Lecture 2: Integration theory and Radon-Nikodym

derivative
a.e. and a.s. statements

A statement holds a.e. v if it holds for all @ in N¢ with v(N) = 0.
If v is a probability, then a.e. may be replaced by a.s.

Proposition 1.6
Let (©2,.#,v) be a measure space and f and g be Borel functions.

(i) If f<ga.e.,then [fdv < [ gdv, provided that the integrals exist.
(i) Iff>0a.e.and [fdv=0,thenf=0a.e.

Proof of (ii)

Let A={f>0}and Ap={f>n""},n=1,2,....

Then A, C Aforany nand lim,_.. A, = UA, = A (why?).

By Proposition 1.1(iii), limp_. V(An) = v(A).

Using part (i) and Proposition 1.5, we obtain that, for any n,

N1 v(An) = /n’1 In,dv < /f/Andv < /fdv ~0
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Exchange limit and integration

{fn: n=1,2,...}: a sequence of Borel functions.
Can we exchange the limit and integration, i.e.,

i ke = [fin /f,,dv?
N—soo

N—oo

Consider (#, %) and the Lebesgue measure.

Define fn(x) = nly ,-11(x), n=1,2,....

Then limp_,. fa(x) = 0 for all x but x =0.

Since a single point has Lebesgue measure 0, [lim,_,. fa(Xx)dx = 0.
On the other hand, [ f,(x)dx =1 for any nand limp_. [ fo(x)dx = 1.

Let f;,f,... be a sequence of Borel functions on (Q,.%#,v).
(i) (Fatou’s lemma). If f, > 0, then [liminf,f,dv <liminf, [ f,dv.
(i) (Dominated convergence theorem). If lim,_,..f, = f a.e. and
|fo] < g a.e. for integrable g, then [limp_ . fhdv =limp_. [ frdv.
(ili) (Monotone convergence theorem). If 0 <fi <f, <--- and
limp_ fn=fa.e., then [limp_ . AV = limp_.. [ fadV.

2/16
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Partial proof of Theorem 1.1

Part (i) and part (iii) are equivalent (exercise)

See the textbook for a proof of part (iii).

We now prove part (ii) (the DCT) using Faton’s lemma (part (iii))

By the condition, g+f, >0and g— 1, >0
By Faton’s lemma and the fact that lim, f, = f,

/(g+ fldv = /Iimninf(g+ f,)dv < Iimninf/(g—|— f,)dv

/(g— fdv = /Iimninf(g— f,)dv < Iimninf/(g— f,)dv
The last expression is the same as

/(f—g)dv > Iimr?up/(fn —g)dv

Since g is integrable, all integrals are finite and we can cancel [ gdv in
the above inequalities.

Then
/fdv < Iimninf/fndv < Iimsup/fndv < /fdv
n
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Example
Let fo(x) =L, x€Q=[0,1],n=1,2,...

X+
To apply the DCT, note that 0 < f;(x) < 1.
To apply the MCT, note that 0 < f,(x) < fr1(X).

Hence, lim, [ fo(x)dx = [lim,fr(x)dx = [dx = 1.

Example 1.8 (Interchange of differentiation and integration)

Let (Q,.#,v) be a measure space and, for any fixed 6 € %, let f(®,0)
be a Borel function on €.

Suppose that df(w,0)/d 6 exists a.e. for 6 € (a,b) C # and that
|0f(w,0)/d0| < g(w) a.e., where g is an integrable function on .
Then, for each 6 € (a,b), df(w,0)/d0 is integrable and, by Theorem

1.1(ii),
d [ df(w,0)
%/f(a),e)dv—/ 50 dv.
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Theorem 1.2 (Change of variables)
Let f be measurable from (,.#,v) to (A,¥) and g be Borel on (A,9).

Then
/godez/Qd(Vof*1),
Q A

i.e., if either integral exists, then so does the other, and the two are the
same.

@ For Riemann integrals, [ g(y)dy = [ g(f(x))f'(x)dx, y = f(x).

