Notation

c = (c_1, ..., c_k) ∈ R^k, \|c\|_r = (\sum_{j=1}^k |c_j|^r)^{1/r}, r > 0.
If r ≥ 1, then \|c\|_r is the L_r-distance between 0 and c.
When r = 2, \|c\| = \|c\|_2 = \sqrt{c^\top c}.

Definition 1.8 (Covergence modes)

Let X, X_1, X_2, ... be random k-vectors defined on a probability space.

(i) We say that the sequence \{X_n\} converges to X almost surely (a.s.) and write X_n →_{a.s.} X iff \lim_{n→∞} X_n = X a.s.

(ii) We say that \{X_n\} converges to X in probability and write X_n →_{p} X iff, for every fixed \varepsilon > 0,

\[\lim_{n→∞} P(\|X_n - X\| > \varepsilon) = 0. \]

(iii) We say that \{X_n\} converges to X in L_r (or in rth moment) with a fixed r > 0 and write X_n →_{L_r} X iff

\[\lim_{n→∞} E\|X_n - X\|_r^r = 0 \]
Let $F, F_n, n = 1, 2, \ldots$, be c.d.f.'s on \mathbb{R}^k and $P, P_n, n = 1, \ldots,$ be their corresponding probability measures.
We say that $\{F_n\}$ converges to F weakly (or $\{P_n\}$ converges to P weakly) and write $F_n \to_w F$ (or $P_n \to_w P$) iff, for each continuity point x of F,

$$\lim_{n \to \infty} F_n(x) = F(x).$$

We say that $\{X_n\}$ converges to X in distribution (or in law) and write $X_n \to_d X$ iff $F_{X_n} \to_w F_X$.

Remarks

- $\to_{a.s.}, \to_P, \to_{L_r}$: How close is between X_n and X as $n \to \infty$?
- $F_{X_n} \to_w F_X$: F_{X_n} is close to F_X but X_n and X may not be close (they may be on different spaces)

Example 1.26.

Let $\theta_n = 1 + n^{-1}$ and X_n be a random variable having the exponential distribution $E(0, \theta_n)$ (Table 1.2), $n = 1, 2, \ldots$.
Let X be a random variable having the exponential distribution $E(0, 1)$.
For any $x > 0$, as $n \to \infty$,

$$F_{X_n}(x) = 1 - e^{-x/\theta_n} \to 1 - e^{-x} = F_X(x)$$

Since $F_{X_n}(x) \equiv 0 \equiv F_X(x)$ for $x \leq 0$, we have shown that $X_n \to_d X$. $X_n \to_p X$?

- Need further information about the random variables X and X_n.
- We consider two cases in which different answers can be obtained.

Case 1

Suppose that $X_n \equiv \theta_n X$ (then X_n has the given c.d.f.).

$$X_n - X = (\theta_n - 1)X = n^{-1}X$$, which has the c.d.f.

$$(1 - e^{-nx})I_{[0, \infty)}(x).$$

Then, $X_n \to_p X$ because, for any $\varepsilon > 0$,

$$P(|X_n - X| \geq \varepsilon) = e^{-n\varepsilon} \to 0$$

(In fact, by Theorem 1.8(v), $X_n \to_a.s. X$)
Also, \(X_n \to_{L^p} X \) for any \(p > 0 \), because

\[
E|X_n - X|^p = n^{-p}EX^p \to 0
\]

Case 2

Suppose that \(X_n \) and \(X \) are independent random variables. Since p.d.f.’s for \(X_n \) and \(-X \) are \(\theta_n^{-1}e^{-x/\theta_n}I_{(0,\infty)}(x) \) and \(e^xI_{(-\infty,0)}(x) \), respectively, we have

\[
P(|X_n - X| \leq \varepsilon) = \int_{-\varepsilon}^{\varepsilon} \int \theta_n^{-1}e^{-x/\theta_n}e^{y-x}I_{(0,\infty)}(x)I_{(-\infty,x)}(y)\,dx\,dy,
\]

which converges to (by the dominated convergence theorem)

\[
\int_{-\varepsilon}^{\varepsilon} \int e^{-x}e^{y-x}I_{(0,\infty)}(x)I_{(-\infty,x)}(y)\,dx\,dy = 1 - e^{-\varepsilon}.
\]

Thus,

\[
P(|X_n - X| \geq \varepsilon) \to e^{-\varepsilon} > 0
\]

for any \(\varepsilon > 0 \) and, therefore, \(X_n \to_p X \) does not hold.
Proposition 1.16 (Pólya’s theorem)

