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Summary. Identifying leading measurement units from a large collection is a common inference
task in various domains of large-scale inference. Testing approaches, which measure evidence
against a null hypothesis rather than effect magnitude, tend to overpopulate lists of leading
units with those associated with low measurement error. By contrast, local maximum likelihood
approaches tend to favour units with high measurement error. Available Bayesian and empirical
Bayesian approaches rely on specialized loss functions that result in similar deficiencies. We
describe and evaluate a generic empirical Bayesian ranking procedure that populates the list of
top units in a way that maximizes the expected overlap between the true and reported top lists
for all list sizes. The procedure relates unit-specific posterior upper tail probabilities with their
empirical distribution to yield a ranking variable. It discounts high variance units less than popular
non-maximum-likelihood methods and thus achieves improved operating characteristics in the
models considered.
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1. Introduction

In all sorts of applications, data from a large number of measurement or inference units are
processed to identify the most important units by some measure. This is certainly true in sta-
tistical genomics, where units might be genes, gene sets or single-nucleotide polymorphisms
(SNPs), depending on the particular application, but it is also true more broadly. In agriculture
investigators rank animals or plants by their breeding value (e.g. de los Campos et al. (2013));
performance evaluations in health and social sciences are common (e.g. Paddock and Louis
(2011)). Typically, units are associated with unobserved real-valued parameters, and the impor-
tance of each unit is linked to the value of its parameter. A case that we consider is a genomewide
association study examining risk factors for type 2 diabetes, in which the inference unit is the
SNP, and the parameter of interest is a log-odds ratio measuring the effect on disease probabil-
ity of SNP genotype (Morris et al., 2012). A second case involves gene set enrichment among
human genes that have been determined via ribonucleic acid (RNA) interference experiments
to affect influenza virus replication (Hao ez al., 2013). Units here are sets of genes annotated to
particular biological functions and parameters measure levels of enrichment. We develop two
further examples to exercise the statistical issues: one from sports statistics (units are basketball
players), and one from gene expression analysis (units are genes). If there had been no mea-
surement error we would summarize each case by ranking units according to values of their
parameters, focusing on the top of this list for further study. We consider here the inference task
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to perform such ranking and selection from data. Whereas the emphasis of large-scale inference
has been testing in relatively sparse settings (e.g. Efron (2010)), the present work addresses the
inference task to rank order non-null parameters when the signal is relatively non-sparse.

A natural ranking is obtained by separately estimating unit-specific parameters, for instance
by maximum likelihood applied locally to each unit. Since sampling fluctuations more easily
put high variance units into the tails, units that are associated with relatively high standard error
are overrepresented among the top units by this maximum likelihood estimate (MLE) ranking.
Another commonly used procedure comes from large-scale hypothesis testing, where units are
ranked by their p-value relative to a reference null hypothesis. Units that are associated with
relatively low standard error are overrepresented among the top units by this ranking since both
effect size and standard error affect testing power. Standard error in the type 2 diabetes case is
affected by various factors including SNP allele frequency; set size affects standard error in the
RNA interference case. When there is little variation between unit-specific standard errors, the
different approaches give essentially the same assessment of the most important units. However,
in many cases there is substantial variation in these standard errors, and quite different rankings
can emerge.

For contemporary large-scale applications, the classical theory of ranking and selection leaves
much to be desired. It addresses sampling probabilities like, ‘under such-and-such a configura-
tion of parameters and for sufficient amounts of data per unit the probability exceeds such-and-
such that the true top j units are among the observed top k units’ (e.g. Gibbons et al. (1979)).
Although relevant to some tasks, these probabilities are difficult to work with and the resulting
procedures are not often used in applied statistics. Theory is available on the sampling charac-
teristics of empirical rankings (e.g. Xie et al. (2009) and Hall and Miller (2010)). Arguably, the
thrust of methodological development for ranking and selection involves hierarchical modelling
coupled with Bayes or empirical Bayes inference. Seminal contributions by Berger and Deeley
(1988) and Laird and Louis (1989) helped to establish a framework that covers many contempo-
rary applications and that has been elaborated in important ways (e.g. Shen and Louis (1998),
Gelman and Price (1999), Wright et al. (2003), Lin et al. (2006), Brijs et al. (2007) and Noma
et al. (2010)). We further elaborate this framework in an effort to provide a more effective generic
method for large-scale inference, especially when large parameter units are in focus, when there
are many units and when there is substantial variation in unit-specific standard errors.

Sampling artefacts of MLE and p-value ranking procedures, which were noted above, are
well documented, but other approaches are also deficient. The insightful analysis of Gelman
and Price (1999) illustrates the difficulties and confirms that the common practice of ranking
by posterior expected value suffers from the same artefact as the p-value ranking, namely that
units that are associated with small posterior standard deviation are overrepresented on lists of
the top units. We find similar behaviour with the posterior expected rank method (Laird and
Louis, 1989; Lin ez al., 2006) as well as available testing schemes. We introduce and investigate
a procedure that aims to rank units in a way to maximize the expected overlap between the
reported and the true top lists of units. Although not eliminating the sampling artefacts, the
new method reduces their effects compared with other schemes. Our development starts in a
special case wherein ranking procedures are formulated in terms of certain threshold functions
(Section 2.1); using this formulation we characterize thresholds that maximize the expected
overlap between the true and reported top lists (Sections 2.2 and 2.3), and we derive the as-
sociated ranking variable in terms of local posterior tail probabilities. The proposed r-value is
generalized in Section 2.4 and investigated in relation to other procedures in Section 3. Compu-
tational issues are reviewed in Section 4, sampling performance is investigated in Section 5 and
a short discussion follows. Examples are used throughout for demonstration, and proofs are
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postponed until Appendix A. The methodology proposed and several data sets are deployed in
the R package rvalues, which is available through the Comprehensive R Archive Network
(http://cran.r-project.org).

2. Threshold functions and ranking variables

2.1.  Continuous model

A variety of data structures are amenable to our proposed ranking or selection scheme, but
the following structure has guided its initial development. Measurement or inference units are
indexedbyi=1,2,...,n;data on uniti include the real-valued measurement X; and information
about its sampling variation. We assume that the sampling distribution of X; has a known form
that is indexed by an unknown real-valued parameter of interest 6; together with a second
quantity affecting variance. In this section we assume that 01-2 =var(X;) is known for each unit.
Basically, the inference task is to report units having large values of 6;, while accounting for the
fact that variances o7 may fluctuate substantially between inference units. We adopt an empirical
Bayes perspective and treat {(6;,7)} as draws from a population of parameters, and we are
motivated by data analysis considerations to suppose initially that §; and crl-z are independent in
this population, say with densities f(f) and g(¢%). The independence assumption is helpful for
understanding artefacts of various ranking methods, but it is not essential to the methodology.
The empirical Bayesian uses the full data set to estimate the prior distributions f(#) and g(c?).
Initially we ignore the estimation error at this level and focus on ranking units within the
estimated population, though we take up the issue in Section 5 via simulation and asymptotic
analysis.

Relative to a single unit i, X; might be the maximum likelihood estimator of 6;, and o; that
estimator’s standard error. The independence assumption may be reasonable if care has been
taken in this local analysis, for example, by variance stabilizing transformation. Typically, the
variance 01-2 is estimated rather than known exactly; we study this and extensions to other data
structures in Section 2.4. We consider first a continuous model, involving prior distributions
and sampling distributions all having densities with respect to Lebesgue measure. The canonical
sampling model within this class has X;|0;, aiz ~ N(6;, aiz).

