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Lecture 22: Weighted LSE and linear mixed effects
models
The weighted LSE
In the linear model

X = Zβ + ε, (1)
the unbiased LSE of lτβ may be improved by a slightly biased
estimator when V = Var(ε) is not σ2In and the LSE is not BLUE.
Assume that Z is of full rank so that every lτβ is estimable.
If V is known, then the BLUE of lτβ is lτ β̆ , where

β̆ = (Z τV−1Z )−1Z τV−1X (2)

(see the discussion after the statement of assumption A3 in §3.3.1).

If V is unknown and V̂ is an estimator of V , then an application of the
substitution principle leads to a weighted least squares estimator

β̂w = (Z τ V̂−1Z )−1Z τ V̂−1X . (3)

The weighted LSE is not linear in X and not necessarily unbiased for β .
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If the weighted LSE lτ β̂w is unbiased, then the LSE lτ β̂ may not be a
BLUE, since Var(lτ β̂w ) may be smaller than Var(lτ β̂ ).

Asymptotic properties of the weighted LSE depend on the asymptotic
behavior of V̂ .
We say that V̂ is consistent for V iff

‖V̂−1V − In‖max→p 0, (4)

where ‖A‖max = maxi ,j |aij | for a matrix A whose (i , j)th element is aij .

Theorem 3.17

Consider model (1) with a full rank Z . Let β̆ and β̂w be defined by (2)
and (3), respectively, with a V̂ consistent in the sense of (4).
Under the conditions in Theorem 3.12,

lτ (β̂w −β )/an→d N(0,1),

where l ∈Rp, l 6= 0, and

a2
n = Var(lτ

β̆ ) = lτ (Z τV−1Z )−1l .
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Proof
Using the same argument as in the proof of Theorem 3.12, we obtain
that

lτ (β̆ −β )/an→d N(0,1).

By Slutsky’s theorem, the result follows from

lτ
β̂w − lτ

β̆ = op(an).

Define
ξn = lτ (Z τ V̂−1Z )−1Z τ (V̂−1−V−1)ε

and
ζn = lτ [(Z τ V̂−1Z )−1− (Z τV−1Z )−1]Z τV−1

ε.

Then
lτ

β̂w − lτ
β̆ = ξn + ζn.

The result follows from ξn = op(an) and ζn = op(an) (details are in the
textbook).
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Theorem 3.17 shows that as long as V̂ is consistent in the sense
of (4), the weighted LSE β̂w is asymptotically as efficient as β̆ ,
which is the BLUE if V is known.
By Theorems 3.12 and 3.17, the asymptotic relative efficiency of
the LSE lτ β̂ w.r.t. the weighted LSE lτ β̂w is

lτ (Z τV−1Z )−1l
lτ (Z τZ )−1Z τVZ (Z τZ )−1l

,

which is always less than 1 and equals 1 if lτ β̂ is a BLUE (β̂ = β̆ ).
Finding a consistent V̂ is possible when V has a certain type of
structure.

Example 3.29
Consider model (1).
Suppose that V = Var(ε) is a block diagonal matrix with the i th
diagonal block

σ
2Imi + UiΣUτ

i , i = 1, ...,k , (5)
where mi ’s are integers bounded by a fixed integer m, σ2 > 0 is an
unknown parameter, Σ is a q×q unknown nonnegative definite matrix,
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Ui is an mi ×q full rank matrix whose columns are in R(Wi),
q < inf i mi , and Wi is the p×mi matrix such that Z τ = ( W1 W2 ... Wk ).
Under (5), a consistent V̂ can be obtained if we can obtain consistent
estimators of σ2 and Σ.
Let X = (Y1, ...,Yk ), where Yi is an mi -vector, and let Ri be the matrix
whose columns are linearly independent rows of Wi .
If Yi ’s are independent and supi E |εi |2+δ < ∞ for some δ > 0, then

σ̂
2 =

1
n−kq

k

∑
i=1

Y τ

i [Imi −Ri(Rτ

i Ri)
−1Rτ

i ]Yi

is an unbiased and consistent estimator of σ2.
Let ri = Yi −W τ

i β̂ and

Σ̂ =
1
k

k

∑
i=1

[
(Uτ

i Ui)
−1Uτ

i ri r τ

i Ui(Uτ

i Ui)
−1− σ̂

2(Uτ

i Ui)
−1
]
.

