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1 Summary

Scientists are able to measure biological systems at incredible levels of detail and also to
deploy interventions whose measured effects provide new knowledge about these systems.
The variety of systems studied, interventions considered, and effects measured are equally
incredible, and one might be surprised to know that a single intellectual framework provides
the scientist a guide for how to infer new biological knowledge from the measured data. What
we know is that the particular measurements (their numerical values as arranged in whatever
Excel spreadsheet, database, or cloud-computing system), while in a way central, are in fact
secondary during the intellectual generaton of new insights. Rather, what is primary is the
process by which these data have emerged. The numbers are meaningless when stripped of
information about their context and details of their generation. In statistical analysis, we
achieve understanding by viewing our particular measurements as the realization of a random
process. Of course, this is not to say that data are completely unpredictable. But if they were
completely predictable, then we would not have bothered to do the necessary experiments
to generate them! Indeed, statistics thrives in the grey zone between perfect knowledge
and complete uncertainty. Research in this area rewards those who enjoy mathematical and
computational thinking, who recognize the primacy of the biological problems, and who are
keen to address these problems in order to advance the state of knowledge.

Depending on the nature of the data and the type of system in focus, the precise way in
which statistical analyses are deployed and the role of the calculations also vary greatly. In
many cases, analysis centers on the construction, use, and assessment of probability models,
and a great deal of current research in statistics aims to improve these activities. Very of-
ten the investigator has indirect measurements of the objects of primary scientific interest,
and the statistical analysis seeks to infer plausible properties of these objects by accounting
somehow for signal and noise characteristics of the system and measurement process. This
situation is often addressed by constructing probability models of the data and by developing
statistical methods based on these models. Two recent examples from my own collaborative
work are discussed in the following sections. Statistical concepts employed include maximum
likelihood estimation, hypothesis testing, bootstrap sampling, latent variables, nonparamet-
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ric modeling, and mixture modeling, among others. The examples aim to shed some light
on the complex interplay among data context, mathematical analysis, statistical inference,
and computation that purvades the modern development of statistics.

2 Inactivating a tumor suppressor gene

Basic biology tells us that some information in DNA is transcribed into messenger RNA and
then translated into protein. When the DNA at a specific locus takes two distinct forms,
the cell is heterozygous at that locus; indeed when the organism has inherited such different
forms (alleles) from its parents, one expects the diploid cells in its body to be heterozygous
at that locus. In measuring DNA from many cells of the organism, the two distinct alleles
ought to be in 1:1 proportion, though somatic changes may alter the DNA of cancer cells,
for example, possibly removing one or the other allele at some locus. Even if the DNA
remains intact, the relative abundance of the transcribed RNAs may not be the same for
both alleles. For example, epigenetic factors related to accessibility of DNA could cause RNA
to be transcribed from only one of the two DNA alleles. I use the term allelic ratio to refer
to the abundance of one allele relative to another, either in the DNA or RNA, depending on
the context.

A chunk of DNA of particular interest in cancer research is the adenometous polyposis
coli (APC) gene, which codes for an important protein involved in mediating molecular
signals within the cell. Some forms of colon cancer arise when APC is inactivated, though
much remains unknown at present about the precise nature of APC inactivation and how
this inactivation fosters cancer growth. I was fortunate to participate in a recent study of
APC inactivation lead by Drs. J. Amos-Landgraf and W.F. Dove (Amos-Landgraf et al.
2012). These investigators used the Pirc rat model of human colon cancer in which genetic
manipulations were possible, and they obtained a variety of data on the molecular state of
colonic tumors that formed in these rats. The analysis I discuss below involved measurements
of RNA and DNA allelic ratios at the APC locus from 96 colonic epithelial tissue samples.
The samples comprised 27 normal tissues and 69 tumors (Figure 1). Measurements required
careful isolation of nucleic acids and advanced pyrosequencing technology to estimate allelic
ratios. An important aspect of the experimental protocol was having paired measurements
(i.e., both DNA and RNA allelic ratios) on each tissue sample. Of scientific interest was to
use these data to learn more about how the cancer cell inactivates the APC gene.

