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SUMMARY

Directed graphical models provide a useful framework for modeling causal or directional re-
lationships for multivariate data. Prior work has largely focused on identifiability and search al-
gorithms for directed acyclic graphical (DAG) models. In many applications, feedback naturally
arises and directed graphical models that permit cycles arise. However theory and methodology 15

for directed graphical models with feedback are considerably less developed since graphs with
cycles pose a number of additional challenges. In this paper we address the issue of identifiability
for general directed cyclic graphical (DCG) models satisfying only the Markov assumption. In
particular, in addition to the faithfulness assumption which has already been introduced for cyclic
models, we introduce two new identifiability assumptions, one based on selecting the model 20

with the fewest edges and the other based on selecting the directed cyclic graphical model that
entails the maximum d-separation rules. We provide theoretical results comparing these assump-
tions which shows that: (1) selecting models with the largest number of d-separation rules is
strictly weaker than the faithfulness assumption; (2) unlike for directed acyclic graphical mod-
elss, selecting models with the fewest edges do not necessarily result in a milder assumption than 25

the faithfulness assumption. We also provide connections between our two new principles and
minimality assumptions which lead to a ranking of how strong and weak various identifiability
and minimality assumptions are for both directed acyclic graph and directed cyclic graphcial
models. We use our identifiability assumptions to develop search algorithms for small-scale di-
rected cyclic graphcial models. Our simulations results using our search algorithms support our 30

theoretical results, showing that our two new principles generally out-perform the faithfulness
assumption in terms of selecting the true skeleton for directed cyclic graphcial models.

Some key words: Directed graphical Models, Identifiability, Faithfulness, Feedback loops.

1. INTRODUCTION

A fundamental goal in many scientific problems is to determine causal or directional relation- 35

ships between variables in a system. A well-known framework for representing causal or direc-
tional relationships are directed graphical models. Most prior work on directed graphical models
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has focused on directed acyclic graphical (DAG) models. directed acyclic graphical modelss,
also referred to as Bayesian networks are directed graphical models with no directed cycles. One
of the core problems in directed acyclic graphs is determining the underlying directed acyclic40

graph G given the data-generating distribution P.
The directed acyclic graph framework is based on the Markov assumption, which relates con-

ditional independence (CI) statements for a probability distribution P to so-called d-separation
rules entailed by a directed graph G (cyclic or acyclic) (see e.g. (Lauritzen, 1996; Spirtes et al.,
2000)). While the Markov assumption is fundamental, in order for the directed graph G to be45

identifiable based on the distribution P, additional identifiability or minimality assumptions are
required. For directed acyclic graphical modelss, a number of identifiability and minimality as-
sumptions have been introduced (Glymour et al., 1987; Spirtes et al., 2000) and the connections
between them have been discussed (Zhang, 2012). In particular, one of the most widely used
assumptions for directed acyclic graphical modelss is the causal faithfulness condition (CFC)50

which is sufficient for many search algorithms. However the casual faithfulness condition has
been shown to be extremely restrictive, especially in the limited data setting (Uhler et al., 2013).
In addition two minimality assumptions, the P-minimality and SGS-minimality assumptions
have been introduced. These conditions are weaker than the casual faithfulness condition but
do not guarantee model identifiability (Zhang, 2012). On the other hand, the recently introduced55

sparsest Markov representation (SMR) and frugality assumptions introduced in (Forster et al.,
2015; Raskutti & Uhler, 2013) provide an alternative that is milder than the casual faithfulness
condition and is sufficient to ensure identifiability. The main downside of the frugality and spars-
est Markov representation assumptions relative to the casual faithfulness condition is that the
frugality and sparsest Markov representation assumptions are sufficient conditions for model60

identifiability only when exhaustive searches over the directed acyclic graph space are possi-
ble (Raskutti & Uhler, 2013), while the casual faithfulness condition is sufficient for polynomial-
time algorithms (Glymour et al., 1987; Spirtes & Glymour, 1991).

While the directed acyclic graph framework is useful in many applications in psychology,
economics, biology, and other disciplines, the directed acyclic graph framework is limited since65

feedback loops are known to often exist (see e.g. (Richardson, 1996a,b)). Hence directed cyclic
graphs (DCGs) (Spirtes et al., 2000) are more appropriate to model such feedback. However
learning directed cyclic graphs from data is considerably more challenging than learning di-
rected acyclic graphs (Richardson, 1996a,b) since the presence of cycles poses a number of
additional challenges and introduces additional non-identifiability. Consequently there has been70

considerable less work focusing on directed graphs with feedback both in terms of identifiability
assumptions and search algorithms. Spirtes et al. (Spirtes, 1995) discuss the Markov conditions,
and Richardson (Richardson, 1996a,b) discusses the causal faithfulness condition (CFC) for di-
rected cyclic graphcial models and introduce the polynomial-time cyclic causal discovery (CCD)
algorithm Richardson (1996a). As with directed acyclic graphical modelss, the faithfulness as-75

sumption for cyclic models is extremely restrictive (since it is by definition more restrictive than
the casual faithfulness condition for directed acyclic graphical modelss). This raises the question
of whether a milder identifiability assumption can be imposed for learning directed graphical
models with feedback.

In this paper, we address this question in a number of steps. Firstly we adapt the sparsest80

Markov representation and frugality assumptions developed for directed acyclic graphical mod-
elss to directed cyclic graphcial models. Next we show that unlike for directed acyclic graphical
modelss, the adapted sparsest Markov representation and frugality assumptions are not strictly
weaker than the faithfulness assumption. Hence we consider a new identifiability assumption
based on finding the Markovian directed cyclic graph satisfying the maximum d-separation rules85
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(MDR) which we prove is strictly weaker than the faithfulness assumption and infers the true
Markov equivalence class for directed cyclic graphcial models more consistently than the casual
faithfulness condition. We also provide a ranking in terms of strength between the maximum
d-separation rule assumption, the sparsest Markov representation and frugality assumptions as
well as the minimality assumptions for both directed acyclic graph and directed cyclic graphcial 90

models. Finally we use the sparsest Markov representation and maximum d-separation rule iden-
tifiability assumptions to develop search algorithms for small-scale directed cyclic graphcial
models. Our simulation study supports our theoretical results by showing that the algorithms
induced by both the sparsest Markov representation and maximum d-separation rule assump-
tions have higher recovery rates than the algorithm induced by the faithfulness assumption. We 95

point out that the search algorithms that result from our identifiability assumptions require ex-
haustive searches and are not computationally feasible for large directed cyclic graphcial models.
However the focus of this paper is to develop the weakest possible identifiability assumption.

The remainder of the paper is organized as follows: Section 2 provides the background and
prior work for identifiability assumptions for both directed acyclic graph and directed cyclic 100

graphcial models. In Section 3 we adapt the sparsest Markov representation and frugality as-
sumptions to directed cyclic graphcial models and provide a comparison between the sparsest
Markov representation assumption, the faithfulness assumption, and the minimality assumptions.
In Section 4 we introduce our new maximum d-separation rule principle, finding the Markovian
directed cyclic graph that satisfies the maximum number of d-separation rules and provide a com- 105

parison of our new principle to the faithfulness, minimality, sparsest Markov representation and
frugality assumptions. Finally in Section 5, we use our identifiability assumptions to develop a
search algorithm for learning small-scale directed cyclic graphcial models, and show that our
simulations support our theoretical results.

