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Reinforced Multicategory Support Vector
Machines

Yufeng LIU and Ming YUAN

Support vector machines are one of the most popular machine learning methods for
classification. Despite its great success, the SVM was originally designed for binary
classification. Extensions to the multicategory case are important for general classifica-
tion problems. In this article, we propose a new class of multicategory hinge loss func-
tions, namely reinforced hinge loss functions. Both theoretical and numerical properties
of the reinforced multicategory SVMs (MSVMs) are explored. The results indicate that
the proposed reinforced MSVMs (RMSVMs) give competitive and stable performance
when compared with existing approaches. R implementation of the proposed methods
is also available online as supplemental materials.
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1. INTRODUCTION

Classification is a very important statistical task for information extraction from data.
Among numerous classification techniques, the Support Vector Machine (SVM) is one of
the most well-known large-margin classifiers and has achieved great success in many ap-
plications (Boser, Guyon, and Vapnik 1992; Cortes and Vapnik 1995). The basic concept
behind the binary SVM is to find a separating hyperplane with maximum separation be-
tween the two classes. Because of its flexibility in estimating the decision boundary using
kernel learning as well as its ability in handling high-dimensional data, the SVM has be-
come a very popular classifier and has been widely applied in many different fields. More
details about the SVM can be found, for example, in the works of Cristianini and Shawe-
Taylor (2000), Hastie, Tibshirani, and Friedman (2001), Schölkopf and Smola (2002).

Recent theoretical developments provide us more insight on the success of the SVM.
Lin (2004) showed Fisher consistency of binary SVMs in the sense that the theoretical
minimizer of the hinge loss yields the Bayes classification boundary. As a result, the SVM
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902 Y. LIU AND M. YUAN

targets on the decision boundary directly without estimating the conditional class proba-
bility. More theoretical characterization of general binary large margin losses can be found
in the articles by Zhang (2004b), Bartlett, Jordan, and McAuliffe (2006).

The standard SVM only solves binary problems. However, one often encounters multi-
category problems in practice. To solve a multicategory problem using the SVM, typically
there are two possible approaches. The first approach is to solve the multicategory prob-
lem via a sequence of binary problems, for example, one-versus-rest and one-versus-one
(Dietterich and Bakiri 1995; Allwein et al. 2000). The second approach is to generalize the
binary SVM to a simultaneous multicategory formulation which deals with all classes at
once (Vapnik 1998; Weston and Watkins 1999; Crammer and Singer 2001; Lee, Lin, and
Wahba 2004; Liu and Shen 2006). The first approach is conceptually simple to implement
since one can use the existing binary techniques directly to solve multicategory problems.
Despite its simplicity, the one-versus-rest approach may be inconsistent when there is no
dominating class (Liu 2007). On the contrary, Rifkin and Klautau (2004) showed that the
one-versus-rest approach can work as accurately as other simultaneous classification meth-
ods using a substantial collection of numerical comparisons.

In this article, we reformulate the one-versus-rest approach as an instance of the si-
multaneous multicategory formulation and focus on various simultaneous extensions. In
particular, we propose a convex combination of an existing consistent multicategory hinge
loss and another direct generalized hinge loss. Since the two components of the combina-
tion intend to enforce correct classification in a complementary fashion, we call this family
of loss functions the reinforced multicategory hinge loss. We show that the proposed fam-
ily of loss functions gives rise to a continuum of loss functions that are Fisher consistent.
Moreover, the proposed reinforced multicategory SVM (RMSVM) appears to deliver more
accurate classification results than the uncombined ones.

The rest of this article is organized as follows. In Section 2.1, we introduce the new
reinforced hinge loss functions. Section 2.2 studies Fisher consistency of the new class of
loss functions. A computational algorithm of the RMSVM is given in Section 3. In Sec-
tion 4, we use both simulated examples and an application to lung cancer Microarray data
to illustrate performance of the proposed RMSVMs with different choices of the combin-
ing weight parameter. Some discussion and remarks are given in Section 5, followed by
proofs of the theoretical results in the Appendix.

2. METHODOLOGY

2.1 REINFORCED MULTICATEGORY HINGE LOSSES

Suppose we are given a training dataset containing n training pairs {xi , yi}ni=1, iid real-
izations from probability distribution P(x, y), where x is the d-dimensional input and y is
the corresponding class label. For simplicity, we consider x ∈ �d . Our method, however,
may be easily extended to include discrete and categorical input variables. For simplicity,
in the rest of the article, we shall focus only on the standard learning where all types of
misclassification are treated equally. The discussion, however, can be extended straightfor-
wardly to more general settings with unequal losses.
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REINFORCED MULTICATEGORY SUPPORT VECTOR MACHINES 903

In the binary case, the goal is to search for a function f (x) so that sign(f (x)) can be
used for prediction of class labels for new inputs. The standard binary SVM can be viewed
as an example of the regularization framework (Wahba 1999) as follows:

min
f

[
λJ (f ) + 1

n

n∑
i=1

V (yif (xi ))

]
,

where J (f ) is the roughness penalty of f , V is the hinge loss with V (u) = [1 − u]+ =
1 − u if u ≤ 1 and 0 otherwise, and λ ≥ 0 is a tuning parameter. Denote P(x) = P(Y =
1|X = x). Lin (2004) showed that the minimizer of E[V (Yf (X))|X = x] has the same
sign as P(x) − 1/2 and consequently the hinge loss of SVM targets on the Bayes decision
boundary asymptotically. This property is known as Fisher consistency and it is a desirable
condition for a loss function in classification.

Extension of the SVM from the binary to multicategory case is nontrivial and the key
is the generalization of the binary hinge loss to the multicategory case. Consider a k-class
classification problem with k ≥ 2. Let f = (f1, f2, . . . , fk) be the decision function vector,
where each component represents one class and maps from �d to �. For any new input
vector x, its label is estimated via a decision rule ŷ = argmaxj=1,2,...,k fj (x). Clearly, the
argmax rule is equivalent to the sign function used in the binary case if a sum-to-zero
constraint

∑k
j=1 fj = 0 is employed.