@ For a random variable X on (Q,.#,P), EX = [ XdP = [, xdPx,
Px =Po X1

@ Let Y be a random vector from Q to Z* and g be Borel on ZX.

Example: Y = (Xi,X2) and g(Y) = X; + Xa.

E(Xi + Xo) = EXy + EXp (Why?) = [, xdPx, + [, xdPx,.

We need to handle two integrals involving Py, and Py, .

On the other hand, E(Xj 4+ X3) = [, xdPx, 1, involving one integral

w.r.t. Px, ;. x,, which is not easy to obtain unless we have some

knowledge about the joint c.d.f. of (Xi, X2).
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Theorem 1.3 (Fubini’'s theorem)

Let v; be a o-finite measure on (Q;,.%;), i = 1,2, and f be a Borel
function on [12_;(;,.%;) with f >0 or [|f|vy x va < oo,

Then

g(an) = /91 f(w, w2)d vy

exists a.e. v» and defines a Borel function on Q, whose integral w.r.t.
v, exists, and

/ f(or, w2)dvy x va :/ {/ f(w1,a)2)dv1} dvs.
Q1 x8Qp Q |/

Extensions to Hf‘:1 (Q,.%;) is straightforward.
Fubini’s theorem is very useful in

@ evaluating multi-dimensional integrals (exchanging the order of
integrals);

@ proving a function is measurable;

© proving some results by relating a one dimensional integral to a
multi-dimensional integral
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Radon-Nikodym derivative

Absolutely continuous

Let A and v be two measures on a measurable space (Q2,.%#,v).
We say A is absolutely continuous w.r.t. v and write A < v iff

v(A)=0 implies A(A)=0.

Let f be a nonnegative Borel function and
A(A) = / fdv, AcF
A

Then A is a measure and A < v.

Computing A(A) can be done through integration w.r.t. a well-known
measure.

A < v is also almost sufficient for the existence of f with

A(A)= [,fdv, Aec.Z.

v

UW-Madison (Statistics) Stat 709 Lecture 2 2018 7/16



Theorem 1.4 (Radon-Nikodym theorem)

Let v and A be two measures on (€2,.%) and v be o-finite. If L < v,
then there exists a nonnegative Borel function f on Q such that

/I(A):/Afdv, Ac 7.

Furthermore, f is unique a.e. v, i.e., if A(A) = [,gdv for any A € .7,
thenf=ga.e. v.

Remarks

@ The function f is called the Radon-Nikodym derivative or density
of A w.r.t. v and is denoted by di/dv.

@ Consequence: If f is Borel on (©2,.%#) and [, fdv = 0 for any
Ac Z,thenf=0a.e.

| A\
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Probability density function

If [fdv=1foran f>0a.e. v, then 1 is a probability measure and f is
called its probability density function (p.d.f.) w.r.t. v.

For any probability measure P on (%%, %%) corresponding to a c.d.f. F
or a random vector X, if P has a p.d.f. f w.r.t. a measure v, then f is
also called the p.d.f. of F or X w.r.t. v.

Example 1.10 (Discrete c.d.f. and p.d.f.)

Let a1 < a» < --- be a sequence of real numbers and let p,, n=1,2, ...,
be a sequence of positive numbers such that };,_ pr=1.
Then

Flx) = Y pi apn<x<ap1, n=1,2,...
0 —o < X< a.
is a stepwise c.d.f.
It has a jump of size p, at each a, and is flat between a, and a,,. 1,
n=1,2,....
Such a c.d.f. is called a discrete c.d.f.

v
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Example 1.10 (continued)
The corresponding probability measure is

P(A)= Y p. AcZF

i:a;€A

where % = the set of all subsets (power set).
Let v be the counting measure on the power set.
Then
P(A) = / fdv=Y f(a), AcQ,

A aieA
where f(a)) =p;, i=1,2,....
That is, f is the p.d.f. of P or F w.r.t. v.
Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure.
A p.d.f. w.r.t. counting measure is called a discrete p.d.f.
A discrete p.d.f. f corresponds to a discrete c.d.f. F and the value f(x)
is the jump size of F at x € Z.
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Example 1.11
Let F be ac.d.f.