We make some headway by associating each ranking or selection procedure with a family 7°
of threshold functions 7 = {r, : € (0, 1) }. Each #,, is a function 7, (c?) having the interpretation
that unit i is reported to be in the top « fraction of units if and only if X; > t,y(criz). This inter-

Table 1. Threshold functions associated with various ranking criteria, hormal-normal

model
Criterion Ranking variable Threshold function to(c?)
MLE X Uy
p-value Hy:0; =0 Xi/oi Uno
p-value Hy:0;=c (Xi—o)/o; cH+uqo
PM Xi/(c?+1) Ua (o2 +1)
PER P(0; <01X;,02) ua/{(@?+1)Q20% + 1)}
P(Xilo},0; #0)
Bayes factor 1(X;>0)—r—"—— (02(02 4 D[ua +log{(c? + 1)/02}])
y >0 o Xi02.6,20) v [ua +log{ /o3
Maximal agreement  r-value 0o (02 +1) —ug/{o? (@2 + 1)}
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pretation is supported by the size constraint, namely that, marginally to all parameters and data,
P{X;>t,(cD)}=a for all € (0, 1). (1)

Table 1 reports threshold functions associated with a variety of ranking methods in the normal
observation model, and under the extra condition that the prior f(6) is N(u, 72). Table 1 encodes
the special case (i, 72) = (0, 1); the general thresholds are derived from this case by the transfor-
mation i+ 7 £, (02 /72). Note that each threshold function involves an a-specific value u,, which
guarantees the size constraint; these values are different for different ranking methods (rows of
Table 1). Fig. 1 illustrates four of these families in the type 2 diabetes case-study. Notionally,
the linear ranking of units is obtained by sweeping through the family 7, beginning with the
smallest « at the top of the graph. Clearly, distinct families of threshold functions can produce
distinct rankings of the units, with the family’s shape revealing how it trades off observed signal
X; with measurement variance oriz to prioritize the leading units.

Some comments on the threshold functions in Table 1 are warranted (see also the on-line
supplementary material document). Under squared error loss, the Bayes estimate of the rank

Fig. 1. Threshold functions (a) MLE, (b) p-value, (c) PM and (d) maximal agreement, type 2 diabetes
example: axes are common to all panels, with the vertical axis the log-odds ratio for association between
SNPs (H) and type 2 diabetes and with the horizontal axis the standard error estimates, with further details in
Fig. S1 in the on-line supplementary material; calculations use an inverse gamma model for 02; 42 threshold
functions are shown ranging in a-values from a small positive value ( ) just including the first data
point up to & =0.10 ( ) (most SNPs are truncated by the plot; also the grid is uniform on the scale
of logs{—log,(c)}); units associated with a smaller « (i.e. more red) are ranked more highly by the given
ranking method; two units landing on the same curve would be ranked in the same position
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of parameter 6; among those in play is the conditional expected rank given the data (Laird and
Louis, 1989; Lin et al., 2006). This posterior expected rank is usually expressed as a sum, involv-
ing indicator comparisons between ¢; and the other parameters, and it becomes P(6; <0|X;, crl-z)
when normalized and considered in the limit for increasing numbers of units (ranking from the
top). Here 6 is the independently drawn parameter of a generic additional unit, which emerges
in the large-scale limit to replace the collection of all other ;s with which §; is compared. In the
normal-normal model, ranking by posterior expected rank is qualitatively similar to ranking by
posterior mean PM = E(6;|X;, ol.z); both favour small variance units. Several hypothesis-testing-
based methods are also shown in Table 1. Testing against some benchmark null (rather than the
no-effect null) hypothesis has some benefits in practice (e.g. McCarthy and Smyth (2009)). As we
emphasize large positive ;, we report p-values that are associated with one-sided tests. Finally,
the Bayes factor BF entry aims to mimic the ranking (from the top) method that is associated
with Bayes factors for the test of Hy:6; =0 versus Hp :6; 20 (e.g. Kass and Raftery (1995)).
The mapping of a ranking method to a family of threshold functions is useful for comparative
analyses, as we investigate next.

2.2. Thresholds via direct optimization
Table 1 and Fig. 1 introduce a family 7* = {7} that is optimal in the continuous model in the
sense that for all o€ (0, 1)

P{X;>1*(07),0, > 00} > P{X; >14(07),0; > 0,} 2)

for any other family 7 = {z, } which also satisfies the size constraint (1). Here 6,, is the o upper
quantile of the prior, i.e. P(6; >0,) = . In other words, 7* maximizes agreement: the joint
probability that unit i is placed in the top « fraction and its driving parameter 6; is in the
top « fraction of the population, for all . We emphasize that the probabilities in inequality
(2) cover the joint distribution of (X;, aiz, 6;), which respects both the sampling distribution of
data local to unit i and the fluctuations of unit-specific parameters. A calculus-of-variations
argument provides direct optimization of the joint probability in inequality (2), subject to the
size constraint, model regularity and smoothness of the threshold functions.

Theorem 1. In the continuous model, a necessary condition for the function 7* to be optimal
as in inequality (2), within the class of continuously differentiable threshold functions, is that
it satisfies

P{Hi29(y|Xi=t2';(cr2),cr,-zzorz}:cG for all o2. 3)

Thus, all observations coincident with the graph of a given optimal threshold curve have
a common posterior probability ¢, that their unit-specific parameters exceed the quantile 6,
that is associated with that curve. In the normal model for X; and the normal prior f(6), the
optimal threshold function (Fig. 1(d)) is readily extracted from expression (3). Working on a
standardized scale without loss of generality (=0 and 7%= 1), the local posterior for 6; is
normal with mean X;/ (Ji2 + 1) and variance ai2 / (‘712 +1). Thus,

(0D =0, (02 + 1) —ua/{0* (@ + 1)}, )

where 6, =®~!(1 — ) and u,, is determined by the size constraint (1). Indeed u,, is affected by
the distribution g(c?), since it is defined implicitly by

1—a:/oo@{ﬂa\/(az—{—1)—ua0}g(02)d02 ®)
0

where @ is the standard normal cumulative distribution function.
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Fig. 2.  Conditional distribution (median, interquartile range) of unit-specific variance cr given selection of
the unit in the top o= 0.1 fraction by various methods (coloured bands) compared with the marginal gamma
distribution (black or grey) for different amounts of variation in 02 (E(2) = 1; coefficient of variation on the
horizontal axis; based on simulation using 107 units per case): ( ) MLE; (b) p-value; (c) PM; (d) maximal
agreement

Curiously, the optimal thresholds kick up as o2 approaches 0. The resolution and range
of Fig. 1 do not reveal this phenomenon so clearly in the type 2 diabetes example, but it is
apparent from equation (4) that the derivative of 7 with respect to o2 becomes increasingly
negative as o> approaches 0 (when u,, >0). Neither the p-value thresholds nor those based on
posterior mean or posterior expected rank have this characteristic; indeed, by kicking up for
small o2 the maximal agreement thresholds are less prone to the overranking of small variance
units.

Fig. 2 illustrates sampling properties of top-listed units obtained by various threshold schemes,
including the optimal threshold (4), using the normal-normal model, & =0.1, a sequence of
gamma distributions g for the variance o7 and independence between 6; and o7. The difference
between different methods becomes more pronounced as we increase variation in the distribu-
tion of the variances; in this simulation all cases involve E (O'iz) =1, but the shape parameters
vary to increase the coefficient of variation. The degree to which the conditional distribution of
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01-2 given placement on the top « list (the coloured bars) differs from the marginal distribution
of crl-2 in the system (grey) measures the extent of sampling artefacts by that method. The exam-
ple recapitulates sampling artefacts of the local MLE, the p-value and the posterior mean. For
example, the top lists by MLE are enriched for high variance units. Fig. 2 also shows that this
artefact is substantially reduced when we select by equation (4).

