Chapter 4: Estimation in Parametric Models
Lecture 1: Bayesian approach

\(X \) is from a population in a parametric family \(\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \), where \(\Theta \subset \mathbb{R}^k \) for a fixed integer \(k \geq 1 \)

Bayes approach

- Optimal rules in the *Bayesian approach*, which is fundamentally different from the classical frequentist approach that we have been adopting

- \(\theta \) is viewed as a realization of a random vector \(\tilde{\theta} \in \Theta \) whose prior distribution is \(\Pi \)

- Prior distribution: past experience, past data, or a statistician’s belief (subjective)

- Sample \(X \in \mathcal{X} \): from \(P_\theta = P_{x|\theta} \), the conditional distribution of \(X \) given \(\tilde{\theta} = \theta \)

- Posterior distribution: updated prior distribution using observed \(X = x \)
How to construct the posterior?

By Theorem 1.7, the joint distribution of X and $\vec{\theta}$ is a probability measure on $\mathcal{X} \times \Theta$ determined by

$$P(A \times B) = \int_B P_{x|\theta}(A) d\Pi(\theta), \quad A \in \mathcal{B}_X, \ B \in \mathcal{B}_\Theta$$

The posterior distribution is the conditional distribution $P_{\theta|x}$ whose existence is guaranteed by Theorem 1.7 a.s. $x \in \mathcal{X}$

Theorem 4.1 (Bayes formula)

Assume $\mathcal{P} = \{P_{x|\theta} : \theta \in \Theta\}$ is dominated by a σ-finite measure ν and $f_{\theta}(x) = dP_{x|\theta}/d\nu$ is a Borel function on $(\mathcal{X} \times \Theta, \sigma(\mathcal{B}_X \times \mathcal{B}_\Theta))$. Let Π be a prior distribution on Θ. Suppose that $m(x) = \int_{\Theta} f_{\theta}(x) d\Pi > 0$. ($m(x)$ is called the marginal p.d.f. of X w.r.t. ν)

(i) The posterior distribution $P_{\theta|x} \ll \Pi$ and

$$dP_{\theta|x} / d\Pi = f_{\theta}(x) / m(x)$$

(ii) If $\Pi \ll \lambda$ and $d\Pi / d\lambda = \pi(\theta)$ for a σ-finite measure λ, then

$$dP_{\theta|x} / d\lambda = f_{\theta}(x) \pi(\theta) / m(x)$$

If T is a sufficient statistic for θ, then the posterior depends only on T.
Discrete X and θ: The Bayes formula in elementary probability

$$P(\theta = \theta | X = x) = \frac{P(X = x | \theta = \theta)P(\theta = \theta)}{\sum_{\theta \in \Theta} P(X = x | \theta = \theta)P(\theta = \theta)}$$

Remarks on the Bayesian approach

- Without loss of generality we may assume $m(x) > 0$
 If $m(x) = 0$ for an $x \in X$, then $f_{\theta}(x) = 0$ a.s. Π
 Either x should be eliminated from X or the prior Π is incorrect and a new prior should be specified.
- The posterior $P_{\theta | x}$ contains all the information we have about θ
- Statistical decisions and inference should be made based on $P_{\theta | x}$, conditional on the observed $X = x$
- In estimating θ, $P_{\theta | x}$ can be viewed as a randomized decision rule under the approach discussed in §2.3.
 After $X = x$ is observed, $P_{\theta | x}$ is a randomized rule, which is a probability distribution on the action space $A = \Theta$
- The Bayesian method can be applied iteratively
Definition 4.1 (Bayes action)

Let \mathcal{A} be an action space in a decision problem and $L(\theta, a) \geq 0$ be a loss function.

For any $x \in \mathcal{X}$, a Bayes action w.r.t. Π is any $\delta(x) \in \mathcal{A}$ such that

$$E[\bar{L}(\theta, \delta(x))|X = x] = \min_{a \in \mathcal{A}} E[\bar{L}(\theta, a)|X = x]$$

where the expectation is w.r.t. the posterior distribution $P_{\theta|x}$.