If $F_n \to_w F$ and F is continuous on \mathbb{R}^k, then

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}^k} |F_n(x) - F(x)| = 0.$$

This proposition implies the following useful result:

If $F_n \to_w a$ continuous F and $c_n \in \mathbb{R}^k$ with $c_n \to c$, then

$$F_n(c_n) \to F(c).$$

Lemma 1.4

For random k-vectors X, X_1, X_2, \ldots on a probability space, $X_n \to_{a.s.} X$ iff for every $\varepsilon > 0$,

$$\lim_{n \to \infty} P \left(\bigcup_{m=n}^{\infty} \{ \|X_m - X\| > \varepsilon \} \right) = 0.$$
Proof

It can be verified that

$$\bigcap_{j=1}^{\infty} A_j = \{ \omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \}, \quad A_j = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \{ \| X_m - X \| \leq j^{-1} \}$$

By Proposition 1.1(iii, continuity),

$$P(A_j) = \lim_{n \to \infty} P \left(\bigcap_{m=n}^{\infty} \{ \| X_m - X \| \leq j^{-1} \} \right)$$

$$= 1 - \lim_{n \to \infty} P \left(\bigcup_{m=n}^{\infty} \{ \| X_m - X \| > j^{-1} \} \right)$$

$$P(\bigcup_{m=n}^{\infty} \{ \| X_m - X \| > \varepsilon \}) \to 0 \text{ for every } \varepsilon > 0 \text{ iff } P(A_j) = 1 \text{ for every } j,$$

which is equivalent to $$P\left(\bigcap_{j=1}^{\infty} A_j \right) = 1$$ (i.e., $$X_n \to a.s. \ X$$), because

$$P(A_j) \geq P \left(\bigcap_{j=1}^{\infty} A_j \right) = 1 - P \left(\bigcup_{j=1}^{\infty} A_j^c \right) \geq 1 - \sum_{j=1}^{\infty} P(A_j^c)$$
Lemma 1.5 (Borel-Cantelli lemma)

Let A_n be a sequence of events in a probability space and

$$\limsup_n A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m.$$

(i) If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup_n A_n) = 0$.

(ii) If A_1, A_2, \ldots are pairwise independent and $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(\limsup_n A_n) = 1$.

Proof of Lemma 1.5 (i)

By Proposition 1.1,

$$P \left(\limsup_{n \to \infty} A_n \right) = \lim_{n \to \infty} P \left(\bigcup_{m=n}^{\infty} A_m \right) \leq \lim_{n \to \infty} \sum_{m=n}^{\infty} P(A_n) = 0$$

where the last equality follows from the condition

$$\sum_{n=1}^{\infty} P(A_n) < \infty.$$
Proof of Lemma 1.5 (ii)

We prove the case of independent A_n’s. See Chung (1974, pp. 76-78) for the pairwise independence A_n’s.

\[
P\left(\limsup_{n \to \infty} A_n\right) = \lim_{n \to \infty} P\left(\bigcup_{m=n}^{\infty} A_m\right) = 1 - \lim_{n \to \infty} P\left(\bigcap_{m=n}^{\infty} A_m^c\right)
\]

\[
\prod_{m=n}^{n+k} P(A_m^c) = \prod_{m=n}^{n+k} [1 - P(A_m)] \leq \prod_{m=n}^{n+k} \exp\{-P(A_m)\} = \exp\left\{-\sum_{m=n}^{n+k} P(A_m)\right\}
\]

\[
(1 - t \leq e^{-t} = \exp\{t\}).
\]

Letting $k \to \infty$,

\[
\prod_{m=n}^{\infty} P(A_m^c) = \lim_{k \to \infty} \prod_{m=n}^{n+k} P(A_m^c) \leq \exp\left\{-\sum_{m=n}^{\infty} P(A_m)\right\} = 0.
\]

Hence,

\[
\lim_{n \to \infty} P\left(\bigcap_{m=n}^{\infty} A_m^c\right) = \lim_{n \to \infty} \prod_{m=n}^{\infty} P(A_m^c) = 0.
\]
The notion of $O(\cdot)$, $o(\cdot)$, and stochastic $O(\cdot)$ and $o(\cdot)$

In calculus, two sequences of real numbers, $\{a_n\}$ and $\{b_n\}$, satisfy
- $a_n = O(b_n)$ iff $|a_n| \leq c|b_n|$ for all n and a constant c
- $a_n = o(b_n)$ iff $a_n/b_n \to 0$ as $n \to \infty$

Definition 1.9

Let X_1, X_2, \ldots be random vectors and Y_1, Y_2, \ldots be random variables defined on a common probability space.