Similarly to the binary case, we consider solving the following problem in order to
learn f:

min
f

[
λ

k∑
j=1

J (fj ) + 1

n

n∑
i=1

V (f(xi ), yi)

]
, (2.1)

subject to
∑k

j=1 fj (x) = 0. Here, a sum-to-zero constraint is used to remove redundancy
and reduce the dimension of the problem. Note that a point (x, y) is misclassified by f if
y �= argmaxj fj (x). Thus a sensible loss V should try to encourage fy to be the maximum.

In the literature, a number of extensions of the binary hinge loss to the multicate-
gory case have been proposed. See, for example, the works by Vapnik (1998), Weston
and Watkins (1999), Bredensteiner and Bennett (1999), Crammer and Singer (2001), Lee,
Lin, and Wahba (2004), Liu and Shen (2006). In this article, we consider a new class of
multicategory hinge loss functions as follows:

V (f(x), y) = γ [(k − 1) − fy(x)]+ + (1 − γ )
∑
j �=y

[1 + fj (x)]+ (2.2)

subject to
∑k

j=1 fj (x) = 0, where γ ∈ [0,1]. We call the loss function (2.2) the reinforced
hinge loss function since there are two terms in the loss and both terms try to force fy to
be the maximum. We choose the constant to be k − 1 for the first part of the loss since
if fj = −1 for ∀j �= y, fy = k − 1 using the sum-to-zero constraint. Thus k − 1 is a
natural choice to use for the reinforced loss (2.2). The main motivation for this new loss
function is based on the consideration of the argmax rule for multicategory problems. In
order to get a correct classification result on a data point, we need to have the corresponding
fy(x) to be the maximum among k different fj (x); j = 1, . . . , k. To that end, the first term
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904 Y. LIU AND M. YUAN

encourages fy to be big while the second term encourages other fj ’s to be small. As we
will discuss later, each separate term of the loss function has certain drawbacks in view
of consistency and empirical performance. The proposed combined loss, however, yields
better classification performance.

With different choices of γ , (2.2) constitutes a large class of loss functions. When γ = 0,
(2.2) reduces to

∑
j �=y[1+fj (x)]+ subject to

∑k
j=1 fj (x) = 0 and it is the same loss as the

one used by Lee, Lin, and Wahba (2004). When γ = 1/2, if we replace k − 1 in (2.2) by 1,
it reduces to

∑k
j=1[1−c

y
j fj (x)]+, where c

y
j = 1 if j = y and −1 otherwise. This is the loss

employed by the one-versus-rest approach (Weston 1999) except that the latter generally
does not enforce the sum-to-zero constraint so that the minimization can be decoupled.
Because of these connections, the new loss (2.2) can be viewed as a combination of the
one-versus-rest approach and the simultaneous classification approach. Our emphasis is
the effect of different choices of γ on the resulting classifiers.

To better comprehend the reinforced loss functions in comparison with the 0–1 loss,
we rewrite the loss using the multiple comparison vector representation proposed by
Liu and Shen (2006). Specifically, Liu and Shen (2006) defined the comparison vector
g(f(x), y) = (fy(x) − f1(x), . . . , fy(x) − fy−1(x), fy(x) − fy+1(x), . . . , fy(x) − fk(x)).
Then by the argmax classification rule, an instance (x, y) is misclassified if and only if
min(g(f(x), y)) ≤ 0. For simplicity, denote u = g(f(x), y). Then the 0–1 loss can be writ-
ten as I (minj uj ≤ 0). The reinforced loss (2.2) can then be expressed as γ [(k − 1) −∑k−1

l=1 ul/k]+ + (1−γ )
∑k−1

j=1[1+∑k−1
l=1 ul/k −uj ]+. Figure 1 shows the 0–1 loss and the

reinforced hinge loss functions with γ = 1,0,0.5 using the notation u for k = 3. Clearly,
various reinforced hinge loss functions are convex upper envelopes of the 0–1 loss func-
tion. Furthermore, the shape of the reinforced loss varies dramatically as γ changes. For
the reinforced hinge loss functions with γ = 1,0,0.5, the corresponding plots have 2, 4, 6
jointing planes, respectively. As shown later in this article, reinforced SVMs indeed behave
very differently when γ varies.

2.2 FISHER CONSISTENCY

Fisher consistency is also known as “classification calibrated” (Bartlett, Jordan, and
McAuliffe 2006). Write Pj (x) = P(Y = j |x). A loss function V is Fisher consistent if and
only if argmaxj f ∗

j = argmaxj Pj , where f∗(x) = (f ∗
1 (x), . . . , f ∗

k (x)) denotes the mini-
mizer of E[V (f(X), Y )|X = x]. For multicategory classification, Zhang (2004a), Tewari
and Bartlett (2007) explored Fisher consistency for several convex margin-based multicat-
egory losses. Hill and Doucet (2007) provided geometric illustrations of Fisher consistency
for several existing multicategory hinge loss functions. In this section, we investigate Fisher
consistency of the reinforced multicategory hinge losses in (2.2) with different choices
of γ . Interestingly, there exists a dichotomy: the reinforced hinge loss function is Fisher
consistent if and only if γ ≤ 1/2. Denote by f ∗

1 , . . . , f ∗
k the minimizer of E(V (f(X), Y )|x).

We have

Theorem 1. If γ ≤ 1/2, then the reinforced hinge loss function (2.2) under the con-
straint that

∑
j fj (x) = 0 is Fisher consistent.
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REINFORCED MULTICATEGORY SUPPORT VECTOR MACHINES 905

Figure 1. Plots of various loss functions using u as the argument for k = 3: the 0–1 loss on the top-left panel,
the reinforced hinge loss functions with γ = 1,0,0.5 on the top-right, bottom-left, bottom-right panels.

Theorem 1 establishes Fisher consistency of the reinforced hinge loss with γ ≤ 1/2.

Our next theorem explores the case of γ > 1/2.