[Figure 1 about here]

The process of developing a statistical model for any data set becomes overly cumbersome
if convenient mathematical notation is not provided. So I indexed the n = 96 measured tissue
samples by a set {i} and denoted data {(Xi, Yi)}, where

Xi = DNA allelic ratio, tissue i

Yi = RNA allelic ratio, tissue i .

I viewed these data as random variables, allowing that the particular numbers stored in my
computer are realizations of these random variables. Considering the measurement proto-
col, it is reasonable to assume that (Xi, Yi) are mutually independent over samples {i}, and
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further that they have some common probability distribution reflecting allelic ratio proper-
ties over the population of tissues being sampled. The common distribution assumption is
problematic because some tissues are normal epithelia and some are from tumors. I clarify
the issue by considering some more of the biology in question, and by being more specific
about the aims of the statistical analysis.

The biology under investigation concerns modes of inactivation of APC. It is recognized
that three distinct processes might be operational over the population of tumors, and so this
fact will be reflected in the constructed probability model. Recall first a background point
about Pirc rats. They carry one defective copy and one normal (wildtype) copy of APC
DNA. If the epithelial cells eliminate the wildtype DNA, they gain an advantage during
the evolutionary process of tumor formation. One path to tumor formation involves loss
of heterozygosity of DNA, which we code as LOH-DNA. Since wildtype RNA can only be
transcribed from wildtype DNA, these cells must also have a loss of heterozygosity of RNA,
LOH-RNA. In other words the true allelic ratios in tumor cells following this pathway are
both zero. An alternative pathway to tumor formation would involve inactivation of wildtype
RNA by some mechanism other than DNA loss. The cells might maintain heterozygosity of
DNA (MOH-DNA) but still lose heterozygosity in RNA by some epigenetic silencing (LOH-
RNA). Yet a third pathway could entail maintenance of both wildtype DNA and RNA and
a disruption during translation of APC. The three natural tumor classes are thus:

class DNA RNA pathway name
1 MOH-DNA MOH-RNA translational silencing
2 LOH-DNA LOH-RNA DNA loss
3 MOH-DNA LOH-RNA epigenetic silencing

An important goal of the experiment was to infer something about the proportion of
tumors in the population that follow any of these three developmental pathways. In the
absence of measurement error, one could tell immediately from measured allelic ratios what
a sample’s true allelic ratios were, and hence what its true pathway was. Of course real
data come with measurement error, and so a statistical analysis was called for. To proceed,
I imagined that each tissue sample is associated with a third random variable, denoted Ui,
indicating the pathway taken by tissue i, so Ui ∈ {1, 2, 3}. For tissues from the tumor
population I assumed there are three probabilities (p1, p2, p3), with

P (Ui = j) = pj j = 1, 2, 3.

The normal tissue samples provide experimental controls, and for these {i} I supposed
P (Ui = 1) = 1, since normal tissue should retain heterozygosity in both DNA and RNA. The
probability model becomes fully specified if one further characterizes conditional probability
densities fj(x, y) = p(x, y|Ui = j) for allowable realizations x and y of Xi and Yi. [Recall
that probabilities come from densities by integration, so the probability that the measured
DNA allelic ratio is in the set A and the RNA allelic ratio is in the set B, given pathway
j, is

∫
A

∫
B
fj(x, y) dydx.] This constructs a discrete mixture model for the allelic-ratio data;

for tumor tissue i, the associated joint probability density is

f(x, y) =
3∑

j=1

pjfj(x, y). (1)
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Experienced analysts recognize that competing factors always affect model choice (in this
case, the fjs). One seeks models with flexibility to match dominant patterns in the data;
but flexibility usually comes with increased numbers of parameters. Large sample sizes
may be required to get precise parameter estimates when the parameter space has high
dimension. One also seeks models that are plausible by some analysis of the sources of
variation. And finally, the demands of statistical inference mean that different models lead
to different computational problems. Usually model choice is considered tentative, resulting
from an iterative process of specification, inference computation, and diagnostic checking.
In the allelic-ratio problem, a choice for fj that is both convenient and supported by a
consideration of the measurement proces is the bivariate normal model. For any real x and
y,

fj(x, y) ∝ exp

{
−
(

1

2

)[
(x− aj)2

σ2
1,j

+
(y − bj)2

σ2
2,j

− 2ρj

(
x− aj
σ1,j

)(
y − bj
σ2,j

)]}
(2)

