 and Yuan, 2010), the term (X̄(s)X̄(t))s,t∈Gd
is of

higher order and negligible. For brevity, we shall ignore this term and focus on the first term of the

sample covariance operator: S1 :=
1
n

∑n
i=1 Xi(s)Xi(t). It is well known that there exists a constant

c > 0 such that for any u ∈ ℓ2(Gd) obeying ‖u‖ = 1,

P{〈u, (S1 −Σ)u〉 > x} ≤ exp(−cnx2).

See, e.g., Saulis and Statulevičius (1991). To make such a bound uniform over all u, note that for

u, u′ ∈ ℓ2(Gd) such that ‖u‖, ‖u′‖ = 1 and ‖u− u′‖ ≤ 1/4,

∣
∣〈u, (S1 − Σ)u〉 −

〈
u′, (S1 − Σ)u′

〉∣
∣ ≤

∣
∣
〈
u− u′, (S1 − Σ) u

〉∣
∣+
∣
∣
〈
u′, (S1 − Σ) (u− u′)

〉∣
∣

≤ 2‖u− u′‖ ‖S1 − Σ‖

≤
1

2
‖S1 − Σ‖ .

Let Q be the collection of centers of a 1/4-cover set of the unit ball on ℓ2(Gd) such that card(Q) ≤

C5p, for some constant C > 0. By the union bound

P {‖S1 − Σ‖ ≥ x} = P

{

sup
‖u‖=1

〈u, (S1 − Σ)u〉 ≥ x

}

≤ P

{

sup
u∈Q

〈u, (S1 − Σ)u〉 ≥ x/2

}

≤ C5p exp
(
−cnx2

)
,

for some constant C > 0. Now observe that for any x > 0

E ‖S1 −Σ‖2 ≤ x2P {‖S1 − Σ‖ < x}+

∫ ∞

x2

P

{

‖S1 − Σ‖2 ≥ u
}

du

≤ x2 + C5p
∫ ∞

x2

exp(−cnu)du

≤ x2 + C5p(cn)−1 exp(−cnx2).
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Taking x = c1(p/n)
1/2 for a sufficiently large constant c1 > 0 yields E ‖S1 − Σ‖2 ≤ Cp/n for some

constant C > 0.

6.2.2 Proof of Lemma 2

It follows from a similar argument as that of Lemma 1 that for some constants c1, c2 > 0,

P
{∥
∥S(I∪J)×(I∪J) − Σ(I∪J)×(I∪J)

∥
∥ ≥ x

}
≤ c15

2s exp
(
−c2nx

2
)
.

The desired bound then follows from the fact that ‖SI×J−ΣI×J‖ ≤
∥
∥S(I∪J)×(I∪J) − Σ(I∪J)×(I∪J)

∥
∥ .

6.2.3 Proof of Lemma 3

Recall that there exist I1, . . . , Id, J1, . . . , Jd ∈ {1, . . . , q} such that B = (I1×· · ·×Id)⊙(I1×· · ·×Id).

Because (i, j) ∈ B, we know that il ∈ Il and jl ∈ Jl for l = 1, . . . , d. Assume, without loss of

generality, that card(I1) = s(B). Then from the construction of Bd, it is clear that B1 := I1 × J1 ∈

B1(s(B)). Note that (i1, j1) ∈ B1 and s(B1) > 2s0. By the property of B1 (see, e.g., Cai and Yuan,

2011), we conclude that |il − jl ≥ s(B1). The proof is now completed because d(i, j) ≥ |il − jl| and

s(B1) = s(B).

6.2.4 Proof of Lemma 4

We proceed by induction, starting with d = 1. Observe that for large enough l, all blocks of B̃(l)

can be expressed as

{((k − 1)2l−1 + 1)s0, . . . , (k2
l−1 − 3)s0} × {((k′ − 1)2l−1 + 1)s0, . . . , (k

′2l−1 − 3)s0};

{(k2l−1 − 2)s0, (k2
l−1 − 1)s0, k2

l−1s0} × {((k′ − 1)2l−1 + 1)s0, . . . , (k
′2l−1 − 3)s0};

{((k − 1)2l−1 + 1)s0, . . . , (k2
l−1 − 3)s0} × {(k′2l−1 − 2)s0, (k

′2l−1 − 1)s0, k
′2l−1s0};

{(k2l−1 − 2)s0, (k2
l−1 − 1)s0, k2

l−1s0} × {(k′2l−1 − 2)s0, (k
′2l−1 − 1)s0, k

′2l−1s0}.

for some k, k′ obeying |k − k′| < 3. As a result,

∑

B=I⊙J∈B̃1(l)

‖uI‖
2
ℓ2 ≤ 7‖u‖2ℓ2 ≤ 7.

Together with the fact that
∑

B=I⊙J∈B1(l)
‖uI‖

2
ℓ2

≤ 6‖u‖2ℓ2 ≤ 6, we conclude that

∑

B=I⊙J∈B1(l)∪B̃1(l)

‖uI‖
2
ℓ2 ≤ 13.