It can be shown (exercise) that Σ̂ is consistent for Σ in the sense that
‖Σ̂−Σ‖max→p 0 or, equivalently, ‖Σ̂−Σ‖→p 0 (see Exercise 116).

UW-Madison (Statistics) Stat 709 Lecture 22 2018 5 / 16



beamer-tu-logo

Linear mixed effects models
Adding random effects to a linear model
Consider linear model (1), X = Zβ + ε.
In many applications we need to add random-effect terms, which leads
to the linear mixed effects model

X = Zβ + U1ξ1 + · · ·+ Uk ξk + ε (6)

where Uj ’s are fixed matrices and ξ1, ...,ξk are independent
unobserved random effects (vectors), and ε and ξj ’s are independent.
The following are two main reasons for adding random effects.

We want to model the correlation among the errors, since
U1ξ1 + · · ·+ Uk ξk + ε can be viewed as error in a linear model.
Random effects present unobserved variables of interests.

It is typically assumed that ξj ’s and ε have mean 0 and finite
covariance matrices and Var(ε) = σ2In so that

E(X ) = Zβ and Var(X ) = U1Var(ξ1)Uτ

1 + · · ·+ Uk Var(ξk )Uτ

k + σ
2In
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A special case is that Var(ξi) = σ2
i Imi , where mi is the dimension of ξi ,

i = 1, ...,k , in which case σ2
1 , ...,σ

2
k are called variance components so

that model (6) is also called variance components models.

Example: One-way random effects model
The one-way random effect model

Yij = µ + Ai + eij , j = 1, ...,ni , i = 1, ...,m,

discussed previously is a special case of model (6), ξ1 = (A1, ...,Am),
Z = Jn, and U1 is block diagonal whose i th diagonal block is Jni .

Parameter estimation
Besides β , parameters of interests in a linear mixed effects model are
Σi = Var(ξi), i = 1, ...,k , and σ2.
We carry out the estimation in two steps.

1 Obtain estimators Σ̂1, ..., Σ̂k , and σ̂2.
2 Let Σ = Var(X ) and Σ̂ = U1Σ̂1Uτ

1 + · · ·+ Uk Σ̂kUτ

k + σ̂2In.
We then estimate β by the weighted LSE

β̂W = (Z τ Σ̂−1Z )−1Z τ Σ̂−1X
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Main approaches for estimating variance components
1 The ANOVA method.
2 The MINQUE (developed by C.R. Rao)
3 The maximum likelihood estimation.
4 The restricted maximum likelihood estimation.

Three steps in estimating variance components
We consider the ANOVA method and the special case where
Σi = σ2

i Imi , i = 1, ...,k .
(1) Treat ξi ’s as fixed effects and apply the ANOVA technique to

obtain sums of squares.
(2) Treat ξi ’s as random and derive the expectations of the sums of

squares, which are linear functions of variance components.
(3) Set each sum of squares equal to its expectation, and then follow

the method of moments to estimate variance components.
To achieve (1), we need to get the decomposition

X τX = SSβ + SSξ1
+ · · ·+ SSξk

+ SSε
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Deriving sums of squares
To obtain SSβ , we consider model X = Zβ + ε and the sum of squares
due to regression:

SSβ = RSS(β ) = X τZ (Z τZ )−1Z τX

To obtain SSξ1
, we treat ξ1 as fixed effect in the linear model after

removing the β effect, i.e., consider model X −Zβ = U1ξ1 + ε and the
sum of squares due to regression, which is equal to the SS due to
regression in model X = Zβ + U1ξ1 + ε minus the SS due to regression
in model X = Zβ + ε, i.e.,

SSξ1
= RSS(β ,ξ1)−RSS(β )

Similarly, the SS due to regression in model X = Zβ + U1ξ1 + U2ξ2 + ε

minus the SS due to regression in model X = Zβ + U1ξ1ε gives

SSξ2
= RSS(β ,ξ1,ξ2)−RSS(β ,ξ1)

· · · · · ·
SSξk

= RSS(β ,ξ1, ...,ξk )−RSS(β ,ξ1, ...,ξk−1)

Finally,
SSε = X τX −RSS(β ,ξ1, ...,ξk )
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For a square matrix M, M− is its generalized inverse if M = MM−M.
To derive a form for SSξ1

, we use the following result:(
A11 A12
A21 A22

)−
=

(
A−1

11 + A−1
11 A12B−A21A−1

11 −A−1
11 A12B−

−B−A21A−1
11 B−

)
where B = A22−A21A−1

11 A12.
Under model X = Zβ + U1ξ1 + ε,

RSS(β ,ξ1) = X τ (Z U1)

