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Keeping pace with the highly diversified research frontier of statistics is hard
enough, but I suggest that we also pay ever closer attention to great works of the
past. I o↵er no prescription for how to do this, but reflect instead on three cases
from my own research where my solution involved realizing a new interpretation
of an old, interesting but possibly uncelebrated result which had been developed
in a di↵erent context.

1.1 Three short stories

1.1.1 Genomics meets sample surveys

Assessing di↵erential expression patterns between cancer subtypes provides some
insight into their biology and may direct further experimentation. On similar
tissues cancer may follow distinct developmental pathways and thus produce
distinct expression profiles. These di↵erences may be captured by the sample
variance statistic, which would be large when some members of a gene set (func-
tional category) have high expression in one subtype compared to the other, and
other members go the opposite way. A case in point is a collection of cell-cycle
regulatory genes and their expression pattern in tumors related to human pa-
pilloma virus (HPV) infection. Pyeon et al. (2007) studied the transcriptional
response in n = 62 head, neck and cervical cancer samples, some of which were
positive for virus (HPV+) and some of which were not (HPV-). Gene-level anal-
ysis showed significant di↵erential expression in both directions. Set-level anal-
ysis showed that one functional category stood out from the several thousands
of known categories in having an especially large value of between-gene/within-
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set sample variance. This category was detected using a standardized sample
variance statistic; the detection itself launched a series of experiments on the
involved genes, both in the same tissues under alternative measurement tech-
nology and on di↵erent tissues. The findings lead to a new hypothesis about
how HPV+/- tumors di↵erentially deregulate the cell-cycle processes during tu-
morigenesis as well as to biomarkers for HPV-associated cancers (Pyeon et al.,
2011). Figure 1 shows a summary of gene-level di↵erential expression scores be-
tween HPV+ and HPV- cancers (so-called log fold changes), for all genes in the
genome (left), as well as for m = 99 genes from a cell-cycle regulatory pathway.

A key statistical issue in this case was how to standardize a sample vari-
ance statistic. The gene-level data were first reduced to the log-scale fold
change between HPV+ and HPV- cell types; these {xg}, for genes g, were
then considered fixed in subsequent calculations. For a known functional cate-
gory c ⇢ {g = 1, 2, . . . , G} of size m, the statistic u(x, c) measured the sample
variance of the xg’s within c. This statistic was standardized by imagining the
distribution of u(x,C), for random sets C, considered to be drawn uniformly
from among all

�G
m

�
possible size-m subsets of the genome. Well forgetting

about all the genomics, the statistical question concerned the distribution of
the sample variance in without-replacement finite-population sampling; in par-
ticular, I needed an expected value and variance of u(x,C) under this sampling.
Not being especially well versed in the findings of finite-population sampling,
I approached these moment questions from first-principles and with a novice’s
vigor, figuring that something simple was bound to emerge. I did not make
much progress on the variance of u(x,C), but was delighted to discover a beau-
tiful solution in Tukey (1950, page 517), which had been developed far from the
context of genomics and which was not widely cited. Tukey’s buried treasure

used so-called K functions, which are set-level statistics whose expected value
equals the same statistic computed on the whole population. Subsequently I
learned that earlier R.A. Fisher had also derived this variance (see also Cho et

al., 2005), and, in any case, I was glad to have gained some insight from Tukey’s
general framework.

1.1.2 Bootstrapping and rank statistics

Researchers were actively probing the limits of bootstrap theory when I began
my statistics career. A case of interest concerned generalized bootstrap means.
From a real-valued random sample X1, X2, . . . , Xn one studied the conditional
distribution of the randomized statistic

X̄

W
n =

1

n

nX

i=1

Wn,iXi,

conditional on the data {Xi}, and where the random weights {Wn,i} were gener-
ated by the statistician to enable the conditional distribution of X̄W

n to approx-
imate the marginal sampling distribution of X̄n. Efron’s bootstrap corresponds
to weights having a certain multinomial distribution, but indications were that
useful approximations were available for beyond the multinomial.
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Figure 1.1: The relative positions of m = 99 cell-cycle genes (KEGG 04110)
(right) are shown in the context of all measured genes (left) when genes are
sorted by log fold change between HPV+ and HPV- tumors (vertical axis).
Widths in the red violin plot indicate the empirical density. KEGG 04110 had
higher standardized sample variance then any functional category in GO or
KEGG. Based on this high variance, further experiments were performed on
the 10 named genes (right) leading to a new hypothesis about how the HPV
virus deregulates the control of cell cycle, and to biomarkers for HPV-associated
cancer.
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In a most rewarding collaboration, David Mason and I tackled the case
where {Wn,i} were exchangeable, making the seemingly superfluous observation
that X̄W

n must have the same conditional distribution, given data {Xi}, as the
additionally randomized

Tn =
1

n

nX

i=1

Wn,⇡n,iXi

where, for each n, {⇡n,i} is a uniform random permutation of the integers
{1, 2, . . . , n}. While the usual boostrap statistic has two sources of random-
ness (one from the data and from the bootstrap weights), this Tn had yet a
third source, neither generated by nature or the statistician, but just imagined
owing to the exchangeability of the weights. Having all three sources allowed
us to condition on both the data {Xi} and the statistician-generated weights
{Wn,i}, and still have some randomness in Tn.