Now assume that
∑

B1,...,Bd∈B1(l)∪B̃1(l)
‖uI1×···×Id‖

2
ℓ2

≤ 13d, where Bj = Ij × Jj . Then

∑

B1,...,Bd,Bd+1∈B1(l)∪B̃1(l)

‖uI1×···×Id+1
‖2ℓ2 ≤ 13d

∑

Bd+1∈B1(l)∪B̃1(l)

‖uGd×Id+1
‖2ℓ2 ≤ 13d+1.
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6.2.5 Proof of Lemma 5

Observe that

E




∑

B∈Bd

∥
∥
∥Σ̂B − ΣB

∥
∥
∥





4

≤ p6E




∑

B∈Bd

∥
∥
∥Σ̂B − ΣB

∥
∥
∥

4





≤ p6E




∑

B∈Bd

(

‖SB − ΣB‖+ λ0

√

sd(B) + log p

n

)4




≤ Cp6



E

∑

B∈Bd

‖SB − ΣB‖
4 + λ4

0

(
sd(B) + log p

n

)2


 .

Together with the fact that E
∑

B∈Bd
‖SB − ΣB‖

4 ≤ E
∑

B∈Bd
‖SB − ΣB‖

4
F ≤ Cn−2p4, we get

E

(
∑

B∈Bd

∥
∥
∥Σ̂B − ΣB

∥
∥
∥

)4
≤ Cn−2p10.

References

[1] Bickel, P. and Levina, E. (2008a). Regularized estimation of large covariance matrices. The

Annals of Statistics 36, 199-227.

[2] Bickel, P. and Levina, E. (2008b). Covariance regularization by thresholding. The Annals of

Statistics 36, 2577-2604.

[3] Cai, T.T. and Liu, W.(2011). Adaptive thresholding for sparse covariance matrix estimation.

Journal of the American Statistical Association 494, 672-684.

[4] Cai, T.T., Liu, W. and Luo, X. (2011). A constrained ℓ1 minimization approach to sparse

precision matrix estimation. Journal of the American Statistical Association 494, 594-607.

[5] Cai, T. T., Liu, W. and Zhou, H. H. (2011). Optimal estimation of large sparse precision

matrices. Manuscript.

[6] Cai, T. T. and Yuan, M. (2011). Adaptive covariance matrix estimation through block thresh-

olding. The Annals of Statistics, to appear.

[7] Cai, T.T., Zhang, C.H. and Zhou, H. (2010). Optimal rates of convergence for covariance matrix

estimation. The Annals of Statistics 38, 2118-2144.

[8] Cai, T.T. and Zhou, H. (2012). Optimal rates of convergence for sparse covariance matrix

estimation. The Annals of Statistics, to appear.

[9] El Karoui, N. (2008). Operator norm consistent estimation of large dimensional sparse covari-

ance matrices. The Annals of Statistics 36, 2717-2756.

30



[10] Fan, J., Fan, Y. and Lv, J. (2008). High dimensional covariance matrix estimation using a

factor model. Journal of Econometrics 147, 186-197

[11] Friedman, J., Hastie, T. and Tibshirani, T. (2008). Sparse inverse covariance estimation with

the graphical lasso. Biostatistics 9, 432-441.

[12] Huang, J., Liu, N., Pourahmadi, M., and Liu, L. (2006). Covariance matrix selection and

estimation via penalised normal likelihood. Biometrika 93, 85-98.

[13] Krause, E. (1987). Taxicab Geometry. Dover, New York.

[14] Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix

estimation. The Annals of Statistics 37, 4254-4278.

[15] Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance

matrices. Journal of Multivariate Analysis 88, 365-411.

[16] Muirhead, R. (2005). Aspects of Multivariate Statistical Theory. Wiley, London.

[17] Rothman, A., Bickel, P., Levina, E. and Zhu, J. (2008). Sparse permutation invariant covari-

ance estimation. Electronic Journal of Statistics 2, 494-515.

[18] Rothman, A., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance

matrices. Journal of the American Statistical Association 104, 177-186.

[19] Samaria, F. and Harter, A. (1994). Parameterisation of a stochastic model for human face iden-

tification. Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota,

FL.

[20] Saulis, L. and Statulevičius, V. A. (1991). Limit Theorems for Large Deviations. Springer,

Berlin.

[21] Sirovich, L. and Kirby, M. (1987). Low-dimensional procedure for the characterization of hu-

man faces. Journal of the Optical Society of America A 4(3), 519-524.

[22] Tsybakov, A. (2009). Introduction to Nonparametric Estimation. Springer, New York.

[23] Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuro-

science 3(1), 71-86.

[24] Yuan, M. (2010). Sparse inverse covariance matrix estimation via linear programming. Journal

of Machine Learning Research 11, 2261-2286.

[25] Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model.

Biometrika 94, 19-35.

31