Remarks

- The Bayes action minimizes the posterior expected loss.
- x is fixed, although $\delta(x)$ depends on x.
- The Bayes action depends on the prior.
- The Bayes action depends on the loss function.
- The existence and uniqueness of Bayes actions are discussed in Proposition 4.1.
- If $\delta(x)$ is a measurable function of x, then $\delta(X)$ is a nonrandomized decision rule under the frequentist approach.
Example 4.1: the estimation of $\vartheta = g(\theta)$

Assume $\int_\Theta [g(\theta)]^2 d\Pi < \infty$, \mathcal{A} is the range of $g(\theta)$, and $L(\theta, a) = [g(\theta) - a]^2$ (squared error loss).

Using the argument in Example 1.22, we obtain the Bayes action

$$\delta(x) = \frac{\int_\Theta g(\theta) f_\theta(x) d\Pi}{m(x)} = \frac{\int_\Theta g(\theta) f_\theta(x) d\Pi}{\int_\Theta f_\theta(x) d\Pi},$$

which is the posterior expectation of $g(\tilde{\theta})$, given $X = x$.

A more specific case

$g(\theta) = \theta^j$ for some integer $j \geq 1$

$f_\theta(x) = e^{-\theta} \theta^x l_{\{0,1,2,\ldots\}}(x)/x!$ (the Poisson distribution) with $\theta > 0$

Π has a Lebesgue p.d.f. $\pi(\theta) = \theta^{\alpha-1} e^{-\theta}/\gamma \Gamma(0,\infty)(\theta)/[\Gamma(\alpha) \gamma^\alpha]$ (the gamma distribution $\Gamma(\alpha, \gamma)$ with known $\alpha > 0$ and $\gamma > 0$)

Then, for $x = 0, 1, 2, \ldots$, and some function $c(x)$,

$$f_\theta(x) \pi(\theta)/m(x) = c(x) \theta^{x+\alpha-1} e^{-\theta(\gamma+1)/\gamma} l_{(0,\infty)}(\theta),$$

This is the gamma distribution $\Gamma(x + \alpha, \gamma/(\gamma + 1))$.
Without actually working out the integral $m(x)$, we know that

$$c(x) = (1 + \gamma^{-1})^{x+\alpha} / \Gamma(x + \alpha),$$

$$\delta(x) = c(x) \int_0^\infty \theta^{j+x+\alpha-1} e^{-\theta(\gamma+1)/\gamma} d\theta.$$

The integrand is proportional to the p.d.f. of the gamma distribution $\Gamma(j + x + \alpha, \gamma/(\gamma + 1))$.

Hence

$$\delta(x) = c(x) \Gamma(j + x + \alpha)/(1 + \gamma^{-1})^{j+x+\alpha}$$

$$= (j + x + \alpha - 1) \cdots (x + \alpha)/(1 + \gamma^{-1})^j.$$

In particular, $\delta(x) = (x + \alpha)\gamma/(\gamma + 1)$ when $j = 1$.

Conjugate prior

An interesting phenomenon is that the prior and the posterior are in the same parametric family of distributions. Such a prior is called a *conjugate* prior.
Remarks

- Whether a prior is conjugate involves a pair of families, the family $\mathcal{P} = \{ f_\theta : \theta \in \Theta \}$ and the family from which Π is chosen.

- Example 4.1 shows that the Poisson family and the gamma family produce conjugate priors.

- Many pairs of families in Table 1.1 (page 18) and Table 1.2 (pages 20-21) produce conjugate priors.

- Under a conjugate prior, Bayes actions often have explicit forms (in x) when the loss function is simple.

- Even under a conjugate prior, the integral in $\delta(x)$ in Example 4.1 involving a general g may not have an explicit form.

- In general, numerical methods have to be used in evaluating the integrals in $\delta(x)$ under general loss functions.

Example 2.25/4.8

X_1, \ldots, X_n i.i.d. $\sim N(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ is unknown and σ^2 is known. Let $\pi(\mu)$ be the pdf of $N(\mu_0, \sigma_0^2)$.

