STATISTICS-BUSINESS 756 (Johnson) PRACTICE EXAM - March 2004

1. Given the n = 4 observations

$$\mathbf{X} = \left[\begin{array}{rrrr} 1 & 7 & 5 & 7 \\ 3 & 6 & 4 & 3 \end{array} \right]$$

(a) Evaluate the T^2 statistic and carry out the test of

$$H_0: \boldsymbol{\mu} = \begin{bmatrix} 4\\5 \end{bmatrix} \quad H_1: \boldsymbol{\mu} \neq \begin{bmatrix} 4\\5 \end{bmatrix}$$

- (b) Specify the 95 % confidence region for μ . Evaluate the axes of the ellipsoid and specify their half lengths.
- 2. Let n = 6 bivariate observations have the values

$$oldsymbol{x}_1 = \left[egin{array}{c} 2 \\ 4 \end{array}
ight] \quad oldsymbol{x}_2 = \quad \left[egin{array}{c} 0 \\ 1 \end{array}
ight] \quad oldsymbol{x}_3 = \quad \left[egin{array}{c} 3 \\ 2 \end{array}
ight] \quad oldsymbol{x}_4 = \quad \left[egin{array}{c} 1 \\ 5 \end{array}
ight] \quad oldsymbol{x}_5 = \quad \left[egin{array}{c} -2 \\ 2 \end{array}
ight] \quad oldsymbol{x}_6 = \quad \left[egin{array}{c} 2 \\ 4 \end{array}
ight]$$

A computer calculation gives

$$\bar{\boldsymbol{x}} = \begin{bmatrix} 1\\3 \end{bmatrix}$$
 and $\boldsymbol{S} = \begin{bmatrix} 3.2 & 1\\1 & 2.4 \end{bmatrix}$

- (a) Find sample mean of $y_j = x_{1j} x_{2j}$ for j = 1, 2, 3, 4, 5, 6.
- (b) Find sample variance of the y_j .
- (c) Find the sample covariance between y_j and $w_y = x_{1j} + x_{2j}$.
- 3. Let $X_1, ..., X_{50}$ be a random sample of size 50 from a p-variate normal distribution having mean μ and covariance Σ . Specify completely the distribution of
 - (a) \bar{X}

(b)
$$(X_1 - \mu)' \Sigma^{-1} (X_1 - \mu)$$

(c)
$$n(\bar{\boldsymbol{X}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\bar{\boldsymbol{X}} - \boldsymbol{\mu})$$

- (d) $n(\bar{\boldsymbol{X}} \boldsymbol{\mu})' \boldsymbol{S}^{-1}(\bar{\boldsymbol{X}} \boldsymbol{\mu})$
- 4. Data on gasoline trucks on x_1 fuel, x_2 repair, and x_3 capital costs per mile are given in the table below along with the standardized variables and d^2 distances. Use these values and the normal scores and d^2 plot to comment on normality and possible outliers.

Figure 1: Q-Q Plots

5. Observations on the length of time since Bachelor's degree and current salary were obtained on men and women graduates of a program. The data for men are

$$n_1 = 50, \quad \overline{\boldsymbol{x}}_1 = \begin{bmatrix} 8\\ 22 \end{bmatrix} \text{ and } \boldsymbol{S}_1 = \begin{bmatrix} 4 & 1\\ 1 & 10 \end{bmatrix}$$

and those for women are

$$n_2 = 50, \quad \overline{\boldsymbol{x}}_2 = \begin{bmatrix} 7\\ 25 \end{bmatrix} \text{ and } \boldsymbol{S}_2 = \begin{bmatrix} 6 & 3\\ 3 & 4 \end{bmatrix}$$

(a) Give the Bonferroni simultaneous 95% confidence intervals for the mean differences.

[Hint: $t_{98}(.0125) = 2.2764$ and $t_{98}(.025) = 1.9845$]

- (b) Give the simultaneous 95% confidence intervals, that hold for all linear combinations, specialized to the mean differences.
- (c) Evaluate T^2 to test for equality. Use $\alpha = .05$.

6. Given the sample covariance matrix $\boldsymbol{S} = \begin{bmatrix} 6 & 2 \\ 2 & 9 \end{bmatrix}$:

- (a) Determine the first principal component.
- (b) Evaluate the first principal component for the observation $\boldsymbol{x} = [4, 2]$.
- (c) Find the proportion of variance explained by the second principal component.
- (d) Find the sample correlation between first component x_1 and the first principal component.
- (e) Given the sample mean vector $\overline{\boldsymbol{x}} = \begin{bmatrix} 3\\1 \end{bmatrix}$ graph the new axes for the scatter plot based on the principal components. (Since data are not given, just draw the original and the new axes.)