2. PRIOR WORK ON DIRECTED GRAPHICAL MODELS 110

In this section, we introduce the basic concepts of directed acyclic graphs and directed cyclic
graphs pertaining to model identifiability. A directed graph G = (V,E) consists of a set of ver-
tices V and a set of directed edges E. Suppose that V = {1, 2, . . . , p} and there exists a random
vector (X1, X2, ..., Xp) with probability distribution P over the vertices in G. A directed edge
from vertex j to k is denoted by (j, k) or j → k. The set pa(k) of parents of a vertex k consists 115

of all nodes j such that (j, k) ∈ E. If there is a directed path j → · · · → k, then k is called a de-
scendant of j and j is an ancestor of k. The set de(k) denotes the set of all descendants of a node
k. The non-descendants of a node k are nd(k) = V \ ({k} ∪ de(k)). For a subset S ⊂ V , we
define an(S) to be the set of nodes k that are in S or are ancestors of some node in S. Two nodes
that are connected by an edge are called adjacent. A triple of nodes (j, k, `) is an unshielded 120

triple if j and k are adjacent to ` but j and k are not adjacent. An unshielded triple (j, k, `) forms
a v-structure if j → ` and k → `. In this case ` is called a collider. Furthermore, an undirected
path π from j to k d-connects j and k given S ⊂ V \ {j, k} if every collider on π is in an(S) and
every non-collider on π is not in S. If G has no path that d-connects j and k given a subset S,
then j and k are d-separated given S. Finally, let Xj ⊥⊥ Xk | XS with S ⊂ V \ {j, k} denoting 125

the conditional independence (CI) statement thatXj is conditionally independent (as determined
by P) of Xk given the set of variables XS = {X` | ` ∈ S}, and let Xj⊥6⊥Xk | XS denote condi-
tional dependence. The Causal Markov condition associates conditional indenpendence relations
of P with a directed graph G:
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DEFINITION 1 (CAUSAL MARKOV CONDITION (CMC) (SPIRTES ET AL., 2000) ). A130

probability distribution P over a set of vertices V satisfies the Causal Markov condition with
respect to a (acyclic or cyclic) graphical model G = (V,E) if for all (j, k, S), j is d-separated
from k conditioned on S ⊂ {1, 2, ..., p} \ {j, k} in G, then

Xj ⊥⊥ Xk | XS according to P.

The causal Markov condition applies to both acyclic and cyclic graphs (see e.g. Spirtes et al.135

(2000)). However not all directed graphical models satisfy the causal Markov condition. In order
for a directed cyclic graphical model to satisfy the causal Markov condition, the joint distribution
of a directed cyclic graphical model should be defined by the generalized factorization (Lauritzen
et al., 1990).

DEFINITION 2 (GENERALIZED FACTORIZATION (LAURITZEN ET AL., 1990)). The joint140

distribution of X , f(X) factors according to directed graph G with vertices V if and only if for
every subset X of V ,

f(an(X)) =
∏

V ∈an(X)

gV (V, pa(V ))

where gV is a non-negative function.

Spirtes et al. (Spirtes, 1995) showed that the generalized factorization is a necessary and suf-
ficient condition for directed graphical models to satisfy the causal Markov condition. For di-145

rected acyclic graphical modelss, gV (.)’s must always correspond to a probability distribution
function whereas for graphs with cycles, gV (.)’s need only be non-negative functions. As shown
by Spirtes et al. (Spirtes, 1995), a concrete example of a cyclic graph that satisfies the factoriza-
tion above is structural linear directed cyclic graph equation models with additive independent
errors. We will later use linear directed cyclic graphcial models in our simulation study.150

In general, there are many directed graphs entailing the same d-separation rules. These graphs
are Markov equivalent and the set of Markov equivalent graphs is called a Markov equivalence
class (MEC) (Spirtes et al., 2000). For example, consider two 2-node graphs, G1 : X1 → X2

and G2 : X1 ← X2. Then both graphs are Markov equivalent because they both entail no d-
separation rules. Hence, G1 and G2 are in the same Markov equivalence class and hence it is155

impossible to distinguish two graphs by d-separation rules. The precise definition of Markov
equivalence class is provided here.

DEFINITION 3 (MARKOV EQUIVALENCE (RICHARDSON, 1996A)). Directed graphs G1

and G2 are Markov equivalent if any distribution which satisfies the causal Markov condi-
tion with respect to one graph satisfies it with respect to the other, and vice versa. The set of160

graphs which are Markov Equivalent to G is denoted byM(G).

The characterization of Markov equivalence classes is different for directed acyclic graphs and
directed cyclic graphs. For directed acyclic graphs, Chickering Chickering et al. (1995) devel-
oped an elegant characterization of Markov equivalence classes defined by the skeleton and
v-structures. The skeleton of a directed acyclic graphical model consists of the edges without165

directions:

THEOREM 1 (THEOREM IN CHICKERING CHICKERING ET AL. (1995)). Two directed
acyclic graphs G1 and G2 belong to the same Markov equivalence class if and only if they have
the same skeleton and v-structures.
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However for directed cyclic graphs, the presence of feedback means the characterization of the 170

Markov equivalence class for directed cyclic graphs is considerably more involved. Richardson
provides a characterization in (Richardson, 1996a). The presence of directed cycles changes the
notion of adjacency between pairs. In particular there are real adjacencies that are a result of
directed edges in the directed cyclic graph and virtual adjacencies which are edges that do not
exist in the data-generating directed cyclic graph but can not be recognized as a non-edge from 175

the data. The precise definition of real and virtual edges are:

DEFINITION 4 (ADJACENCY (RICHARDSON, 1996B)). Consider a directed graph G =
(V,E).

(a) For any j, k ∈ V , j and k are really adjacent in G if j → k or j ← k.
(b) For any j, k ∈ V , j and k are virtually adjacent if j and k have a common child `, such that ` 180

is an ancestor of j or k.

Note that a virtual edge can only occur if there is a cycle in the graph. Hence, directed acyclic
graphs have only real edges while directed cyclic graphs can have both real edges and virtual
edges. Figure 1 show an example of a directed cyclic graph with a virtual edge. In Figure 1,
a pair of nodes (1, 4) has a virtual edge (dotted line) because the triple (1, 4, 2) forms a v- 185

structure and the common child 2 is an ancestor of 1. This virtual edge is created by the cycle,
1→ 2→ 3→ 1.

1

3

2 4

virtual

Fig. 1: 4-node example for a virtual edge

Virtual edges generate different types of relationships involving unshielded triples: (1) an un-
shielded triple of (j, k, `) (that is j − `− k) is called a conductor if ` is an ancestor of j or k;
(2) an unshielded triple of (j, k, `) is called a perfect non-conductor if ` is a descendant of the 190

common child of j and k. Furthermore (3) an unshielded triple of (j, k, `) is called an imperfect
non-conductor if the triple is not a conductor or a perfect non-conductor.

Intuitively, the concept of (1) a conductor is analogous to the notion of non-collider in directed
acyclic graphs because for example suppose that (j, k, `) is a conductor, then j is d-connected
from k given any set S which does not contain `. Moreover, (2) a perfect non-conductor is 195

analogous to a v-structure because suppose that (j, k, `) is a perfect non-conductor, then j is
d-connected from k given any set S which contains `. However, there is no analogous notion
of an imperfect non-conductor for directed acyclic graphical modelss. Hence an imperfect non-
conductor is another significant difference between directed acyclic graphs and directed cyclic
graphs and as we see throughout this paper that this difference creates a major challenge in infer- 200

ring directed cyclic graphcial models from the underlying distribution P. As shown in Richard-
son et al. Richardson (1996b), a necessary (but not sufficient) condition for two directed cyclic
graphs to belong to the same Markov equivalence class is that they share the same real plus virtual
edges and the same conductors, perfect non-conductors and imperfect non-conductors. However
unlike for directed acyclic graphs this condition is not sufficient for Markov equivalence since 205

local properties do not completely characterize the global directed cyclic graph structure. A com-



6

plete characterization of Markov equivalence is provided in Richardson et al. Richardson (1996b)
and since it is quite involved, we do not include it here.

Even if we weaken the goal to inferring a Markov equivalence class for a directed acyclic
graph or directed cyclic graph, the causal Markov condition is insufficient for discovering the210

true Markov equivalence class M(G∗) because there are many graphs satisfying the causal
Markov condition, which do not belong to M(G∗). For example, any fully-connected graph
always satisfies the causal Markov condition because it does not entail any d-separation rules.
Hence, in order to identify the true Markov equivalence class given the distribution P stronger
identifiability assumptions which encourage the removal of edges are required.215

2·1. Faithfulness and minimality assumptions
For a directed graphG, letE(G) denote the set of directed edges, S(G) denote the set of edges

without directions, also referred to as the skeleton and Dsep(G) denote the set of d-separation
rules entailed by G. Further let CI(P), denote the conditional independence (CI) statements cor-
responding to the multivariate distribution P. In this section we discuss identifiability assump-220

tions. To make the notion of identifiability and our assumptions precise, we need to define the
notion of a true data-generating graph G∗. All we observe is the distribution P and we know the
pair (G∗,P) satisfies the causal Markov condition. The pair (G∗,P) is identifiable if the graph
Markov equivalence class forM(G∗), can be uniquely determined by conditional independence
statements CI(P).225

One of the most widely imposed identifiability assumptions for both directed acyclic
graphs and directed cyclic graphs is the causal faithfulness condition (CFC) (Spirtes et al., 2000)
also referred to as the stability condition in (Pearl, 2014). A directed graph is faithful to a proba-
bility distribution if there is no probabilistic independence in the distribution that is not entailed
by the causal Markov condition. The casual faithfulness condition states that the graphical model230

is faithful to the true probability distribution.

