Lecture 22: Weighted LSE and linear mixed effects
models

The weighted LSE

In the linear model

X=2B+e, (1)
the unbiased LSE of /8 may be improved by a slightly biased
estimator when V = Var(¢) is not 62/, and the LSE is not BLUE.

Assume that Z is of full rank so that every I’ is estimable.
If V is known, then the BLUE of /*B is I*3, where

B=(Z°v'z2)y ' z°v1X )
(see the discussion after the statement of assumption A3 in §3.3.1).

If V is unknown and V is an estimator of V, then an application of the
substitution principle leads to a weighted least squares estimator

By=(Z'V 2y 'Z7V1x. 3)
The weighted LSE is not linear in X and not necessarily unbiased for 3.
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If the weighted LSEAIT[?W is unbiased, then the LSEAITE may not be a
BLUE, since Var(/*B,) may be smaller than Var(/*f).

Asymptotic properties of the weighted LSE depend on the asymptotic
behavior of V.

We say that V is consistent for V iff
IV='V = hllmax =5 0, (4)

where ||A||max = max;|a;| for a matrix A whose (/,j)th element is a;.

Theorem 3.17

Consider model (1) with a full rank Z. Let § and EW be defined by (2)
and (3), respectively, with a V consistent in the sense of (4).
Under the conditions in Theorem 3.12,

I*(Bw —B)/an—q N(O,1),
where | € ZP, | £ 0, and
a2 = Var(I'f) = I"(Z*V-'Z2)7 1.
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Proof

Using the same argument as in the proof of Theorem 3.12, we obtain
that 5
I*(B—B)/an—q N(0,1).

By Slutsky’s theorem, the result follows from

I"Bw — I"B = 0p(an).

Define R R
En=1ZV 12y 1 Z7 (V1 - Vv T
and R
L= Z2°V 2y ' —(z°vZ2) 1 Z7 Vv e
Then

ITEW — /TE =&n+Cn
The result follows from &, = op(an) and §, = 0p(an) (details are in the
textbook).

v
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@ Theorem 3.17 shows thatAas long as V is consistent in the sense
of (4), the weighted LSE B,, is asymptotically as efficient as f3,
which is the BLUE if V is known.

@ By Theorems 3.12 and 3.17, the asymptotic relative efficiency of
the LSE /Tﬁ w.r.t. the weighted LSE lfﬁw is
IF(Zv-12)-1]
I"(ZTZ2)'\zTvz(Z*Z)-1I
which is always less than 1 and equals 1 if /TE is a BLUE (E: ﬁ).
@ Finding a consistent Vis possible when V has a certain type of
structure.
Example 3.29
Consider model (1).
Suppose that V = Var(¢) is a block diagonal matrix with the ith
i | block
diagonal bloc 02U+ USUF,  i=1,..k (5)

where m;’s are integers bounded by a fixed integer m, 62 > 0 is an

unknown parameter, ¥ is a g x g unknown nonnegative definite matrix,
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U; is an m; x g full rank matrix whose columns are in Z(W,),

g < inf;m;, and W; is the p x m; matrix such that Z* = ( Wy W, ... Wy ).
Under (5), a consistent V can be obtained if we can obtain consistent
estimators of 62 and X.

Let X =(Y1,..., Yx), where Y; is an m;-vector, and let R; be the matrix
whose columns are linearly independent rows of W,.

If Y;'s are independent and sup; E|&j|>*% < o« for some § > 0, then

1
n—kq

K
6% = Y. Yilim, — Ri(RFR) ' RITY;
i=1

is an unbiased and consistent estimator of oZ.
Letri=Y;,— W?B and

~ 1k R -
£= Y [(UrU) U u(Ur U - SR(UFU) T
i=1

It can be shown (exercise) that pa is consistent for X in the sense that
|X —X||max —p O or, equivalently, ||~ —X|| —, 0 (see Exercise 116).
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Linear mixed effects models

Adding random effects to a linear model

Consider linear model (1), X =Zp +¢.
In many applications we need to add random-effect terms, which leads
to the linear mixed effects model

X=2ZB+Ui& +--+ Ukl +¢ (6)
where Uj’s are fixed matrices and &y, ..., are independent
unobserved random effects (vectors), and € and &;’s are independent.
The following are two main reasons for adding random effects.

@ We want to model the correlation among the errors, since
Ui&y + - + UKk + € can be viewed as error in a linear model.
@ Random effects present unobserved variables of interests.
It is typically assumed that ;s and € have mean 0 and finite
covariance matrices and Var(e) = 62/, so that
E(X)=2ZB and Var(X)= U;Var(&)US + -+ U Var(&) U + 621,

v
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A special case is that Var(&;) = c,?lm,, where mj; is the dimension of &;,
i=1,...,k, in which case o2, ..., 07 are called variance components so
that model (6) is also called variance components models.