2.3. Posterior tail probabilities and ranking variables
Except in stylized models we cannot solve equation (3) to identify optimal thresholds for ranking.
Insight into their structure comes by further examining their relationship to local posterior tail
probabilities: Vo (X;, 07) = P(6; > 0,|X;, 7).

Theorem 2. Suppose that for a € (0, 1) there exists A, such that

P{Va(XisoD) =M} =0, (6)

and furthermore that V,(x, o?) is right continuous and non-decreasing in x for fixed o and
o2. Then the family of thresholds ¥ (02 =inf {x:Va(x, o) > Ao} satisfies the size constraint
(1) and is optimal in the sense of inequality (2).

These conditions concern V,, and its distribution. They are satisfied in the normal-normal

model; there,
2
N o +1 x
v == o{ () (- 5)}

and A\ =1 — ®(uy), for u, is as in equation (5). The conditions are also satisfied in other
instances of the continuous model of Section 2.1, as well as in other settings. For example, if aiz
is an estimated variance, then a Student ¢ sampling model might replace the normal sampling
model conditional on aiz and 6;. See the on-line supplementary material for this and other
examples. Note that the optimal threshold £ (02) in theorem 2 simplifies further if V, (x, o) is
continuous and strictly increasing in x for each a and 0. Then L (0> = 7% Y\, 02), with the
inverse referring to the first (i.e. x) argument.

A family of threshold functions is a device to think about converting observations into rank-
ings (i.e. by sweeping through the family). Indeed, the index « that is associated with the threshold
curve on which data point (X;, 01-2) lands is a ranking variable; its computation amounts to solv-
ing the inversion X; =t, (oriz) for a.. Exact inversion is possible as long as the threshold curves for
different c-values do not cross, i.e. if there are no values a; < a, o2 for which ta, (03 = fa, (02).
Approximate inversion is always possible via inf{a: X; > 1, (02)}.

Theorem 3. Suppose that threshold functions 7, (c%) are differentiable in o for each o2. No
functions in the family cross as long as 9z, (02) /dc < 0 for every ac € (0, 1). Further, the optimal
thresholds in the normal-normal model do not cross.

This confirms more generally what we see empirically for a few cases in Fig. 1 and Table 1:
the optimal thresholds do not cross under the conditions of theorem 3, and they conform to
our intuition about how ranking procedures might be constructed from threshold functions.

We introduce a special ranking variable that inverts the optimal threshold. For the ith unit,
we define the r-value

r(Xi, o) =inf{a: Va(Xi,0%) > Ao} )

Essentially, unit i is placed by its r-value at position « (a relative rank, measured from the top)
if, when ranking the units by V, (X;, 01»2), it also happens to land at position «. Further, the top
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« fraction of units by r-value has higher overlap with the true top « fraction of units than could
be obtained by any other ranking procedure, in the sense of inequality (2).

It is worth recognizing that these findings go beyond what has been reported about the use of
the conditional tail probability V,(X;, 01-2) to rank units. Classical theory on optimal selection
establishes the role of this conditional tail probability in maximizing an exceedance probability
within the selected sample (e.g. Lehmann (1986), pages 117-118). Also, the conditional tail
probability has been used for ranking (e.g. Normand et al (1997) and Niemi (2010)) and is
closely related to a Bayes optimal ranking under a certain loss function (Lin et al, 2006).
A critical difference with the ranking proposed is in the role of the index a. Conceptually,
we imagine ranking the units by V(X ,-,01-2) separately for all possible indices a (not just a
prespecified index); then the r-value for unit i is the smallest index « such that unit i is placed in
the top « fraction by that ranking. By aiming to maximize agreement at all list sizes, the method
proposed does not require a prespecified exceedance level to generate its ranking.

2.4. More generality

The r-value construction makes sense in various elaborations of the model from Section 2.1.
We retain univariate parameters of interest {6;} varying according to a distribution F, but we
allow data D; on each unit to take more general forms than the (X;, O'iz) pair structure. We
also retain the assumption of mutual independence between units, though extensions could be
developed in cases where posterior computation is feasible. In seeking units with largest 6;, the
critical quantity is the local exceedance probability, V, (D;) = P(0; > 0,|D;), for « € (0, 1) and for
upper quantiles 6,, of the marginal distribution F, i.e. , = F~ (1 — ). Induced by the marginal
distribution of D;, the tail probability V,(D;) has cumulative distribution function H,(v), and
from it we obtain the upper quantile: A, = H;, (1 — ). Then, by analogy with definition (7),
the r-value is defined: r(D;) =inf{a: Vo (D;) = Ao}

Fig. 3 compares r-value rankings with three other methods in the RNA interference example.
Here, D; = (m;, y;) holds binomial information (set size m; and number y; of genes in set i that
were identified by RNA interference). The target parameters ¢; are treated as draws from a
beta(a, b) distribution, with shape parameters estimated by marginal maximum likelihood, and
the conditional tail probability V,(D;) becomes the probability that a beta(a + y;, b+m;— yi)
variable exceeds 6. r-value computation (see Section 4) requires the sampling distribution of
these tail probabilities, which we approximated by using the data from all 5719 sets under study.
The methods compared in Fig. 3 agree to some extent on the ranking of the most interesting
sets, but systematic differences are apparent. Ranking by y;/m; overranks small sets; ranking by
p-value overranks large sets; and ranking by posterior mean (y; +a)/(m; +d+ b) also overranks
large sets, though to a lesser degree, all compared with the r-value ranking.

Sports enthusiasts routinely rank players. To explore r-value ranking in this context, we
deploy the same beta—binomial model as used in the RNA interference example and use it to
describe free-throw statistics of professional basketball players (e.g. Richey and Zorn (2005)).
During the 2013-2014 regular season of the National Basketball Association (NBA), 461 players
attempted at least one free throw (Entertainment and Sports Programming Network, 2014). In
total these players attempted 58 029 free throws and were successful 43 870 times, for a marginal
free-throw percentage of 75.6%. A basic problem in rating players by individual free-throw
percentage FTP = y;/m; is that the numbers {m;} of free-throw attempts vary substantially
between players; in retaining all active players, those with highest y; /m; are among those with
smallest m;. For instance, 13 of the 461 NBA players had perfect free-throw records in 2013—
2014; they had a median number of four attempts, compared with the league median of 82
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Fig. 3. Ranking via various methods compared with r-value ranking, RNA interference example (the data
and axes are common to all panels, with further details in Fig. S2 in the on-line supplementary material; briefly
the horizontal axis is set size (on a log-scale) and the vertical axis is gene set enrichment; each set (dot) is
coloured by (X — R)/(X + R) where X is the rank (from the top) of the set by the method being compared,
and R is the rank by r-value): (a) MLE; (b) p-value; (c) PM

attempts. Various threshold schemes have been adopted by rating agencies; these restrict ranking
to players reaching a minimum number of attempts or a minimum number of makes. At the
Entertainment and Sports Programming Network, a qualified player this last season needed
y; = 125. Thresholding rules have a practical appeal but they can suppress athletic performances
that otherwise are exceptional and worth reporting. For instance, Ray Allen’s 105 makes in 116
attempts is exceptionally good by many standards (Table 2). The context provided by the NBA
example offers further insights. For one thing, there is broad agreement between PM-ranking and
r-value ranking, though where there is disagreement PM favours players having more attempts
m;. Related to this is the fact that, though it discounts players with very small m;, the r-value
shrinks less than PM and is more in accordance with the FTP ranking; for example, the r-value
ranks the qualified players in Table 2 the same as FTP, in contrast with PM.

