Data from one or a series of random experiments are collected.
Planning experiments and collecting data (not discussed here).
Analysis: extract information from the data and draw conclusions.

Descriptive data analysis: Summary of the data, such as the mean, median, range, standard deviation, etc., and graphical displays, such as the histogram and box-and-whisker diagram, etc. It is simple and requires almost no assumptions, but may not allow us to gain enough insight into the problem.

We focus on more sophisticated methods of analyzing data: statistical inference and decision theory.
The data set is a realization of a random element defined on a probability space \((\Omega, \mathcal{F}, P)\), in which \(P\) is called the population.
The data set is the realization of a sample from \(P\).
The size of the data set is called the sample size.
A population P is known iff $P(A)$ is a known value for every $A \in \mathcal{F}$.

In a statistical problem, the population P is unknown.

We deduce properties of P based on the available sample/data.

Read Examples 2.1-2.3

Statistical model

- A *statistical model* is a set of assumptions on the population P and is often postulated to make the analysis possible or easy.
- Postulated models are often based on knowledge of the problem.

Definition 2.1

A set of probability measures P_θ on (Ω, \mathcal{F}) indexed by a parameter $\theta \in \Theta$ is said to be a *parametric family* or follow a parametric model iff $\Theta \subset \mathbb{R}^d$ for some fixed positive integer d *and* each P_θ is a known probability measure when θ is known.

The set Θ is called the *parameter space* and d is called its *dimension*.

$\mathcal{P} = \{P_\theta : \theta \in \Theta\}$ is *identifiable* iff $\theta_1 \neq \theta_2$ and $\theta_i \in \Theta$ imply $P_{\theta_1} \neq P_{\theta_2}$, which may be achieved through reparameterization.
Dominated family

A family of populations \mathcal{P} is dominated by ν (a σ-finite measure) if $P \ll \nu$ for all $P \in \mathcal{P}$, in which case \mathcal{P} can be identified by the family of densities $\left\{ \frac{dP}{d\nu} : P \in \mathcal{P} \right\}$ or $\left\{ \frac{dP_\theta}{d\nu} : \theta \in \Theta \right\}$.

Example (The k-dimensional normal family)

$$\mathcal{P} = \left\{ N_k(\mu, \Sigma) : \mu \in \mathbb{R}^k, \Sigma \in \mathcal{M}_k \right\},$$

where \mathcal{M}_k is a collection of $k \times k$ symmetric positive definite matrices. This is a parametric family dominated by the Lebesgue measure. When $k = 1$, $\mathcal{P} = \left\{ N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0 \right\}$.

Nonparametric family or model

\mathcal{P} is not parametric according to Definition 2.1.

Examples of nonparametric family on $(\mathbb{R}^k, \mathcal{B}^k)$

- All continuous joint c.d.f.’s.
- All joint c.d.f.’s having finite moments of order \leq a fixed integer.
- All joint c.d.f.’s having p.d.f.’s (e.g., Lebesgue p.d.f.’s).
- All symmetric c.d.f.’s.
Definition 2.2 (Exponential families)

A parametric family \(\{ P_\theta : \theta \in \Theta \} \) dominated by a \(\sigma \)-finite measure \(\nu \) on \((\Omega, \mathcal{F}) \) is called an exponential family iff

\[
\frac{dP_\theta}{d\nu}(\omega) = \exp\{ [\eta(\theta)]^\top T(\omega) - \xi(\theta) \} \cdot h(\omega), \quad \omega \in \Omega,
\]

where \(\exp\{ x \} = e^x \), \(T \) is a random \(p \)-vector on \((\Omega, \mathcal{F}) \) with a fixed positive integer \(p \), \(\eta \) is a function from \(\Theta \) to \(\mathbb{R}^p \), \(h \geq 0 \) is a Borel function on \((\Omega, \mathcal{F}) \), and \(\xi(\theta) = \log \{ \int_\Omega \exp\{ [\eta(\theta)]^\top T(\omega) \} h(\omega) d\nu(\omega) \} \).

The representation of an exponential family is not unique. In an exponential family, consider the parameter \(\eta = \eta(\theta) \) and

\[
f_\eta(\omega) = \exp\{ \eta^\top T(\omega) - \zeta(\eta) \} \cdot h(\omega), \quad \omega \in \Omega,
\]

where \(\zeta(\eta) = \log \{ \int_\Omega \exp\{ \eta^\top T(\omega) \} h(\omega) d\nu(\omega) \} \).

