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2Glossarydata: reordings from an experiment or investigationinferene: a onlusion drawn by reasoning from available informationlikelihood: the probability (density) of the data as a funtion of the parametersmodel: a olletion of probability distributions for dataparameter: a quantity that indexes a statistial modelodds: the probability of an event divided by the probability of its omplementprobability distribution: a representation of unertainty in an unknownquantityrandomization: a tehnique of random rearrangement of measurements forthe purpose of testing a hypothesisstatisti: something that an be omputed from datastatistis: the �eld of inquiry onerned with obtaining, summarizing,proessing, and drawing inferenes from datastohasti proess: a probability distribution for a general outomeSummary: To think statistially is to know that the measurements taken in anexperiment are subjet to systemati and random soures of variation, and that it isbene�ial to base methods of data analysis on probabilisti models. Mathematialresults from statistial theory indiate ertain types of distributions that governutuations in data, and some of these results are reviewed as they bear on statistialanalysis in the laboratory and basi sienes. An example of statistial thinking toadvane knowledge in moleular biology is desribed, as are some general strategiesfor statistial analysis that may be appropriate for a ollaborating statistiian. Fourase studies demonstrate these onepts.



31 IntrodutionOnly by measurement does the experimentalist reord features of the system that heor she is studying, be the system a population of insets growing in the laboratoryor the network of biohemial events that ause a ell to divide or a tumor to grow.Measurements arise in a ontext within whih their naked numerial form aquires theweightier status of information. The proess of extrating information from numerialdata is a entral issue in the �eld of statistis generally and in appliations of statististo laboratory and basi sienes.Were it known with ertainty the numerial values of measurements that areabout to be taken in some experiment, it would seem to be a waste of e�ort totake the measurements at all! Measurements are unpreditable. Even with a goodunderstanding of the measurement proess and the system being studied, one oftenaknowledges that preise reordings will exhibit unpreditable utuations ausedby di�erent soures of variation. In spite of these utuations, part of the variationmay be more systemati, and repeated measurement may eluidate these systematisoures. Statistial methods are ways of proessing numerial data for the purpose ofdrawing inferenes about the system: inferenes may be to estimate a parameter, testa hypothesis about the parameter, lassify an experimental unit into one of severalgroups, assess the relationship between two fators, predit future measurements, ordeide on one of several ourses of ation in an ongoing experiment.Statistial methods beome enated during data analysis. The statistial approahto data analysis is founded on the premise that measurements are the realizationof a stohasti proess. This has a signi�ant e�et on the tone of deliberationsbeause emphasis shifts immediately from the partiular data in hand to the proessby whih the data arise. Indeed, many formal disussions distinguish the data whihdoes our, say x, from the stohasti proess X: the funtion or rule whih revealsthe atual data X(!) = x when the experiment is instantiated as one partiularoutome ! amongst a universe of possibilities. This reversion from what atually ismeasured to what might be measured seems at �rst to ompliate matters, but it isa neessary template for the theory of probability, and it provides a means to makepreise quantitative statements about things that are intrinsially unpreditable. Ofourse it is not to say that the atual data x are ignored { far from it; rather, the



4signi�ane of partiular irregularities in x is gauged in part by the probabilitiesgoverning X.This artile onsiders elements of statistial thinking that arise in laboratory andbasi sienes. The omments are informed primarily by the experiene of beinga researh statistiian who ollaborates with biologial sientists, and the emphasisis muh more on statistis in moleular biology than statistis in the basi sienesgenerally. Some mathematial results from statistial theory desribed in the nextsetion are followed by some omments on the role of statistis at di�erent levels ofinvestigation. This is followed by a disussion of data analysis strategies and then aseries of four ase studies in whih statistial thinking has been helpful.2 Theory: Universal DistributionsThere is great diversity in the systems being studied in basi siene laboratories. Oneof the ontributions of statistial theory is to identify ommon strutures present ina wide range of experiments | in partiular, ommon features of the variation ofertain measurements. The Poisson limit law is a good example. Suppose that thesystem under onsideration is omprised of a large number n of experimental units,and eah of these units provides a binary response to some query. For instane,millions of baterial ells are growing in ulture and one asks whether or not eah ellhas a partiular geneti mutation at one lous in the genome. The total number Yof units whih have one of the binary states may be a quantity of some interest as itmay a�et the experimental design to pinpoint the lous, for example. Under a widerange of onditions on the basi binary variables it is known that utuations in Yare well approximated by a Poisson distribution:Prob(Y = y) = e���y=y! y = 0; 1; : : :where � is the expeted value of Y . Usually this result is presented in the speialase where the binary variables are independent and identially distributed Bernoullirandom variables. Then the sum Y has a Binomial distribution with parametersn and p, the ommon expetation of all the Bernoulli variables. With large n andsmall p, and � � np, the Poisson approximation beomes valid. The assumptions ofindependene and ommon distribution of the binary variables are rather strit, and