(
Z τZ Z τU1
Uτ

1Z Uτ

1U1

)−( Z τ

Uτ

1

)
X

Letting HZ = Z (Z τZ )−1Z τ , D = I−HZ , B = Uτ

1DU1, and applying the
generalized inverse formula, we obtain that

RSS(β ,ξ1) = X τ [HZ + HZ U1B−Uτ

1HZ −HZ U1B−Uτ

1

−U1B−Uτ

1HZ + U1B−Uτ

1 ]X
= RSS(β ) + X τDU1B−Uτ

1DX
Hence

SSξ1
= X τDU1(Uτ

1DU1)−Uτ

1DX = X τ (D−D1)X

where D1 = D−DU1(Uτ

1DU1)−Uτ

1D
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Similarly, we can obtain

SSξ2
= X τ (D1−D2)X , D2 = D1−D1U2(Uτ

2D1U2)−Uτ

2D1
· · · · · ·
SSξk

= X τ (Dk−1−Dk )X , Dk = Dk−1−Dk−1Uk (Uτ

k Dk−1Uk )−Uτ

k Dk−1

Furthermore, SSε = X τDkX so that

X τX = SSβ + SSξ1
+ · · ·+ SSξk

+ SSε

Expectations of SS
To derive the expectation of SSξi

, we use the following result.
Lemma. For a random vector X ∈Rn, if E(X ) = µ, Var(X ) = Σ, and A
is an n×n symmetric matrix, then

E(X τAX ) = µ
τAµ + tr(AΣ)

For SSξ1
, since DZ = D1Z = 0,

E(SSξ1
) = E [X τ (D−D1)X ]

= β
τZ τ (D−D1)Zβ + tr[(D−D1)Var(X )]

= tr[(D−D1)(U1Var(ξ1)Uτ

1 + · · ·+ Uk Var(ξk )Uτ

k ) + σ
2In]

UW-Madison (Statistics) Stat 709 Lecture 22 2018 11 / 16



beamer-tu-logo

Since Σi = σ2
i Imi , i = 1, ...,k ,

E(SSξ1
) = tr[(D−D1)(σ

2
1 U1Uτ

1 + · · ·+ σ
2
k UkUτ

k ) + σ
2In]

= σ
2
1 tr[(D−D1)U1Uτ

1 ] + · · ·+ σ
2
k tr[(D−D1)UkUτ

k ] + σ
2tr(D−D1)

Note that

tr(D−D1) = tr[DU1(Uτ

1DU1)−Uτ

1D] = rank(Uτ

1DU1) = r1

Uτ

1D1U1 = Uτ

1DU1−Uτ

1DU1(Uτ

1DU1)−Uτ

1DU1 = Uτ

1DU1−Uτ

1DU1 = 0

Hence

E(SSξ1
) = σ

2
1 tr(Uτ

1DU1) + σ
2
2 [tr(Uτ

2DU2)− tr(Uτ

2D1U2)] + · · ·
· · ·+ σ

2
k [tr(Uτ

k DUk )− tr(Uτ

k D1Uk )] + r1σ
2

which is a linear function of variance components.
Since DiZ = 0 and DiUj = 0, i = 2, ...,k , i ≥ j , for i = 2, ...,k ,

E(SSξi
) = tr[(Di−1−Di)(σ

2
i UiUτ

i + · · ·+ σ
2
k UkUτ

k ) + σ
2In]

= σ
2
i tr(Uτ

i Di−1Ui) + σ
2
i+1[tr(Uτ

i+1Di−1Ui+1)− tr(Uτ

i+1DiUi+1)]+

· · ·+ σ
2
k [tr(Uτ

k Di−1Uk )− tr(Uτ

k DiUk )] + riσ
2
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E(SSε ) = E(X τDkX ) = σ
2tr(Dk ) = (n−p− r1−·· ·− rk )σ

2

where ri = rank(Di−1−Di) = rank(Z ,U1, ...,Ui)− rank(Z ,U1, ...,Ui−1).