This is parameterized by means aj and bj, variances σ2
1,j and σ2

2,j, and correlations ρj, for
j = 1, 2, 3. Discrete mixtures of normal distributions are used frequently in applied statistics
(e.g., McLachlan and Peel, 2000). Level sets of the component densities are ellipses, as
inspection of equation 2 shows, and these are illustrated in Figure 2 when the parameters
are fixed at values estimated from the data by the method of maximum likelihood. That
is, parameter settings are found to maximize the probability of what has been observed, or
equivalently its logarithm l:

l =
∑

i∈tumors

log f(xi, yi) +
∑

i∈normals

log f1(xi, yi)

where the data (Xi, Yi) are fixed at their observed values (xi, yi) and where the marginal
density f(x, y) is as in equation (1). Owing to the sum inside the logarithm of f , this
estimation problem presents a somewhat complicated computing problem, which I visit next
before considering inference summaries derived from the fitted model.

[Figure 2 about here]

Discrete mixture models form the quintessential application of the Expectation Maxi-
mization (EM) algorithm, perhaps the most important statistically-based optimization method.
Briefly, EM proceeds by first considering the logarithm of the likehood function one would
compute if one were lucky enough to also observe the {Ui}. A mathematical form of the
complete-data log-likelihood lc is readily available, but the function itself cannot be evaluated
because in tumor tissues one lacks the missing Ui:

lc =
∑
i

∑
j

1[Ui = j] [log pj + log fj(xi, yi)] .

EM proceeds by maximizing instead the conditional expectation of lc given the available data,
using a current guess at the parameter values needed to compute the conditional expectation.
This general process is described by McLachlan and Peel (2000) and is elaborated by Fraley
and Raftery (2002) in the context of Gaussian mixture models. Indeed, Fraley and Raftery’s
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mclust software system provides a powerful and user-friendly approach to mixture-model
analysis. For the allelic-ratio example I would have used mclust had it not been for further
intrinsic constraints on the parameter values suggested by the genetic context.

Considering the effects of LOH or MOH on allelic ratios, one expects, for example,
that the DNA content of cells that are MOH-DNA ought to have the same average value,
regardless of whether the cell’s path to tumor formation follows the MOH-DNA/MOH-
RNA pathway or the MOH-DNA/LOH-RNA pathway. This imposes constraints on model
parameters, since different classes now share aspects of the mean vector of their bivariate
distribution:

class pathway mean DNA mean RNA
1 MOH-DNA MOH-RNA a1 b1
2 LOH-DNA LOH-RNA a2 b2
3 MOH-DNA LOH-RNA a1 b2

I imposed no special constraints on the variance/correlation parameters nor on the mixing
probabilities (p1, p2, p3), and I deployed an EM algorithm to derive maximum likelihood
estimates (MLEs). Ellipses in Figure 2 express the MLEs of class means and covariance
structures; for example class 2 exhibits a positive correlation between Xi and Yi owing to
the positive slope of the regression line in that class.

Parameter estimates not indicated by Figure 2 are the estimated mixing proportions,
which I computed to be: (p̂1, p̂2, p̂3) = (0.143, 0.713, 0.144). These provide the first main
inference summary. I estimated for the population of tumors under study that the three de-
velopmental pathways are traversed in these relative proportions; prior to the Amos-Landgraf
report it was known that the three named pathways could explain tumor development, but a
quantitative assessment of prevalence had not been available. Notably, most tumors (71.3%)
are estimated to have lost APC function via loss of the wildtype APC DNA, as opposed
to some alternative mechanism. And 14.4% are estimated to have undergone an epigenetic
silencing pathway that inactivates the wildtype APC RNA. These estimates and their inter-
pretation enhanced the contribution of the Amos-Landgraf report.

