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Discovering Combinations of Genomic Aberrations 
Associated With Cancer 

Michael A. NEW~ON 

This article introduces a model-based statistical methodology for the analysis of copy-number variations in cancer genomes measured 
by comparative genomic hybridization. The methodology allows one to infer combinations of genomic aberrations associated with the 
cancer phenotype. The stochastic model conjoins two features of cancer biology to infuse some context into an otherwise unsupervised 
learning problem. It asserts random genomic instability in a potential progenitor cell, followed by selection into a tumor of the descending 
cell lineage if the lineage experiences certain ensembles of genomic aberration. Disease heterogeneity is reflected in the possibility 
of a network containing multiple ensembles. The network of ensembles is an identifiable parameter. By forming the sampling model 
conditionally on selection, statistical dependencies (both positive and negative) can be induced between aberrations, and the model entails 
heterogeneity in the marginal rate of occurrence of aberrations. A double-Pblya distribution is introduced as a prior over the network of 
ensembles, and Markov chain Monte Carlo is developed to enable posterior computation. As an example, the methodology is used to 
reanalyze genomic aberrations from 116 renal cell carcinomas. It produces posterior probabilities that any given aberration is relevant 
to oncogenesis, posterior probabilities that pairs of aberrations reside in a common ensemble, and a point estimate of the network of 
ensembles. The methodology provides a model-based clustering of all measured aberrations according to these estimated ensembles and 
a model-based clustering of tumors according to the probable ensembles of genomic aberration that they have experienced. Although 
it is formulated here to analyze aberrations in cancer genomes, the instability-selection-network model may provide an approach to 
modeling dependence in correlated binary data on various biological systems. Limitations and possible extensions of the methodology 
are discussed. 

KEY WORDS: 	 Comparative genomic hybridization; Correlated binary data; Ensemble of genomic aberration; Genetic instability; 
Markov chain Monte Carlo; Model-based clustering; Selection. 

1. 	 INTRODUCTION Lasers excite the complex and enable the measurement of rel- 
ative abundance of the two source DNAs at each chromosomal 

The extensive body of research in cancer biology shows 
locus. Deletion of a genomic region in the tumor cells is indi- 

unequivocally that cancer tumors exhibit a wide variety of 
cated if the tumor channel fluoresces at a relatively low level, 

aberrations in the organization and content of their genomes and amplification is indicated otherwise. Signal-processing 
as compared with the genomes of normal cells. Advances in techniques reduce the fluorescence data from raw quantitative 
measurement technology allow investigators to record these intensities to discrete estimates of DNA copy number along 
aberrations at ever-increasing levels of resolution, and efforts the genome for each tumor (e.g., Piper et al. 1995; Carothers 
to catalog these aberrations have been critical to understanding 1997). Quite often, preliminary analyses further reduce the 
the heterogeneity of cancer, guiding studies of tumor biology, data to aberrations at the resolution of a chromosome arm. 
and enhancing diagnosis and treatment (Knuutila et al. 1998, Figure 1 is a graphical representation of CGH profiles from 
1999). It is a statistical problem to identify patterns in these 116 renal cell carcinomas (RCCs) collected by H. Moch and 
data that may have some biological significance. colleagues at the Institute of Pathology, University of Base1 

Comparative genomic hybridization (CGH) is a technique (Jiang et al. 2000). Following Jiang et al., here the data have 
used to measure changes in DNA copy number created by been preprocessed to the point shown in the figure; that is, 
cancerous tumor growth (Kallioniemi et al. 1992; Gray and there are n = 52 distinct aberrations (amplifications and dele- 
Collins 2000). Briefly, genomic DNA obtained from tumor tions) that either occur (dark shading) or do not occur in each 
cells is labeled with a fluorescent tag and combined with dif- of the 116 tumors. The marginal empirical frequency (EF) of 
ferently labeled genomic DNA from normal cells. The mix- each aberration is recorded in Table 2. For example, the aber- 
ture is competitively hybridized to immobilized probe DNA ration -3p (i.e., deletion of some genomic DNA on the short 
that is formed in the original chromosome-based CGH from arm of chromosome 3), the most frequent aberration, occurs in 
a set of metaphase chromosomes anchored to a glass slide. 72 of the 116 tumors. (Note that CGH data are different from 

microarray gene expression data, which have received so much 
attention in recent statistical literature. Both kinds of measure- 
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Potential Aberration 

Figure 1. CGH Profiles: Moch's RCC Data. 

and their inactivation (by, e.g., deletion) is associated with the 
cancer phenotype. By this reasoning, oncogenes and tumor- 
suppressor genes may reside in genomic regions of frequent 
amplification or deletion. Kainu et al. (2000) combined CGH 
data and more traditional linkage data to implicate a genomic 
region as harboring a putative breast cancer susceptibility 
gene. Earlier, Hemminki et al. (1997) used this strategy to 
study Peutz-Jeghers syndrome. Beyond gene mapping, CGH 
data may provide insights into the etiology of cancer, as the 
work of Roylance et al. (1999) has demonstrated. In all of 
these efforts, an ongoing challenge is to distinguish important 
genomic aberrations from noise accumulated in genetically 
unstable tumors (Gray and Collins 2000). 

Elementary data analysis methods are often used to identify 
single genomic regions that are either amplified or deleted at 
an unusually high rate in the tumors under study. For instance, 
an investigator might graph a barplot of empirical aberra- 
tion frequencies and then report a few of the most commonly 
aberrant regions (e.g., the horizontal barplot in Fig. 1). Some 
investigators have recognized the statistical nature of this type 
of inference and have adopted procedures that try to separate 
oncogenic signal from sporadic (neutral) changes caused by 
genetic instability (Brodeur, Tsiatis, Williams, Luthardt, and 
Green 1982; Newton, Wu, and Reznikoff 1994; Jarrard et al. 
1999; Jiang et al. 2000). 

As larger CGH datasets are obtained, it is becoming clear 
that dependencies exist among events in different genomic 
regions. Underlying this observation is the notion that certain 
combinations of genetic events have some biological signifi- 
cance in the context of cancer development. Several genomic 
aberrations could correspond to elements of a multistep 

pathway that brings a normal cell lineage to its observed 
tumorigenic state, and thus, because some tumors follow 
that pathway, positive dependence among these aberrations 
may be expected. Likewise, disease heterogeneity could be 
a source of negative dependence among aberrations. Tumors 
that are analyzed together because they are morphologically 
and histopathologically homogeneous may be molecularly dis- 
tinct and may have arisen through different developmental 
pathways. 

