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2Glossarydata: re
ordings from an experiment or investigationinferen
e: a 
on
lusion drawn by reasoning from available informationlikelihood: the probability (density) of the data as a fun
tion of the parametersmodel: a 
olle
tion of probability distributions for dataparameter: a quantity that indexes a statisti
al modelodds: the probability of an event divided by the probability of its 
omplementprobability distribution: a representation of un
ertainty in an unknownquantityrandomization: a te
hnique of random rearrangement of measurements forthe purpose of testing a hypothesisstatisti
: something that 
an be 
omputed from datastatisti
s: the �eld of inquiry 
on
erned with obtaining, summarizing,pro
essing, and drawing inferen
es from datasto
hasti
 pro
ess: a probability distribution for a general out
omeSummary: To think statisti
ally is to know that the measurements taken in anexperiment are subje
t to systemati
 and random sour
es of variation, and that it isbene�
ial to base methods of data analysis on probabilisti
 models. Mathemati
alresults from statisti
al theory indi
ate 
ertain types of distributions that govern
u
tuations in data, and some of these results are reviewed as they bear on statisti
alanalysis in the laboratory and basi
 s
ien
es. An example of statisti
al thinking toadvan
e knowledge in mole
ular biology is des
ribed, as are some general strategiesfor statisti
al analysis that may be appropriate for a 
ollaborating statisti
ian. Four
ase studies demonstrate these 
on
epts.



31 Introdu
tionOnly by measurement does the experimentalist re
ord features of the system that heor she is studying, be the system a population of inse
ts growing in the laboratoryor the network of bio
hemi
al events that 
ause a 
ell to divide or a tumor to grow.Measurements arise in a 
ontext within whi
h their naked numeri
al form a
quires theweightier status of information. The pro
ess of extra
ting information from numeri
aldata is a 
entral issue in the �eld of statisti
s generally and in appli
ations of statisti
sto laboratory and basi
 s
ien
es.Were it known with 
ertainty the numeri
al values of measurements that areabout to be taken in some experiment, it would seem to be a waste of e�ort totake the measurements at all! Measurements are unpredi
table. Even with a goodunderstanding of the measurement pro
ess and the system being studied, one oftena
knowledges that pre
ise re
ordings will exhibit unpredi
table 
u
tuations 
ausedby di�erent sour
es of variation. In spite of these 
u
tuations, part of the variationmay be more systemati
, and repeated measurement may elu
idate these systemati
sour
es. Statisti
al methods are ways of pro
essing numeri
al data for the purpose ofdrawing inferen
es about the system: inferen
es may be to estimate a parameter, testa hypothesis about the parameter, 
lassify an experimental unit into one of severalgroups, assess the relationship between two fa
tors, predi
t future measurements, orde
ide on one of several 
ourses of a
tion in an ongoing experiment.Statisti
al methods be
ome ena
ted during data analysis. The statisti
al approa
hto data analysis is founded on the premise that measurements are the realizationof a sto
hasti
 pro
ess. This has a signi�
ant e�e
t on the tone of deliberationsbe
ause emphasis shifts immediately from the parti
ular data in hand to the pro
essby whi
h the data arise. Indeed, many formal dis
ussions distinguish the data whi
hdoes o

ur, say x, from the sto
hasti
 pro
ess X: the fun
tion or rule whi
h revealsthe a
tual data X(!) = x when the experiment is instantiated as one parti
ularout
ome ! amongst a universe of possibilities. This reversion from what a
tually ismeasured to what might be measured seems at �rst to 
ompli
ate matters, but it isa ne
essary template for the theory of probability, and it provides a means to makepre
ise quantitative statements about things that are intrinsi
ally unpredi
table. Of
ourse it is not to say that the a
tual data x are ignored { far from it; rather, the



4signi�
an
e of parti
ular irregularities in x is gauged in part by the probabilitiesgoverning X.This arti
le 
onsiders elements of statisti
al thinking that arise in laboratory andbasi
 s
ien
es. The 
omments are informed primarily by the experien
e of beinga resear
h statisti
ian who 
ollaborates with biologi
al s
ientists, and the emphasisis mu
h more on statisti
s in mole
ular biology than statisti
s in the basi
 s
ien
esgenerally. Some mathemati
al results from statisti
al theory des
ribed in the nextse
tion are followed by some 
omments on the role of statisti
s at di�erent levels ofinvestigation. This is followed by a dis
ussion of data analysis strategies and then aseries of four 
ase studies in whi
h statisti
al thinking has been helpful.2 Theory: Universal DistributionsThere is great diversity in the systems being studied in basi
 s
ien
e laboratories. Oneof the 
ontributions of statisti
al theory is to identify 
ommon stru
tures present ina wide range of experiments | in parti
ular, 
ommon features of the variation of
ertain measurements. The Poisson limit law is a good example. Suppose that thesystem under 
onsideration is 
omprised of a large number n of experimental units,and ea
h of these units provides a binary response to some query. For instan
e,millions of ba
terial 
ells are growing in 
ulture and one asks whether or not ea
h 
ellhas a parti
ular geneti
 mutation at one lo
us in the genome. The total number Yof units whi
h have one of the binary states may be a quantity of some interest as itmay a�e
t the experimental design to pinpoint the lo
us, for example. Under a widerange of 
onditions on the basi
 binary variables it is known that 
u
tuations in Yare well approximated by a Poisson distribution:Prob(Y = y) = e���y=y! y = 0; 1; : : :where � is the expe
ted value of Y . Usually this result is presented in the spe
ial
ase where the binary variables are independent and identi
ally distributed Bernoullirandom variables. Then the sum Y has a Binomial distribution with parametersn and p, the 
ommon expe
tation of all the Bernoulli variables. With large n andsmall p, and � � np, the Poisson approximation be
omes valid. The assumptions ofindependen
e and 
ommon distribution of the binary variables are rather stri
t, and