In addition to estimates of pathway prevalence for the entire tumor population, the mix-
ture model analysis produces tumor-specific inferences about which pathways were probably
traversed. Statistically, this yields a clustering of the tumors into three groups. The contour
lines in Figure 1 summarize tumor-specific posterior probabilities for the epigenetic silencing
pathway:

post(x, y) = P (Ui = 3|Xi = x, Yi = y)

=
p3f3(x, y)

f(x, y)

where objects are as previously defined, and where Bayes’s rule converts the forward sam-
pling probabilities into posterior probabilities necessary for inference. Lines in Figure 1,
drawn at various reference levels of this posterior probability, show which tumors we esti-
mate to have followed the epigenetic silincing pathway. A second model-based analysis was
used by Amos-Landgraf et al. to further assess within-tumor heterogeneity; I encourage
the reader to examine the supplementary material of that paper in order to appreciate the
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more refined inferences that are possible within the mixture-model framework. Ultimately,
the model-based computations provide a useful summary of experimental data and a guide
forward towards follow-up experiments. Because they ignore detailed mechanistic elements
of the biology, there is no way that the simple mixture models discussed above provide a
comprehensive, error-free assessment of the system under study, and this limitation must al-
ways be considered lest one risks over-interpreting the numerical findings. Model diagnostics
and a fluid interaction among investigators helps to mitigate the effects of oversimplification.

3 Karyotypic abnormalities in stem cells

Owing to their great potential to advance medical therapies, stem cells have been the focus
of intense research. Both human embryonic stem cells (ESCs) and induced pluripotent cells
(iPSCs) have self-renewal capacity as well as the capacity to differentiate into any of the
body’s cell lineages. Investigators who use stem-cell stocks routinely have their cells tested for
the presence of karyotypic abnormalities, which represent large-scale genomic changes that
may have arisen during growth in culture. For example, having three copies of chromosome
12 (trisomy 12), is a relatively frequent stem-cell abnormality. Dr. Karen Montgomery’s
lab in Madison, WI, has been a central stem-cell testing facility for this purpose, and from
her lab, Taapken et al. (2011) reported karyotype data from 1715 stem-cell cultures, these
being comprised of 1163 ESC cultures and 552 iPSC cultures tested in their facility. In
addition to providing useful data to stem-cell researchers, Taapken et al. addressed a critical
question: Do ESCs and iPSCs differ significantly in their propensity to accumulate genomic
abnormalities? Ever since iPSCs were discovered, there has been debate about their utility
for biomedical research, and so there was great interest in the study findings.

I was invited to participate in the karyotype data analysis, which seemed somewhat
elementary at first. From data in Table 1 of Taapken et al., there are m = 1163 ESC
cultures, of which x = 150 show some kind of abnormal karyotype; similarly there are
n = 552 iPSC cultures of which y = 69 are abnormal. Evidently, the rates x/m = 12.9% and
y/n = 12.5% are quite close. To be more precise, x and y are realizations of random counts
X and Y . One might reason that X and Y have binomial distributions, since they represent
sums of Bernoulli trials that are reasonably thought to be independent, based on the nature
of the karyotype assay, and then compute a p−value. Recall, the p−value measures the
probability of something as or more extreme a difference than the observed difference, in
hypothetical repeats of the study, and assuming no real difference in underlying rates. Of
course, in comparing binomial counts, either Fisher’s exact test or Pearson’s chi-square test
would do (e.g. Agresti, 1990, page 59), and both indicate that 12.9% and 12.5% are not
significantly different (p−value = 0.9).

I might not be discussing the case if that was the end of the story! Looking deeper, there
were several important issues not accounted for in the above analysis. On one hand, there
was a variety of abnormalities and investigators wanted to look specifically at the components
comprising the overall aberration rate. More substantially, a potentially important factor
called passage was not accounted for, though it could easily have affected the comparison.
Roughly speaking, passage refers to the age of the cells in culture. As cells grow in vitro,
they naturally reach the limits of their containing vessels; cells are passaged when a small
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sample is transferred to a new vessel. Most of the cell cultures considered in Taapken et
al. included data on the passage number at the point when the karyotype was measured
(1662 of 1715 cultures). Figure 3 summarizes the passage data for the m′ = 1128 ESC
cultures and the n′ = 534 iPSC cultures for which data were available. Evidently, the iPSC
cultures were significantly younger (i.e., measured at significantly lower passage number)
than the ESC cultures. Not accounting for passage created a problem because aberration
rate ought naturally to increase with passage, if it is related at all; in reality, it might be
that iPSC cells have a significantly higher rate of abnormality, but they appear similar to
ESC cells because of the imbalance in the timing of the measurements. Fortunately, the
available data structure permitted a more refined statistical analysis, since on most cultures
both aberration and passage information were measured.