Theorem 2. If k > 2, then for any γ > 1/2, there exists a set of P1(x) > P2(x) ≥ · · · ≥
Pk(x) such that f ∗

1 (x) = f ∗
2 (x) and therefore V (f(x), y) in (2.2) under the constraint that∑

j fj (x) = 0 is not always Fisher consistent.

The proofs are provided in the Appendix. From Theorems 1 and 2, we can conclude that

the proposed reinforced hinge loss is Fisher consistent if and only if 0 ≤ γ ≤ 1/2. This pro-

vides a large class of consistent multicategory hinge loss functions. When γ > 1/2, Fisher

consistency cannot be guaranteed when there is no dominating class, that is, maxj Pj (x) <

1/2. Modifications such as additional constraints as in the article by Liu (2007) may be ap-

plied to make the loss consistent. However, such modifications will result in loss functions

that are no longer hinge losses and are thus not pursued here.

Interestingly, as indicated by the numerical examples in Section 4, RMSVMs with the

values of γ in the middle range of [0,1] such as γ = 0.5 work better than those of γ = 0

or 1. This reflects the advantages of proposed combined loss functions which encourage fy

to be maximum both explicitly and implicitly through the two components in (2.2).
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906 Y. LIU AND M. YUAN

3. COMPUTATIONAL ALGORITHM

We now derive a computational algorithm for the RMSVM within the kernel learning
framework. Using the representer theorem (Kimeldorf and Wahba 1971; Wahba 1999),
fj (x) can be represented as bj + ∑n

i′=1 K(x,xi′)vi′j , where K(·, ·) is the kernel function,
and bi, vi′j ; i′ = 1, . . . , n are coefficients for fj . Then we have

fj (xi ) = bj +
n∑

i′=1

K(xi ,xi′)vi′j = bj + KT
i v·j , (3.1)

where Ki = (K(xi ,x1),K(xi ,x2), . . . ,K(xi ,xn))
T and v·j = (v1j , . . . , vnj )

T . Moreover,
J (fj ) = 1

2 vT·j Kv·j . Thus the RMSVM can be reduced to

min
�

λ

2

k∑
j=1

vT·j Kv·j + 1

n

n∑
i=1

(
γ
[
(k − 1) − byi

− KT
i v·yi

]
+

+ (1 − γ )
∑
j �=yi

[1 + bj + KT
i v·j ]+

)
, (3.2)

s.t. e
k∑

j=1

bj + K
k∑

j=1

v·j = 0,

where � denotes {v·j , bj }kj=1, K denotes the kernel matrix with the (i, i′) element being
K(xi ,xi′), and e = (1,1, . . . ,1)T is a vector of length n.

To solve (3.2), we introduce nonnegative slack variables ξij ; i = 1, . . . , n, j = 1, . . . , k,

and then the primal problem of our RMSVM can be written as

min
�,ξ

nλ

2

k∑
j=1

vT·j Kv·j +
n∑

i=1

(
γ ξiyi

+ (1 − γ )
∑
j �=yi

ξij

)
,

s.t. ξij ≥ 0; i = 1, . . . , n, j = 1, . . . , k,

ξiyi
+ (

byi
+ KT

i v·yi
− (k − 1)

) ≥ 0; i = 1, . . . , n,

ξij − (
bj + KT

i v·j + 1
) ≥ 0; i = 1, . . . , n, j �= yi,(

k∑
j=1

bj

)
e + K

(
k∑

j=1

v·j

)
= 0.

The corresponding Lagrangian function is

LD = nλ

2

k∑
j=1

vT·j Kv·j +
n∑

i=1

(
γ ξiyi

+ (1 − γ )
∑
j �=yi

ξij

)

−
n∑

i=1

k∑
j=1

τij ξij + δT

(
K

(
k∑

j=1

v·j

)
+

(
k∑

j=1

bj

)
e

)
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REINFORCED MULTICATEGORY SUPPORT VECTOR MACHINES 907

−
n∑

i=1

αiyi

(
ξiyi

+ byi
+ KT

i v·yi
− (k − 1)

) −
n∑

i=1

∑
j �=yi

αij (ξij − bj − KT
i v·j − 1)

= nλ

2

k∑
j=1

vT·j Kv·j +
n∑

i=1

k∑
j=1

(Aij − τij − αij )ξij +
n∑

i=1

(k − 1)αiyi
+

n∑
i=1

∑
j �=yi

αij

+
k∑

j=1

bj

(−(α·j · (e − L·j ))T e + (α·j · L·j )T e + δT e
)

+
k∑

j=1

〈
K(α·j · L·j ) − K(α·j · (e − L·j )) + Kδ,v·j

〉
,

where αij ≥ 0 and τij ≥ 0, δ = (δ1, δ2, . . . , δn)
T are Lagrangian multipliers, L·j is a vec-

tor of length n with its ith element being 0 if yi = j and 1 otherwise, α·j · L·j denotes
componentwise product between α·j and L·j , and Aij = [γ I (yi = j)+ (1−γ )I (yi �= j)].
Setting ∂LD

∂ξij
= 0, ∂LD

∂bj
= 0, and ∂LD

∂v·j = 0, we have

∂LD

∂ξij

= Aij − τij − αij = 0, (3.3)

∂LD

∂bj

= −(α·j · (e − L·j ))T e + (α·j · L·j )T e + δT e = 0, (3.4)

∂LD

∂v·j
= nλKv·j + K(α·j · L·j ) + Kδ − K(α·j · (e − L·j )) = 0. (3.5)

Due to the positive definitive kernel K(·, ·), (3.5) implies that v·j = 1
nλ

(α·j · (e − L·j )−
α·j ·L·j −δ). Let ᾱ = 1

k

∑k
j=1(α·j ·L·j ) and ¯̃α = 1

k

∑k
j=1(α·j · (e−L·j )). Then from (3.4)

and (3.5), we have δ = ¯̃α − ᾱ and

v·j = 1

nλ
[(α·j · (e − L·j ) − α·j · L·j ) − ( ¯̃α − ᾱ)]. (3.6)

After plugging (3.3)–(3.6) into LD , we can derive the corresponding dual problem as fol-
lows:

min
α

1

2

k∑
j=1

〈[
(α·j · (e − L·j ) − α·j · L·j ) − ( ¯̃α − ᾱ)