5eviden
e has mounted that the Poisson approximation may work mu
h more broadly.Indeed the Poisson 
lumping heuristi
 theory extends the result signi�
antly; there
an be quite 
ompli
ated forms of dependen
e amongst the binary variables and stillthe Poisson limit holds. This is important sin
e in many examples some dependen
eis expe
ted. For instan
e, 
ell lineage e�e
ts will 
ause statisti
al dependen
e in theba
terial growth example.The most important universal distributional result is the 
entral limit theoremwhi
h 
on
erns 
u
tuations in the arithmeti
 mean of a random sample. It provides
onditions under whi
h the sampling distribution is Gaussian (bell-
urved) regardlessof the nature of 
u
tuations in the variables whi
h 
omprise the sample mean. Indeedthe theory is really a 
olle
tion of results dating ba
k to the early work on probabilityby many in
luding de Moivre, Lapla
e, and Gauss, and 
ulminating with 20th 
enturywork by Polya, Lindeberg, Feller, Levy and others.Other universal laws re
eive perhaps less attention but are still very importantfor making 
onne
tions between diverse problems. When appropriately 
enteredand s
aled, for example, the largest observation in a large random sample mustexhibit variations from one of exa
tly three well-
hara
terized distributional forms,regardless of the sampling distribution of the data (This is sometimes 
alled theextreme value trinity theorem, developed by E. J. Gumbel and others.) TheErdos-Renyi law and extensions of it 
on
ern the distribution of long head-ri
hruns in sequen
es of 
oin tosses, and this has found signi�
ant appli
ation inproblems of mat
hing biomole
ular sequen
es. Universal long-range dependen
estru
tures have been identi�ed in 
ertain kinds of time-series measurements also.Often distributional forms arise as the stationary distribution of a Markov pro
ess
hara
terizing random 
u
tuations in the system over time. For example the Gammadistribution is the stationary distribution of abundan
e when a population evolvessto
hasti
ally a

ording to 
ertain 
onstraints. Knowing these universal laws assistsboth experimental design and data analysis. They 
an be used for `ba
k-of-the-envelope' sample size 
al
ulations, and they 
an form the basis for more detailedmodeling e�orts.



63 The Role of Statisti
s3.1 Ex
eptional CasesA beautiful illustration of statisti
s in the servi
e of the basi
 laboratory s
ien
es isthe work by S. E. Luria and M. Delbr�u
k 
on
erning heritable 
hanges in ba
teria.Before Luria and Delbr�u
k's work in the 1940's it was well known that a ba
terial
ulture exposed to a 
ertain virus 
ould readily die out, but that periodi
ally therewould emerge 
lones of resistant ba
teria. Various explanations presented themselves.Possibly some of the ba
terial 
ells adapt to the invading virus and survive to form aresistant 
olony. Contrary to this adaptation hypothesis is the mutation hypothesis,whi
h has stood the test of time and whi
h is a 
entral element in modern ba
teriology.The mutation hypothesis asserts that ba
terial variants (i.e., mutants) arise duringnormal growth of the 
olony, and that 
ertain mutants resistant to the virus may by
han
e exist in the 
ulture prior to viral infe
tion. If so, they emerge for observationsimply by the pro
ess of sele
tion after the virus has killed the sensitive 
ells; thevirus itself does not e�e
t an adaptation of the ba
terial 
ells.The ingenious experiment devised by Luria and Delb�u
k to address the probleminvolved a 
omparison of the varian
e of resistant 
ell 
ounts grown under di�erent
onditions. In one 
ondition separate 
ultures ea
h grew from a very small initialpopulation size; in the 
ontrol 
ondition a single large 
olony was separated intoa similar number of separate 
ultures. All 
ultures then were exposed to theba
teriophage (virus) and 
ounts were made of the number of resistant 
ells in ea
h
ulture. Regardless of how ba
terial variants arise, one 
an argue that in 
ulturesgrown in the 
ontrol 
ondition (i.e., from subsets of a large 
olony) there should bePoisson variation in the number of resistant 
ells. On the adaptation hypothesis, thissame level of variation is expe
ted in 
ultures of the �rst type, however the mutationhypothesis predi
ts extra-Poisson variation. Cultures in whi
h a resistant mutantarises early will present a very large number of resistant 
ells 
ompared to 
ulturesin whi
h the mutant arises later. It was by 
omparing the variation in 
ell 
ountsbetween these two 
onditions that eviden
e favoring the mutation hypothesis wasderived.Having a statisti
al argument be 
entral to a major s
ienti�
 advan
e is