This is called the canonical form for the family, and \(\Xi = \{ \eta : \zeta(\eta) \text{ is defined} \} \) is called the natural parameter space. An exponential family in canonical form is a natural exponential family. If \(X_1, \ldots, X_m \) are independent random vectors with p.d.f.’s in exponential families, then the p.d.f. of \((X_1, \ldots, X_m) \) is again in an exponential family.
If there is an open set contained in the natural parameter space of an exponential family, then the family is said to be of **full rank**.

Example 2.6

The normal family \(\{ N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma > 0 \} \) is an exponential family, since the Lebesgue p.d.f. of \(N(\mu, \sigma^2) \) can be written as

\[
\frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} x^2 - \frac{\mu^2}{2\sigma^2} - \log \sigma \right\}.
\]

This belongs to an exponential family with \(T(x) = (x, -x^2) \), \(\eta(\theta) = \left(\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2} \right) \), \(\theta = (\mu, \sigma^2) \), \(\xi(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma \), and \(h(x) = 1/\sqrt{2\pi} \).

Let \(\eta = (\eta_1, \eta_2) = \left(\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2} \right) \).

Then \(\Xi = \mathbb{R} \times (0, \infty) \) and we can obtain a natural exponential family of full rank with \(\zeta(\eta) = \eta_1^2/(4\eta_2) + \log(1/\sqrt{2\eta_2}) \).

A subfamily of the previous normal family, \(\{ N(\mu, \mu^2) : \mu \in \mathbb{R}, \mu \neq 0 \} \), is also an exponential family with the natural parameter \(\eta = \left(\frac{1}{\mu}, \frac{1}{2\mu^2} \right) \) and natural parameter space \(\Xi = \{(x, y) : y = 2x^2, x \in \mathbb{R}, y > 0 \} \).

This exponential family is not of full rank.
Theorem 2.1

Let \(\mathcal{P} \) be a natural exponential family with p.d.f. given by (2).

(i) Let \(T = (Y, U) \) and \(\eta = (\vartheta, \phi) \), \(Y \) and \(\vartheta \) have the same dimension. Then, \(Y \) has the p.d.f. (w.r.t. a \(\sigma \)-finite measure depending on \(\phi \))

\[
f_\eta(y) = \exp\{\vartheta^\top y - \zeta(\eta)\}
\]

In particular, \(T \) has a p.d.f. in a natural exponential family. Furthermore, the conditional distribution of \(Y \) given \(U = u \) has the p.d.f. (w.r.t. a \(\sigma \)-finite measure depending on \(u \))

\[
f_{\vartheta, u}(y) = \exp\{\vartheta^\top y - \zeta_u(\vartheta)\},
\]

which is in a natural exponential family indexed by \(\vartheta \).

(ii) If \(\eta_0 \) is an interior point of the natural parameter space, then the m.g.f. of \(P_{\eta_0} \circ T^{-1} \) is finite in a neighborhood of 0 and is given by

\[
\psi_{\eta_0}(t) = \exp\{\zeta(\eta_0 + t) - \zeta(\eta_0)\}.
\]

If \(f \) is a Borel function satisfying \(\int |f| dP_{\eta_0} < \infty \), then the function

\[
\int f(\omega) \exp\{\eta^\top T(\omega)\} h(\omega) d\nu(\omega)
\]

is infinitely often differentiable in a neighborhood of \(\eta_0 \), and the derivatives may be computed by differentiation under the integral sign.
If $\mathcal{P} = \{ f_\theta : \theta \in \Theta \}$ and the set $\{ x : f_\theta(x) > 0 \}$ depends on θ, then \mathcal{P} is not an exponential family.