]
,

K
[
(α·j · (e − L·j ) − α·j · L·j ) − ( ¯̃α − ᾱ)

]〉
−nλ

n∑
i=1

(k − 1)αiyi
− nλ

n∑
i=1

∑
j �=yi

αij , (3.7)

s.t. 0 ≤ αij ≤ Aij ; i = 1, . . . , n, j = 1, . . . , k,

[(α·j · (e − L·j ) − α·j · L·j ) − ( ¯̃α − ᾱ)]T e = 0; j = 1, . . . , k.
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908 Y. LIU AND M. YUAN

To further simplify (3.7), define β = (αT·1, . . . ,αT·k)T , ej as a vector of length k with
its j th element being 1 and the remaining ones being 0, Uj = eT

j ⊗ In, and Vj as a di-
agonal matrix with L·j as the diagonal elements, where ⊗ denotes the Kronecker product
and In denotes the n × n identity matrix. Then α·j · L·j = VjUjβ and α·j · (e − L·j ) =
(In − Vj )Ujβ . Furthermore, (3.7) can be simplified as the following quadratic program-
ming (QP) problem:

min
β

1

2
βT

k∑
j=1

HT
j KHjβ + gT β,

s.t. 0 ≤ αij ≤ Aij ; i = 1, . . . , n, j = 1, . . . , k, (3.8)

eT Hjβ = 0; j = 1, . . . , k,

where Hj = (In − Vj )Uj − VjUj − 1
k

∑k
m=1(In − Vm)Um + 1

k

∑k
m=1 VmUm and g is a

vector of length nk with its (j − 1)n + ith elements being −nλ(k − 1) if j = yi and −nλ

otherwise.
Once {vj ; j = 1, . . . , k} are obtained, we can solve b either by the KKT conditions or

linear programming (LP). More explicitly, with {vj ; j = 1, . . . , k} given, we can obtain b
by solving

min
b,η

k∑
j=1

(
γ ηiyi

+ (1 − γ )
∑
j �=yi

ηij

)
,

subject to
k∑

j=1

bj = 0,

ηij ≥ 0; i = 1, . . . , n, j = 1, . . . , k, (3.9)

ηiyi
+ (

byi
+ KT

i v·yi
− (k − 1)

) ≥ 0; i = 1, . . . , n,

ηij − (bj + KT
i v·j + 1) ≥ 0; i = 1, . . . , n, j �= yi.

Our algorithm for the RMSVM with a given λ can be summarized as follows:
Step 1: Solve the QP problem (3.8) to obtain solution β .
Step 2: With β given, solve (3.6) to get the solution for v·j ; j = 1, . . . , k.
Step 3: With {vj ; j = 1, . . . , k} given, b can be derived by solving the LP problem (3.9).

4. NUMERICAL EXAMPLES

4.1 SIMULATION

In this section, we use two simulated examples to examine the behavior of the RMSVMs
and how their performance varies with γ . Since γ ∈ [0,1], we examine 11 choices with
γ = 0,0.1, . . . ,1. As shown in Theorems 1 and 2, the RMSVMs have Fisher consistency
for γ ∈ [0,0.5] and are not always Fisher consistent for γ > 0.5. Thus, these values of γ

should provide a broad range of behaviors of the corresponding RMSVMs. The case of
γ = 0 corresponds to the version by Lee, Lin, and Wahba (2004).
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REINFORCED MULTICATEGORY SUPPORT VECTOR MACHINES 909

4.1.1 Example With a Piecewise Linear Bayes Decision Boundary

In this three-class example, P(Y = 1) = P(Y = 2) = P(Y = 3) = 1/3, P(X|Y = 1) ∼
N(μ = (0,2)T ,1.52I2), P(X|Y = 2) ∼ N(μ = (−√

3,−1)T ,1.52I2), and P(X|Y = 3) ∼
N(μ = (

√
3,−1)T ,1.52I2). Due to the design of this example, linear learning can be suf-

ficient and the corresponding Bayes boundary is piecewise linear as displayed in the left
panel of Figure 3 below.

We simulate n observations for training, n observations for tuning, and a large set for
testing. We use the training set to build RMSVM classifiers and then use the separate
tuning set to choose the tuning parameter λ among the set {2−16,2−15, . . . ,215}. After the
tuning parameter gets selected, we use the test set to evaluate the corresponding test error
of the tuned RSVMs. To examine the effect of different choices of the function class, we
use both linear kernel, K(u,v) = 〈u,v〉, and the polynomial kernel of order 2, K(u,v) =
(1 + 〈u,v〉)2.

Table 1 reports the estimated test errors based on a test set of size 105 for n = 50
and 100. The results show very interesting behaviors of RMSVMs with different γ ’s us-
ing different kernels. When we use the linear kernel, γ = 0 gives the worst performance.
Although the reinforced multicategory hinge loss is consistent when γ = 0 and not con-
sistent when γ = 1, the corresponding linear RMSVM with γ = 1 gives better accuracy
for this example. When we change the linear kernel to a polynomial kernel, the RMSVMs
with γ ∈ [0,0.5] work better than γ > 0.5. This seemingly surprising result reflects that
Fisher consistency is only a pointwise consistency result. When the function class is rela-
tively small, forcing fy to be the maximum directly as in the first part of reinforced loss
may work better than the second part which encourages only large fy implicitly. As the
function class becomes large, Fisher consistency becomes more relevant and the consis-
tent RMSVMs with γ ∈ [0,0.5] using the polynomial kernel perform better in this ex-
ample. Figure 2 gives a clear visualization of the effect of γ . Furthermore, the left panel

Table 1. Estimated test errors and the corresponding estimated standard errors based on 100 replications for
Example 4.1.1 based on the RSVMs with different γ , the MSVM by Weston and Watkins (1999)
(WW-SVM), and the one-versus-rest approach (OVR). The estimated Bayes error is 0.2039.