7fas
inating, espe
ially for people dedi
ated to the study of statisti
s; but it seemsthat su
h elegant Luria-Delbr�uk-like 
ase studies are the ex
eption rather than therule in the appli
ation of statisti
s in the laboratory and basi
 s
ien
es. Certainlythere are wonderful 
ase studies | the formulation of the idea of a tumor suppressorgene was a fundamental advan
e in 
an
er resear
h brought about by the work ofA.G. Knudson in his statisti
al analysis of retinoblastoma; the ability to map genessu
h as those responsible for Huntington's disease and 
ysti
 �brosis is based onstatisti
al properties governing the transmission of DNA during meiosis; the work ofSewall Wright used the varian
e of phenotypes in di�erent experimental 
rosses toestimate the number of geneti
 lo
i a�e
ting the phenotype. What will be the nextgreat advan
e?3.2 Endemi
 MethodsThe ordinary appli
ation of statisti
al thinking in s
ienti�
 dis
ourse is to 
hara
terizeimperfe
t knowledge; it forms one step of many to 
ompile, des
ribe, and reportexperimental results. At this level statisti
al dis
ourse is a basi
 language for dealingwith intrinsi
 variability; it is endemi
 in the sense of being regularly o

urring, andit a�e
ts numerous steps in experimental design and data analysis. As examples ofstatisti
al questions 
onsider the following: Upon measuring a 
ell proliferation ratein two di�erent 
onditions, are the observed rate di�eren
es more than one expe
tsby 
han
e alone? If not, then it may be justi�ed to treat the two 
onditions as one.When measuring some property of a 
ell type by preparing 
ells at di�erent liquiddilutions, how 
an the measurements be 
ombined eÆ
iently a
ross dilutions? Instudying the produ
tion of some 
hemi
al 
ompound, how 
an one identify optimalsettings of several fa
tors that a�e
t produ
tion? Related questions are addressed inthe 
ase studies des
ribed later.Supporting the notion that statisti
al methods are endemi
 is the fa
t thatbasi
 statisti
al 
al
ulations are embedded in mu
h of the operating software ofmodern laboratory equipment. For example, a 
ow 
ytometer is an important devi
eto determine properties of 
ells by measuring s
attered light and 
uores
en
e ofmobilized, 
uid-suspended 
ells. Part of the sophisti
ated 
omputations built into a
ytometer is a statisti
al dis
riminant analysis to 
lassify individual 
ells by features



8su
h as 
ell size or granularity. Statisti
al dis
riminant analysis is part of the ele
troni
nose, a devi
e to dete
t airborne s
ents for use in food quality testing and otherappli
ations.Statisti
al 
al
ulations are also embedded in the basi
 proto
ols of many high-throughput laboratory methods. For example, the te
hnique of 
omparative genomi
hybridization measures DNA 
opy number variation in 
an
er 
ells by pro
essing
uores
en
e image intensities from labeled tumor and normal DNA that have
ompetitively hybridized to immobilized DNA on a glass slide. Intensity signalsfrom the two sour
es are measured all along the genome, and statisti
al signalpro
essing is used to de
ide when one 
hannel is signi�
antly stronger than theother. Further, DNA mi
roarrays are now widely used to measure simultaneouslythe level of gene expression of thousands of genes. A large amount of raw image data
onstitutes the results of one measurement, and this is pro
essed to 
reate a singlere
ord for ea
h gene by a series of statisti
al manipulations of the image data. Forinstan
e, with spotted 
DNA mi
roarrays, an algorithm is used to lo
alize ea
h spot,a

ount for lo
al ba
kground 
uores
en
e, and normalize measurements a
ross themi
roarray. Statisti
al methods are used in these 
ases, and elsewhere, be
ause they
an automati
ally pro
ess large amounts of raw data in a potentially meaningful way.4 Statisti
al StrategiesStatisti
al thinking 
an be e�e
tive in laboratory and basi
 s
ien
es, both at the levelof experimental design and data analysis: the former is 
riti
al for drawing strong
on
lusions while the latter is ne
essary to disentangle te
hni
al and biologi
al sour
esof variation so as to un
over relevant biologi
al signals. This arti
le emphasizesstatisti
al strategies at the data analysis phase where the investigator has in hand a
ompli
ated set of numeri
al results bearing on his or her resear
h hypothesis. Thoughte
hnologi
al issues are ever present, the sour
es of variation most signi�
ant in theexamples 
onsidered here are biologi
al sour
es, having to do with natural variationin the 
omponents of living systems.Three stages of statisti
al thinking are evident in many su

essful appli
ations:informal des
riptive analysis, global hypothesis testing, and modeling. In fa
t these



9are overlapping and linked and one or another may be more important in a given
ase.4.1 Des
riptive Statisti
sTypi
ally the initial phase of data analysis is des
riptive and one tends to avoiddrawing inferen
es or making probabilisti
 statements. Good pra
ti
e involves
he
king the integrity of the data, making summary tabulations, s
atterplots,histograms, and other graphi
al representations. The intelligent use of des
riptivestatisti
s 
an be highly informative; alternative non-numeri
al summaries of dataserve to highlight intrinsi
 stru
tural features; and, though they may not dire
tlyaddress inferen
e questions, they 
ertainly reveal properties of the data that will guidethe use of other statisti
al methods. The importan
e of good des
riptive statisti
s
annot be understated; indeed, this area 
urrently presents great 
hallenges as theamount of raw numeri
al information whi
h 
an be obtained and stored is be
omingvast.Beyond the spe
ial use of des
riptive statisti
s in laboratory and basi
 s
ien
es,most people are familiar with their widespread use in diverse domains su
h as sports,politi
s, and publi
 health. Although in so many human endeavors one needs tore
ord and summarize what has happened, it is important to re
ognize that statisti
alanalysis involves mu
h more than the re
ording and presentation of des
riptivestatisti
s { it provides a framework to interpret data and to draw statisti
al inferen
e.Often, this next stage of analysis addresses the question of whether or not the datain hand exhibits more variation than what one might expe
t by 
han
e alone. If so,then it is justi�able to look 
losely for patterns of systemati
 variation.4.2 RandomizationSir R.A. Fisher may have been the most in
uential �gure in the developmentof statisti
s, and one of his great 
ontributions was the randomization test. Itaddresses the question as to whether or not there is any interesting stru
ture in themeasurements. Generally the method is easy to des
ribe and implement; it pro
eeds
onditionally upon numeri
al data but un
onditionally on the arrangement of the data