As an empirical validation of the r-value ranking we applied it to mid-season NBA data (up
to the end of December 2013) and then measured its performance conditionally on complete-
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Table 2. Leading free-throw shooters, 2013—-2014 regular season of the NBAf

Player i Vi mj FTP PM RV OR MLER PMR RVR
Brian Roberts 125 133 0.940 0.913 0.002 1 17 1 1
Ryan Anderson 59 62 0.952 0.898 0.003 15 2 2
Danny Granger 63 67 0.940 0.893 0.005 16 3 3
Kyle Korver 87 94 0.926 0.892 0.008 19 4 4
Mike Harris 26 27 0.963 0.866 0.010 14 15 5
J. J. Redick 97 106 0.915 0.886 0.011 22 6 6
Ray Allen 105 116 0.905 0.880 0.016 25 8 7
Mike Muscala 14 14 1.000 0.844 0.017 7 34 8
Dirk Nowitzki 338 376 0.899 0.891 0.018 2 30 5 9
Trey Burke 102 113 0.903 0.877 0.018 28 9 10
Reggie Jackson 158 177 0.893 0.877 0.024 3 32 11 11
Kevin Martin 303 340 0.891 0.882 0.025 4 33 7 12
Gary Neal 94 105 0.895 0.869 0.025 31 14 13
D. J. Augustin 201 227 0.885 0.873 0.031 5 38 12 14
Stephen Curry 308 348 0.885 0.877 0.031 6 39 10 15
Patty Mills 73 82 0.890 0.860 0.032 34 19 16
Courtney Lee 99 112 0.884 0.861 0.035 40 18 17
Steve Nash 22 24 0.917 0.834 0.039 20.5 44 18
Greivis Vasquez 95 108 0.880 0.857 0.040 41 22 19
Robbie Hummel 15 16 0.938 0.825 0.043 18 55 20
Mo Williams 78 89 0.876 0.850 0.046 42 24 21
Kevin Durant 703 805 0.873 0.870 0.048 7 45 13 22
Aaron Brooks 83 95 0.874 0.850 0.049 44 26 23
Damian Lillard 371 426 0.871 0.865 0.050 8 47 16 24
Nando de Colo 31 35 0.886 0.831 0.057 37 48 25

tFrom n =461 players who attempted at least one free throw, shown are the top 25 players as inferred by r-value.
Data D; on player i include the number of made free throws y; and the number of attempts m;. Other columns
indicate the free-throw percentage FTP = y;/m;, which is the MLE of the underlying ability 6;; posterior mean
E(6;|D;), r-value inf{a > 1/n: P(6; > 0,|D;) > A\ }; qualified rank QR, which is the rank of FTP among players
for whom y; > 125; and ranks associated with the MLE, posterior mean and r-value.

season data. Comparing Table S2 (in the on-line supplementary material) with Table 2, we see
some interesting features. For example, Brian Roberts, who finished the season with the highest
FTP among qualified players, did not miss in 2013; the r-value placed him second mid-season,
even though he had only m; = 18 attempts, whereas PM ranked him 12th. Investigating more
fully, we repeatedly simulated {6; }-vectors conditionally on end-of-season data and averaged a
similarity score:

1d —
" >~ 1{rank(6;) <r}1(rank; <7),
i=1

finding improvements over FTP and PM in assessing the best free-throw shooters (Fig. S3 in
the supplementary material). Here rank; is the player’s estimated rank according to mid-season
data and rank(6;) is his unknown true rank.

r-values may be computed in all sorts of hierarchical modelling efforts, including semipara-
metric models and cases where Markov chain Monte Carlo sampling is used to approximate the
marginal posterior distribution of each 6; given available data. Fig. S9 (in the supplementary
material) compares the r-value ranking with other rankings in an example from gene expression
analysis, where evidence suggested that the expression of a large fraction of the human genome
was associated with the status of a certain viral infection (Pyeon ez al., 2007). A multilevel model
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involving both null and non-null genes as well as ¢-distributed non-null effects 6; exhibited good
fit to the data but did not admit a closed form for V,,(D;). r-values, computed by using Markov
chain Monte Carlo output, again reveal systematic ranking differences from other approaches.

Multilevel models drive statistical inference and software in a variety of genomic domains,
e.g. limma (Smyth, 2004), EBarrays (Kendziorski et al., 2003) and EBSeq (Leng et al., 2013),
among others. Since these models happen to specify distributional forms for parameters of in-
terest, the associated code could be augmented to compute posterior tail probabilities V,(D;)
and thus r-values for ranking. The 1imma system utilizes a conjugate normal, inverse gamma
model, and so V,(D;) involves the tail probability of a non-central ¢-distribution. The EBSeq
system entails a conjugate beta, negative binomial model, and so V,,(D;) for differential expres-
sion involves tail probabilities in a certain ratio distribution (Coelho and Mexia, 2007). One
expects the benefits of r-value computation to show especially in cases involving many non-null
units and relatively high variation between units in their variance parameters (e.g. sequence
read depth). The data structure that is envisioned for r-value computation involves many ex-
changeable units, with real-valued parameters driving the conditional distribution of data on
each unit. Other structures, such as from large-scale regression, may be amenable to the pro-
posed ranking method if marginal posterior distributions for each regression coefficient could
be derived.

3. Connections

3.1. Connection to Bayes rule

The proposed r-values are not Bayes rules in the usual sense; however, there is a connection to
Bayesian inference if we allow both a continuum of loss functions and a distributional constraint
on the reported unit-specific (relative) ranks. To see this connection, we introduce a collection
of loss functions

La(a,0)=1-1@a<,0;>0,)

where action a is a relative rank value in (0, 1), a € (0, 1) indexes the collection and again
0, = F~1(1 — ) is a quantile in the population of interest. Specifically, no a-loss occurs if the
inferred relative rank @ and the actual relative rank 1 — F(6;) both are less than «. The marginal
(preposterior) Bayes risk of rule 6(D;) is

risk, =1 _P{é(Di)<a39>9a}a ®

which is 1 minus the agreement (2). In the absence of other considerations, the Bayes rule
for loss L, degenerates to §(D;) =0. Degeneration is avoided if we enforce on the reported
rank the additional structure that it shares with the true relative rank 1 — F(6;) the property
of being uniformly distributed over the population of units. Such a constrained Bayes rule
then minimizes the modified objective function: risk, + v, P{6(D;) < a}, where 7, is chosen to
enforce the (marginal) size constraint P{6(D;) <a}=«a.

The constrained Bayes rule is computed conditionally, per observed D;, by minimizing the
constraint-modified posterior expected loss PEL:

PEL,=1— P{6(D;) <, 0; >0,|D;} +~v,1{6(D;) <} 9
- 1 —Vu(D;) +Ya if6(D) <,
=11 if6(D) > a

where V,(D;) is the upper posterior probability P(0; > 6,|D;) appearing in Section 2.
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Curiously, a rule minimizing PEL,, is not uniquely determined at a single «, since minimiza-
tion in equation (9) requires only that

d(D)<as Va(Di) 2 va- (10)

However, taking all losses together does fix a procedure. To see this, let g(a|D;) = Vo (Di) — Ya,
and further assume that g is continuous in «. If g(a|D;) has only one root in (0, 1), then the
procedure §*(D;) =inf{a: V,(D;) >, is a Bayes rule for any choice of L,, even though §*
does not depend on any specific choice of «. This is because §*(D;) < « for all « such that
g(a|D;) >0, and 6*(D;) > « for all « such that g(a|D;) <0. If g(a|D;) does contain multiple
roots (at least over a range of D; that has positive probability), there will not be a procedure (i.e.
a procedure which does not depend on «) which is a Bayes rule for any choice of L. This is
because it will not be possible to construct a rule 6 that satisfies requirement (10) for all values
of av€ (0, 1). The thresholds ~, in expression (10) are determined by the uniformity constraint,
and we have v, =H; 1(1 = @), where H, is the marginal distribution of V,(D;), counting all
sources of variation, and so 7y, = A, from the previous section. In other words, the procedure
that is obtained by this constrained, multiloss Bayes calculation is equivalent to the r-value that
was introduced in Section 2.