The pioneering work of R. Desper, A. Schaffer, C. Papadi- 
mitirou, and colleagues has addressed the problem of how 
to analyze dependencies among multiple genomic aberrations 
measured by CGH. This group proposed tree models for onco- 
genesis and computational approaches to analyze CGH pro- 
files (Desper et al. 1999, 2000; Jiang et al. 2000). Essentially, 
these approaches rely on empirical pairwise and marginal 
event frequencies among a selected set of marginally most 
frequent aberrations. The pairwise event frequencies may be 
transformed into pairwise distances and then processed by a 
distance-based phylogenetic tree-building algorithm. In a sec- 
ond method, the data are used in a maximum weight branching 
algorithm to reconstruct a different kind of tree in which both 
internal nodes and leaf nodes correspond to aberrations. Both 
of these methods are readily applied and provide an infor- 
mative view of positive associations present in the data. For 
example, tree-based calculations were central in the analysis 
of a breast cancer susceptibility gene by Kainu et al. (2000). 

Insofar as the tree-based methods are estimating underlying 
properties of a cancer, it would seem to be beneficial to have 
some measures of uncertainty or standard error associated with 
the tree estimates, but these are not yet available. Also, exist- 
ing methods do not cope with potential negative associations 
among aberrations, or the possibility that the aberrations are 
not arranged in a tree structure. The methods reduce the CGH 
data to marginal event frequencies and pairwise distances, and 
thus lose potentially important higher-order information. Fur- 
ther, the methods require that the relevant aberrations to be 
placed on the tree be preselected on the basis of their marginal 
frequencies. If there is significant disease heterogeneity, then 
such preselection might omit from consideration aberrations 
that affect a subset of tumors. Nevertheless, the tree-based 
calculations represent a significant methodology for studying 
dependencies among genomic aberrations, and they go far 
beyond earlier efforts that considered aberrations to arise inde- 
pendently (e.g., Newton et al. 1994). 

Presented here is a complementary and rather more statis- 
tical approach to the problem of analyzing multiple genomic 
aberrations. The approach involves a joint probability distribu- 
tion for the measured CGH profiles-ne that is derived from 
some elementary structural features of cancer biology. The 
joint distribution is parameterized by ensembles of genomic 
aberrations. Each ensemble is an unordered collection of aber- 
rations whose co-occurrence in a progenitor cell lineage is 
somehow beneficial to the tumor, in a sense specified in 
Section 2. Elements of an ensemble may correspond to ele- 
ments of a multistep pathway of tumor development, although 
the methodology presented here makes no attempt to infer 
the order in which aberrations occur in such a pathway. The 
possibility of disease heterogeneity corresponds to the possi- 
bility of multiple ensembles. Together, multiple ensembles of 
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genomic aberrations make a network object that determines 
the distribution of the CGH data. Owing to the complexity of 
the parameter space of networks, a Bayesian inference strat- 
egy is adopted and posterior computations are implemented 
using Markov chain Monte Carlo (MCMC). This not only 
enables the calculation of point estimates, but also provides a 
full posterior distribution describing uncertainty in aspects of 
the network. The range of posterior inferences is quite exten- 
sive and includes model-based clustering of both aberrations 
and tumors. Further, the proposed method does not reduce 
data to pairwise summaries; rather, the full joint information 
is encoded in a likelihood function. Preselection of relevant 
abnormalities is not required either; rather, the relevant abnor- 
malities are inferred simultaneously with the network struc- 
ture. The method rests on stochastic elements of CGH data, 
allowing sporadic aberration and measurement error. For tech- 
nical reasons, the calculations presented here are limited to 
nonoverlapping ensembles; Section 5 discusses this limitation 
and ways to overcome it. 

The stochastic model central to my inference calculations 
is constructed in Section 2. Part of the rationale for the model 
is that it encodes sampling properties that are evident in CGH 
data. These properties are reviewed in Section 3. Model-fitting 
techniques are summarized in Section 4, and are applied to the 
RCC data in Section 5. The inferences obtained by instability- 
selection modeling are compared with inferences obtained in 
earlier analyses. A brief discussion follows. 

2. INSTABILITY-SELECTION-NETWORK MODEL 

To start, list the potential aberrations to be measured by 
CGH as { l ,  2, . .. ,n} and let x = (x,, x,, ...,s,) denote 
the CGH profile from one tumor, where x, is a binary indi- 
cator for the ith aberration (i.e., x is one row in Fig. 1). 
Simply, x, = 1 means that the aberration occurs and x, = 0 
means that it does not occur. In the RCC example, n = 52 
(after some initial preprocessing); the data are recorded at the 
rather coarse resolution of the chromosome arm, and there 
are separate records for amplifications and deletions. The vec- 
tor x describes for each arm whether or not a deletion was 
observed in the tumor cells and also whether or not an ampli- 
fication was observed. Here x is viewed as the realization of a 
random vector X = (XI,  X,, . . . ,X,) whose joint probability 
distribution represents all that can be known about the cancer 
under study from the CGH data. 

In the instability-selection-network (ISN) model, the joint 
probability distribution p(x) is parameterized by a network, 
e = (C,; {C,, C,, . . . ,C,}), and two scaler parameters, a 
and p ,  both in (0 , l ) .  The network consists of K ensembles 
C,, . . . ,C,, each of which is a subset of {1,2, .  . . ,n } .  An 
aberration i is said to be relevant if it is in some ensemble; oth- 
erwise, it is neutral. The special set Co in the definition of the 
network e is the collection of all neutral aberrations. By defi- 
nition, Co is disjoint from every ensemble Ck, k = 1,2, . . . ,K. 
It is meaningful to allow different ensembles to overlap, 
but at present calculations are feasible only in the special 
case of nonoverlapping ensembles. In what follows, therefore, 
{C,, C , ,  . . . ,C,} forms a set partition of {I,  2, .  . . ,n}. (See 

Section 6 for more on this restriction.) Using the nonoverlap- 
ping ensembles assumption, the joint probability mass func- 
tion for an aberration profile X = (XI,...,X,) becomes 

where t ,  = CtGck(1-x,), m, is the cardinality of ensemble 
C,, and % =1 - ( 1 - a ) ( l - p ) .  