10and it is widely appli
able. It 
on
erns signi�
an
e testing; but, being 
onditional,its 
on
lusions are not highly sensitive to distributional assumptions on the data. Asone part in the sequen
e of statisti
al methods used in a data analysis, randomizationtesting is helpful be
ause it 
an serve to justify the de
ision to �nalize an analysis orto move forward with a more sophisti
ated modeling strategy.4.3 ModelingIf there is interesting stru
ture in the data, as eviden
ed perhaps by 
areful graphi
alanalysis or randomization testing, then a powerful approa
h to quantifying thatstru
ture and learning more about it is to �t a statisti
al model; in other words, toidentify a joint probability distribution for the measurements. Probability models arethe basi
 elements of statisti
s: like parti
les in physi
s or 
ells in biology. Formally, amodel is a 
olle
tion of probability distributions. Models des
ribe relationships amongmeasurements, not exa
t 
onne
tions, but probabilisti
 dependen
ies. Models relatemeasurements of di�erent kinds, for example by des
ribing how the expe
ted valueof a response measure is a�e
ted by 
hanges in a set of predi
tors. Models 
an relatemeasurements in terms of unobserved, latent, or hypotheti
al 
onstru
ts. Basi
ally,models 
ome in many shapes and sizes: there are linear models, generalized linearmodels, graphi
al models, Markov random �eld models, survival models, time-seriesmodels, random e�e
ts models, hierar
hi
al models, semiparametri
 models, to namea few general 
lasses.Fitting the model identi�es one member of the 
olle
tion whi
h 
aptures betterthan the others patterns in the observed measurements. Central to the business ofmodel �tting is another 
on
ept developed by Sir R.A. Fisher, the likelihood fun
tion.Mathemati
ally, the domain of the likelihood fun
tion is the set of parameters thatindex the model, and the fun
tion evaluates to the joint probability (or probabilitydensity) of the observed data. Sele
ting the distribution having the highest likelihoodis one approa
h to model �tting. There are other methods of model �tting, butlikelihood methods are 
ompelling and are used in some of the 
ase studies des
ribednext.Identifying an adequate model takes some 
are as one usually must trade o�
omplexity and goodness of �t. Models that enfor
e as little stru
ture as possible



11(e.g. nonparametri
, semiparametri
) tend to be favored when the data 
arry a lotof information, but their 
exibility is a drawba
k in some problems, espe
ially wheresubje
t-area knowledge 
an be en
oded as a simple parametri
 form.When unobservable fa
tors are modeled together with the observable data, itis often e�e
tive to use the 
onditional probability distribution of the unknownsgiven the knowns to generate inferen
es. This is an essential feature of the Bayesianapproa
h to statisti
al inferen
e. The approa
h is 
ompelling for several reasons,not the least of whi
h is that all inferential 
omputations redu
e to integratingprobability distributions in one way or another. Thus, for a given analysis it is usuallymore 
lear by this approa
h what needs to be 
al
ulated, and modern 
omputationalmethods are making the implementation mu
h more routine. In Bayesian analysis theinterpretation of probability is extended from the 
lassi
al fo
us on relative frequen
yto a more general measure of imperfe
t knowledge.5 Case Studies5.1 Mi
robial Biodiversity and Conditional Inferen
eAn interesting statisti
al problem arose in a study by some University of Wis
onsinbiologists of ba
terioplankton diversity in a 
ertain lake e
osystem. M.M. Fisherand her 
olleagues (in
luding the author) used a te
hnique from mole
ular biologyto probe lake-water samples and measure their 
omposition with respe
t to di�erentspe
ies of ba
teria. Cruder measurement te
hniques had been in use to identify theoverall amount of ba
teria in a sample, but these te
hniques did not allow one to knowhow mu
h diversity the sample 
ontained. Understanding the e�e
ts of pollution oragri
ultural run-o� would be enhan
ed if these more re�ned measurements 
ould betaken.Very roughly, the data from one lake-water sample 
ould be summarized as ave
tor of binary variables ea
h indi
ating presen
e or absen
e of a 
ertain ba
terialspe
ies in the sample. In one 
omponent of the experiment, lake-water samples fromm = 15 di�erent 
onditions were assayed and ea
h gave a binary ve
tor of lengthn = 82. There were n = 82 di�erent ba
terial spe
ies identi�ed in this 
omponent ofthe experiment, a
ross all samples. In fa
t the m = 15 samples arose from di�erent