5evidene has mounted that the Poisson approximation may work muh more broadly.Indeed the Poisson lumping heuristi theory extends the result signi�antly; therean be quite ompliated forms of dependene amongst the binary variables and stillthe Poisson limit holds. This is important sine in many examples some dependeneis expeted. For instane, ell lineage e�ets will ause statistial dependene in thebaterial growth example.The most important universal distributional result is the entral limit theoremwhih onerns utuations in the arithmeti mean of a random sample. It providesonditions under whih the sampling distribution is Gaussian (bell-urved) regardlessof the nature of utuations in the variables whih omprise the sample mean. Indeedthe theory is really a olletion of results dating bak to the early work on probabilityby many inluding de Moivre, Laplae, and Gauss, and ulminating with 20th enturywork by Polya, Lindeberg, Feller, Levy and others.Other universal laws reeive perhaps less attention but are still very importantfor making onnetions between diverse problems. When appropriately enteredand saled, for example, the largest observation in a large random sample mustexhibit variations from one of exatly three well-haraterized distributional forms,regardless of the sampling distribution of the data (This is sometimes alled theextreme value trinity theorem, developed by E. J. Gumbel and others.) TheErdos-Renyi law and extensions of it onern the distribution of long head-rihruns in sequenes of oin tosses, and this has found signi�ant appliation inproblems of mathing biomoleular sequenes. Universal long-range dependenestrutures have been identi�ed in ertain kinds of time-series measurements also.Often distributional forms arise as the stationary distribution of a Markov proessharaterizing random utuations in the system over time. For example the Gammadistribution is the stationary distribution of abundane when a population evolvesstohastially aording to ertain onstraints. Knowing these universal laws assistsboth experimental design and data analysis. They an be used for `bak-of-the-envelope' sample size alulations, and they an form the basis for more detailedmodeling e�orts.



63 The Role of Statistis3.1 Exeptional CasesA beautiful illustration of statistis in the servie of the basi laboratory sienes isthe work by S. E. Luria and M. Delbr�uk onerning heritable hanges in bateria.Before Luria and Delbr�uk's work in the 1940's it was well known that a baterialulture exposed to a ertain virus ould readily die out, but that periodially therewould emerge lones of resistant bateria. Various explanations presented themselves.Possibly some of the baterial ells adapt to the invading virus and survive to form aresistant olony. Contrary to this adaptation hypothesis is the mutation hypothesis,whih has stood the test of time and whih is a entral element in modern bateriology.The mutation hypothesis asserts that baterial variants (i.e., mutants) arise duringnormal growth of the olony, and that ertain mutants resistant to the virus may byhane exist in the ulture prior to viral infetion. If so, they emerge for observationsimply by the proess of seletion after the virus has killed the sensitive ells; thevirus itself does not e�et an adaptation of the baterial ells.The ingenious experiment devised by Luria and Delb�uk to address the probleminvolved a omparison of the variane of resistant ell ounts grown under di�erentonditions. In one ondition separate ultures eah grew from a very small initialpopulation size; in the ontrol ondition a single large olony was separated intoa similar number of separate ultures. All ultures then were exposed to thebateriophage (virus) and ounts were made of the number of resistant ells in eahulture. Regardless of how baterial variants arise, one an argue that in ulturesgrown in the ontrol ondition (i.e., from subsets of a large olony) there should bePoisson variation in the number of resistant ells. On the adaptation hypothesis, thissame level of variation is expeted in ultures of the �rst type, however the mutationhypothesis predits extra-Poisson variation. Cultures in whih a resistant mutantarises early will present a very large number of resistant ells ompared to ulturesin whih the mutant arises later. It was by omparing the variation in ell ountsbetween these two onditions that evidene favoring the mutation hypothesis wasderived.Having a statistial argument be entral to a major sienti� advane is