Among the more popular loss-based ranking procedures is one via posterior expected rank
PER (e.g. Laird and Louis (1989) and Noma et al. (2010)). Unit i’s value becomes PER; =
P(0; <0|D;) after normalizing by the number of units and taking the large-scale limit. We find
in numerical experiments that PER-ranking is relatively close to the ranking by PM, and in
these experiments we use PER; =1— fol Vo (D;) da, which can be established readily by using a
transformation-of-variables argument.

3.2. Beyond ps and gs

In testing a single hypothesis Hy, the sample space may be structured as a nested sequence of
subsets, {T', : € (0, 1)}, say, such that rejection of a size « test is equivalent to data D landing in
set (i.e. rejection region) I',. Then, the p-value of the test is p(D) =inf{«: DT, }. Storey (2003)
extended this idea to multiple testing and the positive false discovery rate with the introduction
of the g-value. Specifically, with another nested sequence {fa :a€(0,1)} indexed such that
P(Hy|D eT',) =, the g-value is (D) = inf {a:De f‘a}. Where p-values refer to the distribution
of D on Hy, and g-values the conditional probability of Hj given sample information, the
proposed r-values refer to marginal probability over both unit-specific data and unit-specific
parameters. The size constraint (1) corresponds to another sequence of subsets, {T'a}, say, for
whicvh the marginal constraint holds: P(D €T',) = a. Analogously, the r-value is r(D) =inf{«:
DeT,}. In principle an r-value could be defined for any indexed ranking method, though we
have reserved the definition for that method which maximizes agreement (2). Other connections
to hypothesis testing are discussed in the on-line supplementary material.

4. Computation

In Section 2.2 we focused on the model involving normality for both the measurement X; and
the latent parameter 6;. The r-value is obtained by inverting equation (4) to solve for r:

Xi=@?+Dd 1 —n —u {0} 0} + 1)} (11)

where u,, defined through the size constraint (5), is readily computed numerically.
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Alternatively, a generic approach to computing r-values starts with a finite grid {«;} in
(0, 1), at which we compute the posterior tail probabilities v; j = V,,;(D;) for all units i (or
approximations, e.g. by Markov chain Monte Carlo sampling). The grid need not be uniform;
we enrich coverage near 0 in our implementation. The jth column of the matrix {v; ;} holds a
sample from the marginal distribution for which \,; is the (1 — aj)-quantile. Marching through
j allows us to assemble a discrete (in «), empirical (over units) quantile function, which we
convert to a function ), first by possibly smoothing to mitigate sampling effects and then by
interpolating to a-values beyond the initial grid. Then for each unit i we solve V,(D;) = Ao
numerically in « to obtain that unit’s r-value. Fig. 4 illustrates the computation for two units in
the NBA example. Pseudocode for the algorithm and elements of the R package implementation
are given in the on-line supplementary material document.

The grey curves in Fig. 4 show, for each of 461 NBA players who attempted at least one
free throw in the entire 2013-2014 regular season, the tail probability function V,(D;) = P(0; >
0.|D;); two are highlighted in magenta. Recall that 6, is such that P(6; > 6,) = «; in this case a
conjugate beta(a, b) model was fitted to obtain these marginal quantiles (4= 15.12 and b=5.38).
At each value of a(j) on a grid, the empirical distribution of {V,;(D;)} was computed and
reduced to a quantile such that the empirical frequency exceeding the quantile is a(;j) (the red
dots). We smoothed these to obtain the quantile fuction Ao (the blue curve). Two r-values are
shown (the broken vertical lines, at r-values 0.016 and 0.488), obtained by solving in « equal-
ity of the unit-specific V, (D;) and the systemwide \,. Scaling by logarithms (horizontal) and
square root (vertical) was done to aid visualization.
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5. Sampling performance

The r-value is defined using the joint distribution of data D; and the target parameter 6;, but
it is computed empirically from an estimate of that joint distribution. Accurate distributional
estimation may be possible from large-scale data sets, but it is nonetheless useful to investi-
gate how the optimality that is guaranteed by theorems 1 and 2 deteriorates in finite sample
situations. Simulations of the normal-normal model show that computed r-values retain their
performance benefits compared with other ranking procedures, and thus some uncertainty in
the quantile function A, or in the distribution of 6; does not clearly disable the procedure.
For example, Fig. 5 shows simulation-based estimates of agreement, P{/,(D;) < «,0; >6,}, for
both the computed r-values {#,(D;)} and for other ranking methods. We adapt the notation
to include the sample size n and the hat mark to emphasize that the computed r-values involve
estimation of the marginal distribution function F of ; and the quantile function A,. r-value
performance is not adversely affected by low sample sizes in this case. Other simulations demon-
strate that this superiority is not sensitive to the distribution of variances or to the extent of
smoothing that is used to compute quantiles (see the on-line supplementary material, Figs S4
and S95).

A more general consistency property holds for models that are sufficiently regular that the
following four conditions are satisfied.

Condition 1. Triples (6;, X;, 01-2), fori=1,2,...,n, areindependent and identically distributed
from a joint distribution for which 0; and aiz are independent and have positive densities f and
g with respect to Lebesgue measure on R and R™ respectively.

CondztzonZ From data {D; = (X;, 0 ,) i=1,2,...,n}, we have an estimator ¥, of F, where
FO) = f f(t)dt, that is invariant under permutatlons of the observations. The sequence of
dlstrlbutlons converges weakly, £, = F, almost surely as n — oo.

The estimator F, could be parametric or non-parametric (see Lindsay (1995)). For each a,
the marginal quantile 6, = F~' (1 — ) is estimated by Oon=F, (1—0),and the posterior tail
probability, V,(x,o?), given a potential data point (x, o), is estimated by

oo o
Van(x,0%) = / p(xl0,0%) dF, (0) / / p(x10,0%) dF,(0). (12)
Oan —o0
Here p(x|0, 02) is the local sampling density, which we consider to have a known form.
Condition 3. The local sampling density satisfies

(a) p(x|0,0?) is continuous in (x, 8, 02),

(b) there is a continuous function K(o?) such that 0 < p(x|6, 02) < K(c?) for all arguments
and,

(c) for any x; >xg and 02 >0, p(x116, %)/ p(x0|6, o?) is increasing in 6.

Let H,(v) = P{Vy(Xi,07) <v}, A= H; (1 —a) and ¥ (0?) =inf {x: Vo (x,02) = Ao}
Condition 4. There are no values of o2 and a; # a» such that t(”;l (0% = £, ().

The normal-normal model satisfies condition 1 by design, condition 3 by inspection and
condition 4 by theorem 3, and it will satisfy condition 2 for typical parametric or non-parametric
estimates of F. Indeed condition 3 is readily verified in many settings, but condition 4 is more
difficult because it involves the marginal distribution of local posterior probabilities, which is
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Fig. 5. Finite sample performance of the r-value ( ), PM ( ), PER ( ) and MLE ( )

in the normal—-normal model (the simulation-based agreement compares the true top « list with the estimated
top « list for various methods and for 1/n <« < 0.1 (common horizontal axis), when the marginal distribution
of §; and the quantile )\, are both estimated from available data (no smoothing); the common vertical axis is
agreement/c; 02 ~ gamma(l, %), and results from 1000 simulated data sets were averaged for each panel):
(a) n=10000; ([:)) n=1000; (c) n=200; (d) n=50

often analytically intractable. We have confirmed conditions 1-4 in a gamma-inverse gamma
model (see the on-line supplementary material).

