Lecture 2: Integration theory and Radon-Nikodym derivative

a.e. and a.s. statements

A statement holds a.e. v if it holds for all ω in N^c with v(N) = 0. If v is a probability, then a.e. may be replaced by a.s.

Proposition 1.6

Let (Ω, \mathcal{F}, v) be a measure space and f and g be Borel functions.

- (i) If $f \le g$ a.e., then $\int f dv \le \int g dv$, provided that the integrals exist.
- (ii) If $f \ge 0$ a.e. and $\int f dv = 0$, then f = 0 a.e.

Proof of (ii)

Let
$$A = \{f > 0\}$$
 and $A_n = \{f \ge n^{-1}\}, n = 1, 2,$

Then $A_n \subset A$ for any n and $\lim_{n\to\infty} A_n = \bigcup A_n = A$ (why?).

By Proposition 1.1(iii), $\lim_{n\to\infty} v(A_n) = v(A)$.

Using part (i) and Proposition 1.5, we obtain that, for any n,

$$n^{-1}v(A_n)=\int n^{-1}I_{A_n}dv\leq \int fI_{A_n}dv\leq \int fdv=0$$

Exchange limit and integration

 $\{f_n: n=1,2,...\}$: a sequence of Borel functions.

Can we exchange the limit and integration, i.e.,

$$\int \lim_{n\to\infty} f_n dv = \lim_{n\to\infty} \int f_n dv?$$

Example 1.7

Consider $(\mathcal{R}, \mathcal{B})$ and the Lebesgue measure.

Define $f_n(x) = nI_{[0,n^{-1}]}(x)$, n = 1,2,...

Then $\lim_{n\to\infty} f_n(x) = 0$ for all x but x = 0.

Since a single point has Lebesgue measure 0, $\int \lim_{n\to\infty} f_n(x) dx = 0$.

On the other hand, $\int f_n(x) dx = 1$ for any n and $\lim_{n\to\infty} \int f_n(x) dx = 1$.

Theorem 1.1

Let $f_1, f_2, ...$ be a sequence of Borel functions on (Ω, \mathcal{F}, v) .

- (i) (Fatou's lemma). If $f_n > 0$, then $\int \liminf_n f_n dv < \liminf_n \int f_n dv$.
- (ii) (Dominated convergence theorem). If $\lim_{n\to\infty} f_n = f$ a.e. and $|f_n| \leq g$ a.e. for integrable g, then $\int \lim_{n\to\infty} f_n d\nu = \lim_{n\to\infty} \int f_n d\nu$.
- (iii) (Monotone convergence theorem). If $0 \le f_1 \le f_2 \le \cdots$ and $\lim_{n\to\infty} f_n = f$ a.e., then $\iint \lim_{n\to\infty} f_n dv = \lim_{n\to\infty} \int f_n dv$.

Partial proof of Theorem 1.1

Part (i) and part (iii) are equivalent (exercise)

See the textbook for a proof of part (iii).

We now prove part (ii) (the DCT) using Faton's lemma (part (iii))

By the condition, $g + f_n \ge 0$ and $g - f_n \ge 0$

By Faton's lemma and the fact that $\lim_{n} f_{n} = f$,

$$\int (g+f)dv = \int \liminf_{n} (g+f_n)dv \le \liminf_{n} \int (g+f_n)dv$$

$$\int (g-f)dv = \int \liminf_{n} (g-f_n)dv \le \liminf_{n} \int (g-f_n)dv$$

The last expression is the same as

$$\int (f-g)dv \ge \limsup_n \int (f_n-g)dv$$

Since g is integrable, all integrals are finite and we can cancel $\int g dv$ in the above inequalities.

Then

$$\int f dv \leq \liminf_{n} \int f_{n} dv \leq \limsup_{n} \int f_{n} dv \leq \int f dv$$

3/16

Example

Let
$$f_n(x) = \frac{n}{x+n}$$
, $x \in \Omega = [0,1]$, $n = 1, 2, ...$

Then $\lim_n f_n(x) = 1$.

To apply the DCT, note that $0 \le f_n(x) \le 1$.

To apply the MCT, note that $0 \le f_n(x) \le f_{n+1}(x)$.

Hence, $\lim_n \int f_n(x) dx = \int \lim_n f_n(x) dx = \int dx = 1$.