Example: One-way random effects model
The one-way random effect model

)/Il:u+Al+eI]7 j:17"'ani7i:17"'7m’
discussed previously is a special case of model (6), &1 = (A4, ...,Am),
Z = Jn, and U, is block diagonal whose ith diagonal block is Jp,.
Parameter estimation

Besides 3, parameters of interests in a linear mixed effects model are
= Var(é,-), i = 1,...,k, and o2.

We carry out the estimation in two steps.
@ Obtain estimators T4, ...,%4, and 62.
Q Lety = Var(X)and & = Uy UZ + - - + U Sk U + 621,
We then estimate f by the weighted LSE
Bw=(Z's'2)y'z°s X
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Main approaches for estimating variance components

@ The ANOVA method.

© The MINQUE (developed by C.R. Rao)

© The maximum likelihood estimation.

© The restricted maximum likelihood estimation.
Three steps in estimating variance components
We consider the ANOVA method and the special case where
Y= 02y, i=1,..,k.

(1) Treat &’s as fixed effects and apply the ANOVA technique to

obtain sums of squares.

(2) Treat &’s as random and derive the expectations of the sums of
squares, which are linear functions of variance components.

(3) Set each sum of squares equal to its expectation, and then follow
the method of moments to estimate variance components.

To achieve (1), we need to get the decomposition
X' X = SSﬁ +SS§1 +"'+SS€k + SS;




Deriving sums of squares

To obtain SSg, we consider model X = Zf3 + ¢ and the sum of squares
due to regression:

SS; =RSS(B)=X"Z(Z°Z) 'Z°X

To obtain SS;,, we treat &; as fixed effect in the linear model after
removing the B effect, i.e., consider model X — ZB = U;&; + € and the
sum of squares due to regression, which is equal to the SS due to
regression in model X = ZB + U;&; + € minus the SS due to regression
inmodel X =ZB +¢,i.e.,

SSg, = RSS(B,51) — RSS(B)

Similarly, the SS due to regression in model X = Zf + U1 &1 + Uaés + €
minus the SS due to regression in model X = ZB + U;&; € gives

SS¢, = RSS(B,&1,62) — RSS(B,&1)

SSg, = RSS(B,&1,...,6k) — RSS(B, &1, .., Ek—1)
SSS =X"X—- RSS(B?&M“'?&/()
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For a square matrix M, M~ is its generalized inverse if M = MM~ M.
To derive a form for SS¢,, we use the following result:
( At Ap )‘ _ ( A+ A AB Ay Ayl —A ARBT )
Axy Az —B~ Ay Ay B~
where B = Ass — Ao A;11 Aqo.
Under model X = Zf + Ui & +¢&,

T T - T
Ass(p.&) =X W) ( 5z oy ) (e )X
Letting Hz = Z(Z*Z)'Z*, D= |- Hz, B= U DU, and applying the
generalized inverse formula, we obtain that
RSS(B,&1) = X*[Hz + Hz Uy B~ UfHz — Hz Uy B~ U7
—UiB UfHz+ UiB~Uf1X
= RSS(B)+ X*DU; B~ U; DX

Hence
SS&1 = X*DU; (UfDU1 )7U1TDX =X"(D-Dy)X

where Dy = D— DU, (UfDUy)~ U D
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Similarly, we can obtain
SS¢, = X"(Dy — D2)X, Do = Dy — DyUs(U3D; Us)~ U3 Dy

SS¢, = X"(Dk—1— D)X, Dk = Dk—1 — D1 Ux(UgDi—1 Ux) ™ Ug Dk
Furthermore, SS; = X*D, X so that
X'X = 88p 4 SS¢, +--- 4 SSg, + SSe
Expectations of SS

To derive the expectation of SS¢,, we use the following result.