DEFINITION 5 (CAUSAL FAITHFULNESS CONDITION (CFC) (SPIRTES ET AL., 2000)).
Consider a directed graphical model (G∗,P). A directed graph G∗ is faithful to P if for any
j, k ∈ V and any subset S ⊂ V \ {j, k},

j d-separated from k | S ⇐⇒ Xj ⊥⊥ Xk | XS according to P.

While the casual faithfulness condition is sufficient to guarantee identifiability and leads to235

polynomial-time search algorithms (Glymour et al., 1987; Spirtes et al., 2000), it is known to
be a very strong assumption (see e.g. (Forster et al., 2015; Raskutti & Uhler, 2013)) that is often
not satisfied in practice. Hence, milder assumptions have been considered.

Minimality assumptions, notably the P-minimality (Pearl, 2003) and SGS-minimality (Gly-
mour et al., 1987) assumptions are two such assumptions. The P-minimality condition asserts240

that for directed graphical models satisfying the causal Markov condition, models that satisfy
more d-separation rules are preferred. For example, suppose that there are two graphsG1 andG2

which are not Markov equivalent. G1 is strictly preferred to G2 if Dsep(G2) ( Dsep(G1). The
P-minimality condition asserts that no graph is strictly preferred to the true graph G∗. The SGS-
minimality condition asserts that there exists no proper sub-graph of G∗ that satisfies the causal245

Markov condition with respect to the probability distribution P. To define the term sub-graph
precisely, G1 is a sub-graph of G2 if E(G1) ( E(G2). Zhang (Zhang, 2012) proved that the
SGS-minimality assumption is weaker than the P-minimality assumption which is weaker than
the casual faithfulness condition (for both directed acyclic graphs and directed cyclic graphs).
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THEOREM 2 (ZHANG (2013) (ZHANG, 2012)). If a directed acyclic graphical 250

model (G∗,P) satisfies the causal Markov condition and

(a) the casual faithfulness condition, it satisfies the P-minimality condition.
(b) the P-minimality condition, it satisfies the SGS-minimality condition.

While Zhang (Zhang, 2012) states the results for directed acyclic graphs, the result easily extends
to directed cyclic graphs. 255

2·2. Sparsest Markov Representation (SMR) for directed acyclic graphs
While the minimality assumptions are milder than the casual faithfulness condition, neither the

P-minimality nor SGS-minimality assumptions imply identifiability of the Markov equivalence
class for G∗. Recent work by Raskutti and Uhler developed the sparsest Markov representation
sparsest Markov representation assumption (Raskutti & Uhler, 2013) and a slightly weaker ver- 260

sion later referred to as frugality Forster et al. (2015) which applies to directed acyclic graphical
modelss. The sparsest Markov representation assumption which we refer to here as the identi-
fiable sparsest Markov representation assumption states that the true directed acyclic graphical
model is the directed acyclic graph satisfying the causal Markov condition with the fewest edges.
Here we say that a directed acyclic graph G1 is strictly sparser than a directed acyclic graph G2 265

if G1 has fewer edges than G2.

DEFINITION 6 (IDENTIFIABLE SPARSEST MARKOV REPRESENTATION (RASKUTTI & UHLER, 2013)).
A directed acyclic graphical model (G∗,P) satisfies the identifiable sparsest Markov repre-
sentation assumption if (G∗,P) satisfies causal Markov condition and |S(G∗)| < |S(G)| for
every directed acyclic graph G such that (G,P) satisfies the causal Markov condition and 270

G /∈M(G∗).

The identifiable sparsest Markov representation assumption is strictly weaker than the ca-
sual faithfulness condition while also ensuring a score-based method known as the SP algo-
rithm (Raskutti & Uhler, 2013) recovers the true Markov equivalence class. Hence the identifi-
able sparsest Markov representation assumption guarantees identifiability of the Markov equiva- 275

lence class for directed acyclic graphical modelss. A slightly weaker notion which we refer to as
the weak sparsest Markov representation assumption does not guarantee model identifiability.

DEFINITION 7 (WEAK SPARSEST MARKOV REPRESENTATION (FRUGALITY) (FORSTER ET AL., 2015)).
A directed acyclic graphical model (G∗,P) satisfies the weak sparsest Markov representa-
tion condition if (G∗,P) satisfies the causal Markov condition and |S(G∗)| ≤ |S(G)| for 280

every directed acyclic graph G such that (G,P) satisfies the causal Markov condition and
G /∈M(G∗).

A comparison of sparsest Markov representation/frugality to the minimality assumptions and ca-
sual faithfulness condition for directed acyclic graphs is provided in Raskutti and Uhler Raskutti
& Uhler (2013) and Forster et al. Forster et al. (2015). 285

THEOREM 3 (RASKUTTI AND UHLER (2013) (RASKUTTI & UHLER, 2013)). If a directed
acyclic graphical model (G∗,P) satisfies

(a) the casual faithfulness condition, it satisfies the identifiable sparsest Markov representa-
tion and consequently weak sparsest Markov representation assumptions.

(b) the weak sparsest Markov representation assumption, it satisfies the P-minimality and conse- 290

quently the SGS-minimality conditions.
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(c) the identifiable sparsest Markov representation assumption, G∗ is identifiable up to Markov
equivalence class.

It is unclear whether the sparsest Markov representation/frugality assumptions apply naturally to
directed cyclic graphcial models since the success of the sparsest Markov representation assump-295

tion relies on the local Markov property which is known to hold for directed acyclic graphical
modelss but not directed cyclic graphcial models Richardson (1994). In this paper, we investigate
the extent to which these identifiability conditions apply to directed cyclic graphcial models and
provide a new principle for learning directed cyclic graphcial models.

2·3. Our contributions300

Based on this prior work, a natural question to consider is whether the identifiable and weak
sparsest Markov representation assumptions developed for directed acyclic graphs apply to di-
rected cyclic graphs and whether there are similar relationships between the casual faithfulness
condition, sparsest Markov representation and minimality assumptions.

In this paper we address this question, by adapting both identifiable and weak sparsest Markov305

representation assumptions to directed cyclic graphs. One of the challenges we address is dealing
with the distinction between real and virtual edges in directed cyclic graphs. We show that unlike
for directed acyclic graphical modelss, the identifiable sparsest Markov representation assump-
tion is not necessarily a weaker assumption than the casual faithfulness condition and while our
simulations indicate that the identifiable sparsest Markov representation assumption recovers the310

true Markov equivalence class more frequently than the casual faithfulness condition, there exist
no theoretical guarantees.

Consequently, we introduce a new principle which is the maximum d-separation rule (MDR)
principle which chooses the directed Markov graph with the greatest number of d-separation
rules. We show that our maximum d-separation rule principle is strictly weaker than the casual315

faithfulness condition and stronger than the P-minimality assumption, while also guaranteeing
model identifiability for directed cyclic graphcial models. Our simulation results complement
our theoretical results, showing that in general both the identifiable sparsest Markov represen-
tation and maximum d-separation rule assumptions are more successful assumptions than the
casual faithfulness condition in terms of recovering the Markov equivalence class for directed320

cyclic graphcial models.

3. SPARSITY AND SPARSEST MARKOV REPRESENTATION FOR DIRECTED CYCLIC
GRAPHCIAL MODELS

In this section, we extend notions of sparsity and the sparsest Markov representation assump-
tions to directed cyclic graphcial models. As mentioned earlier, in contrast to directed acyclic325

graphs, directed cyclic graphs can have two different types of edges which are real edges and
virtual edges. In this paper, we define the sparsest directed cyclic graphical model as the model
with the fewest total edges which are virtual edges without directions plus real edges. The main
reason we choose total edges rather than just real edges is that all graphs in the same Markov
Equivalence Class (MEC) have the same number of total edges (Richardson, 1994). However, the330

number of real edges may not be the same amongst the graphs even in the same Markov equiv-
alence class. For example in Figure 2, there are two different Markov equivalence classes and
each Markov equivalence class has two graphs: G1, G2 ∈M(G1) and G3, G4 ∈M(G3). G1

and G2 have 9 total edges but G3 and G4 has 7 total edges. On the other hand, G1 has 6 real
edges, G2 has 9 real edges, G3 has 5 real edges, and G4 has 7 real edges (a bi-directed edge is335



Biometrika style 9

counted as 1 total edge). For a directed cyclic graph G, let S(G) denote the skeleton of G where
(j, k) ∈ S(G) is a real or virtual edge.