Example 1.8 (Interchange of differentiation and integration)

Let (Ω, \mathscr{F}, v) be a measure space and, for any fixed $\theta \in \mathscr{R}$, let $f(\omega, \theta)$ be a Borel function on Ω .

Suppose that $\partial f(\omega,\theta)/\partial \theta$ exists a.e. for $\theta \in (a,b) \subset \mathcal{R}$ and that $|\partial f(\omega,\theta)/\partial \theta| \leq g(\omega)$ a.e., where g is an integrable function on Ω . Then, for each $\theta \in (a,b)$, $\partial f(\omega,\theta)/\partial \theta$ is integrable and, by Theorem 1.1(ii),

$$\frac{d}{d\theta}\int f(\omega,\theta)dv = \int \frac{\partial f(\omega,\theta)}{\partial \theta}dv.$$

Theorem 1.2 (Change of variables)

Let f be measurable from (Ω, \mathscr{F}, v) to (Λ, \mathscr{G}) and g be Borel on (Λ, \mathscr{G}) . Then

$$\int_{\Omega} g \circ f dv = \int_{\Lambda} g d(v \circ f^{-1}),$$

i.e., if either integral exists, then so does the other, and the two are the same.

Remarks

- For Riemann integrals, $\int g(y)dy = \int g(f(x))f'(x)dx$, y = f(x).
- For a random variable X on (Ω, \mathscr{F}, P) , $EX = \int_{\Omega} XdP = \int_{\mathscr{R}} xdP_X$, $P_X = P \circ X^{-1}$
- Let Y be a random vector from Ω to \mathcal{R}^k and g be Borel on \mathcal{R}^k .
 - Example: $Y = (X_1, X_2)$ and $g(Y) = X_1 + X_2$.
 - $E(X_1 + X_2) = EX_1 + EX_2$ (why?) = $\int_{\mathscr{R}} x dP_{X_1} + \int_{\mathscr{R}} x dP_{X_2}$.
 - We need to handle two integrals involving P_{X_1} and P_{X_2} .
 - On the other hand, $E(X_1 + X_2) = \int_{\mathscr{R}} x dP_{X_1 + X_2}$ involving one integral w.r.t. $P_{X_1 + X_2}$, which is not easy to obtain unless we have some knowledge about the joint c.d.f. of (X_1, X_2) .

Theorem 1.3 (Fubini's theorem)

Let v_i be a σ -finite measure on $(\Omega_i, \mathscr{F}_i)$, i=1,2, and f be a Borel function on $\prod_{i=1}^2 (\Omega_i, \mathscr{F}_i)$ with $f \geq 0$ or $\int |f| v_1 \times v_2 < \infty$. Then

$$g(\omega_2) = \int_{\Omega_1} f(\omega_1, \omega_2) dv_1$$

exists a.e. v_2 and defines a Borel function on Ω_2 whose integral w.r.t. v_2 exists, and

$$\int_{\Omega_1\times\Omega_2} f(\omega_1,\omega_2)dv_1\times v_2 = \int_{\Omega_2} \left[\int_{\Omega_1} f(\omega_1,\omega_2)dv_1\right]dv_2.$$

Extensions to $\prod_{i=1}^{k} (\Omega_i, \mathscr{F}_i)$ is straightforward.

Fubini's theorem is very useful in

- evaluating multi-dimensional integrals (exchanging the order of integrals);
- proving a function is measurable;
- oproving some results by relating a one dimensional integral to a multi-dimensional integral

6/16

2018

Radon-Nikodym derivative

Absolutely continuous

Let λ and v be two measures on a measurable space (Ω, \mathscr{F}, v) . We say λ is absolutely continuous w.r.t. v and write $\lambda \ll v$ iff

$$v(A) = 0$$
 implies $\lambda(A) = 0$.

Let f be a nonnegative Borel function and

$$\lambda(A) = \int_A f dv, \quad A \in \mathscr{F}$$

Then λ is a measure and $\lambda \ll v$.

Computing $\lambda(A)$ can be done through integration w.r.t. a well-known measure.

 $\lambda \ll v$ is also almost sufficient for the existence of f with $\lambda(A) = \int_A f dv$, $A \in \mathscr{F}$.