12environmental 
onditions with respe
t to levels of 
hemi
als su
h as nitrogen andphosphorus and sampled at di�erent times relative to 
ertain treatments.Naturally the ba
terial 
omposition pro�les exhibited variation, and it wasexpe
ted that some of this variation was measurement error and some representedunderlying 
u
tuations in the ba
terioplankton populations. To quantify the variationbetween samples, Fisher and her 
olleagues 
omputed the Sorensen index for ea
h pairof samples (i; j): Ci;j = 2 Pnk=1Xi;kXj;k[(PkXi;k) + (PkXj;k)℄where Xi;k is the Bernoulli trial indi
ating presen
e of spe
ies k in sample i. In otherwords, Ci;j is the number of spe
ies that are in 
ommon between the two samplesdivided by the average total number of spe
ies present in the two samples, and itranges between 0 and 1.For the purposes of reporting it was important to 
alibrate these indi
es by somemeans. There was also the problem that m = 15 pro�les gave rise to 105 di�erentpairwise 
omparisons, and so it was not 
lear how best to report signi�
ant �ndings.Using some elementary statisti
al theory in 
ombination with 
onditional inferen
eprovided an e�e
tive solution.Suppose that the Bernoulli trials Xi;k are independent among all samples and alllo
i, but that the probability pk = P [Xi;k = 1℄ 
ould depend on the spe
ies k butnot the sample i. In other words the null hypothesis is that the whole pro�les areidenti
ally distributed random ve
tors, meaning that 
han
e alone 
aused di�eren
esfrom one sample to the next. Some spe
ies 
ould be more prevalent than othersa
ross all samples be
ause the probability pk 
ould depend on the spe
ies. To testthe global null hypothesis of identi
ally distributed samples, one still has to dealwith the many nuisan
e parameters p1; : : : ; pn. Note that for any spe
ies k, thejoint distribution of X1;k; : : : ; Xm;k 
onditional on the sum X�;k = Pmi=1Xi;k is adis
rete uniform distribution not involving any nuisan
e parameters. Therefore, thenull 
onditional distribution is fully spe
i�ed and 
an be realized, for example, bypermutation.Viewing the raw data as an m � n matrix X = (Xi;j), repeatedly generatehypotheti
al data sets X� by randomly shu�ing the elements of ea
h 
olumn of X.From every su
h simulated data set X�, 
ompute and store all 105 Sorenson indi
es;



13a total of B = 9999 X� matri
es might be simulated. From this 
al
ulation one hasa large sample from the null distribution of various quantities, su
h as the maximumor minimum index a
ross all 105 pairwise indi
es. Any pair of samples (i; j) whoseobserved index Ci;j was in the upper tail the distribution of the maximum index maybe said to exhibit more similar pro�les than expe
ted by 
han
e alone. Analogously,any pair whose index was in the lower tail of the distribution of the minimum isunusually di�erent. Spe
i�
ally, the p�value for one pair is the proportion of sampleshaving at least as extreme a s
ore as the observed s
ore, taken relative to the full setof B = 10000 s
ores. In this 
ase study the statisti
al 
ontribution was simply to
alibrate the Sorensen indi
es by randomization.5.2 Comparative Genomi
 Hybridization and MixtureModelingComparative genomi
 hybridization (CGH) is used by on
ologists to probe foraberrations in 
an
er 
ell genomes | aberrations in the number of 
opies of DNAat any one of many lo
ations in the genome. As with many mole
ular biologi
alte
hniques, CGH relies on measuring 
uores
en
e of di�erently labeled DNAs, andit is based on hybridization to sort out a 
omplex pool of mole
ules. The proto
olsinvolve some sophisti
ated image analysis to pro
ess the 
uores
ent signals and arriveat a determination at ea
h geneti
 lo
us as to whether that lo
us is deleted, ampli�ed,or normal in the tumor 
ell DNA. Es
hewing the te
hnologi
al issues, let us 
onsiderthe downstream data analysis problem of pro
essing these dis
rete CGH pro�les froma study of bladder 
an
er development.As an example, 
onsider the small CGH experiment involving n = 6 bladder
an
er tumors analyzed by C.A. Rezniko�, T.R. Yeager, and 
olleagues (in
ludingthe author) at UW Madison. Cells from ea
h tumor were prepared and 
omparedto normal 
ells using CGH; this resulted in a pro�le for ea
h tumor that re
ordedwhether there was deletion, ampli�
ation, or normal 
opy number along the wholegenome at a 
ertain resolution. To be manageable and easily 
omparable to otherstudies, the data were summarized to a rather 
ourse resolution at the level of the
hromosome arm. (Re
all that the nona
ro
entri
 
hromosomes have a long and shortarm. In the present study data from two arms was available on 18 nona
ro
entri
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hromosomes and data from a single arm was available on the other 5.) Thus the datamay be arranged as Xi;j where i indi
ates the tumor and j indi
ates the 
hromosomearm. There is interest in both the loss data and the gain data, but for simpli
ity letus dis
uss only loss information here, so Xi;j is a Bernoulli trial indi
ating whetheror not there is deletion of DNA on 
hromosome arm j in tumor i.A simple barplot was used to graph the 41 summary 
ounts X�;j = PiXi;j. Highrates of deletion were observed on some of the arms, though their average value was55=246 = 0:22. A test of the null hypothesis that all Bernoulli Xi;j had the samesu

ess probability is a way to measure the variation and to assess the signi�
an
e ofthe high 
ounts. The null hypothesis means that all losses are sporadi
. The problemseems similar to the biodiversity problem dis
ussed above, but there is an importantdi�eren
e whi
h invalidates the use of a simple permutation pro
edure. The trialsXi;jand Xi;k are positively 
orrelated if j and k index two arms of the same 
hromosome.This 
orrelation is 
aused by the physi
al pro
ess by whi
h deletion happens; i.e.some deletions involve the loss of a whole 
hromosome and thus the loss indi
atorsare not independent. The form of dependen
e amongst the Xi;j means that their
onditional distribution given simple row or 
olumn totals is not ex
hangeable, andone is therefore not justi�ed to shu�e the loss indi
ators to 
alibrate a test. Statisti
almodeling provides a solution.Envision a partially observable random variable Zi;
 for ea
h tumor i and ea
hnona
ro
entri
 
hromosome 
 = (j; k). This Bernoulli trial indi
ates whether or notthe measurements Xi;j and Xi;k are linked. If Zi;
 = 0, then assume Xi;j and Xi;k are
onditionally independent re
ords of deletion. On the other hand if Zi;
 = 1 assumethat the arms j and k are linked and so either the whole 
hromosome is deletedXi;j = Xi;k = 1 or the whole 
hromosome is retained Xi;j = Xi;k = 0. By the waythat CGH data are re
orded, one 
an observe Zi;
 if either Xi;j = 1 or Xi;k = 1, butit is unobservable when no deletions o

ur. Clearly the introdu
tion of these latentvariables indu
es statisti
al dependen
e amongst the observed 
ounts fX�;jg.A statisti
al model is a 
omplete des
ription of the joint probability distributionof the data. The model is set up on a general alternative hypothesis and used toderive a likelihood ratio test of the sporadi
 loss null hypothesis. The hot-
old modelasserts that some of the arms are hot in that their marginal loss rate � is higher than