The ideal r-value r(D;) =inf{a € (0, 1): V,(D;) = A\, } is not computable when the underlying
distributions are unknown, though model regularity assures that r(D;) is the unique root (in «)
of the equation V,(D;) = A, Approxirnating H,,(v) we have the empirical distributio? function,

Han(v) = (/m)% l{Va n(Xi, 0} 2) < v}, and the unsmoothed quantile Aan=H,,1—a)=
1nf{v Ha (V) > 1 —a}. A natural estimate of r(D;) is 7, (D;) =inf{a € (0,1): V. ,,(D )> Ao ot
To analyse estimation error, it 1s helpful to define the related quantity ® (D;) =min[inf {ae[é,1]:
Va(Dj) > Ao}, 1 —6]foré € (0, 2), and the sample version, 7 (D )y=min[inf{« €[4, 1]: Va 2(D) >

a,,,} 1 — 6]. It happens that r°(D;) = r(D;) when both remde in [6, 1 — 6]; we think of 6 as an
arbitrarily small value that ameliorates boundary effects in the estimated quantile function H

Theorem 4. 1f the model satisfies conditions 1-4 and n — oo, then for 6 € (0, 2), and all a €
[6,1=0], (A/m)%7_, 1{ (D) € a} —p a. Furthermore,

{rn(D)<Oz 0i =0} > P{r(Di) < o, 6; 2 0a} +op(1). 13)

g L

S|~
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Fig.6. Effects on agreement of model misspecification for the r-value ( ), PM ( ), MLE ( )
and PER ( ) (the r-value performance deteriorates when the true distribution of effects 6, is much

heavier tailed (Student’s ¢ on df degrees of freedom) than is used to construct the r-value (normal); the case
shown involves n=2000; the axes are as in Fig. 5): (a) df =6; (b) df =4; (c) df=3; (d) df=2

The quantity P{r(D;) < o, 0; >0, } is the optimal agreement, as in theorem 2.

Essentially, computed r-values are uniformly distributed and achieve the maximal agreement
in large samples as long as the generative distributions are sufficiently regular and consistently
estimated.

Model uncertainty can have a bigger effect than system parameter uncertainty on the r-value
performance. Fig. 6 shows some reduced performance of r-value in case F is misspecified as
normal when it is fact heavier tailed. Other misspecifications may have less effect, such as when
the true F is a finite mixture of normal distributions or when there are unmodelled dependences
between 6; and Jiz. Examples are provided in the on-line supplementary material, Figs S6—
S8. Without pursuing a comparative analysis, we note finally that an alternative estimator
of \g =H, (1 — @) may be obtained by working out, perhaps via simulation, the induced
distribution of V,(D*) for bootstrap data D* drawn from the fitted model.

6. Discussion

For examples touched on here as well as for many others within the domain of large-scale
inference, a basic statistical problem is to rank units and to select the top units by some measure.
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Precisely how the output of such inference is to be used depends very much on the context;
admittedly we have not focused on these operational issues. For example, the output might
trigger follow-up experiments in a genomic study (e.g. Pyeon et al. (2007)), it might affect
resource allocation in some performance evaluation (e.g. Paddock and Louis (2011)), or it might
spark a debate about who really is the best free-throw shooter. Our emphasis on a statistical
framework for large-scale ranking and selection responds to evident weaknesses of available
methodologies and the potential utility of the proposed r-value scheme, especially when there
is great variation in the amount of information per unit. Also, where an emphasis of large-scale
inference has been on testing and sparsity assumptions, the r-value computation addresses a
practical problem to organize large numbers of non-null units.

By casting the problem via empirical Bayes methods, we express agreement between true
and reported top lists as a certain joint probability that is subject to explicit optimization,
taking advantage of an equivalence between ranking and threshold functions (Section 2).
Roughly speaking, an r-value is a Bayes rule for the binary loss which indicates failure to
place the unit correctly in the top a-fraction of units, though to formalize this one requires
multiple loss functions and a distributional constraint (Section 3.1). In spite of this connec-
tion to Bayesian inference, the r-value method seems not to have been previously identified
by that reasoning. Theoretical support for the method has been developed here for a mea-
surement model (Sections 2.1-2.3). Establishing that r-values maximize agreement in the more
general cases that were considered in Section 2.4 remains to be investigated. Where the anal-
ysis in Section 2 treats the joint distribution of data and unit level parameters as known,
this model must be estimated from systemwide data in each application. We report suffi-
cient conditions for first-order asymptotic correctness (theorem 4). Within-model simulations
show good r-value performance under a range of conditions (Section 5). Performance deteri-
orates when the model is misspecified, and we recommend that standard model diagnostics
accompany the r-value computation. Further investigation is warranted for non-parametric or
semiparametric models, as the basic r-value statistic does not require a parametric formula-
tion.
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Appendix A: Proofs
A.1. Theorem 1

In this section we assume that all distributions have continuous densities on their support. From the
calculus of variations (e.g. Jost and Li-Jost (1998), chapter 1), for a continuously differentiable threshold
function * =1*(0?) to maximize agreement (2) subject to the size constraint (1), it must be a critical point
of the objective function: 1(r) = [, F(t,0?) g(0?) do?, where

F(t,0%) =P{X >1,(0),0>0,|0°} + AP{X > 1,(c") |07},

and where ) is a Lagrange multiplier. Here and to follow we suppress the unit identifier i in the notation
for X and o2, as we are focusing on a generic unit. The Lagrange—Euler theorem guides us to ignore for a
moment that 7 is a function and to consider derivatives of F in ¢ as a real-valued argument:
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d
F(t,0%):= $F(t, =0 for all o2 in the support of g. (14)
This Lagrange—Euler equation simplifies:

F,(z,az):% {/ P(X>z|9,a2)f(9|a2)d9+AP(X>z|a2)}
Oa

* p(110,0%) f(Blo*)
=—p(tlo?) {/ L Cdh 4 A
00 p(tlo?)
=—ptlo®) {PO >0, X =1,0") +A}.
In this development, p(z]6, o?) is the sampling density of X given § and o2 evaluated at the argument ¢,

and similarly p(¢|c?) is the density marginal to # but conditional on o?. Solving F,(t,0%) =0 for all 6> >0
gives result (3).

A.2. Theorem 2
Let o and A both be fixed in (0, 1), and for binary statistics a =a(X, 0?) € {0, 1} consider the objective
function

Lo(@) = E[a(X, 0*){1(0 > 0.) = A}]. (15)
Maximizing I, ,(a) is achieved by maximizing the conditional expectation
E[a(X,0"){1(0 > 0.) = A}|X.07]

for every conditioning event, but this conditional expectation is a(X, 02){ V. (X, %) — A}, which is maxi-
mizedata® ,(X,0?) =1{V.(X,0?) > A}. Now weselect a particular value A, of A for which E{a* ,(X,0?)} =
a, we denote the resulting rule by d, =a , and we construct the threshold function

t* (0P =inf{x:d,(x,0%) =1} =inf{x: Vo (x,0%) > Ao }. (16)

By right continuity and monotonicity it follows that X > £*(0?) is equivalent to V,(X,0?) > \,. The
equivalence will also hold if there are values of o2 such that V, (x, 02) < A, for all x or if there are values of
o? with V,,(x, %) > )\, for all x, where £* (%) is set to oo and —oo respectively. This equivalence implies the
size constraint but also allows us to develop a comparison of the thresholds {¢*} and any other thresholds
{t,} which also satisfy that constraint. Using the optimality of 4, in equation (15), it follows that

I(Y,)\“ (da) > Iﬂ,)\“ (b(y) (17)

where b, (X,0?) =1{X >t,(c»} is the threshold-based rule that we are comparing with the putative
optimal threshold. Expanding inequality (17),

P{X>1t¥(0%),020,} =N\ P{X 21X (01} = P{X >1,(0%),0>0,} — N\ P{X > 1,(0")}

from which optimality of {#*} follows immediately, since both marginal probabilities involved equal a.