Theorem 1.4 (Radon-Nikodym theorem)

Let v and λ be two measures on (Ω, \mathscr{F}) and v be σ -finite. If $\lambda \ll v$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f dv, \quad A \in \mathscr{F}.$$

Furthermore, f is unique a.e. v, i.e., if $\lambda(A) = \int_A g dv$ for any $A \in \mathscr{F}$, then f = g a.e. v.

Remarks

- The function f is called the Radon-Nikodym *derivative* or *density* of λ w.r.t. v and is denoted by $d\lambda/dv$.
- Consequence: If f is Borel on (Ω, \mathscr{F}) and $\int_A f dv = 0$ for any $A \in \mathscr{F}$, then f = 0 a.e.

Probability density function

If $\int f dv = 1$ for an $f \ge 0$ a.e. v, then λ is a probability measure and f is called its *probability density function* (p.d.f.) w.r.t. v.

For any probability measure P on $(\mathcal{R}^k, \mathcal{R}^k)$ corresponding to a c.d.f. F or a random vector X, if P has a p.d.f. f w.r.t. a measure v, then f is also called the p.d.f. of F or X w.r.t. v.

Example 1.10 (Discrete c.d.f. and p.d.f.)

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and let p_n , n = 1, 2, ..., be a sequence of positive numbers such that $\sum_{n=1}^{\infty} p_n = 1$. Then

$$F(x) = \begin{cases} \sum_{i=1}^{n} p_i & a_n \le x < a_{n+1}, & n = 1, 2, ... \\ 0 & -\infty < x < a_1. \end{cases}$$

is a stepwise c.d.f.

It has a jump of size p_n at each a_n and is flat between a_n and a_{n+1} , n = 1, 2, ...

Such a c.d.f. is called a discrete c.d.f.

Example 1.10 (continued)

The corresponding probability measure is

$$P(A) = \sum_{i:a_i \in A} p_i, \quad A \in \mathscr{F},$$

where $\mathscr{F} =$ the set of all subsets (power set).

Let *v* be the counting measure on the power set.

Then

$$P(A) = \int_A f dv = \sum_{a_i \in A} f(a_i), \quad A \subset \Omega,$$

where $f(a_i) = p_i$, i = 1, 2,

That is, f is the p.d.f. of P or F w.r.t. v.

Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure.

A p.d.f. w.r.t. counting measure is called a *discrete* p.d.f.

A discrete p.d.f. f corresponds to a discrete c.d.f. F and the value f(x) is the jump size of F at $x \in \mathcal{R}$.

Example 1.11

Let F be a c.d.f.

Assume that F is differentiable in the usual sense in calculus. Let f be the derivative of F. From calculus.

$$F(x) = \int_{-\infty}^{x} f(y) dy, \quad x \in \mathscr{R}.$$

Let P be the probability measure corresponding to F.

Then

$$P(A) = \int_A f dm$$
 for any $A \in \mathcal{B}$, (1)

where m is the Lebesgue measure on \mathcal{R} .

f is the p.d.f. of P or F w.r.t. Lebesgue measure.

Radon-Nikodym derivative is the same as the usual derivative in calculus.

How do we prove (1)?

Proof of (1): π - and λ -system (Exercise 5)

Let
$$\mathscr{C} = \{(-\infty, x] : x \in \mathscr{R}\}$$

 $\mathscr C$ is a π -system: $A \in \mathscr C$ and $B \in \mathscr C$ imply $A \cap B \in \mathscr C$.

$$\sigma(\mathscr{C}) = \mathscr{B}$$

Let
$$\mathscr{D} = \{ A \in \mathscr{B} : P(B) = \int f dm \}$$

 $\mathscr{C}\subset\mathscr{D}$.

The result follows (i.e., $\sigma(\mathscr{C}) \subset \mathscr{D}$) if we can show \mathscr{D} is a λ -system: $\emptyset \in \mathscr{D}$ (obvious)

 $B \in \mathcal{D}$ implies $B^c \in \mathcal{D}$ (need to verify)

 $B_i \in \mathscr{D}$ and B_i 's are disjoint imply $\cup_i B_i \in \mathscr{D}$ (need to verify)

If $B \in \mathcal{D}$, then

$$P(B^c) = 1 - P(B) = 1 - \int_B f dm = \int f dm - \int I_B f dm$$

$$= \int (1 - I_B) f dm = \int I_{B^c} f dm = \int_{B^c} f dm.$$

This shows $B^c \in \mathcal{D}$.