Definition 2.3 (Location-scale families)

Let P be a known probability measure on $(\mathbb{R}^k, \mathcal{B}^k)$, $\mathcal{V} \subset \mathbb{R}^k$, and \mathcal{M}_k be a collection of $k \times k$ symmetric positive definite matrices. The family

$$\{ P(\mu, \Sigma) : \mu \in \mathcal{V}, \Sigma \in \mathcal{M}_k \}$$

is called a *location-scale family* (on \mathbb{R}^k), where

$$P(\mu, \Sigma)(B) = P \left(\Sigma^{-1/2}(B - \mu) \right), \quad B \in \mathcal{B}^k,$$

$$\Sigma^{-1/2}(B - \mu) = \{ \Sigma^{-1/2}(x - \mu) : x \in B \} \subset \mathbb{R}^k,$$

and $\Sigma^{-1/2}$ is the inverse of the "square root" matrix $\Sigma^{1/2}$ satisfying $\Sigma^{1/2}\Sigma^{1/2} = \Sigma$.

The parameters μ and $\Sigma^{1/2}$ are called the location and scale parameters, respectively.

- $\{ P(\mu, I_k) : \mu \in \mathbb{R}^k \}$ is a *location family*, where I_k is the identity matrix.
- $\{ P(0, \Sigma) : \Sigma \in \mathcal{M}_k \}$ is a *scale family*.
- $\{ P(\mu, \sigma^2 I_k) : \mu \in \mathbb{R}^k, \sigma > 0 \}$ is a location-scale family.
Our data set is a realization of a sample (random vector) X from an unknown population P.

Statistic $T(X)$: A measurable function T of X; $T(X)$ is a known value whenever X is known.

Statistical analyses are based on various statistics.

A nontrivial statistic $T(X)$ is usually simpler than X.

Usually $\sigma(T(X)) \subset \sigma(X)$, i.e., $\sigma(T(X))$ simplifies $\sigma(X)$; a statistic provides a “reduction” of the σ-field.

The “information” within the statistic $T(X)$ concerning the unknown distribution of X is contained in the σ-field $\sigma(T(X))$.

If S is another statistic for which $\sigma(S(X)) = \sigma(T(X))$, then by Lemma 1.2, S and T are functions of each other.

It is not the particular values of a statistic that contain the information, but the generated σ-field of the statistic.

Values of a statistic may be important for other reasons.
Sampling distribution of a statistic

- A statistic \(T(X) \) is a random element.
- If the distribution of \(X \) is unknown, then the distribution of \(T \) may also be unknown, although \(T \) is a known function.
- Finding the form of the distribution of \(T \) is one of the major problems in statistical inference and decision theory.
- Since \(T \) is a transformation of \(X \), tools we learn in Chapter 1 for transformations may be useful in finding the distribution or an approximation to the distribution of \(T(X) \).

Example 2.8.

Let \(X_1, \ldots, X_n \) be i.i.d. random variables having a common distribution \(P \). The sample mean and sample variance

\[
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

are two commonly used statistics.

Can we find the joint or the marginal distributions of \(\bar{X} \) and \(S^2 \)? It depends on how much we know about \(P \).
Moments of \bar{X} and S^2

- If P has a finite mean μ, then $E\bar{X} = \mu$.
- If P has a finite variance σ^2, then $\text{Var}(\bar{X}) = \sigma^2/n$ and $ES^2 = \sigma^2$.
- With a finite $E|X_1|^3$, we can obtain $E\bar{X}^3$ and $\text{Cov}(\bar{X}, S^2)$.
- With a finite EX_1^4, we can obtain $\text{Var}(S^2)$ (exercise).

The distribution of \bar{X}

If P is in a parametric family, we can often find the distribution of \bar{X}. For example:

- \bar{X} is $N(\mu, \sigma^2/n)$ if P is $N(\mu, \sigma^2)$;
- $n\bar{X}$ has the gamma distribution $\Gamma(n, \theta)$ if P is the exponential distribution $E(0, \theta)$;
- See Example 1.20 and some exercises in §1.6.