The joint distribution (1) is derived by noting that for x 
to have been observed, the cell lineage in which x occurred 
must have survived in the tumor cell population to the time 
of observation. Some well-accepted cancer biology is encoded 
mathematically; genetic instability creates somatic genomic 
aberrations, and cell-level selection subsequently determines 
whether or not the affected lineage will pass descendants 
into an observable tumor. [The ideas of instability (see, e.g., 
Lengauer, Kinzler, and Vogelstein 1998) and selection (see, 
e.g., Tomlinson, Novelli, and Bodmer 1996) have deep roots in 
the cancer literature.] Thus p(x) is really a conditional proba- 
bility of a profile given that the progenitor cell lineage, having 
incurred damage x, is selected by oncogenesis to exist at the 
observation time. Keeping things simple, the model makes no 
claims about the size of the tumor cell population or anything 
about the cell division dynamics, which seems reasonable in 
light of the information available from the CGH profiles. 

The exact form (1) is determined by a particular model for 
the instability and selection components. The instability com- 
ponent is a simple model for neutral, random genornic dam- 
age (Volpe 1990). I say that a potential aberration i can occur 
either overtly, in which case X, = 1, or covertly, in which case 
Y, = 1, or both. Here {X,} are taken to be independent and 
identically distributed (iid) Bernoulli trials with success prob- 
ability a. Independently, {Y,} are iid Bernoulli(p) trials. The 
overt damage X = (X,, . . . ,X,) is potentially observable, but 
the covert damage is completely unobservable; it represents 
forms of damage that may occur but that are not measurable 
by CGH, such as suppressor gene silencing, somatic recombi- 
nation, or other factors. In summary, the instability component 
entails two forms of random damage that occur independently 
of each other and independently across the genome. Aberra- 
tion i occurs somehow with probability 0 = 1- (1 -a ) ( l  -P). 

The random genetic instability is filtered by the process of 
cellular selection. Selection, denoted by SEL, occurs if for 
some ensemble Ck, genetic instability causes all aberrations 
i E Ck to occur. Otherwise, SEL does not occur, and no tumor 
becomes available to be observed (Fig. 2). To emphasize a 
point made earlier, the ensemble C, is a collection of aberra- 
tions whose co-occurrence in a progenitor cell lineage is ben- 
eficial to the tumor. Also, the joint distribution p(x) in (1) is 
seen to be a conditional distribution p(x) =P(X =xlSEL). It 
is interesting that Bayes rule is used here to derive the sam- 
pling model for data (see App. A). 

3. PROPERTIES OF THE MODEL 

The ISN model captures a range of statistical properties 
present in real data. By filtering through the event SEL, 
interesting nonrandom features emerge in p(x) that are not 
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Figure 2. Schematic of the ISN Model. For this hypothetical cancer, disease heterogeneity is represented by three ensembles, containing 
a total of six relevant aberrations, indicated by boxes in the top three rows of each panel. Other aberrations are neutral. A potential progenitor 
cell (left) that incurs all of the aberrations in at least one ensemble will become the ancestor of cells in an observable tumor (right). That is, if 
all boxes in one row are gray (indicating that aberration occurs, either overtly or covertly), then the full complement of overt aberrations in the 
corresponding tumor can be measured. There is no tumor to be measured otherwise. Evidently, genetic instability in this example leads to a 
tumor by a pathway containing the {+ 17p, - 79, - 9p) ensemble (lower panel). 

present in the instability component before SEL. For exam- 
ple, there is heterogeneity in the marginal aberration rate. For 
any relevant aberration i, P(Xi = 1ISEL) > a ,  and this prob- 
ability decreases as the size of the corresponding ensemble 
increases, making large ensembles difficult to detect. Natu- 
rally, P(Xi = 1ISEL) = a for neutral aberrations i E C,, and 
these aberration indicators are independent of all other mea- 
surements. Selection also induces dependencies between rel- 
evant aberrations. When there are multiple ensembles (i.e., 
K > I), the following results hold: 

1. cov(Xi, XjISEL) > 0 if i and j are in the same ensemble. 
2. cov(Xi, XjlSEL) < 0 if i and j are in different 

ensembles. 

See Appendix B for proofs. 
Figure 3 shows sampling properties of profiles obtained on 

the hypothetical cancer in Figure 2. The values a = .10 and 
p = .05 were used, and lo4 aberration profiles were simulated 
according to (1). As predicted by theory, the simulation shows 
both heterogeneity of marginal rates and negative and positive 
covariance between aberrations. 

From the perspective of model development, it is inter- 
esting to ask whether or not the network of ensembles is 
identifiable-that is, do two different networks necessarily 
correspond to different joint distributions (1). If so, then it 
is known, for example, that the sequence of posterior distri- 
butions over network space computed from an ever-growing 

sample of CGH profiles will concentrate on the true under- 
lying network, in the context of the ISN model. Appendix B 
sketches the proof of identifiability in the case where a and P 
are known. 

4. BAYESIAN ANALYSIS 

4.1 Overview 

The likelihood function from a set of CGH profiles 
x' ,  x2, . . . , xN is obtained naturally as the product 

where p(x) is as in (I), C' denotes the unknown network of 
ensembles, (a ,  P) are rates of overt and covert damage, and 
N is the number of tumors (N = 116 in the RCC example.) 
An effective approach to extracting information from this like- 
lihood is to form the posterior distribution over the parameter 
space, 

where .rr(C', a ,  /3) is a prior distribution to be specified. All 
inferences arise from this posterior distribution. One may 
attempt to find the global maximum [the maximum a posteriori 
(MAP) estimate], although the extent of posterior uncertainty 
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+ve corr (b) -ve corr 

Figure 3. Sampling Properties of Data From the Hypothetical Network in Figure 2. (a) A barplot indicating the marginal aberration frequency for 
each potential aberration. Gray levels distinguish aberrations in different ensembles; black corresponds to neutral aberrations. (b) The correlation 
between pairs of aberrations. Black corresponds to 0, and lighter shades indicate increased correlation magnitude (positive correlation on the 
left; negative correlation on the right). Positive correlation within ensembles and negative correlation between ensembles is indicated. Plots are 
based on lo4 simulated tumors. 