Assume that F is differentiable in the usual sense in calculus.
Let f be the derivative of F. From calculus,

F(x) = /; f(y)dy, xe.

Let P be the probability measure corresponding to F.
Then

P(A) = /Afdm for any A € #, (1)

where m is the Lebesgue measure on Z.

fis the p.d.f. of P or F w.r.t. Lebesgue measure.
Radon-Nikodym derivative is the same as the usual derivative in
calculus.

How do we prove (1)?
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Proof of (1): n- and A-system (Exercise 5)

Let € = {(—co,x] : x € Z}

% is a w-system: Ac ¥ and Be ¥ imply AnNBe %.
o(¢)=%#

Let 2 ={Aec %: P(B) = [ fdm}

€ C 9.

The result follows (i.e., (%) C 2) if we can show Z is a A-system:

0 € 2 (obvious)
B € 2 implies B® € 7 (need to verify)
B; € 2 and By’s are disjoint imply U;B; € & (need to verify)

If Be 2, then
p(BC):1—P(B):1—/dem:/fdm—//5fdm

:/(1—IB)fdm:/IBcfdm:/ fam.
BC
This shows B¢ € 2.

v
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If Bi € 2 and By’s are disjoint, then

/ fdm = //U,B,.fdm = /Z/B,fdm = Z/ I, fdm
UiBi i i

:Z/B. fdm:ZP(Bi) =P(UiB)).

Thus, U;B; € 2.

Example 1.11 (continued)

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure.

A necessary and sufficient condition for a c.d.f. F having a p.d.f. w.r.t.
Lebesgue measure is that F is absolute continuous in the sense that
for any € > 0, there exists a 6 > 0 such that for each finite collection of
disjoint bounded open intervals (a;, b;), Y.(b; — a;) < 6 implies

Y[F (b)) - F(a)] <e.

Absolute continuity is weaker than differentiability, but is stronger than
continuity.
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REINENS
@ A p.d.f. w.rt. Lebesgue measure is called a Lebesgue p.d.f.

@ Note that every c.d.f. is differentiable a.e. Lebesgue measure
(Chung, 1974, Chapter 1).

@ Some c.d.f. does not have Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives)

Let v be a o-finite measure on a measure space (,.%#).
All other measures discussed in (i)-(iii) are defined on (Q,.%#).

(i) If A is a measure, A < v, and f >0, then

di
/ fda = / fodv.

(Notice how the dv’s “cancel" on the right-hand side.)
(i) If A5, i=1,2, are measures and A; < v, then A; + A, < v and
d(A + A2) . a n i,

2 v . a.e. v.

V.

UW-Madison (Statistics) Stat 709 Lecture 2 2018 14/16



Proposition 1.7 (continued)

(iii) (Chain rule). If 7 is a measure, A is a o-finite measure, and

T<K A K v, then
dt dtdA

dv  didv
In particular, if A < vand v < A4 (in which case A and v are
equivalent), then
di (dv

—1
W = (j/l) a.e. v or l

(iv) Let (Q;,.%},v;) be a measure space and v; be o-finite, i =1,2. Let
A; be a o-finite measure on (Q;,.%;) and 4; < v;, i =1,2. Then
M X Ap € V¢ X Vo and

d()ﬁ X 12) . dﬂq dkg
vy <ve) @)= gy (O,

((1)2) a.€. V4 X Vo.
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Proof of Proposition 1.7(i)
@ If f = Iz is an indicator function, then

/fdl:/Bdl:l(B): —d —/f

o If f=Y%;ajlg; > 0 (a nonnegative simple function), then

[rar= [ algdr=Y 3 [ lg02~ Zaj/lB/Zidv
] ] ]

dA da
- /;ajlgjdvdv — [ o av

@ For general f > 0, there exists an increasing sequence of
nonnegative simple functions ¢, — f and

/fd)t_lum/(pkd/l_hm/(pk—d —/fgtdv
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