One can use the CLT to get an approximation to the distribution of \bar{X}. Applying Corollary 1.2 ($k = 1$), we have $\sqrt{n}(\bar{X} - \mu) \to_d N(0, \sigma^2)$, so that the distribution of \bar{X} can be approximated by $N(\mu, \sigma^2/n)$.
Joint distribution of \bar{X} and S^2

If P is $N(\mu, \sigma^2)$, then \bar{X} and S^2 are independent and the joint distribution of (\bar{X}, S^2) can be obtained. It is enough to show the independence of \bar{Z} and S_Z^2, the sample mean and variance based on $Z_i = (X_i - \mu)/\sigma \sim N(0, 1)$, $i = 1, \ldots, n$, because

$$\bar{X} = \sigma \bar{Z} - \mu \quad \text{and} \quad S^2 = \frac{\sigma^2}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2 = \sigma^2 S_Z^2$$

Consider the transformation

$$Y_1 = \bar{Z}, \quad Y_i = Z_i - \bar{Z}, \quad i = 2, \ldots, n,$$

Then

$$Z_1 = Y_1 - (Y_2 + \cdots + Y_n), \quad Z_i = Y_i + Y_1, \quad i = 2, \ldots, n,$$

and

$$\left| \frac{\partial (Z_1, \ldots, Z_n)}{\partial (Y_1, \ldots, Y_n)} \right| = \frac{1}{n}$$

Since the joint pdf of Z_1, \ldots, Z_n is

$$\frac{1}{(2\pi)^{n/2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} Z_i^2 \right) \quad Z_i \in \mathbb{R}, i = 1, \ldots, n,$$
the joint pdf of \((Y_1, \ldots, Y_n) \) is

\[
\frac{n}{(2\pi)^{n/2}} \exp \left(-\frac{1}{2} \left(y_1 - \sum_{i=2}^{n} y_i \right)^2 \right) \exp \left(-\frac{1}{2} \sum_{i=2}^{n} (y_i + y_1)^2 \right)
\]

\[
= \frac{n}{(2\pi)^{n/2}} \exp \left(-\frac{n}{2} y_1^2 \right) \exp \left(-\frac{1}{2} \left[\sum_{i=2}^{n} y_i^2 + \left(\sum_{i=2}^{n} y_i \right)^2 \right] \right) \quad y_i \in \mathbb{R}
\]

Since the first exp factor involves \(y_1 \) only and the second exp factor involves \(y_2, \ldots, y_n \), we conclude that \(Y_1 \) is independent of \((Y_2, \ldots, Y_n) \).

Since

\[
Z_1 - \bar{Z} = - \sum_{i=2}^{n} (Z_i - \bar{Z}) = - \sum_{i=2}^{n} Y_i \quad \text{and} \quad Z_i - \bar{Z} = Y_i, \quad i = 2, \ldots, n,
\]

we have

\[
S_Z^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2 = \frac{1}{n-1} \left(\sum_{i=2}^{n} Y_i \right)^2 + \frac{1}{n-1} \sum_{i=2}^{n} Y_i^2
\]

which is a function of \((Y_2, \ldots, Y_n) \).
Hence, \bar{Z} and S_2^2 are independent.

Note that

$$(n - 1)S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \mu + \mu - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \mu)^2 + n(\mu - \bar{X})^2$$

Then

$$n\left(\frac{\bar{X} - \mu}{\sigma}\right)^2 + \frac{(n - 1)S^2}{\sigma^2} = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 = \sum_{i=1}^{n} Z_i^2 \quad (2)$$

Since $Z_i \sim N(0, 1)$ and Z_1, \ldots, Z_n are independent, $\sum_{i=1}^{n} Z_i^2 \sim \chi^2_n$

Since $\sqrt{n}(\bar{X} - \mu)/\sigma \sim N(0, 1)$, $n[(\bar{X} - \mu)/\sigma]^2 \sim \chi^2_1$.

The left hand side of (2) is a sum of two independent random variables and, hence, if $f(t)$ is the mgf of $(n - 1)S^2/\sigma^2$, then the mgf of the sum on the left hand side of (2) is $(1 - 2t)^{-1/2} f(t)$.

Since the right hand side of (2) has mgf $(1 - 2t)^{-n/2}$, we must have

$$f(t) = (1 - 2t)^{-n/2} / (1 - 2t)^{-1/2} = (1 - 2t)^{-(n-1)/2} \quad t < 1/2$$

This is the mgf of χ^2_{n-1}, hence $(n - 1)S^2/\sigma^2 \sim \chi^2_{n-1}$.
Joint distribution of \tilde{X} and S^2

If P is $N(\mu, \sigma^2)$, then \tilde{X} and S^2 are independent, $\tilde{X} \sim N(\mu, \sigma^2/n)$ and
$(n - 1)S^2/\sigma^2 \sim \chi^2_{n-1}$.