A quite unconnected and somewhat amazing treasure from the theory of
linear rank statistics now became relevant. Given two triangular arrays of con-
stants, {an,i} and {bn,i}, the randomized mean

Sn =
nX

i=1

an,⇡n,ibn,i

had been studied extensively in nonparametric testing, because this is the form
of the linear rank statistic. Hájek (1961) presented weak conditions on the tri-
angular arrays such that Sn is asymptotically normal, owing to the random
shu✏ing caused by {⇡n,i}. Thus, reconsidering Hájek’s result in the new boot-
strap context was the key to making progress on the weighted bootstrap problem
(Mason and Newton, 1992).

1.1.3 Cancer genetics and stochastic geometry

A tumor is monoclonal in origin if all its cells trace by descent to a single initi-
ated cell that is aberrant relative to the surrounding normal tissue (e.g., incurs
some critical genetic mutation). Tumors are well known to exhibit internal het-
erogeneity, but this does not preclude monoclonal origin, since mutation, clonal
expansion, and selection are dynamic evolutionary processes occurring within
a tumor that move the single initiated cell to a heterogeneous collection of de-
scendants. Monoclonal origin is the accepted hypothesis for most cancers, but
evidence is mounting that tumors may initiate through some form of molecular
interaction between distinct clones. As advanced as biotechnology has become,
the cellular events at the point of tumor initiation remain beyond our ability to
observe directly, and so the question of monoclonal versus polyclonal origin has
been di�cult to resolve. I have been fortunate to work on the question in the
context of intestinal cancer, in series of projects with W.F. Dove, A. Thliveris,
and R. Halberg.
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When measured at several months of age, intestinal tracts from mice used
in the experiments were dotted with tumors. By some rather elaborate exper-
imental techniques cell lineages could be marked by one of two colors: some
tumors were pure in color, as one would expect under monoclonal origin, yet
some contained cells of both colors, and were thus overtly polyclonal. The pres-
ence of such polyclonal tumors did not raise alarm bells, since it was possible
that separate tumors were forming in close proximity, and that they had merged
into a single tumor mass by the time of observation. If so, the polyclonality was
merely a consequence of random collision of independently initiated clones, and
did not represent a mechanistically important phenomenon. The investigators
suspected, however, that the frequency of these overtly polyclonal (heterotypic)
tumors was too high to be explained by random collision, especially considering
the tumor size, the overall tumor frequency, and the lineage marker patterns.
It may have been, and subsequent evidence has confirmed, that cellular interac-
tions are critical in the initial stages of tumor development. The statistical task
at hand was to assess available data in terms of evidence against the random
collision hypothesis.

In modeling data on frequencies of various tumor types, it became neces-
sary to calculate the expected number of monoclonal tumors, biclonal tumors,
and triclonal tumors when initiation events occur randomly on the intestinal
surface. This is a problem in stochastic geometry, as clones will collide if they
are su�ciently close. Like in the gene-set-variance problem, I tackled the ex-
pected value using first principles and with hopes that a simple approximation
might emerge. The monoclonal and biclonal expectations were not so hard, but
the triclonal calculation gave me fits. And then I found Armitage (1949). In
a problem on the overlap of dust particles on a sampling plate, Armitage had
faced the same expected value calculation and had provided a rather thorough
solution, with error bounds. If N particles land at random in a region of area
A, and if they clump when they lie within � units, then the expected numbers
of singletons, clumps-of-two, and clumps-of-three particles are approximately

µ1 = Ne

�4 
, µ2 = 2N

 
 � 4⇡ + 3

p
3

⇡

 

2

!
, µ3 = N

 
4(2⇡ + 3

p
3)

3⇡
 

2

!
,

where  = N⇡�

2
/(4A). Fortunately I could use the framework of stochastic

geometry to link the quite di↵erent contexts (particle counting and tumor for-
mation) and identify a path to testing the random collision hypothesis (Newton
et al., 2006). The biological consequences continue to be investigated.

1.2 Concluding remarks

I have found great utility in beautiful statistical findings that have been rela-
tively uncelebrated by the field and that were developed in response to problems
di↵erent than I was facing. I expect there are many such buried treasures, and
I encourage statisticians to seek them out even as they push forward addressing
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Figure 1.2: John Tukey, Jaraslav Hájek, and Peter Armitage.

all kinds of new statistical problems. Perhaps there is very little to what I’m say-
ing. Had I been more prepared when launching into any of the three cases above
I might have known right away how to use the available statistical results. But
this seems like a lot to ask; our training programs are bursting with course work
and cannot be expected to explain all of the discipline’s treasures. You might
also argue that the great thing about statistics and mathematics is that a single
formalism works equally in all kinds of di↵erent contexts; my case studies do no
more than express how the formalism is not dependent upon context. Perhaps
my point is more that we must continue to exercise this formalism, continue to
find analogies between distinct problems, and continue to support and develop
tools that make these connections easier to identify. Thank goodness for archiv-
ing e↵orts like JSTOR and the modern search engines that help us find these
treasures. All of us can help by continuing to support e↵orts, like open access,
aiming to minimize barriers to information flow. Authors and journals can help
by making a greater e↵ort to cite key background references and suggest links to
related problems. Instructors, especially of courses in mathematical statistics,
can help by emphasizing the distinct contexts that enliven each statistical fact.
Grant reviewers and tenure committees can help by recognizing that innovation
comes not only in conjuring up new theory and methodology but also by the
thoughtful development of existing statistical ideas in new and important con-
texts. Finally, thanks to John Tukey, Peter Armitage, and Jaraslav Hájek and
others for the wonderful results they’ve left for us to find.

There is more treasure in books than in all the

pirate’s loot on Treasure Island and best of all,

you can enjoy these riches every day of your life.

-Walt Disney
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