7fasinating, espeially for people dediated to the study of statistis; but it seemsthat suh elegant Luria-Delbr�uk-like ase studies are the exeption rather than therule in the appliation of statistis in the laboratory and basi sienes. Certainlythere are wonderful ase studies | the formulation of the idea of a tumor suppressorgene was a fundamental advane in aner researh brought about by the work ofA.G. Knudson in his statistial analysis of retinoblastoma; the ability to map genessuh as those responsible for Huntington's disease and ysti �brosis is based onstatistial properties governing the transmission of DNA during meiosis; the work ofSewall Wright used the variane of phenotypes in di�erent experimental rosses toestimate the number of geneti loi a�eting the phenotype. What will be the nextgreat advane?3.2 Endemi MethodsThe ordinary appliation of statistial thinking in sienti� disourse is to haraterizeimperfet knowledge; it forms one step of many to ompile, desribe, and reportexperimental results. At this level statistial disourse is a basi language for dealingwith intrinsi variability; it is endemi in the sense of being regularly ourring, andit a�ets numerous steps in experimental design and data analysis. As examples ofstatistial questions onsider the following: Upon measuring a ell proliferation ratein two di�erent onditions, are the observed rate di�erenes more than one expetsby hane alone? If not, then it may be justi�ed to treat the two onditions as one.When measuring some property of a ell type by preparing ells at di�erent liquiddilutions, how an the measurements be ombined eÆiently aross dilutions? Instudying the prodution of some hemial ompound, how an one identify optimalsettings of several fators that a�et prodution? Related questions are addressed inthe ase studies desribed later.Supporting the notion that statistial methods are endemi is the fat thatbasi statistial alulations are embedded in muh of the operating software ofmodern laboratory equipment. For example, a ow ytometer is an important devieto determine properties of ells by measuring sattered light and uoresene ofmobilized, uid-suspended ells. Part of the sophistiated omputations built into aytometer is a statistial disriminant analysis to lassify individual ells by features



8suh as ell size or granularity. Statistial disriminant analysis is part of the eletroninose, a devie to detet airborne sents for use in food quality testing and otherappliations.Statistial alulations are also embedded in the basi protools of many high-throughput laboratory methods. For example, the tehnique of omparative genomihybridization measures DNA opy number variation in aner ells by proessinguoresene image intensities from labeled tumor and normal DNA that haveompetitively hybridized to immobilized DNA on a glass slide. Intensity signalsfrom the two soures are measured all along the genome, and statistial signalproessing is used to deide when one hannel is signi�antly stronger than theother. Further, DNA miroarrays are now widely used to measure simultaneouslythe level of gene expression of thousands of genes. A large amount of raw image dataonstitutes the results of one measurement, and this is proessed to reate a singlereord for eah gene by a series of statistial manipulations of the image data. Forinstane, with spotted DNA miroarrays, an algorithm is used to loalize eah spot,aount for loal bakground uoresene, and normalize measurements aross themiroarray. Statistial methods are used in these ases, and elsewhere, beause theyan automatially proess large amounts of raw data in a potentially meaningful way.4 Statistial StrategiesStatistial thinking an be e�etive in laboratory and basi sienes, both at the levelof experimental design and data analysis: the former is ritial for drawing strongonlusions while the latter is neessary to disentangle tehnial and biologial souresof variation so as to unover relevant biologial signals. This artile emphasizesstatistial strategies at the data analysis phase where the investigator has in hand aompliated set of numerial results bearing on his or her researh hypothesis. Thoughtehnologial issues are ever present, the soures of variation most signi�ant in theexamples onsidered here are biologial soures, having to do with natural variationin the omponents of living systems.Three stages of statistial thinking are evident in many suessful appliations:informal desriptive analysis, global hypothesis testing, and modeling. In fat these



9are overlapping and linked and one or another may be more important in a givenase.4.1 Desriptive StatistisTypially the initial phase of data analysis is desriptive and one tends to avoiddrawing inferenes or making probabilisti statements. Good pratie involvesheking the integrity of the data, making summary tabulations, satterplots,histograms, and other graphial representations. The intelligent use of desriptivestatistis an be highly informative; alternative non-numerial summaries of dataserve to highlight intrinsi strutural features; and, though they may not diretlyaddress inferene questions, they ertainly reveal properties of the data that will guidethe use of other statistial methods. The importane of good desriptive statistisannot be understated; indeed, this area urrently presents great hallenges as theamount of raw numerial information whih an be obtained and stored is beomingvast.Beyond the speial use of desriptive statistis in laboratory and basi sienes,most people are familiar with their widespread use in diverse domains suh as sports,politis, and publi health. Although in so many human endeavors one needs toreord and summarize what has happened, it is important to reognize that statistialanalysis involves muh more than the reording and presentation of desriptivestatistis { it provides a framework to interpret data and to draw statistial inferene.Often, this next stage of analysis addresses the question of whether or not the datain hand exhibits more variation than what one might expet by hane alone. If so,then it is justi�able to look losely for patterns of systemati variation.4.2 RandomizationSir R.A. Fisher may have been the most inuential �gure in the developmentof statistis, and one of his great ontributions was the randomization test. Itaddresses the question as to whether or not there is any interesting struture in themeasurements. Generally the method is easy to desribe and implement; it proeedsonditionally upon numerial data but unonditionally on the arrangement of the data