Since $\bar{X} \sim N(\mu, \sigma^2/n)$ is sufficient, we treat $\bar{X} = \bar{x}$ as the observation.
\[f_\mu(\bar{X})\pi(\mu) = \exp\left(-\frac{(\bar{X} - \mu)^2}{2\sigma^2/n} \right) \exp\left(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right) \]

\[= \exp\left(-\frac{1}{2} \left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \mu^2 - 2 \left(\frac{n\bar{X}}{\sigma^2} + \frac{\mu_0}{\sigma_0^2} \right) \mu + \frac{n\bar{X}^2}{\sigma^2} + \frac{\mu_0^2}{\sigma_0^2} \right] \right) \]

\[= \exp\left(-\frac{1}{2} \left[A\mu^2 - 2B\mu + C \right] \right) = \exp\left(-\frac{1}{2} \left[A(\mu - B/A)^2 - B^2/A + C \right] \right) \]

Integrating out \(\mu \), we obtain that the marginal density of \(\bar{X} \) is

\[m(\bar{X}) \propto \exp\left(-\frac{1}{2} \left[C - B^2/A \right] \right) \propto \exp\left(-\frac{(\bar{X} - \mu_0)^2}{2(\sigma^2/n + \sigma_0^2)} \right) \]

i.e., \(m(\bar{X}) \) is the density of \(N(\mu_0, \sigma^2/n + \sigma_0^2) \).

Also, the posterior of \(\mu \) given \(\bar{X} \) is \(N(B/A, A^{-1}) \).

Then the Bayes estimate of \(\mu \) under the squared error loss is

\[\delta(\bar{X}) = B/A = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2/n} \bar{X} + \frac{\sigma^2/n}{\sigma_0^2 + \sigma^2/n} \mu_0 \]
Next, assume that both μ and σ^2 are unknown, the prior for $\omega = (2\sigma^2)^{-1}$ is the gamma distribution $\Gamma(\alpha, \gamma)$ with known α and γ, and the prior for μ is $N(\mu_0, \sigma_0^2/\omega)$ (conditional on ω).

Then the posterior p.d.f. of (μ, ω) is proportional to

$$\omega^{(n+1)/2+\alpha-1} \exp \left\{ - \left[\gamma^{-1} + (n-1)s^2 + n(\bar{x} - \mu)^2 + \frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right] \omega \right\},$$

From

$$n(\bar{x} - \mu)^2 + \frac{(\mu - \mu_0)^2}{2\sigma_0^2} = \left(n + \frac{1}{2\sigma_0^2}\right) \mu^2 - 2 \left(n\bar{x} + \frac{\mu_0}{2\sigma_0^2}\right) \mu + n\bar{x}^2 + \frac{\mu_0^2}{2\sigma_0^2},$$

the posterior p.d.f. of (μ, ω) is proportional to

$$\omega^{(n+1)/2+\alpha-1} \exp \left\{ - \left[\gamma^{-1} + W + \left(n + \frac{1}{2\sigma_0^2}\right) \{\mu - \zeta(\bar{x})\}^2 \right] \omega \right\},$$

$$\zeta(\bar{x}) = \frac{n\bar{x} + \frac{\mu_0}{2\sigma_0^2}}{n + \frac{1}{2\sigma_0^2}} \quad \text{and} \quad W = \sum_{i=1}^{n} x_i^2 + \frac{\mu_0^2}{2\sigma_0^2} - \left(n + \frac{1}{2\sigma_0^2}\right) [\zeta(\bar{x})]^2.$$

Thus, the posterior of ω is $\Gamma(n/2 + \alpha, (\gamma^{-1} + W)^{-1})$ and the posterior of μ (given ω and x) is $N(\zeta(\bar{x}), [(2n + \sigma_0^{-2})\omega]^{-1})$.