[Figure 3 about here]

It is helpful to introduce some notation before proceeding further. Consider the set {i}
indexing the cultures for which both aberration data and passage data are available. Suppose
also in most of what follows that a specific aberration (e.g., trisomy 12) is in focus, which
is to be compared between ESC and iPSC. Let Yi be the Bernoulli trial indicating whether
(Yi = 1) or not (Yi = 0) culture i is observed to have the aberration in question. Let Zi be
the passage variable, recording the passage number at the time the karyotype is measured,
and let Xi denote the cell type (ESC or iPSC). Thus each culture i provides data (Xi, Yi, Zi).
The analysis deployed in Taapken et al and reviewed here proceeded using a model for the
conditional probability

π(x, z) = P (Yi = 1|Xi = x, Zi = z), (3)

for both cell types x and all passages z. Considering the relatively large sample size (1662),
I suspected that a parametric model might be too restrictive and further that there might
be sufficient information to reliably use something nonparametric. As an aside, an obvious
parametric model would be logistic regression, in which log{π(x, z)/[1−π(x, z)]} = a+bx+cz
for parameters a, b, c. Instead, I developed a model by reasoning as is often done in event-
time modeling. I supposed that each culture i is associated with a latent true event time Ti
that marks when the cells first incurred the named karyotypic aberration, considered relative
to a lifespan of cells from initial establishment to some time well beyond the present, and
measured on the passage scale. It is generally understood that cells start life in some normal
state; any incurred damage is irreversible. Thus, the data structure is that of current status
or type-I interval censored event-time data (e.g., Huang and Wellner, 1997). Specifically,
observing Yi = 1 is equivalent to knowing Ti ≤ Zi; the onset time of the aberration must
have preceded the passage time-stamp on the cells when their karyotype was measured, else
Yi = 0. The true onset times {Ti} are unobserved, but their cumulative distribution functions
(c.d.f.’s), at least conditionally upon cell type Xi, relate to the aberration probabilities in (3),
since

π(x, z) = P (Ti ≤ z|Xi = x, Zi = z) (4)

= Fx(z),

where Fx(z) is the c.d.f. of Ti for cells of type Xi = x. The statistics student will recall the
central importance of the c.d.f. in characterizing all probability statements about a random
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variable [i.e., the c.d.f. is a non-decreasing function with range [0, 1] that at each point in its
domain is continuous from the right, and that has limits from the left.] I have also made the
seemingly innocuous assumption that Zi and Ti are conditionally independent given Xi. The
scientific question regarding differences in aberration rate between ESC and iPSC amounts
to testing a hypothesis about the c.d.f.’s FE and FiP, these both being functions of passage
z. Specifically, the null hypothesis under test is

H0 : FE(z) = FiP(z) for all passages z . (5)

On H0, and at any passage z, the probability that a cell culture acquires the damage in
question does not depend on the cell type. Deploying a test of H0 requires a test statistic
and an estimate of this statistic’s null distribution. I developed a likelihood-based statistic in
Taapken et al., even though the c.d.f.s were not restricted to a parametric form, and I used
bootstrap sampling to compute p-values. As a function of two c.d.f’s FE and FiP, consider
the log likelihood

l (FE, FiP) = log

[∏
i

P (Yi = yi|Xi = xi, Zi = zi)

]
(6)

=
∑

x∈{E,iP}

∑
i:xi=x

{yi logFx(zi) + (1− yi) log [1− Fx(zi)]}

= lE (FE) + liP (FiP) .

To parse this log likelihood, recall that independent observations have their probabilites
entering by multiplication, and hence additively on the log scale. Further, the sum separates
into two parts based on the source cell typeXi of culture i. Within cell type, the sum captures
the log of a Bernoulli likelihood in which the response probability fluctuates according to
passage through the respective c.d.f.. It is a classic statistics problem, whose solution goes
back to Ayer et al. (1955), to maximize either component lE or liP over the class F of all
possible c.d.f.’s over passage. Indeed, the pool adjacent violators algorithm proposed by Ayer
et al. delivers estimates

F̂E = arg max
F∈F

lE(F ) and F̂iP = arg max
F∈F

liP(F )

Figure 4 shows these two nonparametric maximum likelihood estimates from the Taapken
et al. data, when considering Yi to be the indicator of any form of karyotypic abnormality.