10and it is widely appliable. It onerns signi�ane testing; but, being onditional,its onlusions are not highly sensitive to distributional assumptions on the data. Asone part in the sequene of statistial methods used in a data analysis, randomizationtesting is helpful beause it an serve to justify the deision to �nalize an analysis orto move forward with a more sophistiated modeling strategy.4.3 ModelingIf there is interesting struture in the data, as evidened perhaps by areful graphialanalysis or randomization testing, then a powerful approah to quantifying thatstruture and learning more about it is to �t a statistial model; in other words, toidentify a joint probability distribution for the measurements. Probability models arethe basi elements of statistis: like partiles in physis or ells in biology. Formally, amodel is a olletion of probability distributions. Models desribe relationships amongmeasurements, not exat onnetions, but probabilisti dependenies. Models relatemeasurements of di�erent kinds, for example by desribing how the expeted valueof a response measure is a�eted by hanges in a set of preditors. Models an relatemeasurements in terms of unobserved, latent, or hypothetial onstruts. Basially,models ome in many shapes and sizes: there are linear models, generalized linearmodels, graphial models, Markov random �eld models, survival models, time-seriesmodels, random e�ets models, hierarhial models, semiparametri models, to namea few general lasses.Fitting the model identi�es one member of the olletion whih aptures betterthan the others patterns in the observed measurements. Central to the business ofmodel �tting is another onept developed by Sir R.A. Fisher, the likelihood funtion.Mathematially, the domain of the likelihood funtion is the set of parameters thatindex the model, and the funtion evaluates to the joint probability (or probabilitydensity) of the observed data. Seleting the distribution having the highest likelihoodis one approah to model �tting. There are other methods of model �tting, butlikelihood methods are ompelling and are used in some of the ase studies desribednext.Identifying an adequate model takes some are as one usually must trade o�omplexity and goodness of �t. Models that enfore as little struture as possible



11(e.g. nonparametri, semiparametri) tend to be favored when the data arry a lotof information, but their exibility is a drawbak in some problems, espeially wheresubjet-area knowledge an be enoded as a simple parametri form.When unobservable fators are modeled together with the observable data, itis often e�etive to use the onditional probability distribution of the unknownsgiven the knowns to generate inferenes. This is an essential feature of the Bayesianapproah to statistial inferene. The approah is ompelling for several reasons,not the least of whih is that all inferential omputations redue to integratingprobability distributions in one way or another. Thus, for a given analysis it is usuallymore lear by this approah what needs to be alulated, and modern omputationalmethods are making the implementation muh more routine. In Bayesian analysis theinterpretation of probability is extended from the lassial fous on relative frequenyto a more general measure of imperfet knowledge.5 Case Studies5.1 Mirobial Biodiversity and Conditional InfereneAn interesting statistial problem arose in a study by some University of Wisonsinbiologists of baterioplankton diversity in a ertain lake eosystem. M.M. Fisherand her olleagues (inluding the author) used a tehnique from moleular biologyto probe lake-water samples and measure their omposition with respet to di�erentspeies of bateria. Cruder measurement tehniques had been in use to identify theoverall amount of bateria in a sample, but these tehniques did not allow one to knowhow muh diversity the sample ontained. Understanding the e�ets of pollution oragriultural run-o� would be enhaned if these more re�ned measurements ould betaken.Very roughly, the data from one lake-water sample ould be summarized as avetor of binary variables eah indiating presene or absene of a ertain baterialspeies in the sample. In one omponent of the experiment, lake-water samples fromm = 15 di�erent onditions were assayed and eah gave a binary vetor of lengthn = 82. There were n = 82 di�erent baterial speies identi�ed in this omponent ofthe experiment, aross all samples. In fat the m = 15 samples arose from di�erent



12environmental onditions with respet to levels of hemials suh as nitrogen andphosphorus and sampled at di�erent times relative to ertain treatments.Naturally the baterial omposition pro�les exhibited variation, and it wasexpeted that some of this variation was measurement error and some representedunderlying utuations in the baterioplankton populations. To quantify the variationbetween samples, Fisher and her olleagues omputed the Sorensen index for eah pairof samples (i; j): Ci;j = 2 Pnk=1Xi;kXj;k[(PkXi;k) + (PkXj;k)℄where Xi;k is the Bernoulli trial indiating presene of speies k in sample i. In otherwords, Ci;j is the number of speies that are in ommon between the two samplesdivided by the average total number of speies present in the two samples, and itranges between 0 and 1.For the purposes of reporting it was important to alibrate these indies by somemeans. There was also the problem that m = 15 pro�les gave rise to 105 di�erentpairwise omparisons, and so it was not lear how best to report signi�ant �ndings.Using some elementary statistial theory in ombination with onditional infereneprovided an e�etive solution.Suppose that the Bernoulli trials Xi;k are independent among all samples and allloi, but that the probability pk = P [Xi;k = 1℄ ould depend on the speies k butnot the sample i. In other words the null hypothesis is that the whole pro�les areidentially distributed random vetors, meaning that hane alone aused di�erenesfrom one sample to the next. Some speies ould be more prevalent than othersaross all samples beause the probability pk ould depend on the speies. To testthe global null hypothesis of identially distributed samples, one still has to dealwith the many nuisane parameters p1; : : : ; pn. Note that for any speies k, thejoint distribution of X1;k; : : : ; Xm;k onditional on the sum X�;k = Pmi=1Xi;k is adisrete uniform distribution not involving any nuisane parameters. Therefore, thenull onditional distribution is fully spei�ed and an be realized, for example, bypermutation.Viewing the raw data as an m � n matrix X = (Xi;j), repeatedly generatehypothetial data sets X� by randomly shu�ing the elements of eah olumn of X.From every suh simulated data set X�, ompute and store all 105 Sorenson indies;