may require that additional features be reported. Reporting rations are relevant. The functional form is 
several marginal posterior summaries is useful. For instance, 
the posterior probability that aberration i is relevant [i.e., = rKr (7 )  [nkl r(mk)] r ( m  + l ) r ( n  - m + 1) 

P(i E Ck, some k 2 1 ldata)] can be approximated by the empir- r ( 7  + m) r ( n  + 2) 
7 (3) 

ical frequency of this event in networks sampled from the where K is the number of ensembles, m, is the size of ensem- 
posterior. Ensemble information is contained in an interest- ble C,, m = c:=, mk is the total number of relevant aberra- 
ing summary matrix that has, for each pair (i9 j), the ~os te -  tions, - is the number of neutral abemtions, and r ( )  is 
nor probability that both i and j = relevant and in the same the gamma function. Note two facts: the induced prior dis- 
ensemble. Qpically, the posterior distribution is also com- tribution for the network size is uniform between and the 
puted for the number of K' and the number of total number of potential aberrations n, but still (2) the prior 
relevant aberrations, m = zLl mk. tends to penalize larger networks. 

4.2 Prior 

A prior distribution for the network v(t?) is specified sep- 
arately from that of the rate parameters ~ ( a ,  P), and the full 
joint prior is obtained by multiplication, thus encoding prior 
independence. A prior restriction that the covert aberration 
rate /3 be smaller than the overt aberration rate a is not nec- 
essary theoretically, but it is helpful, because the likelihood 
can become quite flat if /3 is too large. So this restriction is 
taken, but otherwise the prior for (a ,  p )  is uniform. The prior 
v(t?) contains a single hyperparameter, r > 0, which affects 
the amount of clustering expected in the network t?. This is 
called a double-Po'lya prior; one piece governs the set parti- 
tion, and another piece governs whether or not potential aber- 

For co~putationalreasons, a simple form of data augmen- 
tation is used to represent the network t?. t? is represented 
using two vectors: a binary relevance vector a = (a,, . . . , a,) 
characterizing Co and a label vector c = (c,, . . . , c,) encod- 
ing ensemble structure. Thus ai = 0 means i E Co, and a i  = 1 
means that i is relevant. Elements ci reside in some label space 
(here the unit interval). The particular numerical values have 
no meaning beyond serving as labels for ensembles. Two rele- 
vant aberrations, i and j, are in the same ensemble iff ci = cj, 
and so clearly one can obtain t? from the pair (c, a). Use of 
the pair (c, a )  constitutes a mild form of data augmentation, 
because there is superfluous information in the labels on neu- 
tral aberrations. The Markov chain calculations are easier to 
set up in this augmented space. Interestingly, the prior (3) on 
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e is induced by a simple prior on the pair (c, a )  in which c 
and a are independent, c has a uniform-P6lya prior, and a has 
a Bernoulli-P6lya prior (see App. C). 

4.3 Markov Chain Monte Carlo 

Markov chain Monte Carlo (MCMC) may be the only prac- 
tical approach to posterior analysis (e.g., Tierney 1994; Gilks, 
Richardson, and Spiegelhalter 1996), but several factors make 
it difficult to construct an effective MCMC sampling tool. 
For one thing, the network I!? resides in an enormous dis- 
crete space. The number of networks is greater even than 
the Bell number of set partitions (e.g., van Lint and Wilson 
1992, p. 105), owing to the labeling of some aberrations as 
neutral. For example, with n = 11 potential aberrations as in 
Figure 2, there are 4,213,596 different networks. The like- 
lihood function also creates certain irregularities that make 
obvious choices for move types quite ineffective. For instance, 
two networks that differ by one large ensemble may have 
much closer likelihoods than otherwise similar networks that 
differ by a small ensemble. 

Recall that an MCMC implementation involves realizing 
a Markov chain s,, s,, . . . , s, in the space of the unknown 
(augmented) state s = (c, a ,  a, P). Each of the B - 1 scans is 
built from a series of proposal-test steps, and on such a step, 
a proposal state s* is drawn from some distribution q(s, s*). 
The Metropolis-Hastings ratio is 

T(S* Idata)q(s*, s) 
r = 

.rr(sldata)q(s, s*) ' 

where ~(s lda ta)  is the data-augmented posterior associated 
with (2). With probability min(r, I), the chain moves to s*; 
otherwise, it continues at s. Typically the chain is run for 
several million scans, subsampling to reduce the number of 
states used in posterior calculations. 

The proposed implementation has two move types affecting 
the vector c, two move types affecting the relevance vector a ,  
and a small-box uniform random-walk proposal affecting the 
rate parameters a and p. Appendix C gives details of the 
network move types. 

The potential for mistakes in a complex MCMC implemen- 
tation merits a series of basic tests. One test is to remove the 
likelihood component and use the algorithm to simulate the 
prior distribution. Another is to run the calculations on simu- 
lated data. Newton (2001) presented a range of such checks; 
one is reported here. The simulation involved a network like 
the one in Figure 2, (K = 3, m = 6), but with many more 
(n - m = 44) neutral aberrations, and thus a total of n = 50 
potential aberrations. Four datasets each comprising 100 aber- 
ration profiles were generated according to (1) using a = .10 
and /3 = .05. Two independent MCMC runs of length 500,000 
were applied to each of the four datasets and were subsampled 
every 500 scans, giving a sample of 1,000 networks for each 
run. This replication provides some information about Monte 
Carlo error in the MCMC in addition to sampling error from 
data. Summaries from each run included the MAP estimate of 
the network, the vector of marginal posterior probabilities that 
each aberration is relevant, and estimates of the overtlcovert 
aberration rates. 

Posterior Probability (mean over replicates) 

Figure 4. MCMC Results, Simulated Data. For each of n = 50 aber- 
rations, the empirical aberration frequency versus the average marginal 
posterior probability of relevance across the 8 MCMC runs is plotted. 
Solid (gray) dots indicate the six relevant aberrations. 