M(G1) M(G3)

1 2 3

4

5

G1

1 2 3

4

5

G2

1 2 3

4

5

G3

1 2 3

4

5

G4

Fig. 2: 5-node examples with the different number of real edges and total edges

Using this definition of skeleton S(G) for a directed cyclic graph, the definitions of the iden-
tifiable and weak sparsest Markov representation assumptions carry over from directed acyclic
graphs to directed cyclic graphs. For completeness, we re-state the definitions here. 340

DEFINITION 8 (IDENTIFIABLE SPARSEST MARKOV REPRESENTATION FOR DIRECTED CYCLIC GRAPHS).
A pair (G∗,P) satisfies the identifiable sparsest Markov representation condition if (G∗,P)
satisfies the causal Markov condition and |S(G∗)| < |S(G)| for every directed cyclic graph G
such that (G,P) satisfies the causal Markov condition and G /∈M(G∗).

DEFINITION 9 (WEAK SPARSEST MARKOV REPRESENTATION FOR DIRECTED CYCLIC GRAPHS).345

A pair (G∗,P) satisfies the weak sparsest Markov representation condition if (G∗,P) satisfies
the causal Markov condition and |S(G∗)| ≤ |S(G)| for every directed cyclic graph G such that
(G,P) satisfies the causal Markov condition and G /∈M(G∗).

Unfortunately as we observe later unlike for directed acyclic graphical modelss, the identifiable
sparsest Markov representation assumption is not weaker than the casual faithfulness condition in 350

directed cyclic graphcial models. Hence the identifiable sparsest Markov representation assump-
tion does not guarantee identifiability of Markov equivalence classes for directed cyclic graphcial
models. On the other hand, while the weak sparsest Markov representation assumption may not
guarantee uniqueness, we prove it is strictly weaker assumption than the casual faithfulness con-
dition. We explore the relationship between the sparsest Markov representation assumptions and 355

the casual faithfulness condition and minimality assumptions in the next section.

3·1. Comparison of sparsest Markov representation, casual faithfulness condition and
minimality assumptions for directed cyclic graphs

Before presenting our main results of this section, we provide a lemma which highlights the
important difference between the sparsest Markov representation assumptions for directed cyclic 360

graphs compared to directed acyclic graphs. Note that the sparsest Markov representation as-
sumptions involves counting the number of edges, whereas the casual faithfulness condition and
P-minimality assumptions involve d-separation rules. First, we provide a proof for a fundamental
link between the presence of an edge in S(G) and d-separation/connection rules.

LEMMA 1. For a directed graph G, (j, k) ∈ S(G) if and only if j is d-connected to k given S 365

for all S ⊂ {1, 2, ..., p} \ {j, k}.
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Proof. Suppose that (j, k) are adjacent. Then by the definition of d-connection (Richardson,
1994), there is no subset S ⊂ {1, 2, ..., p} \ {j, k} such that j is d-separated from k given S.
Suppose that (j, k) are not adjacent. We now show that there exists an S ⊂ {1, 2, ..., p} \ {j, k}
such that j is d-separated from k given S. Let S = an(j) ∪ an(k) then Xj is d-separated from370

Xk given S because the union of ancestors should not have any common child or its descendants
otherwise (j, k) are virtually adjacent which is a contradiction. Furthermore, if the ancestors do
not contain a common child of (j, k) then there is no path which d-connects j and k conditioned
on its ancestors. Hence there is at least one set S d-separating j and k which completes the
proof. �375

Note that the above statement is true for real or virtual edges and not real edges alone. We
now state an important lemma which shows the key difference in comparing the sparsest Markov
representation assumptions to other identifiability assumptions for directed cyclic graphs, which
does not arise for directed acyclic graphs.

LEMMA 2.(a) For any two directed graphs G1 and G2, Dsep(G1) ⊆ Dsep(G2) implies380

S(G2) ⊆ S(G1).
(b) There exist two directed graphs G1 and G2 such that S(G1) = S(G2), but Dsep(G1) (

Dsep(G2). For directed acyclic graphs, no two such graphs exist.

Proof. We begin with the proof of (a). Suppose that S(G1) is not a sub-skeleton of
S(G2), meaning that there exists a pair (j, k) ∈ S(G1) and (j, k) /∈ S(G2). By Lemma 1,385

j is d-connected to k given S for all S ⊂ {1, 2, ..., p} \ {j, k} in G1 while there exist S ⊂
{1, 2, ..., p} \ {j, k} d-separating j and k in G2. Hence it is contradictory that Dsep(G1) ⊂
Dsep(G2). For (b), we refer to the example in Figure 3.

In Figure 3, the unshielded triple (X1, X4, X2) is a conductor in G1 and an imperfect non-
conductor in G2 because of a reversed directed edge between (X4, X5). By the property of a390

conductor, in order for (X1, X4) to be d-separated in G1, X2 should be included in the condi-
tioning set. In contrast, for G2, X1 is d-separated from X4 given the empty set (which does not
include X2).

X1 X2 X3 X4

X5

G1

X1 X2 X3 X4

X5

G2

Fig. 3: 5-node examples for Lemma 2 and Theorem 4

Lemma 2 (a) holds for both directed acyclic graph and directed cyclic graphcial models and
allows us to conclude a subset-superset relation between edges in the skeleton and d-separation395

rules in a graph G. Part (b) is where there is a key difference directed acyclic graphs and directed
cyclic graphs. Part (b) asserts that there are examples in which the edge set in the skeleton may
be totally equivalent, yet one graph entails a strict superset of d-separation rules.
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Now we present the main result of this section which compares the identifiable and weak spars-
est Markov representation assumptions with the casual faithfulness condition and P-minimality 400

assumption.

THEOREM 4. For directed cyclic graphcial models,

(a) the weak sparsest Markov representation assumption is weaker than the casual faithfulness
condition.

(b) there exists a directed cyclic graphical model (G,P) satisfying the casual faithfulness condi- 405

tion that does not satisfy the identifiable sparsest Markov representation assumption.
(c) the identifiable sparsest Markov representation assumption is stronger than the P-minimality

assumption.
(d) there exists a directed cyclic graphical model (G,P) satisfying the weak sparsest Markov

representation assumption that does not satisfy the P-minimality assumption. 410

Proof.(a) The proof for (a) follows from Lemma 2 (a). If a directed cyclic graphical
model (G∗,P) satisfies the casual faithfulness condition, then for all graphsG such that (G,P)
satisfies the causal Markov condition, Dsep(G) ⊆ Dsep(G

∗). Hence based on Lemma 2 (a),
S(G∗) ⊆ S(G) and (G∗,P) satisfies the weak sparsest Markov representation assumption.

(b) We refer to the example in Figure 3 where (G2,P) satisfies the casual faithfulness condition. 415

(c) The proof for (c) again follows from Lemma 2 (a). Suppose that a directed cyclic graphi-
cal model (G∗,P) fails to satisfy the P-minimality assumption. This implies that there ex-
ists a directed cyclic graph G such that (G,P) satisfies the causal Markov condition and
Dsep(G

∗) ( Dsep(G). Lemma 2 (a) implies S(G) ⊆ S(G∗). Hence G∗ cannot have the
fewest skeletons uniquely, therefore (G∗,P) fails to satisfy the identifiable sparsest Markov 420

representation assumption.
(d) We refer to the example in Figure 3 where (G1,P) satisfies the weak sparsest Markov repre-

sentation assumption. Further explanation is given in Figure 14 in the Appendix. �

If (G,P) satisfies the casual faithfulness condition, the weak sparsest Markov representation as-
sumption is satisfied whereas the identifiable sparsest Markov representation assumption is not 425

necessarily satisfied. For directed acyclic graphical modelss, the identifiable sparsest Markov
representation assumption is strictly weaker than the casual faithfulness condition and the iden-
tifiable sparsest Markov representation assumption guarantees identifiability of the true Markov
equivalence class. However, Theorem 4 (b) implies that the identifiable sparsest Markov rep-
resentation assumption is not strictly weaker than the casual faithfulness condition for directed 430

cyclic graphcial models. On the other hand, unlike for directed acyclic graphical modelss, weak
sparsest Markov representation assumption does not imply P-minimality assumption for directed
cyclic graphcial models, according to (d). In Section 5, we implement an algorithm that uses the
identifiable sparsest Markov representation assumption and the results seem to suggest that for
most directed cyclic graphcial models, the identifiable sparsest Markov representation assump- 435

tion is weaker than the casual faithfulness condition.