13a total of B = 9999 X� matries might be simulated. From this alulation one hasa large sample from the null distribution of various quantities, suh as the maximumor minimum index aross all 105 pairwise indies. Any pair of samples (i; j) whoseobserved index Ci;j was in the upper tail the distribution of the maximum index maybe said to exhibit more similar pro�les than expeted by hane alone. Analogously,any pair whose index was in the lower tail of the distribution of the minimum isunusually di�erent. Spei�ally, the p�value for one pair is the proportion of sampleshaving at least as extreme a sore as the observed sore, taken relative to the full setof B = 10000 sores. In this ase study the statistial ontribution was simply toalibrate the Sorensen indies by randomization.5.2 Comparative Genomi Hybridization and MixtureModelingComparative genomi hybridization (CGH) is used by onologists to probe foraberrations in aner ell genomes | aberrations in the number of opies of DNAat any one of many loations in the genome. As with many moleular biologialtehniques, CGH relies on measuring uoresene of di�erently labeled DNAs, andit is based on hybridization to sort out a omplex pool of moleules. The protoolsinvolve some sophistiated image analysis to proess the uoresent signals and arriveat a determination at eah geneti lous as to whether that lous is deleted, ampli�ed,or normal in the tumor ell DNA. Eshewing the tehnologial issues, let us onsiderthe downstream data analysis problem of proessing these disrete CGH pro�les froma study of bladder aner development.As an example, onsider the small CGH experiment involving n = 6 bladderaner tumors analyzed by C.A. Rezniko�, T.R. Yeager, and olleagues (inludingthe author) at UW Madison. Cells from eah tumor were prepared and omparedto normal ells using CGH; this resulted in a pro�le for eah tumor that reordedwhether there was deletion, ampli�ation, or normal opy number along the wholegenome at a ertain resolution. To be manageable and easily omparable to otherstudies, the data were summarized to a rather ourse resolution at the level of thehromosome arm. (Reall that the nonaroentri hromosomes have a long and shortarm. In the present study data from two arms was available on 18 nonaroentri



14hromosomes and data from a single arm was available on the other 5.) Thus the datamay be arranged as Xi;j where i indiates the tumor and j indiates the hromosomearm. There is interest in both the loss data and the gain data, but for simpliity letus disuss only loss information here, so Xi;j is a Bernoulli trial indiating whetheror not there is deletion of DNA on hromosome arm j in tumor i.A simple barplot was used to graph the 41 summary ounts X�;j = PiXi;j. Highrates of deletion were observed on some of the arms, though their average value was55=246 = 0:22. A test of the null hypothesis that all Bernoulli Xi;j had the samesuess probability is a way to measure the variation and to assess the signi�ane ofthe high ounts. The null hypothesis means that all losses are sporadi. The problemseems similar to the biodiversity problem disussed above, but there is an importantdi�erene whih invalidates the use of a simple permutation proedure. The trialsXi;jand Xi;k are positively orrelated if j and k index two arms of the same hromosome.This orrelation is aused by the physial proess by whih deletion happens; i.e.some deletions involve the loss of a whole hromosome and thus the loss indiatorsare not independent. The form of dependene amongst the Xi;j means that theironditional distribution given simple row or olumn totals is not exhangeable, andone is therefore not justi�ed to shu�e the loss indiators to alibrate a test. Statistialmodeling provides a solution.Envision a partially observable random variable Zi; for eah tumor i and eahnonaroentri hromosome  = (j; k). This Bernoulli trial indiates whether or notthe measurements Xi;j and Xi;k are linked. If Zi; = 0, then assume Xi;j and Xi;k areonditionally independent reords of deletion. On the other hand if Zi; = 1 assumethat the arms j and k are linked and so either the whole hromosome is deletedXi;j = Xi;k = 1 or the whole hromosome is retained Xi;j = Xi;k = 0. By the waythat CGH data are reorded, one an observe Zi; if either Xi;j = 1 or Xi;k = 1, butit is unobservable when no deletions our. Clearly the introdution of these latentvariables indues statistial dependene amongst the observed ounts fX�;jg.A statistial model is a omplete desription of the joint probability distributionof the data. The model is set up on a general alternative hypothesis and used toderive a likelihood ratio test of the sporadi loss null hypothesis. The hot-old modelasserts that some of the arms are hot in that their marginal loss rate � is higher than