As an overall summary, Figure 4 compares the average 
(over 8 runs) marginal posterior probability of relevance to the 
empirical aberration frequency for all n = 50 potential aber- 
rations. The six relevant aberrations are indicated by solid 
shaded circles. Indeed, the association between the posterior 
probability and the empirical frequency is quite strong, as is to 
be expected. The aberration -Y in this hypothetical network 
is in an ensemble by itself and presents the highest marginal 
rate of occurrence. It also appears in every one of the 8,000 
posterior-sampled networks. The aberrations -3p and +6q 
constitute another ensemble; their marginal rate of occurrence 
is high, and in datasets of 100 tumors they tend to 'show high 
posterior relevance probability. In contrast, the three aberra- 
tions on the largest ensemble have statistics close to the back- 
ground and do not show high posterior relevance probability. 
Further summaries, not shown, indicate that the Monte Carlo 
error of the MCMC tool is fairly low. 

5. DATA ANALYSIS 

Using the ISN methodology, this study reanalyzed CGH 
profiles from 116 RCCs collected by H. Moch and colleagues 
at the Institute of Pathology, University of Base1 (Jiang et al. 
2000). Following Jiang et al., data on arms lp, 16p, 19p, 
19q, and 22q and Y were excluded from the analysis because 
of potential inaccuracies in the CGH measurements on these 
arms. This leaves 36 chromosome arms for which there is 
both amplification and deletion information. Thus there is a 
total of n = 72 potential aberrations. As a minor filter, a set of 
20 potential aberrations that never occurred in the dataset was 
removed from further consideration, reducing the problem to 
n = 52 (Fig. 1). In the first calculations reported here, the data 
were not reduced further to a set of n = 12 nonrandom aber- 
rations as was done by Jiang et al. (2000) using the method 
of Brodeur et al. (1982); instead, the analysis considered the 
full spectrum of observed abnormalities. 
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Table 1. Network Estimates, RCC Example 

Mean 
r Run Ensemble Relevant aberrations Pr(Re1evant) 

NOTE: T is a hyperparameter, "Run" ~ndicates the two independent MCMC realizations, and "Ensemble" labels the two different ensem- 
bles found in the MAP network in each case. Aberrations are sorted from lell to right by decreasing marginal probability of relevance. The 
final column shows the average (across aberrations) posterior probability of relevance for those aberrations in the particular ensemble. 

It is straightforward to demonstrate that patterns of rate 
heterogeneity and dependence exist in these data to a much 
greater degree than would be expected by chance alone. Some 
elementary permutation tests were performed to demonstrate 
this (data not shown). One test involved shuffling the columns 
in Figure 1 and repeatedly recomputing the sample covariance 
among potential aberrations. The magnitude of positive sample 
correlations was particularly significant. The use of permuta- 
tion procedures provides an initial assessment of structure in 
data and naturally precedes more elaborate model-based cal- 
culations (e.g., Besag and Clifford 1989). 

Next, the MCMC sampler was applied to fit the ISN model, 
using two replicate runs on each of three different hyperpa- 
rameter values, r = l , 5 ,  and 10. These values capture a broad 
range of prior variation over network space. Large ensembles 
are expected for T = 1 (e.g., on average fewer than 5 ensem-
bles are expected given 50 relevant aberrations). With T = 10, 
more smaller ensembles are expected (see fig. 4 of Newton 
2001). Chains of length B = 2 x lo6 were initiated at a ran- 
dom network and were subsampled every 1,000 scans, yield- 
ing samples of 2,000 states for output analysis. There was 
quite good mixing of the chains. (See Newton 2001 for some 
output analysis.) 

There is a striking perfect agreement across runs and priors 
in the MAP estimate of the network (Table 1). The estimate 
contains & = 13 potential aberrations arranged in two ensem- 
bles. As expected, these relevant aberrations exhibit very high 
empirical frequency of occurrence. Table 2 compares the EF 
with the marginal posterior relevance probability for all 52 
potential aberrations. Here the replicate runs are combined, 
but the results from different priors are shown separately. The 
numerical value of posterior relevance probability is somewhat 
sensitive to the prior, although the most relevant abnormalities 
are clear in each case. 

Because the calculations attempt to use all joint informa- 
tion in the sample, the posterior relevance probability is not 
perfectly correlated with marginal EF. A useful posterior sum- 
mary that provides some dependence information is the pair- 
wise probability that a given pair of potential aberrations i 
and j are both relevant and in the same ensemble. Treating 
the resulting matrix as a similarity matrix, distance- 
based hierarchical clustering was applied to obtain the trees 

shown in Figure 5. Such posterior probability trees may pro- 
vide some useful inferences beyond the simple point esti- 
mates of Table 1. For one thing, they tend to be stable as the 
prior T changes. They all strongly indicate a single ensemble, 
C, = (-139, -9p, -69, -49, +17q, -3p}, but yet provide 
evidence for and structure of a second ensemble. Notably, the 
potential aberrations that are probably neutral appear bunched 
together and are well separated from those that are probably 
relevant. One can find a signal much more simply by cluster- 
ing these posterior probabilities than by running, say, a hier- 
archical clustering on the raw CGH profiles. 

The model formulation provides a range of data analysis 
possibilities. Figure 6 shows one example. The MAP net- 
work from Table 1 is taken as fixed, and for each tumor 

Table 2. Marginal Posterior Relevance Probabilities, RCC Data 

i EF 1 5 10 i EF 1 5 10 

+XP l8 .96 .96 .74 -14q l5 .43 .26 .06 
+Xq 16 .96 .96 .74 -15q 1 .40 .22 .03 

.40 ,21 ,03 Bp ,42 ,22 .03 

-2p 2 .39 .22 .04 -1 8q 18 .42 .22 .04 
-29 15 .53 3 9  -20q 1 .41 .22 .03 

72 1.00 1.00 1.00 -Xp 19 .68 .58 .40
-3P 13 .52 .38 .18 -Xq 23 .60 .45 .29-3q 

NOTE: 1 ind~cates the aberration out of n= 52, EF stands for emplrical frequency of occur- 
rence of the aberrat~on in 116 profiles, and the columns 1, 5, and 10 indicate the hyperpa- 
rarnetervalue T .  
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Figure 5. Tree Summary of Painvise Posterior Probabilities. Leaves correspond to potential aberrations. Aberrations plotted at a height close 
to 0 are probably in an ensemble with neighboring aberrations. Computations used default settings in the hclust function in R. 