Lemma. For a random vector X € ", if E(X) = u, Var(X) =X, and A
is an n x n symmetric matrix, then

E(XTAX) = u"Au +tr(AX)
For SS¢,, since DZ = D1Z =0,
E(SSe,) = E[X"(D— Dy)X]
=B*Z°(D— Dy)ZB + tr[(D — Dy)Var(X)]
= tr[(D— D1)(Uy Var(&) Uf + -+ Uy Var(&) UF) + 6215]
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Since ¥ = 62y, i =1,...,k,
E(SS,) = tr[(D— Dy)(62Us Uf + -+ + 62 U Uf) + 6215
= 62tr[(D— Dy) Uy Uf] + - - - + 62tr[(D — Dy ) Uk Uf] + 6te(D — Dy)
Note that
tr(D — Dy) = tr[ DUy (U{ DUy) ™ U{ D] = rank(U; DU, ) = rq
UF Dy Uy = UFDU; — UFDU;(UF DUy )~ U DUy = UFDU; — UFDU; =0
Hence
E(SS:,) = o2tr(Uf DUy ) + 03 [tr(UZ DUs) — tr(U3 Dy Un)] + - -
.-+ 02[tr(UE DUy) — tr(UE Dy Uy )] + ry 02
which is a linear function of variance components.
Since D;Z=0and D;U; =0, i =2,....k, i > j, fori=2,...,k,
E(SSt,) =tt[(Dj—1 — D)(6ZU;Uf + -+ + og Uk U§) + 621y
= o7ue(UF D1 Uj) + 07 [tr(UF 1 Di-1 Uiyq) — te(UF 4 DU 1))+
-+ o2[tr(UEDi_1 Uy) — tr(UE DUy )] + ric®
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E(SS;) = E(X*DyX) = Gztr(Dk) =(n-p—-r—--— rk)0-2
where r; = rank(D;_¢ — D;) = rank(Z, Uy, ..., U;) —rank(Z, Uy, ..., U;_1).

Estimation of variance components by ANOVA
Set

SS;’:i = G,?tr( U,-TD,'_1 U,') i GI%H [tr( Uf+1 D;_4 Ui+1 ) = tl‘( U,-T+1 D; Ui+1 )]+
-+ o2[tr(UEDi_1 Uy) — tr(UE DUy )] + ric®

i=1,..,k
SS.=(n—p—r—---—ry)c?
These equations can be easily solved by first obtaining
52 _ SSe
n—p—r—--—1rI

then 62, then 62 ,, ..., then 62.
@ Advantage: estimators can be easily computed and are unbiased.
e Disadvantage: except for 62, each 62 may be negative.
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Example: one-way random effects model

The one-way random effects model is

)(I]:u+Al+elj7 j:17"'aniai:17"'vma

where u € &% is an unknown parameter, A;’s are iid unobserved
random variables having mean 0 and variance ¢ = o3, ;’s are iid
unobserved random errors with mean 0 and variance ¢2, and A;’s and
gj’'s are independent.

This is a special case of (6) with k =1, X and ¢ being vectors of Xj's
and ej's, Z = Jp, n= ny +---+ nm, Uy being the block diagonal matrix
whose ith block is Jp,, i=1,....m, §y = (A4, ...,Am), p=1,and B = .

It is easy to see that RSS(B) = n~' X2, where X is the mean of all Xj’s.
It can be shown that
m n; _ _ _ _ i
SSe=) Y. (Xj—X)?, SS; =Y m(Xi-X)? Xi=_3 X
i=1j=1 i=1 !
Also, the matrix (Z,U;) = (Jn, Uy) has rank m, so ry = m—1, and
UF DUy = U [l — Jn(J5dn) TR Uy
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= UfUy — n~ " UFUpJE Uy

n n

Hence, g = tw(UfDU;) = n— (N2 +---+n2,)/n and
62=(n—m)~'SS,, 65=[SS:, —(m-1)5%]/q

In this example, let’s find out what the estimator of 8 = u is.

First, we find fiy+ = (JEV 1)1 JF VI X with V = 62U, UF + 621,

V is a block diagonal matrix with the ith diagonal block 62/, + 625, J7 .
Using the formula

(A+BB) '=A1-A'B(I+B'A'B)"'B"A"!

we obtain that each block has the inverse

(021 + 02 Jf)q— Ly og J
m ATt T 62 62(g2 4 nio2)

Then, V' is the block diagonal matrix whose ith block diagonal is

given by the previous expression, and
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2
V-1d,= LJ JT | Jn
=L [ 2~ G202 1 mog) | I
n2 m n;

Z0'2+n6 -Z’O'2+n-cf2

Ya =1 va

Writing X; = (Xj1, ..., Xin;), we obtain
2

=1 (1 O3
X= z Jp —_
[ 2/n - 02(02+ n;o?)

nX cyzi n?X; i ni X
02+ njo?

02+ njo? =

Jn J,f,,] X;

Thus, the WLSE of u is
w =SV U TSVIX 62=062 62=02

_ i": niX; i n;

Asymptotic normality of the WLSE [y, 62 and 62 can be proved.
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