15the marginal loss rate � of other old arms. Unlinked loss events on a hot arm areBernoulli trials with suess probability �, and unlinked loss events on a old armhave rate �. One way to deal with linked losses is to say that the ommon Bernoullitrial is hot if and only if either of the linked arms is hot. There is a parameter �whih is the probability that two arms on the same hromosome are linked (i.e. it isthe suess probability of Zi;). All that remains to fully speify the joint distributionof data is the loation of hot and old arms. With so many arms (41) omparedto the amount of data, it seems quite reasonable to treat these loations as randome�ets. In other words, a given arm is hot with probability �, and otherwise it is old.The hot-old model has four parameters � = (�; �; �; �) that haraterize the rate ofdeletion for old and hot arms, the rate of linkage, and the overall rate of hot arms.The likelihood funtion is a produt aross the n = 6 tumors and the 23hromosomes: L(�) =Yi Y P (datai;)The marginal probability of datai; is a mixture over the latent Zi; and a mixture overthe possible patterns of hot and old arms for that hromosome. Take, for example,the reord (0; 1) from one nonaroentri hromosome in one tumor; i.e. one arm isdeleted and one is retained. The probability of this reord aording to our model is�� h�����2 + ������ + ������ + ����2iusing the notation �x = 1 � x. The rationale for this mixture formula is thathaving observed a disrepant result between the two arms it must be that they areunlinked, and hene Zi; = 0 whih happens with probability �� . The four additionalterms indiate the probability of (0; 1) under the four arrangements of hot and old.Evidently there is no simple formula for the maximum likelihood estimator �̂, thoughit an be found by straightforward numerial methods.The null hypothesis of sporadi loss is equivalent to the assertion that the hot andold rates are equal; i.e. � = �. Interestingly, in this ase the rate � is unidenti�edso its value is immaterial to the null-restrited likelihood L0(�). Using the Yeager-Rezniko� data it is estimated that �̂0 = 0:22 and �̂0 = 0:28 on the null hypothesis. Themaximized value of logL0 is -125.3. With the full model the estimates are �̂ = 0:05,



16�̂ = 0:38, �̂ = 0:22, and �̂ = 0:47, with a maximized loglikelihood of �120:5. Thusthe observed value of the generalized likelihood ratio statisti is �120:5+125:3 = 4:8.Statistial theory suggests that likelihood ratio statisti enables a powerful test ofthe null hypothesis of sporadi deletion. Often the this statisti is alibrated usingWilk's result that negative twie the log ratio onverges in distribution to a hi-squarerandom variable, but the validity of this asymptoti approximation is questionablein the present model. A potentially more aurate approximation is one based onbootstrap sampling under the null. This form of bootstrapping is a natural model-based alternative to a permutation proedure, and is justi�ed when additional featuressuh as dependene are aounted for in the analysis. Bootstrapping under the nullamounts to simulating data sets aording to the model in whih � = � = 0:22and � = 0:28, and then reomputing the likelihood ratio statisti for eah simulateddata set. Contrary to permutation, the bootstrap simulation is not onditional onstatistis from the data. It is approximate beause it presumes knowledge of theparameters in the omposite null. The intensive optimization whih must aompanyeah simulated data set limits the size of the test sets. In a sample of 249 bootstrapdata sets, none had as extreme a loglikelihood ratio statisti as the observed data.Thus a p-value of 1=250 an be reported, and it may be onluded that there is someevidene against the sporadi loss hypothesis.Having gone to the trouble to struture elements of this interesting data analysisproblem into a hierarhial statistial model, it is worthwhile to see what otheronlusions an be drawn. Very often statistiians get hung up on hypothesis testingand do not fous the analysis beyond an initial question of struture versus nostruture in the data. In the present model eah hromosome arm is either hotor old; the test asked if hot is di�erent from old, and assuming that it is onean assay eah arm for the posterior probability that it is hot given the data. Theposterior probability is proportional to � times the probability of the data on thatarm given that the arm is hot. The alulation is ompliated somewhat by thepossible linkage with the opposing arm, but still it is routine to evaluate the resultingposterior probability. Only hromosome arm 8p, whih had presented 5 losses out of6 tumors, had a posterior probability exeeding 0.95 of being hot. In this ase andelsewhere the proessing of data from raw ounts to posterior probabilities has the