Under the squared error loss, the Bayes estimate of μ is $\zeta(\bar{x})$ and the Bayes estimate of $\sigma^2 = (2\omega)^{-1}$ is $(\gamma^{-1} + W)/(n + 2\alpha - 2)$, $n + 2\alpha > 2$.
Generalized Bayes action

The minimization in Definition 4.1 is the same as the minimizing

\[\int_{\Theta} L(\theta, \delta(x)) f_\theta(x) d\Pi = \min_{a \in \mathcal{A}} \int_{\Theta} L(\theta, a) f_\theta(x) d\Pi \]

This is still defined even if \(\Pi \) is not a probability measure but a \(\sigma \)-finite measure on \(\Theta \), in which case \(m(x) \) may not be finite.
If \(\Pi(\Theta) \neq 1 \), \(\Pi \) is called an improper prior.
\(\delta(x) \) is called a generalized Bayes action.

With no past information, one has to choose a prior subjectively.
In such cases, one would like to select a noninformative prior that tries to treat all parameter values in \(\Theta \) equitably.
A noninformative prior is often improper.

Example 4.3

Suppose that \(X = (X_1, \ldots, X_n) \) and \(X_i \)'s are i.i.d. from \(N(\mu, \sigma^2) \), where \(\mu \in \Theta \subset \mathbb{R} \) is unknown and \(\sigma^2 \) is known.
Consider the estimation of \(\psi = \mu \) under the squared error loss.
If \(\Theta = [a, b] \) with \(-\infty < a < b < \infty \), then a noninformative prior that treats all parameter values equitably is the uniform distribution on \([a, b] \).
If \(\Theta = \mathbb{R} \), however, the corresponding “uniform distribution” is the Lebesgue measure on \(\mathbb{R} \), which is an improper prior. If \(\Pi \) is the Lebesgue measure on \(\mathbb{R} \), then

\[
(2\pi \sigma^2)^{-n/2} \int_{-\infty}^{\infty} (\mu - a)^2 \exp \left\{ -\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2} \right\} d\mu
\]

By differentiating \(a \) and using \(\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2 \), we obtain that

\[
\delta(x) = \frac{\int_{-\infty}^{\infty} \mu \exp \left\{ -n(\bar{x} - \mu)^2/(2\sigma^2) \right\} d\mu}{\int_{-\infty}^{\infty} \exp \left\{ -n(\bar{x} - \mu)^2/(2\sigma^2) \right\} d\mu} = \bar{x}.
\]

Thus, the sample mean is a generalized Bayes action under the squared error loss.

From Example 2.25, if \(\Pi \) is \(N(\mu_0, \sigma_0^2) \), then the Bayes action is

\[
\delta(x) = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0 + \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \bar{x}
\]

Note that in this case \(\bar{x} \) is a limit of \(\delta(x) \) as \(\sigma_0^2 \to \infty \).
More detailed discussions of the use of improper priors can be found in Jeffreys (1939, 1948, 1961), Box and Tiao (1973), and Berger (1985).

Hyperparameters and empirical Bayes

A Bayes action depends on the chosen prior with a vector ξ of parameters called hyperparameters.

So far, hyperparameters are assumed to be known.

If the hyperparameter ξ is unknown, one way to solve the problem is to estimate ξ using some historical data; the resulting Bayes action is called an empirical Bayes action.

If there is no historical data, we may estimate ξ using data x and the resulting Bayes action is also called an empirical Bayes action.

The simplest empirical Bayes method is to estimate ξ by viewing x as a "sample" from the marginal distribution

$$P_{x|\xi}(A) = \int_{\Theta} P_{x|\theta}(A) d\Pi_{\theta|\xi}, \quad A \in \mathcal{B}_X,$$

where $\Pi_{\theta|\xi}$ is a prior depending on ξ or from the marginal p.d.f. $m(x) = \int_{\Theta} f_\theta(x) d\Pi$, if $P_{x|\theta}$ has a p.d.f. f_θ.

The method of moments can be applied to estimate ξ.
Example 4.4

Let $X = (X_1, ..., X_n)$ and X_i's be i.i.d. with an unknown mean $\mu \in \mathbb{R}$ and a known variance σ^2.

Assume the prior $\Pi_{\mu|\xi}$ has mean μ_0 and variance σ_0^2, $\xi = (\mu_0, \sigma_0^2)$.