4. NEW PRINCIPLE: MAXIMUM D-SEPARATION RULES (MDR)
In light of the fact that the identifiable sparsest Markov representation assumption does not

lead to a strictly weaker assumption than the casual faithfulness condition, we introduce the
Maximum d-separation rules (MDR) assumption. The maximum d-separation rule assumption 440
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asserts that G∗ entails more d-separation rules than any other graph satisfying the causal Markov
condition according to the given distribution P.

DEFINITION 10 (MAXIMUM D-SEPARATION RULES (MDR) ASSUMPTION). A directed
cyclic graphical model (G∗,P) satisfies the maximum d-separation rules (MDR) assumption if
(G∗,P) satisfies the causal Markov condition and |Dsep(G)| < |Dsep(G

∗)| for every directed445

cyclic graph G such that (G,P) satisfies the causal Markov condition and G /∈M(G∗).

There is a natural and intuitive connection between the maximum d-separation rule assumption
and the P-minimality assumption. Both assumptions encourage directed cyclic graphs to entail
more d-separation rules. The key difference between the P-minimality assumption and the max-
imum d-separation rule assumption is that the P-minimality assumption requires that there is no450

directed cyclic graphs that entail a strict superset of d-separation rules whereas the maximum
d-separation rule assumption simply requires that there are no directed cyclic graphs that entail
a greater number of d-separation rules.

4·1. Comparison of maximum d-separation rule to casual faithfulness condition and
minimality assumptions for directed cyclic graphs455

We provide a comparison of the maximum d-separation rule assumption to the casual faith-
fulness condition and P-minimality assumptions. For ease of notation, let GM (P) and GF (P) de-
note the set of Markovian directed cyclic graphcial models satisfying the maximum d-separation
rule assumption and casual faithfulness condition, respectively. In addition, let GP (P) denote the
set of directed cyclic graphcial models satisfying the P-minimality condition.460

THEOREM 5. Consider a directed cyclic graphical model (G∗,P).

(a) If GF (P) 6= ∅, then GF (P) = GM (P). Consequently if (G∗,P) satisfies the casual faithfulness
condition, then GF (P) = GM (P) =M(G∗).

(b) There exists P for which GF (P) = ∅ while (G∗,P) satisfies the maximum d-separation rule as-
sumption and GM (P) =M(G∗).465

(c) GM (P) ⊂ GP (P).
(d) There exists P for which GM (P) = ∅ while (G∗,P) satisfies the P-minimality assumption and
GP (P) ⊃M(G∗).

Proof. For (a), suppose that (G∗,P) satisfies the casual faithfulness condition, then CI(P) is
the same as the set of d-separation rules entailed by G∗. Note that if (G,P) satisfies the causal470

Markov condition, then CI(P) is a superset of the set of d-separation rules entailed by G and
therefore Dsep(G) ⊂ Dsep(G

∗). This allows us to conclude that graphs inM(G∗) should entail
the maximum number of d-separation rules among graphs satisfying the causal Markov condi-
tion. Furthermore, prior results show that GF (P) =M(G∗) which completes the proof.

For (c), suppose that (G∗,P) fails to satisfy the P-minimality assumption. By the definition of475

the P-minimality assumption, there exists (G,P) satisfying the causal Markov condition such that
Dsep(G

∗) ( Dsep(G). Therefore, G∗ entails strictly less d-separation rules than G, and (G∗,P)
violates the maximum d-separation rule assumption.

For (b) and (d), we refer to the example in Figure 4. First we show that (G1,P) satisfies
the maximum d-separation rule assumption but not the casual faithfulness condition, whereas480

(G2,P) satisfies the P-minimality assumption but not the maximum d-separation rule assump-
tion. Suppose that X1, X2, X3, X4 are random variables with probability distribution P with the
following conditional indenpendence statements:

CI(P) = {X1 ⊥⊥ X3 | X2, X2 ⊥⊥ X4 | X1, X3, X1 ⊥⊥ X2 | X4}. (1)
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Any graph satisfying the causal Markov condition with respect to P must only entail a sub-
set of the three d-separation rules: {X1d-sepX3 | X2, X2d-sepX4 | X1, X3, X1d-sepX2 | X4}. 485

Clearly Dsep(G1) = {X1d-sepX3 | X2, X2d-sepX4 | X1, X3}, therefore (G1,P) satisfies the
causal Markov condition. It can be shown that no graph entails any subset containing two or
three of these d-separation rules other than G1. Hence no graph follows the casual faithfulness
condition with respect to P since there is no graph that entails all three d-separation rules and
(G1,P) satisfies the maximum d-separation rule assumption because no graph that entails more 490

or as many d-separation rules as G1 entails, and satisfies the causal Markov condition with re-
spect to P.

For (d), note that G2 entails the sole d-separation rule, Dsep(G2) = {X1d-sepX2 | X4} and it
is clear to see that (G2,P) satisfies the causal Markov condition. If (G2,P) does not satisfy the
P-minimality assumption, there exists a graphG such that (G,P) satisfies the causal Markov con- 495

dition and Dsep(G) ( Dsep(G2). It can be shown that no such graph exists. Therefore, (G2,P)
satisfies the P-minimality assumption. Clearly (G2,P) fails to satisfy the maximum d-separation
rule assumption because G1 entails more d-separation rules.

X1 X2

X3X4

G1

X1 X2

X3X4

G2

Fig. 4: 4-node examples for Theorem 5

Theorem 5 (a) asserts that whenever the set of directed cyclic graphcial models satisfying the
casual faithfulness condition is not empty, it is equivalent to the set of directed cyclic graphcial 500

models satisfying the maximum d-separation rule assumption. Part (b) claims that there exists
a distribution in which no directed cyclic graphical model satisfies the casual faithfulness con-
dition, while the set of directed cyclic graphcial models satisfying the maximum d-separation
rule assumption consists of its Markov equivalence class. Hence, (a) and (b) show that the maxi-
mum d-separation rule assumption is strictly superior to the casual faithfulness condition in terms 505

of recovering the true Markov equivalence class. Theorem 5 (c) claims that any directed cyclic
graphcial models satisfying the maximum d-separation rule assumption should lie in the set of
directed cyclic graphcial models satisfying the P-minimality assumption. (d) asserts that there
are some directed cyclic graphcial models satisfying the P-minimality assumption but violat-
ing the maximum d-separation rule assumption. Therefore, (c) and (d) prove that the maximum 510

d-separation rule assumption is strictly stronger than the P-minimality assumption.

4·2. Comparison between the maximum d-separation rule and sparsest Markov
representation assumptions

Now we show that the maximum d-separation rule assumption is neither weaker nor stronger
than the sparsest Markov representation assumptions for both directed acyclic graph and directed 515

cyclic graphcial models.

LEMMA 3.(a) There exists a directed acyclic graphical model that satisfies the identifiable
sparsest Markov representation assumption that does not satisfy the maximum d-separation
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rule assumption. Further, there exists a directed acyclic graphical model satisfying the maxi-
mum d-separation rule assumption that does not satisfy the weak sparsest Markov represen-520

tation assumption.
(b) There exists a directed graphical model with cycles that satisfies the same conclusion as (a).

Proof. Our proof for Lemma 3 involves us constructing two sets of examples, one for directed
acyclic graphs corresponding to (a) and one for cyclic graphs corresponding to (b). Figure 5 dis-
plays two directed acyclic graphs, G1 and G2 which are clearly not in the same Markov equiva-525

lence class. For clarity, we used red arrows for the difference between graphs. We associate the
same distribution P to each directed acyclic graph, which is provided in Appendix B·1. With
this choice of distribution, both (G1,P) and (G2,P) satisfy the causal Markov condition (ex-
plained in Appendix B·1). The main point of this example is that (G2,P) satisfies the sparsest
Markov representation assumption whereas (G1,P) does not and (G1,P) satisfies the maximum530

d-separation rule assumption whereas (G2,P) does not. A more detailed proof that (G1,P) sat-
isfies the maximum d-separation rule assumption whereas (G2,P) satisfies the sparsest Markov
representation assumption is provided in Appendix B·1.