17e�et of reduing variation and highlighting interesting struture in the data.5.3 Mouse Mutagenesis, Randomization Testing andModelingIt is rewarding to be involved in a sustained long-term e�ort with a large laboratoryto monitor, design, and analyze a omplex experiment. Suh has been the ase inwork with W.F. Dove's lab studying the normal and neoplasti growth of intestinalepithelium in a mouse model of human olon aner. Central to the experiment is theMIN mouse, a mouse harboring a nonsense mutation in one opy of the AdenometousPolyposis Coli (Ap) gene, and onsequently a mouse that spontaneously developsmultiple intestinal neoplasia. An inherited defet in the human APC gene predisposesarriers to the highly penetrant disorder familial adenometous polyposis (FAP)haraterized by the development in the intestine of a large number of polyps. Asolon aners arise from polyps, FAP patients are at a muh inreased risk for olonaner. Importantly, the APC gene is known to be defetive in olon aner ells frommost sporadi ases of the disease, and thus APC is a entral player in the moleularbiology of olon aner. Of interest to Dove's lab are other as yet unknown playersthat modify the e�et of APC.From a statistial perspetive, the important features of the mutagenesisexperiments performed in Dove's lab may be summarized rather suintly. Ameasurement Xi;j is made on the jth o�spring of animal i. Typially, themeasurement is a ount of the number of intestinal tumors arried by the animal whenit is sari�ed at three months of age. The animal (i; j) is a member of a pedigreegenerated by various experimental breeding shemes, but often the dependenestruture indued by the pedigree an be treated in the following very simple way.The parent i may or may not arry an allele �. If it does not, then the tumor ountXi;j of o�spring j arises from a tumor ount distribution f(x) typial of the underlyinggeneti bakground. On the other hand, the parent might arry � in whih ase �is transmitted randomly to about half of its o�spring by Mendelian segregation. AMIN animal j that also arries � presents tumors ounts Xi;j that follow a modi�eddistribution g(x). For instane � might tend to ause a redution in tumor ount andso g(x) would be shifted to the left of f(x) in some way. Beause the tumor ount



18phenotype is quantitative and exhibits a large amount of variation, and beause theexperiment involves a large number of potential arriers i, eah with a modest tolarge number ni of o�spring, a statistial approah to the data analysis provides aneÆient methodology for deriving inferenes as the experiment proeeds.A �rst question to onsider when analyzing a branh of the experiment is whetheror not there is any evidene against the null hypothesis H0 : f = g. Basially, H0asserts that there is no modi�er gene in the pedigree. Here onditional infereneand randomization are ritial. By onditioning on the set of measurements, or, inother words, their empirial distribution, what remains random is their assignmentinto subkindreds i. Permutation is used to shu�e observed tumor ounts so thateah parent i is assigned a random subset of size ni drawn without replaementfrom the whole sample. A likelihood ratio statisti is alibrated by this permutation.Sometimes the set of o�spring of i is further arranged in subfamilies, and then thepermutation shu�es whole subfamilies to preserve within-subfamily orrelation.Again, randomization testing provides the �rst phase of statistial inferene. Withevidene that an allele � may be modifying the phenotype distribution, one may gofurther with more detailed analyses. For example one may estimate the modi�eddistribution or assay the posterior probability that the allele � is segregating insubkindred i. This latter measure has beome a very useful summary of the set ofdata taken on animal i, and it provides a means for direting subsequent experimentalrosses. In the simplest ase, the probability of data xi = fxi;jg from parent i isp(xi) = 8<: Qnij=1 f(xi;j) if no � in i2�ni Qnij=1 [f(xi;j) + g(xi;j)℄ if � in iand so the posterior probability of � in i is omputed from Bayes rule as soon asestimates of f(x) and g(x) are in plae. An obvious model for tumor ounts has fand g being Poisson distributions, but these turn out to be inadequate. Parametrianalysis based on a generalization, the negative binomial distribution has provento work well. Nonparametri analysis based on stohasti ordering of f and g isanother approah that relies on fewer modeling assumptions. In either ase, maximumlikelihood may be used to estimate f and g.