(i) $X_n = O(Y_n)$ a.s. iff $P(\|X_n\| = O(|Y_n|)) = 1$.
(ii) $X_n = o(Y_n)$ a.s. iff $X_n/Y_n \to_{a.s.} 0$.
(iii) $X_n = O_p(Y_n)$ iff, for any $\varepsilon > 0$, there is a constant $C_\varepsilon > 0$ such that

$$\sup_n P(\|X_n\| \geq C_\varepsilon |Y_n|) < \varepsilon.$$

(iv) $X_n = o_p(Y_n)$ iff $X_n/Y_n \to_p 0$.
Discussions and properties

- Since \(a_n = O(1) \) means that \(\{a_n\} \) is bounded, \(\{X_n\} \) is said to be bounded in probability if \(X_n = O_p(1) \).
- \(X_n = o_p(Y_n) \) implies \(X_n = O_p(Y_n) \)
- \(X_n = O_p(Y_n) \) and \(Y_n = O_p(Z_n) \) implies \(X_n = O_p(Z_n) \)
- \(X_n = O_p(Y_n) \) does not imply \(Y_n = O_p(X_n) \)
- If \(X_n = O_p(Z_n) \), then \(X_n Y_n = O_p(Y_n Z_n) \).
- If \(X_n = O_p(Z_n) \) and \(Y_n = O_p(Z_n) \), then \(X_n + Y_n = O_p(Z_n) \).
- The same conclusion can be obtained if \(O_p(\cdot) \) and \(o_p(\cdot) \) are replaced by \(O(\cdot) \) a.s. and \(o(\cdot) \) a.s., respectively.
- If \(X_n \xrightarrow{d} X \) for a random variable \(X \), then \(X_n = O_p(1) \)
- If \(E|X_n| = O(a_n) \), then \(X_n = O_p(a_n) \), where \(a_n \in (0, \infty) \).
- If \(X_n \xrightarrow{a.s.} X \), then \(\sup_n |X_n| = O_p(1) \).
Relationship among convergence modes

Theorem 1.8

(i) If \(X_n \xrightarrow{a.s.} X \), then \(X_n \xrightarrow{p} X \). (The converse is not true.)

(ii) If \(X_n \xrightarrow{L_r} X \) for an \(r > 0 \), then \(X_n \xrightarrow{p} X \). (The converse is not true.)

(iii) If \(X_n \xrightarrow{p} X \), then \(X_n \xrightarrow{d} X \). (The converse is not true.)

(iv) (Skorohod’s theorem). If \(X_n \xrightarrow{d} X \), then there are random vectors \(Y, Y_1, Y_2, \ldots \) defined on a common probability space such that \(P_Y = P_X \), \(P_{Y_n} = P_{X_n}, n = 1, 2, \ldots \), and \(Y_n \xrightarrow{a.s.} Y \).

(A useful result; a conditional converse of (i)-(iii).)

(v) If, for every \(\varepsilon > 0 \), \(\sum_{n=1}^{\infty} P(\|X_n - X\| \geq \varepsilon) < \infty \), then \(X_n \xrightarrow{a.s.} X \). (A conditional converse of (i): \(P(\|X_n - X\| \geq \varepsilon) \) tends to 0 fast enough.)

(vi) If \(X_n \xrightarrow{p} X \), then there is a subsequence \(\{X_{n_j}, j = 1, 2, \ldots\} \) such that \(X_{n_j} \xrightarrow{a.s.} X \) as \(j \to \infty \). (A partial converse of (i).)
Theorem 1.8 (continued)

(vii) If $X_n \to_d X$ and $P(X = c) = 1$, where $c \in \mathbb{R}^k$ is a constant vector, then $X_n \to_p c$. (A conditional converse of (i).)

(viii) Suppose that $X_n \to_d X$.
Then, for any $r > 0$,

$$\lim_{n \to \infty} E \|X_n\|_r^r = E \|X\|_r^r < \infty$$

[we call this moment convergence (MC)]
iff $\{\|X_n\|_r^r\}$ is uniformly integrable (UI) in the sense that

$$\lim_{t \to \infty} \sup_n E \left(\|X_n\|_r^r I_{\{\|X_n\|_r > t\}} \right) = 0.$$

(A conditional converse of (ii).)
In particular, $X_n \to_{L_r} X$ if and only if $\{\|X_n - X\|_r^r\}$ is UI
Discussions on uniform integrability

- If there is only one random vector, then UI is
 \[
 \lim_{t \to \infty} E \left(\| X \|^r \mathbb{I}_{\{ \| X \| > t \}} \right) = 0,
 \]
 which is equivalent to the integrability of \(\| X \|^r \) (dominated convergence theorem).

