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DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION1

BY MING YUAN

Georgia Institute of Technology

I want to start by congratulating Professors Chandrasekaran, Parrilo and Willsky
for this fine piece of work. Their paper, hereafter referred to as CPW, addresses one
of the biggest practical challenges of Gaussian graphical models—how to make in-
ferences for a graphical model in the presence of missing variables. The difficulty
comes from the fact that the validity of conditional independence relationships im-
plied by a graphical model relies critically on the assumption that all conditional
variables are observed, which of course can be unrealistic. As CPW shows, this is
not as hopeless as it might appear to be. They characterize conditions under which
a conditional graphical model can be identified, and offer a penalized likelihood
method to reconstruct it. CPW notes that with missing variables, the concentration
matrix of the observables can be expressed as the difference between a sparse ma-
trix and a low-rank matrix; and suggests to exploit the sparsity using an �1 penalty
and the low-rank structure by a trace norm penalty. In particular, the trace norm
penalty or, more generally, nuclear norm penalties, can be viewed as a convex
relaxation to the more direct rank constraint. Its use oftentimes comes as a neces-
sity because rank constrained optimization could be computationally prohibitive.
Interestingly, as I note here, the current problem actually lends itself to efficient al-
gorithms in dealing with the rank constraint, and therefore allows for an attractive
alternative to the approach of CPW.

1. Rank constrained latent variable graphical Lasso. Recall that the penal-
ized likelihood estimate of CPW is defined as

(Ŝn, L̂n) = arg min
L�0,S−L�0

{−�(S − L,�n
O) + λn

(
γ ‖S‖1 + trace(L)

)}
,

where the vector �1 norm and trace/nuclear norm penalties are designated to induce
sparsity among elements of S and low-rank structure of L respectively. Of course,
we can attempt a more direct rank penalty as opposed to the nuclear norm penalty
on L, leading to

(Ŝn, L̂n) = arg min
L�0,S−L�0

{−�(S − L,�n
O) + λn

(
γ ‖S‖1 + rank(L)

)};
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or for computational purposes, it is more convenient to consider the constrained
version:

( ˆ̂Sn,
ˆ̂Ln) = arg min

L�0,S−L�0
rank(L)≤r

{−�(S − L,�n
O) + λn‖S†‖1},

for some integer 0 ≤ r ≤ p, where S† = S − diag(S), that is, S† equals S except
that its diagonals are replaced by 0. This slight modification reflects our intention
to encourage sparsity on the off-diagonal entries of S only. The remaining discus-
sion, however, can be easily adapted to deal with the original vector �1 penalty on
S. It is clear that when r = 0, that is, L = 0, this new estimator reduces to the so-
called graphical Lasso estimate (glasso, for short) of Yuan and Lin (2007). See
also Banerjee, El Ghaoui and d’Aspremont (2008), Friedman, Hastie and Tibshi-
rani (2008), and Rothman et al. (2008). Drawn to this similarity, I shall hereafter
refer to this method as the latent variable graphical Lasso, or LVglasso, for short.

Common wisdom on ( ˆ̂Sn,
ˆ̂Ln) is that it is infeasible to compute because of

the nonconvexity of the rank constraint. Interestingly, though, this more direct
approach actually allows for fast computation, thanks to a combination of EM
algorithm and some recent advances in computing graphical Lasso estimates for
high-dimensional problems.

2. An EM algorithm. The constraint rank(L) ≤ r amounts to postulating r

latent variables. The latent variable model naturally has a missing data formulation.
It is clear that when observing the complete data X = (XT

O,XT
H)T, the LVglasso

estimator becomes

K̂λ = arg min
K∈R(p+r)×(p+r),K�0

{L(K) + λ‖K†
O‖1},

where

L(K) = − ln det(K) + trace
(
�n

(OH)K
)

and �n
(OH) is the sample covariance matrix of the full data. Now that XH is unob-

servable, we can use an EM algorithm which iteratively applies the following two
steps:

EXPECTATION STEP (E STEP). Calculate the expected value of the penalized
negative log-likelihood function, with respect to the conditional distribution of XH

given XO under the current estimate K(t) of K , leading to the so-called Q function:

Q
(
K|K(t)) = EXH |XO,K(t)[L(K) + λ‖K†

O‖1]
= − ln det(K) + trace

{
EXH |XO,K(t)

(
�n

(OH)

)
K

} + λ‖K†
O‖1.
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Recall that XH |XO,K(t) follows a normal distribution with

E
(
XH |XO,K(t)) = �

(t)
HO

(
�

(t)
O

)−1
XO

and

Var
(
XH |XO,K(t)) = �

(t)
H − �

(t)
HO

(
�

(t)
O

)−1
�

(t)
OH ,

where �(t) = (K(t))−1. Therefore,

EXH |XO,K(t)(�
n
OH ) = �n

O

(
�

(t)
O

)−1
�

(t)
oH

and

EXH |XO,K(t)(�
n
H ) = �

(t)
H −�

(t)
HO

(
�

(t)
O

)−1
�

(t)
OH +�

(t)
HO

(
�

(t)
O

)−1
�n

O

(
�

(t)
O

)−1
�

(t)
OH .

MAXIMIZATION STEP (M STEP). Maximize Q(·|K(t)) over all (p + r) ×
(p + r) positive definite matrices. We first note that if we replace the penalty term
‖K†

O‖1 with ‖K†‖1, then maximizing Q(·|K(t)) becomes a glasso problem:

max
K∈R(p+r)×(p+r),K�0

{− ln det(K) + trace{WK} + λ‖K†‖1
}
,

where W = EXH |XO,K(t)(�n
(OH)). As shown in Banerjee, El Ghaoui and

d’Aspremont (2008), Friedman, Hastie and Tibshirani (2008) and Yuan (2008),
this problem can be solved iteratively. At each iteration, one row and, correspond-
ingly, one column of K , due to symmetry, are updated by solving a Lasso problem.
The same idea can be applied here to maximize Q(·|K(t)). The only difference is
that in each of the Lasso problems, we leave the coordinates corresponding to
the latent variables unpenalized. This extension has been implemented in the R
package glasso [Friedman, Hastie and Tibshirani (2008)].

3. Example. For illustration purposes, I conducted a simple numerical exper-
iment. In this experiment the interest was in recovering a p = 198 dimensional
graphical model with h = 2 missing variables. The graphical model was generated
in a similar fashion as that from Meinshausen and Bühlmann (2006). I first simu-
lated 198 locations uniformly over a square. Between each pair of locations, I put
an edge with probability 2φ(d

√
p), where φ(·) is the density function of the stan-

dard normal distribution and d is the distance between the two locations, unless
one of the locations is already connected with four other locations. The two hid-
den variables were connected with all p observed variables. The entries of the in-
verse covariance matrix corresponding to the edges between the observables were
assigned with value 0.2, between the observables and the latent variables were as-
signed with a uniform random value between 0 and 0.12, to ensure the positive
definiteness. A typical simulated graphical model among the 198 observed vari-
ables conditional on the two latent variables is given in the top left panel of Fig-
ure 1. We apply both the method of CPW and LVglasso, along with glasso,
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FIG. 1. True graphical model and its estimates.

to the data. We used the MATLAB code provided by CPW to compute their esti-
mates. As observed by CPW, their estimate typically is insensitive to a wide range
of values of γ , and we report here the results with the default choice of γ = 5
without loss of generality. Similarly, for LVglasso, little variation was observed
for r = 2, . . . ,10, and we shall focus on r = 2 for brevity. The choice of λ plays
a critical role for both methods. We compute both estimators for a fine grid of λ.
With the main focus on recovering the conditional graphical model, that is, the
sparsity pattern of S, we report in Figure 2 the ROC curve for both methods. For
contrast, we also reported the result for glasso which neglects the missingness.
In Figure 1, we also presented the estimated graphical model for each method that
is closest to the truth. These results clearly demonstrate the necessity of account-
ing for the latent variables. It is also interesting to note that the rank constrained
estimator performs slightly better in this example over the trace norm penalization
method of CPW.

The preliminary results presented here suggest that direct rank constraint may
provide a competitive alternative to the trace norm penalization for recovering
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FIG. 2. Accuracy of reconstructed conditional graphical model.

graphical models with latent variables. It is of interest to investigate more rig-
orously how the two methods compare with each other.
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