Estimation of variance components by ANOVA
Set

SSξi
= σ

2
i tr(Uτ

i Di−1Ui) + σ
2
i+1[tr(Uτ

i+1Di−1Ui+1)− tr(Uτ

i+1DiUi+1)]+

· · ·+ σ
2
k [tr(Uτ

k Di−1Uk )− tr(Uτ

k DiUk )] + riσ
2

i = 1, ...,k

SSε = (n−p− r1−·· ·− rk )σ
2

These equations can be easily solved by first obtaining

σ̂
2 =

SSε

n−p− r1−·· ·− rk

then σ̂2
k , then σ̂2

k−1, ..., then σ̂2
1 .

Advantage: estimators can be easily computed and are unbiased.
Disadvantage: except for σ̂2, each σ̂2

i may be negative.
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Example: one-way random effects model
The one-way random effects model is

Xij = µ + Ai + eij , j = 1, ...,ni , i = 1, ...,m,

where µ ∈R is an unknown parameter, Ai ’s are iid unobserved
random variables having mean 0 and variance σ2

1 = σ2
a , eij ’s are iid

unobserved random errors with mean 0 and variance σ2, and Ai ’s and
eij ’s are independent.
This is a special case of (6) with k = 1, X and ε being vectors of Xij ’s
and eij ’s, Z = Jn, n = n1 + · · ·+ nm, U1 being the block diagonal matrix
whose i th block is Jni , i = 1, ...,m, ξ1 = (A1, ...,Am), p = 1, and β = µ.
It is easy to see that RSS(β ) = n−1X̄ 2, where X̄ is the mean of all Xij ’s.
It can be shown that

SSε =
m

∑
i=1

ni

∑
j=1

(Xij − X̄i)
2, SSξ1

=
m

∑
i=1

ni(X̄i − X̄ )2, X̄i =
1
ni

ni

∑
j=1

Xij

Also, the matrix (Z ,U1) = (Jn,U1) has rank m, so r1 = m−1, and

Uτ

1DU1 = Uτ

1 [In−Jn(Jτ
nJn)−1Jτ

n ]U1
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= Uτ

1U1−n−1Uτ

1JnJτ
nU1

=

 n1
. . .

nm

−n−1

 n1
...

nm

(n1 · · ·nm)

Hence, q = tr(Uτ

1DU1) = n− (n2
1 + · · ·+ n2

m)/n and

σ̂
2 = (n−m)−1SSε , σ̂

2
a = [SSξ1

− (m−1)σ̂
2]/q

In this example, let’s find out what the estimator of β = µ is.
First, we find µ̂V−1 = (Jτ

nV−1Jn)−1Jτ
nV−1X with V = σ2

a U1Uτ

1 + σ2In.
V is a block diagonal matrix with the i th diagonal block σ2Ini + σ2

a Jni J
τ
ni

.
Using the formula

(A + BBτ )−1 = A−1−A−1B(I + BτA−1B)−1BτA−1

we obtain that each block has the inverse(
σ

2Ini + σ
2
a Jni J

τ
ni

)−1
=

1
σ2 Ini −

σ2
a

σ2(σ2 + niσ
2
a )

Jni J
τ
ni

Then, V−1 is the block diagonal matrix whose i th block diagonal is
given by the previous expression, and

UW-Madison (Statistics) Stat 709 Lecture 22 2018 15 / 16



beamer-tu-logo

Jτ
nV−1Jn =

m

∑
i=1

Jτ
ni

[
1

σ2 Ini −
σ2

a

σ2(σ2 + niσ
2
a )

Jni J
τ
ni

]
Jni

=

(
n

σ2 −
σ2

a
σ2

m

∑
i=1

n2
i

σ2 + niσ
2
a

)
=

m

∑
i=1

ni

σ2 + niσ
2
a

Writing Xi = (Xi1, ...,Xini ), we obtain

Jτ
nV−1X =

m

∑
i=1

Jτ
ni

[
1

σ2 Ini −
σ2

a

σ2(σ2 + niσ
2
a )

Jni J
τ
ni

]
Xi

=

(
nX̄
σ2 −

σ2
a

σ2

m

∑
i=1

n2
i X̄i

σ2 + niσ
2
a

)
=

m

∑
i=1

ni X̄i

σ2 + niσ
2
a

Thus, the WLSE of µ is

µ̂W = (Jτ
nV−1Jn)−1Jτ

nV−1X σ
2 = σ̂

2, σ
2
a = σ̂

2
a

=

(
m

∑
i=1

ni X̄i

σ̂2 + ni σ̂
2
a

)/( m

∑
i=1

ni

σ̂2 + ni σ̂
2
a

)
Asymptotic normality of the WLSE µ̂W , σ̂2 and σ̂2

a can be proved.
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