Without the normality assumption, we consider an approximation.

Assume that $\mu = EX_1$, $\sigma^2 = \text{var}(X_1)$, and $E|X_1|^4$ are finite.
If $Y_i = (X_i - \mu, (X_i - \mu)^2)$, $i = 1, \ldots, n$, then Y_1, \ldots, Y_n are i.i.d. random 2-vectors with $EY_1 = (0, \sigma^2)$ and variance-covariance matrix

$$
\Sigma = \begin{pmatrix}
\sigma^2 & E(X_1 - \mu)^3 \\
E(X_1 - \mu)^3 & E(X_1 - \mu)^4 - \sigma^4
\end{pmatrix}.
$$

Note that $\tilde{Y} = n^{-1} \sum_{i=1}^n Y_i = (\tilde{X} - \mu, \tilde{S}^2)$, where $\tilde{S}^2 = n^{-1} \sum_{i=1}^n (X_i - \mu)^2$.

Applying the CLT (Corollary 1.2) to Y_i’s, we obtain that

$$
\sqrt{n}(\tilde{X} - \mu, \tilde{S}^2 - \sigma^2) \rightarrow_d N_2(0, \Sigma).
$$

Since

$$
S^2 = \frac{n}{n-1} \left[\tilde{S}^2 - (\tilde{X} - \mu)^2 \right]
$$

and $\tilde{X} \rightarrow_{a.s.} \mu$ (the SLLN), an application of Slutsky’s theorem leads to

$$
\sqrt{n}(\tilde{X} - \mu, S^2 - \sigma^2) \rightarrow_d N_2(0, \Sigma).
$$
Example 2.9 (Order statistics)

Let \(X = (X_1, ..., X_n) \) with i.i.d. random components.

Let \(X_{(i)} \) be the \(i \)th smallest value of \(X_1, ..., X_n \).

The statistics \(X_{(1)}, ..., X_{(n)} \) are called the **order statistics**.

Order statistics is a set of very useful statistics in addition to the sample mean and variance.

Suppose that \(X_i \) has a c.d.f. \(F \) having a Lebesgue p.d.f. \(f \).

Then the joint Lebesgue p.d.f. of \(X_{(1)}, ..., X_{(n)} \) is

\[
g(x_1, x_2, ..., x_n) = \begin{cases}
 n! f(x_1) f(x_2) \cdots f(x_n) & \text{if } x_1 < x_2 < \cdots < x_n \\
 0 & \text{otherwise.}
\end{cases}
\]

The joint Lebesgue p.d.f. of \(X_{(i)} \) and \(X_{(j)} \), \(1 \leq i < j \leq n \), is

\[
g_{i,j}(x, y) = \begin{cases}
 \frac{n! [F(x)]^{i-1} [F(y) - F(x)]^{j-i-1} [1 - F(y)]^{n-j} f(x)f(y)}{(i-1)!(j-i-1)!(n-j)!} & \text{if } x < y \\
 0 & \text{otherwise}
\end{cases}
\]

and the Lebesgue p.d.f. of \(X_{(i)} \) is

\[
g_i(x) = \frac{n!}{(i-1)!(n-i)!} [F(x)]^{i-1} [1 - F(x)]^{n-i} f(x).
\]
Example.

Let X_1, \ldots, X_n be a random sample from $\text{uniform}(0, 1)$. We want to find the distribution of $X_1 / X_{(1)}$.

For $s > 1$,

$$P \left(\frac{X_1}{X_{(1)}} > s \right) = \sum_{i=1}^{n} P \left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_i \right)$$

$$= \sum_{i=2}^{n} P \left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_i \right)$$

$$= (n-1) P \left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_n \right)$$

$$= (n-1) P (X_1 > sX_n, X_2 > X_n, \ldots, X_{n-1} > X_n)$$

$$= (n-1) P (sX_n < 1, X_1 > sX_n, X_2 > X_n, \ldots, X_{n-1} > X_n)$$

$$= (n-1) \int_{0}^{1/s} \left[\int_{sX_n}^{1} \left(\prod_{i=2}^{n-1} \int_{x_i}^{1} dx_i \right) dx_1 \right] dx_n$$

$$= (n-1) \int_{0}^{1/s} (1 - x_n)^{n-2} (1 - sx_n) dx_n$$