X1

X2

X3

X4

X5

G1

X1

X2

X3

X4

X5

G2

Fig. 5: 5-node examples for Lemma 3.(a)

For Lemma 3 (b), Figure 6 displays two directed cyclic graphsG1 andG2 which do not belong
to the same Markov equivalence class. Once again red arrows are used to denote the edges (both535

real and virtual) that are different between the graphs. We associate the same distribution P to
each graph such that both (G1,P) and (G2,P) satisfy the causal Markov condition (explained
in Appendix C·2). Again, the main idea of this example is that (G1,P) satisfies the maximum
d-separation rule assumption whereas (G2,P) satisfies the identifiable sparsest Markov repre-
sentation assumption. A detailed proof that (G1,P) satisfies the maximum d-separation rule as-540

sumption whereas (G2,P) satisfies the identifiable sparsest Markov representation assumption
can be found in Appendix C·2.

Intuitively, the reason why fewer edges does not necessarily translate to satisfying more d-
separation rules is that the placement of edges relative to the rest of the graph and what additional
paths they allow affects the total number of d-separation rules entailed by the graph.545

In summary, the flow chart in Fig. ?? shows how the casual faithfulness condition, sparsest
Markov representation, maximum d-separation rule and minimality assumptions are related for
both directed acyclic graph and directed cyclic graphcial models:
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X1

X2

X3

X4

X5

X6 X7 X8

X9 X10 X11

Y

G1

Y

X1

X2

X3

X4

X5

X6 X7 X8

X9 X10 X11

G2

Fig. 6: 12-node examples for Lemma 3.(b)

CFC

MDR SMR

P-min

SGS-min

Directed Acyclic Graph (DAG)

Thm 5 (a) Thm 3

Thm 5 (c)

Lem 3 (a)

Thm 2

CFC

MDR Identifiable
SMR

Weak
SMR

P-min

SGS-min

Directed Cyclic Graph (DCG)

Thm 5 (a)

Thm 4 (d)

Thm 4 (a)

Thm 5 (c)

Lem 3 (b)

Thm 2

Thm 4 (c)

Thm 4 (b)

5. SIMULATION RESULTS

In Section 3 and 4, we showed that the maximum d-separation rule assumption is strictly 550

weaker than the casual faithfulness condition, and the maximum d-separation rule and identifi-
able sparsest Markov representation assumptions are strictly stronger than the P-minimality as-
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sumption for directed cyclic graphcial models. Hence there are more graphical models satisfying
the the maximum d-separation rule assumption than the casual faithfulness condition and there
are less directed cyclic graphcial models satisfying the maximum d-separation rule assumption555

or the identifiable sparsest Markov representation assumption than the P-minimality assumption.
In this section, we support our theoretical results with numerical experiments on small Gaussian
linear directed cyclic graphcial models (see e.g. (Spirtes, 1995)).

The simulation study was conducted using 100 realizations of 5-node random Gaussian lin-
ear directed cyclic graphcial models in which distribution P is defined by the following linear560

structural equations:

(X1, X2, ..., Xp)
T = B(X1, X2, ..., Xp)

T + ε

where B ∈ Rp×p is an edge weight matrix with Bjk = βjk and βjk is a weight of an edge from
Xj to Xk and ε ∼ N(0, Ip) where Ip ∈ Rp×p is the identity matrix. The matrix B encodes the
directed cyclic graph structure since if βjk is non-zero, the pair (Xj , Xk) is really adjacent and565

if there is a set of nodes S = (s1, s2, ..., st) such that βjs1βks1βs1s2 ...βstj is non-zero, the pair
(Xj , Xk) is virtually adjacent. The edge weight parameters were chosen uniformly at random
in the range βjk ∈ [−1,−0.25] ∪ [0.25, 1], ensuring the edge weights are bounded away from 0.
Note that if the graph is a directed acyclic graph, we would need to impose the constraint that
B is lower triangular however for directed cyclic graphs we impose no such constraints. Further,570

we impose sparsity by assigning a probability that each coefficient of the matrix B is non-zero
and we set the expected neighborhood size range from 1 (sparse directed cyclic graph) to p− 1
depending on the edge weight probability.

Subsequently, n samples were drawn from the distribution induced by the Gaussian lin-
ear directed cyclic graphical model and we report results for n ∈ {100, 200, 500, 1000}. The575

conditional indenpendence statements were estimated based on Fisher’s conditional correlation
test where the z-transform with significance levels α = {0.01, 0.001, 0.0001}. All possible di-
rected graphs satisfying the causal Markov condition are detected from an exhaustive search and
we measure two things: (1) what proportion of graphs in the simulation satisfy each assump-
tion (casual faithfulness condition, P-minimality, sparsest Markov representation, maximum d-580

separation rule); and (2) what proportion of simulations (out of 100) recover the skeleton S(G)
for the true graph corresponding to the matrix B according to each assumption. (1) addresses the
issue of how strong each assumption is and (2) addresses the issue of how likely each assumption
is to recover the true graph.

5·1. Random directed cyclic graphcial models585

In Figure 7, and 8, we simulated how restrictive each identifiability condition (casual faith-
fulness condition, P-minimality, sparsest Markov representation, maximum d-separation rule) is
for random directed cyclic graphcial models with different sample sizes, different significance
levels, and different expected neighborhood sizes. As shown in Fig. 7, and 8, there are more
directed cyclic graphcial models satisfying the maximum d-separation rule assumption than the590

casual faithfulness condition and less directed cyclic graphcial models satisfying the maximum
d-separation rule assumption than the P-minimality assumption for both large and small sam-
ple size cases. We can also see a similar relationships between the casual faithfulness condition,
identifiable sparsest Markov representation and P-minimality assumptions. These results support
our theoretical result that the maximum d-separation rule assumption is weaker than the casual595

faithfulness condition but stronger than the P-minimality assumption and the identifiable spars-
est Markov representation assumption is stronger then the P-minimality assumption. Although
there is no theoretical guarantee that the identifiable sparsest Markov representation condition
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(b) α = 0.001
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(c) α = 0.0001

Fig. 7: Proportions of random directed cyclic graphcial models satisfying the casual faithful-
ness condition, maximum d-separation rule, sparsest Markov representation and P-minimality
assumptions with large sample size n = 1000, varying expected neighborhood size
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(b) α = 0.001
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Fig. 8: Proportions of random directed cyclic graphcial models satisfying the casual faithful-
ness condition, maximum d-separation rule, sparsest Markov representation and P-minimality
assumptions with small sample size n = 100, varying expected neighborhood size

is weaker than the casual faithfulness condition, Fig. 7, and 8 represent that the identifiable
sparsest Markov representation assumption is substantially weaker than the casual faithfulness 600

condition on average.
Figure 9, and 10 show recovery rates of skeletons using the maximum d-separation rule and

identifiable sparsest Markov representation assumptions, and the PC algorithm (Spirtes & Gly-
mour, 1991) where the weakest known sufficient condition is the casual faithfulness condition.
Here we define a success to be that the algorithm recovers the true skeleton of the graph. The 605

reason we use the PC algorithm here which generally applies to directed acyclic graphical mod-
elss instead of the CCD algorithm Richardson (1996a) which applies to directed cyclic graphcial
models is that the CCD and PC algorithms are identical in terms of the first step of recovering
the skeleton and that is what we are interested in here.

Specifically, the PC algorithm removes an edge between a pair nodes if the pair is conditionally 610

independent given any subset of rest of variables. For the PC algorithm, we used the R package
’pcalg’ (Kalisch et al., 2012). We considered the case in which multiple graphs with different
skeletons have the most d-separation rules as a failure of our algorithm. Our simulation results
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(b) α = 0.001
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Fig. 9: Accuracy rates of recovering skeletons of random directed cyclic graphcial models using
the maximum d-separation rule and identifiable sparsest Markov representation assumptions, and
the PC algorithm with large sample size n = 1000, varying expected neighborhood size

0

25

50

75

100

1 2 3 4
Expected Neighbors size

A
c
c
u

ra
c
y
 (

%
)

Random DCG models: p=5, n=100

(a) α = 0.01

0

25

50

75

100

1 2 3 4
Expected Neighbors size

A
c
c
u

ra
c
y
 (

%
)

Random DCG models: p=5, n=100

(b) α = 0.001
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Fig. 10: Accuracy rates of recovering skeletons of random directed cyclic graphcial models using
the maximum d-separation rule and identifiable sparsest Markov representation assumptions, and
the PC algorithm with small sample size n = 100, varying expected neighborhood size

allow us to conclude that the maximum d-separation rule outperforms than the casual faithfulness
condition and identifiable sparsest Markov representation assumption on average in terms of615

recovering of skeletons.