the posterior probability that it experienced all aberrations in 
each of inferred ensembles, given the observed CGH profile, 
is determined. (This is simply the covert rate raised to the 
number t ,  of requisite covert aberrations for that ensemble.) 
The figure shows potential aberrations rearranged according to 
the two ensembles C, and C, and the neutral aberrations C,. 
Then the tumors are reorganized according to the probability 
that they experienced all of the aberrations for that ensemble. 
It can be inferred that 102 of the 116 tumors probably experi- 
enced C,, 8 probably experienced C2,and C, and C, were tied 
for another 6 tumors. Effectively, the computations provide a 
model-based clustering of both the aberrations and the tumors. 
In cases where the ensemble predictions are more balanced, 
one might use this information when attempting to correlate 
clinical outcomes with the genomic profiles. 

In their analysis, Jiang et al. (2000) used the subset of 
n = 12 aberrations {-3p,  -4p, -49, -69, -8p,  -9p,  -139, 
-189, -Xp,  +17q, +Xp} that were deemed significant by a 
preselection procedure. For the most part, these aberrations 
also have a high posterior probability of being relevant. One 
exception is -189, which, although it occurs in 18 patients 
(16%), is probably neutral. As Jiang et al. had concluded, it 
can also be inferred that -8p is probably relevant and is in 
a separate ensemble from some of the other important aberra- 
tions. On the other hand, the present analysis does not support 
the conclusion of Jiang et al. that there may be two groups of 
RCCs, one group characterized by (-69,  +17q, +17p} and 
the other by {-9p,  -139, -189). This may be due to the fact 
that the proposed model does not allow overlapping ensembles 
(e.g., a network with these two ensembles each augmented by 
-4q or something else might fit well), but it may also reflect 
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0 10 20 30 40 50 

Reordered aberration 

Figure 6. RCC Data Reorganized by Model Fit. Same raw data are 
used as in Figure 1, but the columns (aberrations) or organized from left 
to right accotding to the estimated ensembles, and the rows (tumors) 
are reorganized according to posterior probability of experiencing that 
ensemble. That is, in the first 102 tumors, ensemble C ,  (the left block 
of columns) has a higher probability of having been experienced than 
ensemble C, (the second block of columns). In the next six rows, prob- 
ability is a tossup, and in the top eight rows, ensemble C, is more prob- 
able. Most aberrations (the right block of columns, C,) are considered 
to be neutral. 

the limited signal available in these data given the level of 
neutral aberration. 

To extend the present analysis, posterior sampling was 
repeated with all three priors for the dataset formed by 
restricting to the specially selected n = 12 potential aberra- 
tions. Again, a striking consistency was seen across priors 
and MCMC runs in the MAP network estimate. This is a 
one-ensemble network comprising exactly those aberrations 
deemed to make up ensemble C, from the first analysis (see 
Table 1). So the methodology applied to the full set of aber- 
rations picked up two potential ensembles, one of which was 
found again in a specially selected subset. Interestingly, the 
minor ensemble C2 was not picked up in the small dataset; 
but such detection could very well have been hampered by 
the preselection, which is based only on empirical frequency. 
This preselection inflates the estimate of the neutral rate a, 
and thus makes it more difficult to identify relevant aberra- 
tions. From the large dataset, the estimate is & = .07, but for 
the reduced set, it is about & = .20. The estimate of a is more 
sensitive to the prior r in the latter case. 

One way to account somewhat for the nonoverlapping 
ensembles limitation of the model is to apply the method- 
ology to certain data subsets. Of the 116 tumors, 72 exhib- 
ited the -3p aberration. The foregoing MCMC calculations 
were applied to these 72 profiles in an attempt to infer 

the conditional distribution of CGH profiles given that -3p 
has occurred. The MAP network has just a single ensemble, 
C, = {+17q, -4q, -6q, -9p, -13q}, for all runs and priors. 
Indeed, this is the very same dominant ensemble from the first 
analysis, with -3p withdrawn. A more refined network struc- 
ture could not be inferred, perhaps owing to the reduced sam- 
ple size. Interestingly, the probable relevance of -8p is low in 
this analysis; but of the eight tumors that probably experienced 
C2, only two exhibited -3p. In other words, the probable rel- 
evance of -8p is linked to tumors that had been removed in 
this conditional test. 

6. CLOSING REMARKS 

Advances in molecular technology are providing oncolo- 
gists with an unprecedented view of the genomic abnormal- 
ities presented by cancerous tumors. The goal of this study 
was to develop model-based statistical tools that may help 
oncologists identify and characterize significant combinations 
of these aberrations. The model assumptions react to basic ele- 
ments of cancer biology, and the resulting calculations provide 
a range of inferential summaries that may complement exist- 
ing tree-based analysis methods. They infuse some biological 
context into an otherwise unsupervised learning task. 

As with any such effort, there is a tension between com- 
plexity and validity of the stochastic model. This study has 
attempted to identify central biological elements affecting 
variation in CGH profiles so that the model formulation 
remains quite simple and yet still captures the key statistical 
features of CGH data. In striking this balance, certain deci- 
sions have been made that seem appropriate but that could 
be revisited in further work. For instance, the instability com- 
ponent of the model might be extended to allow different 
prior aberration rates between amplifications and deletions, or 
even among chromosome arms. [The method of Brodeur et al. 
(1982) makes a certain length-based adjustment, but this does 
not seem to be appropriate for the CGH profiles analyzed.] 
One could also allow a second form of measurement error in 
which measured aberrations might correspond to false posi- 
tives. The network and selection structure could be enhanced. 
For example, one could allow a bypass path on which no mea- 
surements are taken but that corresponds to another way for 
a progenitor cell to become a tumor. The consistency of the 
conclusions obtained across different priors and using differ- 
ent subsets of the data provide some assurance that the present 
method gives reasonable results. 