If $B_i \in \mathcal{D}$ and B_i 's are disjoint, then

$$\int_{\cup_i B_i} f dm = \int I_{\cup_i B_i} f dm = \int \sum_i I_{B_i} f dm = \sum_i \int I_{B_i} f dm$$

$$= \sum_i \int_{B_i} f dm = \sum_i P(B_i) = P(\cup_i B_i).$$

Thus, $\cup_i B_i \in \mathscr{D}$.

Example 1.11 (continued)

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure. A necessary and sufficient condition for a c.d.f. F having a p.d.f. w.r.t. Lebesgue measure is that F is absolute continuous in the sense that for any $\varepsilon > 0$, there exists a $\delta > 0$ such that for each finite collection of disjoint bounded open intervals (a_i,b_i) , $\sum (b_i-a_i) < \delta$ implies $\sum [F(b_i)-F(a_i)] < \varepsilon$.

Absolute continuity is weaker than differentiability, but is stronger than continuity.

Remarks

- A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
- Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung, 1974, Chapter 1).
- Some c.d.f. does not have Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives)

Let v be a σ -finite measure on a measure space (Ω, \mathscr{F}) . All other measures discussed in (i)-(iii) are defined on (Ω, \mathscr{F}) .

(i) If λ is a measure, $\lambda \ll v$, and $t \ge 0$, then

$$\int f d\lambda = \int f \frac{d\lambda}{dv} dv.$$

(Notice how the dv's "cancel" on the right-hand side.)

(ii) If λ_i , i = 1, 2, are measures and $\lambda_i \ll v$, then $\lambda_1 + \lambda_2 \ll v$ and

$$\frac{d(\lambda_1 + \lambda_2)}{dv} = \frac{d\lambda_1}{dv} + \frac{d\lambda_2}{dv} \quad \text{a.e. } v.$$

Proposition 1.7 (continued)

(iii) (Chain rule). If τ is a measure, λ is a σ -finite measure, and $\tau \ll \lambda \ll \nu$, then

$$\frac{d\tau}{dv} = \frac{d\tau}{d\lambda} \frac{d\lambda}{dv}$$
 a.e. v .

In particular, if $\lambda \ll v$ and $v \ll \lambda$ (in which case λ and v are equivalent), then

$$\frac{d\lambda}{dv} = \left(\frac{dv}{d\lambda}\right)^{-1} \quad \text{a.e. } v \text{ or } \lambda.$$

(iv) Let $(\Omega_i, \mathscr{F}_i, v_i)$ be a measure space and v_i be σ -finite, i = 1, 2. Let λ_i be a σ -finite measure on $(\Omega_i, \mathscr{F}_i)$ and $\lambda_i \ll v_i$, i = 1, 2. Then $\lambda_1 \times \lambda_2 \ll v_1 \times v_2$ and

$$\frac{d(\lambda_1 \times \lambda_2)}{d(v_1 \times v_2)}(\omega_1, \omega_2) = \frac{d\lambda_1}{dv_1}(\omega_1) \frac{d\lambda_2}{dv_2}(\omega_2) \quad \text{a.e. } v_1 \times v_2.$$

4D > 4A > 4B > 4B > B 990

Proof of Proposition 1.7(i)

• If $f = I_B$ is an indicator function, then

$$\int f d\lambda = \int_B d\lambda = \lambda(B) = \int_B \frac{d\lambda}{d\nu} d\nu = \int f \frac{d\lambda}{d\nu} d\nu$$

• If $f = \sum_i a_i I_{B_{ij}} \ge 0$ (a nonnegative simple function), then

$$\int f d\lambda = \int \sum_{j} a_{j} I_{B_{j}} d\lambda = \sum_{j} a_{j} \int I_{B_{j}} d\lambda = \sum_{j} a_{j} \int I_{B_{j}} \frac{d\lambda}{dv} dv$$
$$= \int \sum_{j} a_{j} I_{B_{j}} \frac{d\lambda}{dv} dv = \int f \frac{d\lambda}{dv} dv$$

• For general $f \ge 0$, there exists an increasing sequence of nonnegative simple functions $\varphi_k \to f$ and

$$\int f d\lambda = \lim_{k} \int \varphi_{k} d\lambda = \lim_{k} \int \varphi_{k} \frac{d\lambda}{d\nu} d\nu = \int f \frac{d\lambda}{d\nu} d\nu$$

16 / 16