5·2. Special graph structures
We also provide a comparison between the maximum d-separation rule, identifiable sparsest

Markov representation, P-minimality assumptions and casual faithfulness condition using spe-
cific graph structures, namely a tree, bipartite, and cycle. Figure 11 shows examples of skeletons620

of these special graphs.
We generate these graphs as follows: First, we set the skeleton for our desired graph based on

Figure. 11 and then determine the edges weights which are chosen uniformly at random from the
set βjk ∈ [−1,−0.25] ∪ [0.25, 1], ensuring again that the edge weights are bounded away from
0. Second, we assign a randomly chosen direction to each edge. Therefore, the graphs generated625

may have cycles and virtual edges. For a cycle graph, we fix the directions of edges in order to
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Fig. 11: Skeletons of a tree, bipartite, and cycle graphs

have a cycle X1 → X2 → ...→ Xp → X1. We report the results for n ∈ {100, 200, 500, 1000}
for the fixed α = 0.001 for all experiments.
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Fig. 12: Proportions of special types of directed cyclic graphcial models satisfying the ca-
sual faithfulness condition, maximum d-separation rule, sparsest Markov representation, and
P-minimality assumptions with α = 0.001

In Figure 12, we simulated how restrictive the casual faithfulness condition, maximum d-
separation rule, identifiable sparsest Markov representation, and P-minimality assumptions are 630

for random tree, bipartite, and cycle directed cyclic graphcial models with different sample
sizes. As Fig. 12 shows, there are more directed cyclic graphcial models satisfying the maxi-
mum d-separation rule assumption than the casual faithfulness condition and less directed cyclic
graphcial models satisfying the maximum d-separation rule assumption than the P-minimality
assumption for all tree, bipartite, and cycle graphs. This result is consistent with our theoreti- 635

cal result that the maximum d-separation rule assumption is weaker than the casual faithfulness
condition but stronger than the P-minimality assumption. We can see the similar relationships
between the casual faithfulness condition, identifiable sparsest Markov representation, and P-
minimality assumptions, which supports our main result that the identifiable sparsest Markov
representation assumption is stronger than the P-minimality assumption. 640

Figure 13 shows the proportions of recovering skeletons of each type of graph (Tree, Bipartite,
Tree) using the maximum d-separation rule and identifiable sparsest Markov representation as-
sumptions, and the PC algorithm. These simulation results show that the maximum d-separation
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Fig. 13: Accuracy rates of recovering skeletons of random directed cyclic graphcial models using
the maximum d-separation rule and identifiable sparsest Markov representation assumptions, and
PC algorithms with α = 0.001

rule and identifiable sparsest Markov representation assumptions are favorable to the casual faith-
fulness condition on average in terms of recovering of skeletons for all types of graphs. In ad-645

dition, the large sample size case has higher probability of recovering skeletons than the small
sample case because of the small errors of the conditional indenpendence tests.
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APPENDIX 1650

Examples for Theorem 4 (d)

X1 X2 X3 X4

X5

G1

X1 X2 X3 X4

X5

G2

α1 α3

α5

α4

−α3α7 α7
α2

Fig. 14: 5-node examples for Theorem 4 (d)

Suppose that (G1,P) is a Gaussian linear directed cyclic graphical model with specified edge weights
in Figure 14. With this choice of distribution P based on G1 in Figure 14, we have a set of conditional
indenpendence statements which are the same as the set of d-separation rules entailed by G1 and an addi-
tional set of conditional indenpendence statements, CI(P) ⊃ {X1 ⊥⊥ X4| ∅, orX5, X1 ⊥⊥ X5| ∅, or X4}.655

It is clear that (G2,P) satisfies the causal Markov condition and Dsep(G1) ( Dsep(G2) (explained in
Section 3). This implies that (G1,P) fails to satisfy the P-minimality assumption.
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Now we prove that (G1,P) satisfies the weak sparsest Markov representation assumption. Suppose that
(G1,P) does not satisfy the weak sparsest Markov representation assumption. Then there exists a G such
that (G,P) satisfies the causal Markov condition and has fewer edges than G1. By Lemma 2, if (G,P) 660

satisfies the casual faithfulness condition,G satisfies the weak sparsest Markov representation assumption.
Note that G1 does not have edges between (X1, X4) and (X1, X5). Since the only additional conditional
independence statements that are not entailed by G1 are {X1 ⊥⊥ X4| ∅, orX5, X1 ⊥⊥ X5| ∅, or X4}, no
graph that satisfies the causal Markov condition with respect to P can have fewer edges than G1. This
leads to a contradiction and hence (G1,P) satisfies the weak sparsest Markov representation assumption. 665

APPENDIX 2
B·1. Proof of Lemma 3 (a)

X1

X2

X3

X4

X5

G1

X1

X2

X3

X4

X5

G2

Fig. 15: 5-node examples for Lemma 3.(a)

Proof. Here we show that (G1,P) satisfies the identifiable sparsest Markov representation assumption
and and (G2,P) satisfies the maximum d-separation rule assumption, where P has the following condi-
tional indenpendence statements: 670

CI(P) = {X2 ⊥⊥ X3 | (X1, X5) or (X1, X4, X5), X3 ⊥⊥ X4 | (X1, X5), (X2, X5), or (X1, X2, X5),

X1 ⊥⊥ X4 | (X2, X5) or (X2, X3, X5), X2 ⊥⊥ X4 | X1, X1 ⊥⊥ X5 | (X2, X4)}.

Clearly both directed acyclic graphsG1 andG2 do not belong to the same Markov equivalence class since
they have different skeletons. To be explicit, we state all d-separation rules entailed by G1 and G2. Both
graphs entail the following sets of d-separation rules: 675r X2 is d-separated from X3 given (X1, X5) or (X1, X4, X5).r X3 is d-separated from X4 given (X1, X5) or (X1, X2, X5).

The set of d-separation rules entailed by G1 which are not entailed by G2 is as follows:r X1 is d-separated from X4 given (X2, X5) or (X2, X4, X5).r X3 is d-separated from X4 given (X2, X5). 680

Furthermore, the set of d-separation rules entailed by G2 which are not entailed by G1 is as follows:r X1 is d-separated from X5 given (X2, X4).r X2 is d-separated from X4 given X1. �
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With our choice of distribution, both directed acyclic graphical modelss (G1,P) and (G2,P) satisfy the
causal Markov condition and it is straightforward to see that G2 has fewer edges than G1 while G1 entails685

more d-separation rules than G2.
It can be shown from an exhaustive search that there is no graph G such that G is sparser or as sparse

as G2 and (G,P) satisfies the causal Markov condition. Moreover, it can be shown that G1 entails the
maximum d-separation rules amongst graphs satisfying the causal Markov condition with respect to the
distribution again through an exhaustive search. Therefore (G1,P) satisfies the maximum d-separation690

rule assumption and (G2,P) satisfies the identifiable sparsest Markov representation assumption.

APPENDIX 3
C·2. Proof of Lemma 3 (b)

Proof. Suppose that the pair (G2,P) is a Gaussian linear directed cyclic graphical model with specified
edge weights in Figure 16, where the non-specified edge weights can be chosen arbitrarily. Once again to695

be explicit, we state all d-separation rules entailed by G1 and G2. Both graphs entail the following sets of
d-separation rules:

(1) For any node A ∈ {X6, X7, X8} and B ∈ {X1, X5}, A is d-separated from B given {X2, X3} ∪ C
for any C ⊂ {X1, X4, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}.