15the marginal loss rate � of other 
old arms. Unlinked loss events on a hot arm areBernoulli trials with su

ess probability �, and unlinked loss events on a 
old armhave rate �. One way to deal with linked losses is to say that the 
ommon Bernoullitrial is hot if and only if either of the linked arms is hot. There is a parameter �whi
h is the probability that two arms on the same 
hromosome are linked (i.e. it isthe su

ess probability of Zi;
). All that remains to fully spe
ify the joint distributionof data is the lo
ation of hot and 
old arms. With so many arms (41) 
omparedto the amount of data, it seems quite reasonable to treat these lo
ations as randome�e
ts. In other words, a given arm is hot with probability �, and otherwise it is 
old.The hot-
old model has four parameters � = (�; �; �; �) that 
hara
terize the rate ofdeletion for 
old and hot arms, the rate of linkage, and the overall rate of hot arms.The likelihood fun
tion is a produ
t a
ross the n = 6 tumors and the 23
hromosomes: L(�) =Yi Y
 P (datai;
)The marginal probability of datai;
 is a mixture over the latent Zi;
 and a mixture overthe possible patterns of hot and 
old arms for that 
hromosome. Take, for example,the re
ord (0; 1) from one nona
ro
entri
 
hromosome in one tumor; i.e. one arm isdeleted and one is retained. The probability of this re
ord a

ording to our model is�� h�����2 + ������ + ������ + ����2iusing the notation �x = 1 � x. The rationale for this mixture formula is thathaving observed a dis
repant result between the two arms it must be that they areunlinked, and hen
e Zi;
 = 0 whi
h happens with probability �� . The four additionalterms indi
ate the probability of (0; 1) under the four arrangements of hot and 
old.Evidently there is no simple formula for the maximum likelihood estimator �̂, thoughit 
an be found by straightforward numeri
al methods.The null hypothesis of sporadi
 loss is equivalent to the assertion that the hot and
old rates are equal; i.e. � = �. Interestingly, in this 
ase the rate � is unidenti�edso its value is immaterial to the null-restri
ted likelihood L0(�). Using the Yeager-Rezniko� data it is estimated that �̂0 = 0:22 and �̂0 = 0:28 on the null hypothesis. Themaximized value of logL0 is -125.3. With the full model the estimates are �̂ = 0:05,



16�̂ = 0:38, �̂ = 0:22, and �̂ = 0:47, with a maximized loglikelihood of �120:5. Thusthe observed value of the generalized likelihood ratio statisti
 is �120:5+125:3 = 4:8.Statisti
al theory suggests that likelihood ratio statisti
 enables a powerful test ofthe null hypothesis of sporadi
 deletion. Often the this statisti
 is 
alibrated usingWilk's result that negative twi
e the log ratio 
onverges in distribution to a 
hi-squarerandom variable, but the validity of this asymptoti
 approximation is questionablein the present model. A potentially more a

urate approximation is one based onbootstrap sampling under the null. This form of bootstrapping is a natural model-based alternative to a permutation pro
edure, and is justi�ed when additional featuressu
h as dependen
e are a

ounted for in the analysis. Bootstrapping under the nullamounts to simulating data sets a

ording to the model in whi
h � = � = 0:22and � = 0:28, and then re
omputing the likelihood ratio statisti
 for ea
h simulateddata set. Contrary to permutation, the bootstrap simulation is not 
onditional onstatisti
s from the data. It is approximate be
ause it presumes knowledge of theparameters in the 
omposite null. The intensive optimization whi
h must a

ompanyea
h simulated data set limits the size of the test sets. In a sample of 249 bootstrapdata sets, none had as extreme a loglikelihood ratio statisti
 as the observed data.Thus a p-value of 1=250 
an be reported, and it may be 
on
luded that there is someeviden
e against the sporadi
 loss hypothesis.Having gone to the trouble to stru
ture elements of this interesting data analysisproblem into a hierar
hi
al statisti
al model, it is worthwhile to see what other
on
lusions 
an be drawn. Very often statisti
ians get hung up on hypothesis testingand do not fo
us the analysis beyond an initial question of stru
ture versus nostru
ture in the data. In the present model ea
h 
hromosome arm is either hotor 
old; the test asked if hot is di�erent from 
old, and assuming that it is one
an assay ea
h arm for the posterior probability that it is hot given the data. Theposterior probability is proportional to � times the probability of the data on thatarm given that the arm is hot. The 
al
ulation is 
ompli
ated somewhat by thepossible linkage with the opposing arm, but still it is routine to evaluate the resultingposterior probability. Only 
hromosome arm 8p, whi
h had presented 5 losses out of6 tumors, had a posterior probability ex
eeding 0.95 of being hot. In this 
ase andelsewhere the pro
essing of data from raw 
ounts to posterior probabilities has the