γ Lin n = 50 Lin n = 100 poly2 n = 50 poly2 n = 100

0 0.2948 (0.0075) 0.2428 (0.0041) 0.2359 (0.0025) 0.2214 (0.0013)
0.1 0.2760 (0.0063) 0.2342 (0.0031) 0.2357 (0.0024) 0.2207 (0.0011)
0.2 0.2618 (0.0053) 0.2263 (0.0022) 0.2368 (0.0026) 0.2211 (0.0012)
0.3 0.2469 (0.0040) 0.2214 (0.0017) 0.2366 (0.0023) 0.2219 (0.0013)
0.4 0.2415 (0.0035) 0.2186 (0.0014) 0.2371 (0.0025) 0.2216 (0.0011)
0.5 0.2359 (0.0027) 0.2161 (0.0011) 0.2381 (0.0024) 0.2227 (0.0011)
0.6 0.2315 (0.0023) 0.2153 (0.0009) 0.2406 (0.0024) 0.2230 (0.0011)
0.7 0.2298 (0.0023) 0.2154 (0.0011) 0.2399 (0.0026) 0.2236 (0.0011)
0.8 0.2307 (0.0031) 0.2151 (0.0010) 0.2448 (0.0026) 0.2249 (0.0012)
0.9 0.2325 (0.0030) 0.2168 (0.0012) 0.2557 (0.0036) 0.2325 (0.0019)
1 0.2419 (0.0033) 0.2242 (0.0016) 0.3051 (0.0056) 0.2639 (0.0032)

WW-SVM 0.2359 (0.0029) 0.2176 (0.0012) 0.2505 (0.0032) 0.2267 (0.0019)

OVR 0.2506 (0.0049) 0.2197 (0.0015) 0.2550 (0.0034) 0.2256 (0.0013)
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910 Y. LIU AND M. YUAN

Figure 2. Left panel: Plot of the average estimated test errors of RMSVMs based on 100 replications with
γ = 0,0.1, . . . ,1 for Example 4.1.1. Right panel: Plot of the corresponding standard errors of the estimated test
errors of RMSVMs. The online version of this figure is in color.

of Figure 3 plots the classification boundaries of the RMSVMs with γ = 0,0.5,1 using

the linear kernel. As shown in the plot, γ = 0.5 works remarkably well. Overall, the mid-

dle range values of γ such as 0.5 give the most accurate and stable classification perfor-

mance.

For comparison, we also include the results by the MSVM approach proposed by

Weston and Watkins (1999) (WW-SVM), and the one-versus-rest approach (OVR). Over-

all, the proposed RMSVM with γ = 0.5 delivers very competitive performance.

Figure 3. Plots of the typical classification boundaries of the RMSVMs with γ = 0,0.5,1. Left panel: Clas-
sification boundaries using linear kernel for Example 4.1.1 with n = 50. Right panel: Classification boundaries
using Gaussian kernel for Example 4.1.2 with n = 100. The plots show that the RSVM with γ = 0.5 yields very
accurate classification boundaries. The online version of this figure is in color.
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REINFORCED MULTICATEGORY SUPPORT VECTOR MACHINES 911

4.1.2 Example With a Nonlinear Bayes Decision Boundary

In this three-class example, P(Y = 1) = P(Y = 2) = P(Y = 3) = 1/3, P(X|Y =
1) ∼ N(μ = (2,0)T ,1.52I2), P(X|Y = 2) ∼ 0.5N(μ = (0,2)T ,1.52I2) + 0.5N(μ =
(0,−2)T ,1.52I2), and P(X|Y = 3) ∼ N(μ = (−2,0)T ,1.52I2). Due to the design of the
underlying distribution, linear f’s will not work well for this example. The nonlinear Bayes
decision boundary is shown in the right panel of Figure 3.

We simulate data and build RMSVMs in the same manner as in Example 4.1.1. Since
linear learning does not work for this example, to examine the effect of different choices
of the function class, we use both the polynomial kernel of order 2 and the Gaussian ker-
nel. The parameter λ is tuned in the same way as in Example 4.1.1. As to the second
parameter σ of the Gaussian kernel, we use the median of the between-class pairwise
Euclidean distances of training inputs to avoid extensive grid search (Brown et al. 2000;
Wu and Liu 2007).

Table 2 reports the estimated test errors based on a test set of size 105 for n = 50
and 100. The results show that RMSVMs with large γ ’s, that is, close to 1, give worse
accuracy than those of smaller γ ’s. Overall, RMSVMs with γ = 0.5 give the best or close
to the best performance. In contrast to Example 4.1.1, RMSVMs with γ = 0 give reason-
able performance. This may be because the kernel space here is relatively more flexible
than the linear kernel space. Figure 4 illustrates the effect of γ . From the plot, we can
see that the values of γ = 0.5,0.6,0.7 generally yield the best accuracy. Furthermore, the
Gaussian kernel works consistently better than the polynomial kernel of order 2 in this ex-
ample. Lastly, the right panel of Figure 3 indicates that γ = 0,0.5 give similar classification
boundaries, much better than that of γ = 1 for this example. Similarly to Example 4.1.1,
we also include the results by the WW-SVM and OVR. Again, the proposed RMSVM with
γ = 0.5 is very competitive.

In summary, both the linear Example 4.1.1 and the nonlinear Example 4.1.2 indicate
that γ around 0.5 works the best in terms of accuracy and stability. Combining the Fisher

Table 2. Estimated test errors based on 100 replications for Example 4.1.2 based on the RSVMs, WW-SVM,
and OVR. The estimated Bayes error is 0.2883.