- Sufficient conditions for uniform integrability:
 \[
 \sup_n E \| X_n \|^r + \delta < \infty \quad \text{for a } \delta > 0
 \]
 This is because
 \[
 \limsup_{t \to \infty} E \left(\| X_n \|^r \mathbb{I}_{\{ \| X_n \| > t \}} \right) \leq \limsup_{t \to \infty} E \left(\| X_n \|^r \mathbb{I}_{\{ \| X_n \| > t \}} \frac{\| X_n \|^\delta}{t^\delta} \right)
 \]
 \[
 \leq \lim_{t \to \infty} \frac{1}{t^\delta} \sup_n E \left(\| X_n \|^r + \delta \right)
 \]
 \[
 = 0
 \]

- Exercises 117-120.
Proof of Theorem 1.8

(i) The result follows from Lemma 1.4.

(ii) The result follows from Chebyshev’s inequality with $\varphi(t) = |t|^r$.

(iii) Assume $k = 1$. (The general case is proved in the textbook.)

Let x be a continuity point of F_X and $\varepsilon > 0$ be given.

Then

$$F_X(x - \varepsilon) = P(X \leq x - \varepsilon)$$

$$\leq P(X_n \leq x) + P(X \leq x - \varepsilon, X_n > x)$$

$$\leq F_{X_n}(x) + P(|X_n - X| > \varepsilon).$$

Letting $n \to \infty$, we obtain that

$$F_X(x - \varepsilon) \leq \liminf_n F_{X_n}(x).$$

Switching X_n and X in the previous argument, we can show that

$$F_X(x + \varepsilon) \geq \limsup_n F_{X_n}(x).$$

Since ε is arbitrary and F_X is continuous at x,

$$F_X(x) = \lim_{n \to \infty} F_{X_n}(x).$$
Proof (continued)

(iv) The proof of this part can be found in Billingsley (1995, pp. 333-334).

(v) Let $A_n = \{\|X_n - X\| \geq \varepsilon\}$. The result follows from Lemma 1.4, Lemma 1.5(i), and Proposition 1.1(iii).

(vi) $X_n \rightarrow_p X$ means $\lim_{n \rightarrow \infty} P(\|X_n - X\| > \varepsilon) = 0$ for every $\varepsilon > 0$. That is, for every $\varepsilon > 0$, $P(\|X_n - X\| > \varepsilon) < \varepsilon$ for $n > n_\varepsilon$ (n_ε is an integer depending on ε).

For every $j = 1, 2, \ldots$, there is a positive integer n_j such that

$$P(\|X_{n_j} - X\| > 2^{-j}) < 2^{-j}.$$

For any $\varepsilon > 0$, there is a k_ε such that for $j \geq k_\varepsilon$, $P(\|X_{n_j} - X\| > \varepsilon) < P(\|X_{n_j} - X\| > 2^{-j})$.

Since $\sum_{j=1}^{\infty} 2^{-j} = 1$, it follows from the result in (v) that $X_{n_j} \rightarrow_{a.s.} X$ as $j \rightarrow \infty$.

(vii) The proof for this part is left as an exercise.
Properties of the quotient random variables

Proposition A1

Suppose X, X_1, X_2, \ldots, are positive random variables. Then $X_n \to_{a.s.} X$ if and only if for every $\epsilon > 0$, $\lim_{n \to \infty} P\{\sup_{k \geq n} \frac{X_k}{X} > 1 + \epsilon\} = 0$, and $\lim_{n \to \infty} P\{\sup_{k \geq n} \frac{X}{X_k} > 1 + \epsilon\} = 0$.

Proposition A2

Suppose X, X_1, X_2, \ldots, are positive random variables. If $\sum_{n=1}^{\infty} P(X_n/X > 1 + \epsilon) < \infty$ and $\sum_{n=1}^{\infty} P(X/X_n > 1 + \epsilon) < \infty$, then $X_n \to_{a.s.} X$.

Homework

1. Prove these two propositions.
2. Construct two random variable sequences such that these two propositions can apply.