17e�e
t of redu
ing variation and highlighting interesting stru
ture in the data.5.3 Mouse Mutagenesis, Randomization Testing andModelingIt is rewarding to be involved in a sustained long-term e�ort with a large laboratoryto monitor, design, and analyze a 
omplex experiment. Su
h has been the 
ase inwork with W.F. Dove's lab studying the normal and neoplasti
 growth of intestinalepithelium in a mouse model of human 
olon 
an
er. Central to the experiment is theMIN mouse, a mouse harboring a nonsense mutation in one 
opy of the AdenometousPolyposis Coli (Ap
) gene, and 
onsequently a mouse that spontaneously developsmultiple intestinal neoplasia. An inherited defe
t in the human APC gene predisposes
arriers to the highly penetrant disorder familial adenometous polyposis (FAP)
hara
terized by the development in the intestine of a large number of polyps. As
olon 
an
ers arise from polyps, FAP patients are at a mu
h in
reased risk for 
olon
an
er. Importantly, the APC gene is known to be defe
tive in 
olon 
an
er 
ells frommost sporadi
 
ases of the disease, and thus APC is a 
entral player in the mole
ularbiology of 
olon 
an
er. Of interest to Dove's lab are other as yet unknown playersthat modify the e�e
t of APC.From a statisti
al perspe
tive, the important features of the mutagenesisexperiments performed in Dove's lab may be summarized rather su

in
tly. Ameasurement Xi;j is made on the jth o�spring of animal i. Typi
ally, themeasurement is a 
ount of the number of intestinal tumors 
arried by the animal whenit is sa
ri�
ed at three months of age. The animal (i; j) is a member of a pedigreegenerated by various experimental breeding s
hemes, but often the dependen
estru
ture indu
ed by the pedigree 
an be treated in the following very simple way.The parent i may or may not 
arry an allele �. If it does not, then the tumor 
ountXi;j of o�spring j arises from a tumor 
ount distribution f(x) typi
al of the underlyinggeneti
 ba
kground. On the other hand, the parent might 
arry � in whi
h 
ase �is transmitted randomly to about half of its o�spring by Mendelian segregation. AMIN animal j that also 
arries � presents tumors 
ounts Xi;j that follow a modi�eddistribution g(x). For instan
e � might tend to 
ause a redu
tion in tumor 
ount andso g(x) would be shifted to the left of f(x) in some way. Be
ause the tumor 
ount



18phenotype is quantitative and exhibits a large amount of variation, and be
ause theexperiment involves a large number of potential 
arriers i, ea
h with a modest tolarge number ni of o�spring, a statisti
al approa
h to the data analysis provides aneÆ
ient methodology for deriving inferen
es as the experiment pro
eeds.A �rst question to 
onsider when analyzing a bran
h of the experiment is whetheror not there is any eviden
e against the null hypothesis H0 : f = g. Basi
ally, H0asserts that there is no modi�er gene in the pedigree. Here 
onditional inferen
eand randomization are 
riti
al. By 
onditioning on the set of measurements, or, inother words, their empiri
al distribution, what remains random is their assignmentinto subkindreds i. Permutation is used to shu�e observed tumor 
ounts so thatea
h parent i is assigned a random subset of size ni drawn without repla
ementfrom the whole sample. A likelihood ratio statisti
 is 
alibrated by this permutation.Sometimes the set of o�spring of i is further arranged in subfamilies, and then thepermutation shu�es whole subfamilies to preserve within-subfamily 
orrelation.Again, randomization testing provides the �rst phase of statisti
al inferen
e. Witheviden
e that an allele � may be modifying the phenotype distribution, one may gofurther with more detailed analyses. For example one may estimate the modi�eddistribution or assay the posterior probability that the allele � is segregating insubkindred i. This latter measure has be
ome a very useful summary of the set ofdata taken on animal i, and it provides a means for dire
ting subsequent experimental
rosses. In the simplest 
ase, the probability of data xi = fxi;jg from parent i isp(xi) = 8<: Qnij=1 f(xi;j) if no � in i2�ni Qnij=1 [f(xi;j) + g(xi;j)℄ if � in iand so the posterior probability of � in i is 
omputed from Bayes rule as soon asestimates of f(x) and g(x) are in pla
e. An obvious model for tumor 
ounts has fand g being Poisson distributions, but these turn out to be inadequate. Parametri
analysis based on a generalization, the negative binomial distribution has provento work well. Nonparametri
 analysis based on sto
hasti
 ordering of f and g isanother approa
h that relies on fewer modeling assumptions. In either 
ase, maximumlikelihood may be used to estimate f and g.