Statistical dependencies evident in CGH profiles have at 
least two sources. The type of dependence modeled in the 
present study is dependence induced by selection; aberrations 
-3p and +17q, for example, are deemed to be correlated in 
RCC, because their joint occurrence in a potential progenitor 
cell enhances the probability that descendants of this cell will 
populate a tumor. The instability component of the model con- 
siders that these aberrations occur independently in the pro- 
genitor cell; the association that occurs is caused by selection. 
One thing that has not been accounted for is any dependence 
inherent in the instability component, which is carried through 
into the tumor. The physical process leading to chromosomal 
deletion, for example, may make the event -8p more likely if 
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-89 is known to have occurred, quite aside from any advan- 
tages provided in oncogenesis. This issue has been addressed 
in simpler versions of the instability-selection model (Newton 
Gould, Reznikoff, and Haag 1998; Newton and Lee 2000), but 
not yet with the network version. It will need to be addressed 
if this methodology is to be applied to high-resolution, array- 
based CGH. 

A limitation of the present calculations is that the ensembles 
of genomic aberrations may not overlap. The problem can be 
partially alleviated by doing the kind of conditional analysis 
done herein, but quickly the sample gets subdivided too much 
to be informative. In principle, the proposed methodology will 
carry over to more general networks; one key problem is the 
problem of computing the likelihood function for a general 
network. Dependence between ensembles invalidates the sam- 
pling formula (1). An interesting fact may point to a solution. 
Consider the graph with m nodes equal to the set of relevant 
aberrations and with an edge between i and j if i and j are in 
a common ensemble. Evidently, the ensembles are cliques of 
this graph. Instability amounts to realizing random variables 
on the nodes of this graph, and selection amounts to checking 
each of the cliques to see whether the cell experiences all of 
the corresponding aberrations. Exploring these calculations is 
a topic of ongoing research. 

APPENDIX A: DERIVATION OF SAMPLING 

PROBABILITIES 


By Bayes's rule, 

where 

P(SEL) = P(at least one ensemble is fully aberrant) 

= 1 -P(no ensembles are fully aberrant) 

K 

= 1 -	nP(ensemb1e Ck is not fully aberrant) 
k=l 

K 

= 1-n[1 -P(ensemb1e C, is fully aberrant)] 
k= I 

1 - n P(aberration i occurs)I 
1- n {1-P(aberration i does not occur)) I 

and where 0 = 1 - (1 - a ) ( l  - p )  is the marginal probability of 
either covert or overt aberration. By a similar argument, with x = 

(XI,. . . r X,,), 

where tk = CiEcI x,).(1 -

APPENDIX B: SAMPLING PROPERTIES 

Marginal Rates 

Consider one ensemble, say C,, containing m, aberrations, and let 
A be the event that every aberration in C, occurs somehow (i.e., either 
overtly or covertly,) and so A c SEL. By the instability assumptions, 
P(A) = Om!, where 0 = 1- (1 - a ) ( l  -P)  is the probability that a 
given aberration occurs somehow. Take a particular aberration i E C, .  
It is straightforward to show that the overt damage X, is conditionally 
independent of SEL given A, and also given A'. (Ensemble-level 
information reveals everything one needs to know about selection.) 
Thus, with suggestive notation, 

Evaluating this at xi = 1 gives 

where p ( l  ISEL) is shorthand for P(X, = 1 ISEL). This formula uses 
the fact that P(AIX, = 1) is the probability that the remaining m, - 1 
aberrations also occur. 

Now, taking a second aberration j in another ensemble, C2, say, 
of size m, > rn,, and with B the event that every aberration in C, 
occurs, the difference of marginal aberration rates can be considered, 

d = P(Xi = 1 ISEL) -P(Xj = 1 (SEL) 

The aim is to show that d > 0, and clearly it suffices to show that 
the quantity between the braces is positive. To do so, it is convenient 
to introduce the probability 

I) =P(no other ensemble is fully aberrant) 

= n (1 -Ornk). 
ktother 

The product here is over any other ensembles different from C, and 
C,, and rnk is the size of the kth such ensemble. If there are no 
other ensembles, then $ = 1. Having I) allows a connection between 
p(SELIAC) and p(SELIBC) to be made. Specifically, 

and 
p(SELIBC)= 1 - (1 - om')$ 

Thus to show d > 0, it suffices to show that 

where a = rn, and b = m, are introduced for notation. Expanding 
both sides and cancelling terms, this is equivalent to 

This clearly holds for b > a and 0 E (0, l) ,  and so d z 0. That is, in 
a given network, an aberration in a larger ensemble has a lower rate 



Newton: Combinations of Genomic Aberrations in Cancer 

of occurrence than an aberration in a smaller ensemble. By a similar 
argument, it may be concluded that this marginal probability must 
exceed the instability rate cu. 

Within-Ensemble Correlation 

Consider an ensemble C, containing m, > 1 aberrations. As 
before, let A be the event that every aberration in C, occurs somehow, 
and now let i and j denote distinct aberrations within C,. Because X, 
and X, are identically distributed Bernoulli trials, their covariance is 

and so the aim is to show d > 0. The conditional independence of 
aberration level measures and SEL given A or given A' is used to 
show that 

Combining this with (B.l), d > 0 is equivalent to 

Evaluating these probabilities further, note that 

where $ is the probability that no other ensemble is fully aberrant 
and O is the probability that an aberration occurs. (One would take 
$ = 1 if there is just one ensemble.) Further, 

and 
p(Acl 1) = 1 -Om]-', 

because for the ensemble under consideration to be fully aberrant, all 
other aberrations in that ensemble must have occurred, besides the 
ones on which information is available. Taken together, d > 0 is thus 
equivalent to 

using the notation a = m,. This may be verified routinely because 
a L 2 and 0 E (0, I). Note that $ < 1 only if there are multiple ensem- 
bles, and so only in that case will the covariance between aberrations 
on the same ensemble be positive. 

Negative covariance between Xi and X, in different ensembles 
is calculated similarly. It was verified by Newton (2001) under the 
condition that both ensembles are of the same size. 

ldentifiability 

To prove this in the standard way, let p,(x) and p2(x) denote 
the joint probability mass functions for two different networks, el 
and e,, as defined in (I). The aim is to show that p, and p, are 
different; so the opposite, p ,  (x) =p2(x), is assumed for all length-n 
binary sequences x, and the attempt is made to derive a contradiction. 
Taking the particular realization x = (I ,  I , .  . . , I), observe that the 
numerator in both p,  and p, reduces to an,because the event SEL 
is implied regardless of the network. The assumed equality between 
p,  and p, thus forces equality in the denominators, and this in turn 
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forces equality of the numerators for any x. In other words, for any 
realization x, 

where superscripts distinguish features of the two networks. Recall 
that t, is the sum of (1 -x,) for aberrations i on ensemble k. 