[Figure 4 about here]

With sights focused on the inference goal, one needs to construct some test statistic to
evaluate (5); that is to construct a statistic that measures a difference between ESC and
iPSC aberration rates while accounting for differences in passage distribution between the
cell types. I used the likelihood ratio statistic

T = l
(
F̂E, F̂iP

)
− l
(
F̂0, F̂0

)
where l is the log-likelihood in (6), where F̂E and F̂iP are maximum likelihood estimates in
the unconstrained model, and where F̂0 is the maximum likelihood estimate of the common
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distribution on H0. Naturally, F̂0 is calculated by pooling the ESC and iPSC data and
appying Ayer’s algorithm. Numerically, I obtained the value t = 5.35 as the realization of T in
Taapken’s data. Measuring the extent to which the event T = 5.35 provides evidence against
H0 is the final step of the hypothesis testing exercise. Indeed I know of no mathematical
result that would characterize the probability distribution of T , however this distribution
can also be estimated numerically using bootstrap sampling (e.g., Davison and Hinkley,
1997). One treats the estimated null distribution F̂0 as if it were true, and one simulates
hypothetical new data sets from this fitted model. The statistic is recomputed on every
simulated data set, providing a Monte Carlo approximation to the estimated distribution of
T . In the case under study, I found that 23% of null simulated data sets lead to a statistic
as or more extreme that t = 5.35 (Figure 5). As this p-value is quite moderate, one finds no
evidence against the null hypothesis that ESC and iPSC cells incur aberrations at the same
rate.

[Figure 5 about here]

Coda

Science is like climbing
Statistics is like rope
Often, it’s for safety
Sometimes, you can’t get there without it
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Figure 1: Allelic ratios (percentage of the wild-type allele) from 96 colonic tissue samples
in Pirc rats, in both DNA and RNA, as in Amos-Landgraf et al. 2012. Contour lines
are derived from a statistical analysis of these data and reflect properties of an estimated
three-class mixture model.
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joint density function, and a regression line. Each ellipse marks 95% of the probability
content of the component distribution, and regression lines indicate the expected RNA ratio
given the component and the DNA ratio. Note that prior to fitting the three components
were allowed to have arbitrary covariance matrices, but they were constrained to have means
expressing elements of the problem structure. The original data points are also plotted and
marked according to the component that they are most likely to have been drawn from.
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with whiskers extending out to 1.5 times the inter-quartile range, if data points lie beyond
that amount, or to the most extreme observation, otherwise. ESC and iPSC cell cultures
differ in their distribution of passage number.
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Figure 4: Nonparametric maximum likelihood estimates F̂E and F̂iP, the distributions of
time to aberration, when estimating the rates of any karyotypic abnormality in stem cell
cultures. Data are also shown in a summary format in which at each unique passage value
we record the proportion of abnormal cultures among all cultures observed at that passage.
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Figure 5: Bootstrap distribution of the likelihood ratio statistic in the stem cell case study.
The null hypothesis on test asserts that the distribution for time to aberration is common to
both ESC and iPSC. This common distribution was estimated by nonparametric maximum
likelihood via Ayer’s algorithm applied to the combined data set, and this estimated distri-
bution F̂0 was the basis for a bootstrap simulation. Repeatedly, in B = 1000 trials, two (ESC
and iPSC) bootstrap data sets were generated by drawing independent Bernoulli trials, using
fixed passage data and using F̂0 with these passages to determine the success probability of
the trials. A log-likelilood ratio statistic was computed from the ESC and iPSC bootstrap
data sets so generated, using Ayer’s algorithm separately in ESC and iPSC conditions to
obtain a statistic. The empirical distribution of these 1000 statistics is shown above; lines
indicate the position of the statistic calculated from Taapken et al. data (t = 5.35), and
thus the resulting p-value equals 0.23.