19The likelihood fun
tion here has the formL(f; g) =Yi 8<:12 niYj=1 f(xi;j) + 12 niYj=1 f(xi;j) + g(xi;j)2 9=; :In order to �t the model and to evaluate the likelihood ratio statisti
 mentionedabove, 
omputational methods are needed to maximize L(f; g).The mutagenesis 
ase study requires randomization to test for the presen
e ofmodi�er genes and also modeling to quantify information in the data about likely
arriers of important alleles.5.4 Gene Expression Data Analysis: Hierar
hi
al ModelingThe re
ent advent of DNA mi
roarray te
hnology is allowing unparalleledinvestigation into the mole
ular biology of the 
ell, and, simultaneously, is 
reatingintriguing new statisti
al data analysis problems. The following data stru
ture is notun
ommon. A gene expression measurement Xi;j is obtained for gene i in sample j,where i = 1; 2; : : : ; m, j = 1; 2; : : : ; n, and m >> n. The value Xi;j is a surrogatefor the abundan
e of messenger RNA trans
ribed by gene i within 
ells j. In oneexperiment from M.N. Gould's laboratory, the 
ells are rat mammary epithelial
ells taken from rats of di�erent inbred strains whi
h vary in their sus
eptibilityto mammary 
an
er. In another experiment with D. Jarrard, the 
ells are 
ulturedprostate epithelial 
ells sampled at di�erent stages of proliferation. A basi
 problem isto understand patterns of di�erential gene expression among the di�erent 
onditionsthat 
hara
terize the 
ontributing 
ells.Both te
hnologi
al and biologi
al sour
es of variation a�e
t the measuredabundan
e Xi;j, but in a well 
alibrated experiment one 
an hope to 
ompare themeasurements from di�erent samples j (i.e. di�erent mi
roarrays). Suppose thatj = 1; 2; : : : ; n1 index measurements from 
ells of one 
ondition, 
alled A andj = n1+1; : : : ; n index measurements of the se
ond 
ondition B. To assert di�erentialexpression of gene i between 
onditions A and B is to make the inferen
e that theobserved di�eren
es between DA = fXi;1; : : : ; Xi;n1g and DB = fXi;n1+1; : : : ; Xi;ng
orrespond only to 
han
e 
u
tuation and do not represent underlying shifts inexpression level.



20Some authors measure the group di�eren
e using a t-statisti
 for gene i, perhapsafter the data are transformed to the logarithmi
 s
ale. Di�erential expressionis 
on
luded if the observed statisti
 lies in a tail of the t-distribution. Thisstraightforward approa
h treats all the genes separately and does not dire
tly addressthe question, \what genes are most di�erentially expressed." In part, the testings
enario is 
on
erned with the rather extreme straw-man hypothesis that no genesare di�erentially expressed. Of 
ourse what makes the 
ells di�erent is the expressionof their genes and so we 
an reje
t the global hypothesis out of hand. A

eptingthat some genes are di�erentially expressed and some are not, the statisti
al problem
an be approa
hed di�erently by using a dis
rete mixture model. The problem is toestimate the set of di�erentially expressed genes and to 
ompute for ea
h gene theposterior probability that it is di�erentially expressed. An advantage of this approa
his that information 
an be shared among genes, whi
h is helpful be
ause the numberof samples n is typi
ally so small 
ompared with the number of genes m.Consider that there is a latent variable Zi for gene i whi
h indi
ates whether ornot the gene is di�erentially expressed between 
onditions A and B. A proportion � ofthe genes are di�erentially expressed; i.e. � = P (Zi = 1). A model parameterizes theprobability of data P (DA; DBjZi) for ea
h gene and gene-spe
i�
 inferen
e is basedon the posterior probability P (Zi = 1jDA; DB) that is evaluated using estimates ofthe model parameters. More spe
i�
ally, the model P (DA; DBjZi) may be stru
turedas a mixture over the unknown levels of expression �A and �B; i.e. �A = E(Xi;j) forj in the �rst group of samples and �B is similarly de�ned for the se
ond group ofsamples. A Gamma model for Xi;j given � often �ts well and is both analyti
ally and
omputationally eÆ
ient. If there is equivalent expression, Zi = 0, and �A = �B, andthis 
ommon, unknown, gene-spe
i�
 mean is presumed to 
u
tuate a
ross the set ofgenes a

ording to some distribution p(�). Positive 
orrelation within DA and DB isindu
ed by integrating with respe
t to p(�). On the other hand if there is di�erentialexpression, one assumes that independently the two 
onditions A and B draw means�A and �B from p(�). Thus the modeling is hierar
hi
al, with three basi
 stages:measurements Xi;j given mean values; di�erential expression Zi of the mean values;and level of the mean values �A, �B.Randomization 
ould be 
onsidered in this 
ase study, but, as a matter of global



21evaluation, it is testing a hypothesis that one 
an reje
t out of hand. Statisti
almodeling allows the investigator to quantify the eviden
e for di�erential expression ofea
h gene and to estimate the fra
tion of di�erentially expressed genes. Contrary tothe other 
ase studies, in this one the analysis in
ludes a large number of unobservablevariables that are linked through the statisti
al model.6 Closing RemarksStatisti
al thinking has for a very long time had an important role to play in the basi
and laboratory s
ien
es. One reason is that the theory of mathemati
al statisti
sand probability demonstrates 
onne
tions between diverse data analysis problemsowing to 
ommon features of measurement variation. Also, the methods of statisti
alanalysis provide ways to extra
t information from data and in
lude quantitativeassessments of un
ertainty. The use of statisti
al methods 
ontinues to be importantbe
ause te
hnologi
al advan
es have dramati
ally in
reased the amount of data thatinvestigators 
an obtain and store, and 
hallenging data analysis problems are everpresent. Certainly in biologi
al problems improvements in measurement te
hnologydo not obviate the need for statisti
al thinking be
ause natural sour
es of variation
annot be dampened out. Statisti
al modeling may now have a greater potentialsin
e quite sophisti
ated models 
an be entertained and �t thanks to advan
es in
omputing.Statisti
al resear
h has given investigators an impressive array of tools to pro
essdata. Yet, theoreti
al resear
h has been mu
h less 
on
erned with wholesale strategiesfor data analysis than it has been 
on
erned with optimal properties of parti
ularsteps, and so it 
an be diÆ
ult for the user of statisti
al methods to know howto pro
eed. The most important thing, perhaps, is that the statisti
ian be
omesimmersed in the 
ontext of a problem. This may assure an e�e
tive data analysisstrategy and that something gets done whi
h is helpful.
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