A.3. Theorem 3
Suppose that there is crossing, in contradiction to the claim, i.e. there exists (o, az,aé) with o) < a,
such that t,, (0}) =14, (c3). By the mean value theorem, there exists ¢ € [a1, a,] such that 01, (03) /0= =
{ta,(03) —ta; (63)} /(2 — ) =0, which is in violation of the derivative condition.

In the normal-normal model, t* (62) =0, (6> + 1) — u,/{c* (0> + 1)} as presented in equation (4), with
0, =®"'(1 — ), u, defined by the constraint equation (5) and ® the cumulative distribution function
of the standard normal distribution. Our proof that this threshold has a negative derivative in « uses
the interesting fact that h(a) = p{®'(a)} is strictly concave for a € (0, 1), which may be confirmed by
differentiation. (Here ¢ is the density function that is associated with ®.)

Lemma 1. In the normal-normal model, assuming that P(c> =0) < 1, we have du,/da > df, /da.
Proof. Let
D, (0%)=®{0./(0* +1) —u,0}, (18)
so that E{D,(0?)} =1 -« is the constraint equation (5). Suppose, by contradiction, that —u/, > —0/,
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where primes indicate differentiation with respect to a. Differentiating equation (5) with respect to «, and
using G to denote the distribution function of a,.z, we obtain

:—6; /OO\/(O'Z-Fl)d)[q)_l{Dg(O'z)}]dG(o.Z)_(_u;) /wa¢[q)_l{D,y(02)}]dG(Uz)
0 0
=" / " @+ D (o (Do (0)}dG )+, / "o 40 {Du(e) NG
0 0
=“’é/ {V(@?+1) =0} ¢[0~ { D) }1dG (o)
0

<-4, /mqﬁ[‘l)*l{Da(Jz)}]dG(oz) unless P(6° =0)=1
0

0, E[h{D.(0")}]. (19)
From Jensen’s inequality, we know that E[h{D,(c*)}] < h[E{D,(c*)}]. Hence,
1< =0, h[E{D,(cH)}=—0h(1—a)=—0,6{2' (1 —a)}=1.

This contradiction leads us to conclude that — -0

a?

thus establishing lemma 1.

To complete the non-crossing proof, we differentiate equation (4) in a:
ar*(o?) _ i) duu o?
foled da da o?+1
<@+ 1) de, dé, o?
7 da  da|\o2+1

_da 2 (72

where the first inequality comes from lemma 1 and the second from the fact that d6,/da=—1/¢(0,) <O0.
For the trivial case when P(0> =0) =1, we note that the optimal ‘threshold function’ is *(0) = 6, which
obviously satisfies dt* (62)/0a < 0.

A.4. Theorem 4
We proceed in steps.

Lemma 2. Assume that conditions 1 and 2 hold. For each a € (0, 1), 670‘,1 — 0, almost surely as n — oo.

Proof. At continuity points p of F~!, F ;l (p) converges almost surely to the limiting quantile F~'(p)
by condition 2 and, for example, lemma 21.2 of van der Vaart (1998). Continuity of F~! follows from
condition 1, and thus the result follows.

Lemma 3. Assume conditions 1-3. The limiting posterior tail probability V,,(X;, 0?) is continuous and
non-decreasing in « for any data (X;, 0?). Further, as n — oo,

sup |Vou(Xi,07) = Va(Xi,07)| =0 almost surely.
ae(0,1)

Proof. First we confirm pointwise (in ) convergence of the numerator and the denominator of equation
(12) when evaluated at (X;, 0?) = (x, o%). The denominator is immediate, owing to p(x|6, o*) being bounded
and continuous in 6, and owing to the almost sure weak convergence of £,,. For the numerator, note that
the mapping 0+ 1(0 > 0,,) p(x|0, 02), for fixed (x, 02), is continuous except at 6, which has zero point mass
in the limiting distribution F. Thus fg p(x]0, 02 dF,(0) converges almost surely to fg p(x160, 0*) dF (),
using condition 2 and, for example theorem 2.3 of van der Vaart (1998). Tt is sufficient to confirm that
the error e,, defined as ¢, =| fg p(x]0, 0 dF,(0) — fe p(x]0, 0% dF,(0)], converges almost surely to 0.
With the bound condition 3, part (b), and taking any e >0, we have

O +€
en <K(0?) / 110 >0,.,)—1(0=0,)|dF,(0) < K(c?) dF, ) forn>N,,
R Oo—€
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where the second inequality is almost sure owing to lemma 2. Consequently, lim sup,, e, is almost surely
bounded by K(02){ F(0,+¢) — F(0, —€)} for every e >0, and so, pointwise in «, the limiting error must be
0, since F contains no atoms. On continuity and monotonicity of a+> V,(D;), let {a, } denote a sequence
in (0, 1) for which «,, > «. We have

Oa

0< Vo, (D) = Vo(Dy) = p(X;l0;,07) dF(6;)
p(Dy) Jy,,

2 —
gp(D,-) o — ).

Monotonicity is immediate from this, but also, if o, — «, we obtain right continuity of V,, (D;). A com-

parable argument gives left continuity. Uniform convergence follows from Polya’s theorem (e.g. Bickel and
Millar (1992)).

Lemma 4. 1f condition 3 holds, the mappmgs (x,0%) > V,(x,0%) and (x,07%) > V o.n(x, 0%) are contin-
uous. Further, for any x; > xo, V,,(x1,0%) > V,(x, 02) and V., ,(x1,02) > Vo, (x0, o).
Proof. Take a sequence {d,, = (x,,,02)} with d,, — d = (x, 0?), and observe that, for each n,

o0 o0

lim ﬂ%ﬁmNFWF/nhmMMWﬁNE@=/IWMHNE@-

—00
mn —00

The first equality follows from a dominated convergence argument, using condition 3, part (b), and the
second equality follows from continuity of the local sampling density, cond1t10n 3, part (a). The same
would hold if we replaced the integrand p(xm |9 o2) with 1(6 > O ) ptml6, 2 and likewise modified the
limit. Thus continuity of the ratio Va 2 (x, 02) 1s establlshed The argument for V, (x, 0?) is analogous.

On the monotonicity claim, note that V,(x,0?) =1/{1+1/1(x)}, where

o0 011
Y(x)= p@&#ﬂﬂm//)pma#mnw
6o —00

Showing that v(x) is increasing would be enough to prove that V,(x, o) is increasing. Write

= fa
2 2
) /GQ p(x110,0°) dF(0) /700 p(x0l0, 0*) dF(6)

V(xg)

= o =y1)2- (20
/9 p(x0l6, %) dF(0) / p(x110, 0% dF(6)

If we let p(0) = p(x110, 0%)/ p(x0|6, 02), then, because p(d) is increasing by condition 3,

/P(x||9,02)dF(9) /P(XOIG,UZ)P(G)dF(G)
fa

Oa

yi= ) = o9
/ p(x0l6, o*) AF(0) / p(x0l6, %) dF(0)
O Oa

M%M"MmﬂfMH®
> =p(0,).
/,Mm&fMHﬁ
Oa

Likewise,

O Oa
/ p(x0l0, 0%) AF(6) / p(x0l6, 0%) AF(6)

=" =

/ p(x116,0%) dF(O) /‘m%&#mWMHm

O
/ p(xol6, 0%) dF(0) {

” " o0

Oa
lWO/ p(x0l6, 0*) dF(0)
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Hence, y;y, > 1 and from equation (20) we know that 1 (x;)/1(xo) > 1, whence 1 (x) is increasing. The
argument for monotonicity of V,_,(x, o) is completely analogous.