(2) For any node A ∈ {X9, X10, X11} and B ∈ {X1, X5}, A is d-separated from B given {X3, X4} ∪ C700

for any C ⊂ {X1, X2, X3, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}.
(3) For any nodes A,B ∈ {X6, X7, X8}, A is d-separated from B given {X2, X3} ∪ C for any

C ⊂ {X1, X4, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}.
(4) For any nodes A,B ∈ {X9, X10, X11}, A is d-separated from B given {X3, X4} ∪ C for any

C ⊂ {X1, X2, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}.705
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X2

X3

X4

X5

X6 X7 X8

X9 X10 X11

Y

G1

Y

X1

X2

X3

X4

X5

X6 X7 X8

X9 X10 X11

G2

β1 β2

β1β2

Fig. 16: 12-node examples for Lemma 3.(b)
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(5) For any nodes A ∈ {X6, X7, X8} and B ∈ {X4}, A is d-separated from B given {X2, X3} ∪ C for
any
C ⊂ {X1, X4, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}, or given {X1, X2, X5} ∪D for any
D ⊂ {X4, X6, X7, X8, Y } \ {A,B}

(6) For any nodes A ∈ {X6, X7, X8} and B ∈ {Y }, A is d-separated from B given {X2, X3} ∪ C for 710

any
C ⊂ {X1, X4, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}, or given {X1, X2, X5} ∪D for any
D ⊂ {X4, X6, X7, X8, , X9, X10, X11, Y } \ {A,B}

(7) For any nodes A ∈ {X9, X10, X11} and B ∈ {X2}, A is d-separated from B given {X3, X4} ∪ C for
any 715

C ⊂ {X1, X2, X5, X9, X10, X11, Y } \ {A,B}, or given {X1, X4, X5} ∪D for any
D ⊂ {X2, X9, X10, X11, Y } \ {A,B}.

(8) For any nodes A ∈ {X9, X10, X11} and B ∈ {Y }, A is d-separated from B given {X3, X4} ∪ C for
any
C ⊂ {X1, X2, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}, or given {X1, X4, X5} ∪D for any 720

D ⊂ {X2, X6, X7, X8, X9, X10, X11, Y } \ {A,B}.
(9) For any nodes A ∈ {X6, X7, X8}, B ∈ {X9, X10, X11}, A is d-separated from B given {X3} ∪

C ∪D for C ⊂ {X1, X2, X4}, C 6= ∅ and D ⊂ {X1, X2, X4, X5, X6, X7, X8, X9, X10, X11, Y } \
{A,B,C}.

(10) X2 is d-separated from X3 given {X1, X5} ∪ C for any C ⊂ {X1, X4, X5, X9, X10, X11, Y }. 725

(11) X3 is d-separated from X4 given {X1, X5} ∪ C for any C ⊂ {X1, X4, X5, X6, X7, X8, Y }.
(12) X3 is d-separated from Y given {X1, X5} ∪ C for any C ⊂

{X1, X4, X5, X6, X7, X8, X9, X10, X11}.
(13) X2 is d-separated from X3 given {X1, X5} ∪ C for any C ⊂ {X4, X9, X10, X11, Y }.
(14) X4 is d-separated from X3 given {X1, X5} ∪ C for any C ⊂ {X2, X6, X7, X8, Y }. 730

(15) Y is d-separated from X3 given {X1, X5} ∪ C for any C ⊂ {X2, X6, X7, X8, X4, X9, X10, X11}.

The set of d-separation rules entailed by G1 that is not entailed by G2 is as follows:

(a) X1 is d-separated from X5 given {X2, X3, X4, Y } ∪ C for any C ⊂ {X6, X7, X8, X9, X10, X11}.

Furthermore, the set of d-separation rules entailed by G2 that is not entailed by G1 is as follows:

(b) X2 is d-separated from X4 given X1 or {X1, Y }. 735

(c) X2 is d-separated from Y given X1 or {X1, X4}.
(d) X4 is d-separated from Y given X1 or {X1, X2}. �

It can then be shown that by using the co-efficients specified for G2 in Figure 16, CI(P) is the union of
the conditional indenpendence statements implied by the sets of d-separation rules entailed by both G1

and G2. Therefore (G1,P) and (G2,P) satisfy the causal Markov condition. It is straightforward to see 740

that G2 is sparser than G1 while G1 entails more d-separation rules than G2.
Now we prove that (G1,P) satisfies the maximum d-separation rule assumption and (G2,P) satis-

fies the identifiable sparsest Markov representation assumption. First we prove that (G2,P) satisfies the
identifiable sparsest Markov representation assumption. Suppose that (G2,P) does not satisfy the iden-
tifiable sparsest Markov representation assumption. Then there exists a G such that (G,P) satisfies the 745

causal Markov condition and G has the same number of edges as G2 or fewer edges than G2. Since
the only additional CI statements that are not implied by the d-separation rules of G2 are X1 ⊥⊥ X5 |
{X2, X3, X4, Y } ∪ C for any C ⊂ {X6, X7, X8, X9, X10, X11} and (G,P) satisfies the causal Markov
condition, we can consider two graphs, one with an edge between (X1, X5) and another without an edge
between (X1, X5). We firstly consider a graph without an edge between (X1, X5). Since G does not have 750

an edge between (X1, X5) and by Lemma 1, G should entail at least one d-separation rule from (a) X1

is d-separated from X5 given {X2, X3, X4, Y } ∪ C for any C ⊂ {X6, X7, X8, X9, X10, X11}. If G does
not have an edge between (X2, X3), by Lemma 1 G should entail at least one d-separation rule from (10)
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X2 is d-separated from X3 given {X1, X5} ∪ C for any C ⊂ {X1, X4, X5, X9, X10, X11, Y }. These
two sets of d-separation rules can exist only if a cycle X1 → X2 → X5 → X3 → X1 or X1 ← X2 ←755

X5 ← X3 ← X1 exists. In the same way, if G does not have edges between (X3, X4) and (X3, Y ),
there should be cycles which are X1 → A→ X5 → X3 → X1 or X1 ← A← X5 ← X3 ← X1 for any
A ∈ {X4, Y } as occurs in G1. However these cycles create virtual edges between (X2, X4), (X2, Y ) or
(X4, Y ) as occurs in G1. Therefore G should have at least 3 edges either real or virtual edges. This leads
to a contradiction that G has the same number of edges of G2 or fewer edges than G2.760

Secondly, we consider a graph G with an edge between (X1, X5) such that (G,P) satisfies the causal
Markov condition and G has fewer edges than G2. Note that G1 entails the maximum number of d-
separation rules amongst graphs with an edge between (X1, X5) satisfying the causal Markov con-
dition because CI(P) \ {X1 ⊥⊥ X5 | {X2, X3, X4, Y } ∪ C for any C ⊂ {X6, X7, X8, X9, X10, X11}}
is exactly matched to the d-separation rules entailed by G1. This leads to Dsep(G) ( Dsep(G1). By765

Lemma 2, G cannot contain fewer edges than G1. However since G2 has fewer edges than G1, it is con-
tradictory thatG has the same number of edges ofG2 or fewer edges thanG2. Therefore, (G2,P) satisfies
the identifiable sparsest Markov representation assumption.

Now we prove that (G1,P) satisfies the maximum d-separation rule assumption. Suppose that (G1,P)
fails to satisfy the maximum d-separation rule assumption. Then, there is a graph G such that (G,P) sat-770

isfies the causal Markov condition and G entails more d-separation rules than G1 or as many d-separation
rules as G1. Since (G,P) satisfies the causal Markov condition, in order for G to entail at least the same
number of d-separation rules entailed by G1, G should entail at least one d-separation rule from (b) X2

is d-separated from X4 given X1 or {X1, Y }, (c) X2 is d-separated from Y given X1 or {X1, X4} and
(d) X4 is d-separated from Y given X1 or {X1, X2}. This implies that G does not have an edge be-775

tween (X2, X4), (X2, Y ) or (X4, Y ) by Lemma 1. As we discussed, there is no graph satisfying the
causal Markov condition without edges (X2, X4), (X2, Y ), (X4, Y ), and (X1, X5) unless G has addi-
tional edges as occurs in G1. Note that the graph G entails at most six d-separation rules than G1 (the
total number of d-separation rules of (b), (c), and (d)). However, adding any edge in the graphG generates
more than six more d-separation rules because by Lemma 1, G loses an entire set of d-separation rules780

from the sets (1) to (15) which each contain more than six d-separation rules. This leads to a contradiction
that G entails more d-separation rules than G1 or as many d-separation rules as G1.
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