γ poly2 n = 50 poly2 n = 100 Gauss n = 50 Gauss n = 100

0 0.3473 (0.0038) 0.3209 (0.0019) 0.3420 (0.0029) 0.3199 (0.0017)
0.1 0.3444 (0.0038) 0.3204 (0.0020) 0.3392 (0.0027) 0.3196 (0.0017)
0.2 0.3435 (0.0036) 0.3201 (0.0021) 0.3407 (0.0028) 0.3196 (0.0017)
0.3 0.3417 (0.0034) 0.3191 (0.0020) 0.3398 (0.0028) 0.3194 (0.0017)
0.4 0.3416 (0.0033) 0.3168 (0.0018) 0.3405 (0.0028) 0.3193 (0.0018)
0.5 0.3390 (0.0031) 0.3176 (0.0021) 0.3414 (0.0027) 0.3186 (0.0018)
0.6 0.3391 (0.0036) 0.3189 (0.0019) 0.3395 (0.0027) 0.3184 (0.0016)
0.7 0.3389 (0.0036) 0.3188 (0.0019) 0.3402 (0.0027) 0.3214 (0.0019)
0.8 0.3403 (0.0031) 0.3228 (0.0020) 0.3446 (0.0030) 0.3256 (0.0022)
0.9 0.3529 (0.0035) 0.3316 (0.0024) 0.3503 (0.0031) 0.3318 (0.0019)
1 0.3909 (0.0050) 0.3647 (0.0033) 0.3708 (0.0042) 0.3518 (0.0027)

WW-SVM 0.3429 (0.0040) 0.3223 (0.0026) 0.3525 (0.0037) 0.3283 (0.0024)

OVR 0.3500 (0.0042) 0.3306 (0.0027) 0.3488 (0.0037) 0.3235 (0.0023)
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912 Y. LIU AND M. YUAN

Figure 4. Left panel: Plot of the average estimated test errors of RMSVMs based on 100 replications with
γ = 0,0.1, . . . ,1 for Example 4.1.2. Right panel: Plot of the corresponding standard errors of the estimated test
errors of RMSVMs. The online version of this figure is in color.

consistency and the numerical results, we recommend the RMSVM with γ = 0.5 as the
best choice.

4.2 AN APPLICATION TO LUNG CANCER MICROARRAY DATA

We use a real cancer dataset (available from http://www.broad.mit.edu/mpr/ lung/ ) to
demonstrate the effectiveness of the proposed RMSVMs. The dataset has been previously
studied by Liu et al. (2008) and contains 2530 genes. Each gene is standardized to have
sample mean 0 and standard deviation 1. There are four histological types, adenocarci-
noma, pulmonary carcinoid tumors, squamous cell, and normal lung. Among the four, the
first three are lung cancer subtypes.

The dataset contains 186 subjects including 128 adenocarcinoma, 20 carcinoid, 21 squa-
mous, and 17 normal tissues. We apply the proposed RMSVMs with different values of γ

on this cancer dataset. To that end, we split the sample of each class into two parts, one for
model building and the other for testing. In particular, we randomly select 64, 5, 5, and 4
observations from the groups of adenocarcinoma, carcinoid, squamous, and normal tissues
for testing, and the remaining for model building. As a result, for the purpose of testing, we
have around 50% observations from the adenocarcinoma class as it is the majority class,
and 25% observations from each of the other three classes. We use the model building
part to build RMSVM classifiers. Since we have high-dimension low-sample-size data, we
apply linear learning here, which appears to be sufficient. The 10-fold cross-validation is
used to select the parameter λ. The testing data are used to evaluate and compare different
methods. The process is repeated for 10 times.

We first carry out the four-class classification. The results are summarized in Table 3. It
appears that RMSVMs with γ ∈ [0,0.5] work better than those with γ > 0.5. RMSVMs
with γ ≤ 0.5 give same results. To further compare the methods, we split the four-class
problem into four three-class classification problems. The results are included in Table 3
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REINFORCED MULTICATEGORY SUPPORT VECTOR MACHINES 913

Table 3. Averages and standard deviations of the test errors based on 10 replications for the lung cancer dataset.
Classes adenocarcinoma, carcinoid, squamous, and normal are represented by A, C, S, and N, respec-
tively.

Cases γ = 0 γ = 0.2 γ = 0.5 γ = 0.8 γ = 1

A–C–S–N 0.0474 (0.012) 0.0474 (0.012) 0.0474 (0.012) 0.0500 (0.004) 0.0731 (0.012)
A–C–S 0.0297 (0.006) 0.0297 (0.006) 0.0270 (0.010) 0.0270 (0.010) 0.0324 (0.015)
A–C–N 0.0521 (0.013) 0.0521 (0.013) 0.0521 (0.013) 0.0616 (0.020) 0.0699 (0.031)
A–S–N 0.0521 (0.013) 0.0521 (0.013) 0.0507 (0.013) 0.0534 (0.019) 0.0493 (0.025)
C–S–N 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

as well. Overall, the testing errors are relatively low. Although the differences are not
significantly large and the dataset is small to claim, the RMSVM with γ = 0.5 appears
to work well in all cases.

One interesting point one can see from Table 3 is that we have perfect classification on
the three-class case: carcinoid, squamous, and normal subtypes. We do not have perfect
classification when the class adenocarcinoma is involved. To understand this further, we
project the data onto the first two principal component directions for visualization to get
a better idea of the classification problem. From Figure 5, we can see that except for the
group of adenocarcinoma, the other three groups are well separated. The adenocarcinoma
group overlaps with squamous and normal groups. This is expected in view of the pre-
vious knowledge that adenocarcinoma is a relatively heterogeneous lung cancer subtype
(Bhattacharjee et al. 2001). Furthermore, although this dataset is very unbalanced with
adenocarcinoma as the majority class, it does not suffer the typical difficulty of unbalanced
classification. In particular, as pointed out by Qiao and Liu (2009), if the overall classifica-
tion accuracy is used as the classification criterion, minority classes can be ignored since
the classifiers tend to focus on the majority classes. Interestingly, this is not an issue for

Figure 5. PCA projection plot of the lung cancer Microarray data. The online version of this figure is in color.
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914 Y. LIU AND M. YUAN

our example since the class of adenocarcinoma is the most difficult one to classify. The
reported classification errors are mostly due to adenocarcinoma.

5. DISCUSSION

In the literature, there exist a number of different multicategory SVMs. To our knowl-
edge, most of them are not Fisher consistent. In this article, we propose the new family of
reinforced multicategory hinge loss functions. Our proposed RMSVMs include the MSVM
by Lee, Lin, and Wahba (2004) as a special case, and also cover many new Fisher consis-
tent multicategory hinge loss functions. Furthermore, the new family has some interesting
connections with the one-versus-rest approach.