By careful choice of realizations x, the equality (B.2) reveals some 
useful information. For example, suppose that the two networks el 
and C, have no relevant aberrations in common. This is one way in 
which they can differ, of course. Select a realization x that has xi = 1 
for relevant aberrations i in C, but x, =0 for relevant aberrations i in 
C,. This choice forces the left side of (B.2) to equal 0 while the right 
side is a polynomial in /3 that is strictly positive. Thus a contradiction 
occurs. Through further careful choices of x, a complete proof is 
obtained. 

APPENDIX C: PRIOR AND MARKOV CHAIN 

MONTE CARL0 DETAILS 


Prior 

A Bernoulli-P6lya prior for the relevance vector a = (a,,  . . . ,a,) 

where m =C:=, a,  is the total number of relevant aberrations, n -m 
is the number of neutral aberrations, and r ( )  is the gamma function. 
One way to obtain this is by assuming that the a i  are iid Bernoulli(~) 
given some value K that itself has a uniform distribution. Alterna- 
tively, one may realize a P6lya-urn scheme in which the initial urn 
contains two tickets, one ticket labeled " 0  and one labeled "I" 
(e.g., Hartigan 1983). The uniform-P6lya prior for the label vector 
c = (c,,  . . . ,c,) is obtained similarly. Let c, -Uniform(0, 1). For 
i > 1, let ci be an independent uniform(0, 1) draw with probability 
T/(T+ i - I). Otherwise make ci identical to one of the previous 
values cj, sampled uniformly from j = 1,2, . . . , i - I.  This creates 
the well-known cluster structure in Dirichlet process mixture calcu- 
lations (e.g., Lo 1984). It may also be viewed as a product partition 
model (Hartigan 1990). 

Markov Chain Monte Carlo 

There are four network move types: 

1. 	MOVE. Sample nmove aberrations at random (without replace- 
ment) from the full set { I ,  2, . . . ,n}. Call this index set I .  
The proposed vector c* is identical to c except possibly at 
indices i E I. Draw the subvector labels cf = {c, : i E I }  from 
their prior predictive distribution given the remaining subvec- 
tor {c, : i E Ir}; that is, sample them as the last m o v e  steps in 
a uniform-Pblya sequence. This move type attempts to change 
the ensemble structure by wholesale movement of a subset of 
aberrations. The proposal mechanism is not symmetric, but, 
because it corresponds to prior-type draw, the Metropolis- 
Hastings ratio reduces to a ratio of likelihoods. 

2. 	 SHUFFLE. Sample nperm aberrations at random (without 
replacement) from the full set { I ,  2, . . . ,n}. Call this index set 
I .  As before, the proposed vector c* is identical to c except 
possibly at aberrations i E I. Draw the subvector labels cf by 
randomly permuting the existing labels c,. This amounts to 
permuting aberrations among ensembles. The proposal mech- 
anism is symmetric; the Metropolis-Hastings ratio becomes a 
ratio of posterior masses of (c*, a )  to (c, a).  

3. 	AD-RANDOM. Realize n iid Bernoulli trials with success proba- 
bility padI. Call I the random set of aberrations corresponding 
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to successes. Propose a new state (c, a*) by changing the rele- 
vance status of each i E I ;  that is, if a ,  = T, then make a: =F, 
and if a ,  = F, then propose a; = T. This activate-deactivate 
proposal mechanism is symmetric, hence the Metropolis-
Hastings ratio is a ratio of posterior masses of (c, a*) to (c, a).  

4. AD-PATH. From the list of unique labels in c, sample one at 
random. Let I denote the ensemble sharing this common label, 
and say that M is the cardinality of this set. Attempt to modify 
the state only if M ? 2. If so, then take one of three possible 
actions. With probability padII ,  activate the entire ensemble; 
that is set a; = T for all i E I. Alternatively, with probability 
pad11 again, deactivate the entire ensemble; set a: =F for all 
i E I .  Otherwise, (i.e., with probability 1 -2padII), replace the 
relevance subvector a, with one of the 2M-2 possible mixed 
arrangements, sampled at random. Do not modify the vector 
c. This move type is not symmetric. On moving to one of the 
purified ensembles (i.e., all neutral or all relevant), the proba- 
bility is proportional to padII .  On moving to a mixed ensem- 
ble, the probability is proportional to 1 -2padII  divided by 
2M-2. Ratios of these chances enter the Metropolis-Hastings 
ratio. 

The calculations presented here used nmove = 4, nperm = 5, 
pad1 = (1/30), and pad11 = (114). The rate-parameter update was 
attempted on a fraction pup = (1/10) of the scans, and the box 
had side length ,016. Making less dramatic moves adversely affects 
mixing, whereas more dramatic moves diminish the acceptance rate 
excessively. (Because it samples from the conditional prior of sub- 
sets, MOVE by itself enables movement through the entire space of 
c vectors, and, similarly, AD-RANDOM enables movement through all 
possible a vectors, so the resulting chain is irreducible.) 

In the first efforts, the MOVE update affected only a single aber- 
ration, as did the predecessor of AD-RANDOM. Having the ability to 
rearrange multiple aberrations makes the sampler quite flexible. It 
is especially helpful to modify the relevance status of entire ensem- 
ble in AD-PATH. Adding new very small ensembles can dramatically 
reduce the likelihood, whereas the same aberrations placed on a larger 
ensemble fit well into the network. (Theory supports this, because in 
large ensembles, the marginal aberration rate is near the background 
level.) Note that AD-PATH allows mixed ensembles, so that reverse 
steps are possible from any current state. 

On implementation, acceptance rates of all the move types are 
recorded. Chains are started at a state c drawn from the Polya prior 
and a random a biased slightly toward neutral aberrations. Typically, 
two independent runs are made for each value of the hyperparameter 
T ,  and trace plots and summary statistics are monitored for output 
analysis. 

[Received October 2001. Revised September 2002.1 
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