19The likelihood funtion here has the formL(f; g) =Yi 8<:12 niYj=1 f(xi;j) + 12 niYj=1 f(xi;j) + g(xi;j)2 9=; :In order to �t the model and to evaluate the likelihood ratio statisti mentionedabove, omputational methods are needed to maximize L(f; g).The mutagenesis ase study requires randomization to test for the presene ofmodi�er genes and also modeling to quantify information in the data about likelyarriers of important alleles.5.4 Gene Expression Data Analysis: Hierarhial ModelingThe reent advent of DNA miroarray tehnology is allowing unparalleledinvestigation into the moleular biology of the ell, and, simultaneously, is reatingintriguing new statistial data analysis problems. The following data struture is notunommon. A gene expression measurement Xi;j is obtained for gene i in sample j,where i = 1; 2; : : : ; m, j = 1; 2; : : : ; n, and m >> n. The value Xi;j is a surrogatefor the abundane of messenger RNA transribed by gene i within ells j. In oneexperiment from M.N. Gould's laboratory, the ells are rat mammary epithelialells taken from rats of di�erent inbred strains whih vary in their suseptibilityto mammary aner. In another experiment with D. Jarrard, the ells are ulturedprostate epithelial ells sampled at di�erent stages of proliferation. A basi problem isto understand patterns of di�erential gene expression among the di�erent onditionsthat haraterize the ontributing ells.Both tehnologial and biologial soures of variation a�et the measuredabundane Xi;j, but in a well alibrated experiment one an hope to ompare themeasurements from di�erent samples j (i.e. di�erent miroarrays). Suppose thatj = 1; 2; : : : ; n1 index measurements from ells of one ondition, alled A andj = n1+1; : : : ; n index measurements of the seond ondition B. To assert di�erentialexpression of gene i between onditions A and B is to make the inferene that theobserved di�erenes between DA = fXi;1; : : : ; Xi;n1g and DB = fXi;n1+1; : : : ; Xi;ngorrespond only to hane utuation and do not represent underlying shifts inexpression level.



20Some authors measure the group di�erene using a t-statisti for gene i, perhapsafter the data are transformed to the logarithmi sale. Di�erential expressionis onluded if the observed statisti lies in a tail of the t-distribution. Thisstraightforward approah treats all the genes separately and does not diretly addressthe question, \what genes are most di�erentially expressed." In part, the testingsenario is onerned with the rather extreme straw-man hypothesis that no genesare di�erentially expressed. Of ourse what makes the ells di�erent is the expressionof their genes and so we an rejet the global hypothesis out of hand. Aeptingthat some genes are di�erentially expressed and some are not, the statistial probleman be approahed di�erently by using a disrete mixture model. The problem is toestimate the set of di�erentially expressed genes and to ompute for eah gene theposterior probability that it is di�erentially expressed. An advantage of this approahis that information an be shared among genes, whih is helpful beause the numberof samples n is typially so small ompared with the number of genes m.Consider that there is a latent variable Zi for gene i whih indiates whether ornot the gene is di�erentially expressed between onditions A and B. A proportion � ofthe genes are di�erentially expressed; i.e. � = P (Zi = 1). A model parameterizes theprobability of data P (DA; DBjZi) for eah gene and gene-spei� inferene is basedon the posterior probability P (Zi = 1jDA; DB) that is evaluated using estimates ofthe model parameters. More spei�ally, the model P (DA; DBjZi) may be struturedas a mixture over the unknown levels of expression �A and �B; i.e. �A = E(Xi;j) forj in the �rst group of samples and �B is similarly de�ned for the seond group ofsamples. A Gamma model for Xi;j given � often �ts well and is both analytially andomputationally eÆient. If there is equivalent expression, Zi = 0, and �A = �B, andthis ommon, unknown, gene-spei� mean is presumed to utuate aross the set ofgenes aording to some distribution p(�). Positive orrelation within DA and DB isindued by integrating with respet to p(�). On the other hand if there is di�erentialexpression, one assumes that independently the two onditions A and B draw means�A and �B from p(�). Thus the modeling is hierarhial, with three basi stages:measurements Xi;j given mean values; di�erential expression Zi of the mean values;and level of the mean values �A, �B.Randomization ould be onsidered in this ase study, but, as a matter of global



21evaluation, it is testing a hypothesis that one an rejet out of hand. Statistialmodeling allows the investigator to quantify the evidene for di�erential expression ofeah gene and to estimate the fration of di�erentially expressed genes. Contrary tothe other ase studies, in this one the analysis inludes a large number of unobservablevariables that are linked through the statistial model.6 Closing RemarksStatistial thinking has for a very long time had an important role to play in the basiand laboratory sienes. One reason is that the theory of mathematial statistisand probability demonstrates onnetions between diverse data analysis problemsowing to ommon features of measurement variation. Also, the methods of statistialanalysis provide ways to extrat information from data and inlude quantitativeassessments of unertainty. The use of statistial methods ontinues to be importantbeause tehnologial advanes have dramatially inreased the amount of data thatinvestigators an obtain and store, and hallenging data analysis problems are everpresent. Certainly in biologial problems improvements in measurement tehnologydo not obviate the need for statistial thinking beause natural soures of variationannot be dampened out. Statistial modeling may now have a greater potentialsine quite sophistiated models an be entertained and �t thanks to advanes inomputing.Statistial researh has given investigators an impressive array of tools to proessdata. Yet, theoretial researh has been muh less onerned with wholesale strategiesfor data analysis than it has been onerned with optimal properties of partiularsteps, and so it an be diÆult for the user of statistial methods to know howto proeed. The most important thing, perhaps, is that the statistiian beomesimmersed in the ontext of a problem. This may assure an e�etive data analysisstrategy and that something gets done whih is helpful.
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