Our theoretical investigation and numerical studies indicate that γ = 0.5 appears to
work very well. Although we do not expect the RMSVM to always outperform other ex-
isting MSVMs in real applications in view of the previous numerical study by Rifkin and
Klautau (2004), Hill and Doucet (2007), we believe that the RMSVM provides a promising
and useful addition to the SVM toolkit.

In comparison with the one-versus-rest method, all-at-once methods such as the
RMSVM can be more expensive to compute. For binary SVMs, Platt (1999) proposed
Sequential Minimal Optimization (SMO) to simplify the computation. Hill and Doucet
(2007) extended the use of SMO for multicategory SVMs. One possible approach to re-
duce the computational cost of the RMSVM is to adopt SMO. Another approach to improve
computation is to develop efficient solution-path algorithms for the RMSVM (Hastie et al.
2004; Wang and Shen 2006).

To implement the reinforced SVM in practice, one needs to choose the tuning parame-
ter λ in (2.1). Similarly to many other regularization methods, the tuning parameter λ is
important for the effectiveness of the proposed technique. Although one can use certain
cross-validation procedures in practice when a separate tuning dataset is not available, the
computational cost can be high. Therefore, an easy-to-compute data-dependent tuning cri-
terion is desirable. Wahba, Lin, and Zhang (2000) developed the generalized approximate
cross-validation (GACV) procedure for efficient tuning parameter selection of the SVM. It
will be interesting to generalize the GACV procedures for our RMSVMs.

Another research direction of RMSVMs is the convergence properties. A number of ar-
ticles on the convergence of large-margin classifiers have appeared in the literature. To list
a few, Shen et al. (2003) provided learning theory for ψ -learning. Tarigan and van de Geer
(2004), Wang and Shen (2007) derived rates of convergence for the L1 SVMs. Steinwart
and Scovel (2006) studied the convergence rate of the SVM using Gaussian kernels. Re-
cently, Shen and Wang (2007) studied rates of convergence of the generalization error of a
class of multicategory margin classifiers. It will be interesting to explore the effect of γ on
the RMSVM in terms of its asymptotic convergence behavior.

APPENDIX: PROOFS OF THE FISHER CONSISTENCY RESULTS

In this section, we give the proofs of Theorems 1 and 2. We begin by discussing Fisher
consistency of the two extremes: (I) γ = 1 and (II) γ = 0.
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REINFORCED MULTICATEGORY SUPPORT VECTOR MACHINES 915

Lemma A.1. Assume that argminj Pj (x) is uniquely determined. The minimizer f∗ of

E[[(k −1)−fY (X)]+] subject to
∑k

j fj (x) = 0 satisfies the following: f ∗
j (x) = −(k −1)2

if j = argminj Pj (x) and k − 1 otherwise.

From Lemma A.1, we can see that the loss (I), [(k−1)−fy(x)]+ subject to
∑k

j fj (x) =
0, is not consistent since except the smallest element, all the remaining elements of its
minimizer are k − 1. Consequently, the argmax rule cannot be uniquely determined and
thus the loss is not consistent.

Lemma A.2. Assume that argmaxj Pj (x) is uniquely determined. The minimizer f∗ of

E[∑j �=Y [1 + fj (X)]+] subject to
∑k

j fj (x) = 0 satisfies the following: f ∗
j (x) = k − 1 if

j = argmaxj Pj (x) and −1 otherwise.

Lemma A.2 implies that the loss (II),
∑

j �=y[1 + fj (x)]+ subject to
∑k

j fj (x) = 0, is
a consistent loss since its minimizer yields the Bayes decision boundary. A similar result
was also established by Lee, Lin, and Wahba (2004).

We now prove Lemmas A.1 and A.2 and then show several additional lemmas.

Proof of Lemma A.1: E[[(k − 1) − fY (X)]+] = E[∑k
l=1[(k − 1) − fl(X)]+Pl(X)].

For any fixed X = x, our goal is to minimize
∑k

l=1[(k − 1) − fl(x)]+Pl(x).
We first show the minimizer f∗ satisfies f ∗

j ≤ (k − 1) for ∀j = 1, . . . , k. To this end,

suppose a solution f1 having f 1
j > (k − 1). Then we can construct another solution f2 with

f 2
j = (k − 1) and f 2

l = f 1
l + A, where l �= j and A = (k − 1 − f 1

j )/(k − 1) > 0. Then∑
l f

2
l = 0 and f 2

l > f 1
l ; ∀l �= j . Consequently,

∑k
l=1[(k − 1) − f 2

l ]+Pl <
∑k

l=1[(k −
1) − f 1

l ]+Pl . This implies that f1 cannot be the minimizer. Therefore, the minimizer f∗
satisfies f ∗

j ≤ (k − 1) for ∀j .
Using the property of f∗, we only need to consider f with fj ≤ (k − 1) for ∀j . Thus,∑k
l=1[(k − 1) − fl(x)]+Pl(x) = ∑k

l=1(k − 1 − fl(x))Pl(x) = k − 1 − ∑k
l=1 fl(x)pl(x).

Then the problem reduces to

max
f

k∑
l=1

Pl(x)fl(x),

subject to
k∑

l=1

fl(x) = 0; fl(x) ≤ (k − 1) ∀l.

It is easy to see that the solution satisfies f ∗
j (x) = −(k − 1)2 if j = argminj Pj (x) and

k − 1 otherwise. �

Proof of Lemma A.2: Note that E[∑j �=Y [1 + fj (X)]+] = E[E(
∑

j �=Y [1 +
fj (x)]+|X = x)]. Thus, it is sufficient to consider the minimizer for a given x and
E(

∑
j �=Y [1 + fj (x)]+|X = x) = ∑k

l=1
∑

j �=l[1 + fj (x)]+Pl(x).
Next, we show the minimizer f∗ satisfies f ∗

j ≥ −1 for ∀j = 1, . . . , k. To show this,

suppose a solution f1 having f 1
j < −1. Then we can construct another solution f2 with
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916 Y. LIU AND M. YUAN

f 2
j = −1 and f 2

l = f 1
l − A, where A = (−1 − f 1

j )/(k − 1) > 0. Then
∑

l f
2
l = 0 and

f 2
l < f 1

l ; ∀l �= j . Consequently,
∑k

l=1
∑

j �=l[1 +f 2
j ]+Pl <

∑k
l=1

∑
j �=l[1 +f 1

j ]+Pl . This
implies that f1 cannot be the minimizer. Therefore, the minimizer f∗ satisfies f ∗

j ≥ −1
for ∀j .