To obtain a moment estimate of ξ, we need to calculate

$$
\int_{\mathbb{R}^n} x_1 m(x) dx \quad \text{and} \quad \int_{\mathbb{R}^n} x_1^2 m(x) dx, \quad x = (x_1, ..., x_n).
$$

These two integrals can be obtained without knowing $m(x)$.

Note that

$$
\int_{\mathbb{R}^n} x_1 m(x) dx = \int_{\Theta} \int_{\mathbb{R}^n} x_1 f_\mu(x) dx d\Pi_{\mu|\xi} = \int_{\mathbb{R}} \mu d\Pi_{\mu|\xi} = \mu_0
$$

and

$$
\int_{\mathbb{R}^n} x_1^2 m(x) dx = \int_{\Theta} \int_{\mathbb{R}^n} x_1^2 f_\mu(x) dx d\Pi_{\mu|\xi} = \sigma^2 + \int_{\mathbb{R}} \mu^2 d\Pi_{\mu|\xi}
$$

$$
= \sigma^2 + \mu_0^2 + \sigma_0^2
$$
Thus, by viewing $x_1, ..., x_n$ as a sample from $m(x)$, we obtain the moment estimates

$$\hat{\mu}_0 = \bar{x} \quad \text{and} \quad \hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 - \sigma^2,$$

where \bar{x} is the sample mean of x_i’s.

Replacing μ_0 and σ_0^2 in

$$\mu^*_0(x) = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0 + \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \bar{x} \quad \text{and} \quad c^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$$

(Example 2.25) by $\hat{\mu}_0$ and $\hat{\sigma}_0^2$, respectively, we find that the empirical Bayes action under the squared error loss is simply the sample mean \bar{x} (which is the generalized Bayes action in Example 4.3).

- Note that $\hat{\sigma}_0^2$ in Example 4.4 can be negative.
- Better empirical Bayes methods can be found, for example, in Berger (1985, §4.5)
Hierarchical Bayes

Instead of estimating hyperparameters, in the hierarchical Bayes approach we put a prior on hyperparameters.

Let $\Pi_{\theta|\xi}$ be a (first-stage) prior with a hyperparameter vector ξ and let Λ be a prior on Ξ, the range of ξ.

Then the "marginal" prior for θ is defined by

$$\Pi(B) = \int_{\Xi} \Pi_{\theta|\xi}(B) d\Lambda(\xi), \quad B \in \mathcal{B}_\Theta.$$

If the second-stage prior Λ also depends on some unknown hyperparameters, then one can go on to consider a third-stage prior.

In most applications, however, two-stage priors are sufficient, since misspecifying a second-stage prior is much less serious than misspecifying a first-stage prior (Berger, 1985, §4.6).

In addition, the second-stage prior can be noninformative (improper). Bayes actions can be obtained in the same way as before.

Thus, the hierarchical Bayes method is simply a Bayes method with a hierarchical prior.
Remarks

- Empirical Bayes methods deviate from the Bayes method since x is used to estimate hyperparameters.
- The hierarchical Bayes method is generally better than empirical Bayes methods.

Suppose that $\Pi_{\theta|\xi}$ has a p.d.f. $\pi_{\theta|\xi}(\theta)$ and the prior Λ has a p.d.f. $\lambda(\xi)$ w.r.t. a σ-finite measure κ.

Then the marginal prior of θ has a p.d.f. (w.r.t. κ)

$$
\pi(\theta) = \int_{\Xi} \pi_{\theta|\xi}(\theta)\lambda(\xi)\,d\kappa
$$

Example 2.25.

If $\bar{X} \sim N(\mu, \sigma^2/n)$ with a known σ^2, the prior $\pi(\mu|\xi)$ is the p.d.f. of $N(\xi, \sigma_0^2)$ with a known σ_0^2, and the prior of ξ is $N(\mu_0, \tau^2)$ with known μ_0 and τ^2, then the marginal prior p.d.f. of μ is $N(\mu_0, \sigma_0^2 + \tau^2)$.

This can be derived using the result in Example 2.25 previously discussed with (\bar{x}, μ) replaced by (μ, ξ).

Because of the hierarchical prior, the prior of μ has more variation.