Lemma 5. Let B=(0,1) x (0, 1) denote the open unit square. Assume conditions 1-3, and let I:I;Aln(p)
be the quantile function associated with the empirical distribution of { V., ,(X;, o)}, for some (o, p) € B.
Asn— o0, H, ,(p)—p H7!'(p), and this limit is continuous on B. The limit function and each estimate
are non-decreasing in p for each a and non-decreasing in « for each p. Furthermore, the convergence
is uniform on any closed square As=[6,1— 6] x [6, 1 — 8] for 6 € (0, %).

Proof. To simplify the notation, let §; =V, (X;, aiz) and én,,- = ‘7@,,1 (X, 01.2). Forve (0, 1), we consider the
intermediate empirical distribution H, ,(v) = (1/n)X!_, 1(§; < v), which entails no estimation error in F,
compared with the computable A an()=(1/m)E_, 1(E, ; <v), and which converges to H,, (v) by the law of
large numbers, owing to condition 1. To show that H,, , converges, further define A, =|H, ,(v) — H,,, (V).
For any € >0 we have

n

1 .
A, g; Zl|1(£n,igv)_l(£i<v)|

Lo Lo
= ; (&, <v) —1E<IA = Uni) + - ; (€, <v) = 1(& < )|Upi

where U, ; =1(1§; — &, ;| >¢). Thus

~ 1 n
A, <=0 E < —HE <) —Un,i)+; > Ui
i=1

n R 1 n 1
SO L1 euted+ o 3 MG e vteD+ 3 Ui
i=l i=l1

From the symmetry of £, in condition 2, all é,,‘ ; are identically distributed, and hence, taking expectations,
EA) < P{G e vtel} + P{& e, v+elt + EWUn ). 2D

As n— oo, the term E(U,, ;) converges to 0 by lemma 3, and likewise the upper bound in expression (21)
converges to 2 P{& € (v,v+€]} =2{H,(v+¢)— H,(v) }. Because e > 0 could be arbitrarily small, and using
the continuity of H, (see lemma S1 in the on-line supplementary rAnialterial), it follows that A, —p 0 and
hence H,,,(v) —p H,(v) as n — oo. Convergence in probability of H , , (p) to H7'(p) follows from a basic
fact about distributions (see lemma S2 in the supplementary material). Continuity of the limit H;!(p)
on B and co-ordinatewise monotonicity follow from the model regularity conditions (see lemma S2 in
the supplementary material). Interestingly, there are two discontinuities on the closed square, at (0, 1)
and (1,0), where the function switches immediately between 0 and 1. Thus we avoid having « near the
boundary in establishing uniformity of convergence, which itself follows from a two-dimensional version
of Polya’s theorem, owing to co-ordinatewise monotonicity and continuity of the limit (see lemma S3 in
the supplementary material).

Lemma 6. Define g,(D;) =V.(D;) — A, and §, (D)) = Vean (D)) — 3\&,”, and assume conditions 1-4.
Both sup,, s 15 [Aa.n — Aol and sup,cis 151 19a,.(Di) — ga(Di)| converge to 0 in probability as n — oo,
for any fixed ¢ € (0, 3). Further, a+> g,(D;) is continuous and g, (D;) =0 has a unique root r(D;).

Proof. Let As=[6,1—6] x[6,1— 6] denote a closed square within B, and note that
-1 _ A1 _
(1—a)—H'(1-o)|< sup |H,,(p)—H; ' (p).

a,n
(o, p)EA;

sup |)‘a,n - )\al = Ssup |H
a€lb,1-6] a€lb,1-6]

Uniform convergence of ;\M follows from lemma 5. Similarly, uniform convergence of g, ,(D;) follows
after also invoking lemma 3.

Continuity of g, (D;) follows from lemmas 3 and 5. We deduce uniqueness in the a-root of g,(D;) =0
first by noting that condition 1 and continuity of V, in data (lemma 4) imply the existence of )\, satisfying
condition (6). Were there not at least one a-value for which g, (D;) =0, then either V,(X;, O'iz) would always
exceed A, or it would always be dominated by it. Take the second case; the first is analogous. Find an open
ball around D, = (X;, al.z) such that g,(d) <0 for all d in this ball and for all . This ball has some positive
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probability, say € >0, and so P{V,(D;) <.} > e. But, owing to condition (6), we have a contradiction
when o > 1 — ¢, implying that there must be at least one root of g, (D;) =0. The conditions of theorem 2
are met, and so, from continuity in lemma 4, V,{t} (02) 02} A, defines the optimal threshold. Finally,
by condition 4, X, =1*(c?) at exactly one value of .

Lemma 7. 1f conditions 1-4 hold, then, for 6 € (0, %), fi(D,-) —pr9(D;) asn— o0o.

Proof. The empirical r-value r”fl (Dy)islike aroot of g, ,(D;) =0, at least truncated away from end points
0 and 1 but, owing to the sample quantile estimation, g, ,(D;) is not continuous at all & and may admit
multiple roots. In spite of this, lemma 6 assures not only continuity of the limit g, (D;) having a unique root
r(D;), but also uniform convergence of sample functions g, ,(D;) to this limit, at least on compact subsets
of (0,1). From the first of these properties, the extreme value theorem implies that, for any sufficiently
small € > 0, there exists v =v/(D;) > 0 such that the limit function g, (D;) has magnitude at least v for all
«a with |r(D;) — a| > e. From the uniform convergence, 190, ,L(D ) — go(D;)| <v/2 with high probablhty for
large n, uniformly for a €[6, 1 — 6], and thus in this event |r (D;) —r(D;)| < e. Lemma S4 in the on-line
supplementary material provides further details.

Proceeding to prove theorem 4, we know from the unique root result in lemma 6 that events [r(D;) < a]
and [V, (D;) > \,] are equivalent, and so the ideal r(D;) has a uniform(0, 1) distribution by condition (6).
The first claim follows from lemma 7 and, for example, theorem 2.3 from van der Vaart (1998), using the
fact that 1{r°(D;) < a} =1{r(D;) < a} for a €[6, 1 — ]. r-values in inequality (13) do not involve truncation
away from end points 0 or 1. The claimed lower bound A, := P{r(D;) <, 0; > 6,} is maximal because
the conditions of theorem 2 are satisfied (lemma 4), and because the maximal agreement is achieved by
using r(D;) (from the unique root remarks above). To establish the bound, let A, , denote the left-hand
side of equation (13), and introduce A, , = (1/n)Xi_ 1[r(D;) <, 0; > 0 . }. Of course A, , —p A, by the
law of large numbers 50 at issue are deviations between A(y n gnd A0 ,» caused by estimation errors. With
aelb,1-46],F (D ) < awimplies that 7, (D;) < &, and therefore A, , > (l/n)E” 1l{r (D) <a,0;,>0,}. Now
decompose thls lower bound into Aa e, where e,=(1/n)xt 1[l{r (D <a}y—1{rD)< a} 11, >0.),
using the fact that 1{r®(D;) <a} = l{r(D )< a} for a€[é, 1 —6]. Having convergence of ¢, in probability
to 0 would complete the proof. We have

le,| < 21(9, €u)|1{f (D)<oz}—1{r (D) <l

By the identical distribution of terms, induced by permutation invariance (condition 2),

Ele,| <E[1(6; > 0,) [1{#, (D)) <a} —1{r’ (D)) < a}[]
SVaJENA (D) < a} —1{r" (D) <all],

with the second inequality by the Cauchy—Schwartz inequality. The integrand within the expectation on
the right-hand side is bounded by 1 and converges in probability to 0 (lemma 7 and theorem 2.3, van der
Vaart (1998)), and so e, —p 0, completing the proof.
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