Using the property of f∗, we only need to consider f with fj ≥ −1 for ∀j . Thus,∑k
l=1

∑
j �=l[1 + fj ]+Pl = ∑k

l=1 Pl

∑
j �=l (1 + fj ) = ∑k

l=1 Pl(k − 1 + ∑
j �=l fj ) =∑k

l=1 Pl(k − 1 − fl) = k − 1 − ∑k
l=1 Plfl . Consequently, minimizing

∑k
l=1

∑
j �=l[1 +

fj ]+Pl is equivalent to maximizing
∑k

l=1 Plfl . Then the problem reduces to

max
f

k∑
l=1

Pl(x)fl(x),

subject to
k∑

l=1

fl(x) = 0; fl(x) ≥ −1 ∀l.

It is easy to see that the solution satisfies f ∗
j (x) = k − 1 if j = argmaxj Pj (x) and −1

otherwise. �

Without loss of generality, assume that P1 > P2 ≥ · · · ≥ Pk . The proof of Theorem 1
can be decomposed into the following steps.

Lemma A.3. If P1 ≥ P2 ≥ · · · ≥ Pk , then f ∗
1 ≥ · · · ≥ f ∗

k .

Proof: Note that

E
(
V (f(X), Y )|x) =

∑
l

Pl{γ [k − 1 − fl]+ − (1 − γ )[1 + fl]+}

+ (1 − γ )
∑

l

[1 + fl]+. (A.1)

Denote

h(u) ≡ γ [k − 1 − u]+ − (1 − γ )[1 + u]+.

Minimizing E(V (f(X), Y )|x) would ensure that h(f1) ≤ · · · ≤ h(fk). Otherwise, assume
that h(fj ) > h(fi) but j < i. Define f 1

l = fl for l �= i, j and f 1
j = fi , f 1

i = fj . Clearly,
E(V (f(X), Y )|x) > E(V (f1(X), Y )|x), which is contradictory. Note that h(·) is a monoton-
ically decreasing function. This implies that f ∗

1 ≥ · · · ≥ f ∗
k . �

Lemma A.4. If P1 ≥ P2 ≥ · · · ≥ Pk , then f ∗
1 ≤ k − 1.

Proof: From Lemma A.3, we know that f ∗
1 ≥ · · · ≥ f ∗

k . Assume the contrary that f ∗
1 >

k − 1. To ensure that
∑

f ∗
l = 0, we need f ∗

k < −1. Define f 1
l = fl for 1 < l < k and

f 1
1 = f1 − ε, f 1

k = fk + ε,
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REINFORCED MULTICATEGORY SUPPORT VECTOR MACHINES 917

where ε > 0 is such that f 1
1 > k − 1 and f 1

k < −1. Note that

E
(
V (f1(X), Y )|x) − E

(
V (f∗(X), Y )|x) = −(1 − P1)(1 − γ )ε − Pkγ ε < 0

which contradicts the fact that f∗ is the minimizer of E(V (f(X), Y )|x). �

Lemma A.5. If P1 ≥ · · · ≥ Pk , then f ∗
k ≥ −1 if γ < (1 − P2)/(1 − Pk).

Proof: From Lemma A.3, we know that f ∗
1 ≥ · · · ≥ f ∗

k . By Lemma A.4, f ∗
1 ≤ k − 1.

Assume the contrary that f ∗
k < −1. Then −1 < f ∗

2 ≤ k − 1 due to the sum-to-zero con-
straint. Define f 1

l = f ∗
l if l �= 2, k and

f 1
2 = f ∗

2 − ε, f 1
k = f ∗

k + ε,

where ε > 0 is such that f 1
k < −1. Then

E
(
V (f1(X), Y )|x) − E

(
V (f∗(X), Y )|x) = [P2 − 1 + (1 − Pk)γ ]ε,

which is negative if and only if P2 − 1 + (1 − Pk)γ < 0, or equivalently,

γ <
1 − P2

1 − Pk

. �

Proof of Theorem 1: From Lemma A.5, we know that for P1 ≥ · · · ≥ Pk , f ∗
k ≥ −1 if

γ < (1 − P2)/(1 − Pk). Note that (1 − P2)/(1 − Pk) is a decreasing function of P2 and
an increasing function of Pk . Thus, its lower bound is 1/2 which corresponds to P2 = 1/2
and Pk = 0. To show Fisher consistency, we can assume P1 > P2. Thus, we can conclude
that f ∗

k ≥ −1 if γ ≤ 1/2 < (1 − P2)/(1 − Pk). Since γ ≤ 1/2, f ∗
j ≥ −1 for ∀j . Using

an argument similar to that of the proof of Lemma A.2, we can get f ∗
j (x) = k − 1 if

j = argmaxj Pj (x) and −1 otherwise. The desired result then follows. �

Proof of Theorem 2: Consider a simple case where k = 3 and P3 = 0. Then (A.1)
becomes

{γP1[2 − f1]+ + P2(1 − γ )[1 + f1]+}
+ {γP2[2 − f2]+ + P1(1 − γ )[1 + f2]+} + (1 − γ )[1 + f3]+.

If 1/2 < P1 < γ , then γP1 > P2(1−γ ) and γP2 > P1(1−γ ), consequently the minimizer
is (2,2,−4). This implies that V (f(x), y) is not Fisher consistent. �

SUPPLEMENTARY MATERIALS

R archive for the proposed reinforced multicategory support vector machines: The
archive contains R code implementing the proposed methods. (code.zip)
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