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Chapter 5: Estimation in Non-Parametric Models
Lecture 9: Empirical c.d.f. and empirical likelihoods

Estimation in Nonparametric Models
Data X = (X1, ...,Xn), where Xi ’s are random d-vectors i.i.d. from an
unknown c.d.f. F in a nonparametric family.
We study mainly two topics

Estimation of the c.d.f. F .
Estimation of θ = T (F ), where T is a functional.

Empirical c.d.f.

Fn(t) =
1
n

n

∑
i=1

I(−∞,t](Xi), t ∈Rd ,

where (−∞,a] denotes the set (−∞,a1]×·· ·× (−∞,ad ] for any
a = (a1, ...,ad ) ∈Rd .
Fn is the distribution putting mass n−1 at each Xi , i = 1, ...,n.
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Properties of empirical c.d.f.

For any t ∈Rd , nFn(t) has the binomial distribution Bi(F (t),n);
Fn(t) is unbiased with variance F (t)[1−F (t)]/n;
Fn(t) is the UMVUE under some nonparametric models;
Fn(t) is

√
n-consistent for F (t).

For any m fixed distinct points t1, ..., tm in Rd , it follows from the
multivariate CLT (Corollary 1.2) that as n→ ∞,

√
n
[(

Fn(t1), ...,Fn(tm)
)
−
(
F (t1), ...,F (tm)

)]
→d Nm(0,Σ),

where Σ is the m×m matrix whose (i , j)th element is

P
(
X1 ∈ (−∞, ti ]∩ (−∞, tj ]

)
−F (ti)F (tj).

Note that these results hold without any assumption on F .
Considered as a function of t , Fn is a random element taking values in
F , the collection of all c.d.f.’s on Rd .
As n→ ∞,

√
n(Fn−F ) converges in some sense to a random element

defined on some probability space.
A detailed discussion of such a result is in Shorack and Wellner (1986).
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The following result is useful.
Its proof is omitted.

Lemma 5.1 (Dvoretzky, Kiefer, and Wolfowitz (DKW) inequality)
Define sup-norm distance

ρ∞(G1,G2) = ‖G1−G2‖∞ = sup
t∈Rd
|G1(t)−G2(t)|, Gj ∈F .

(i) When d = 1, there exists a positive constant C (not depending on F )
such that

P
(
ρ∞(Fn,F ) > z

)
≤ Ce−2nz2

, z > 0, n = 1,2, ....

(ii) When d ≥ 2, for any ε > 0, there exists a positive constant Cε,d (not
depending on F ) such that

P
(
ρ∞(Fn,F ) > z

)
≤ Cε,de−(2−ε)nz2

, z > 0, n = 1,2, ....

The following result holds without any condition on F .
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Theorem 5.1
Let Fn be the empirical c.d.f. of i.i.d. X1, ...,Xn from a c.d.f. F on Rd .
(i) ρ∞(Fn,F )→a.s. 0 as n→ ∞;
(This means that Fn(t)→a.s. F (t) uniformly in t ∈Rd )
(ii) E [

√
nρ∞(Fn,F )]s = O(1) for any s > 0.

(This implies that
√

nρ∞(Fn,F ) = Op(1))

Proof
(i) From DKW’s inequality,

∞

∑
n=1

P
(
ρ∞(Fn,F ) > z

)
< ∞.

Hence, the result follows from Theorem 1.8(v).
(ii) Using DKW’s inequality with z = y1/s/

√
n and the result in Exercise

55 of §1.6, we obtain that, as long as 2− ε > 0,

E [
√

nρ∞(Fn,F )]s =
∫

∞

0
P
(√

nρ∞(Fn,F ) > y1/s)dy

≤ Cε,d

∫
∞

0
e−(2−ε)y2/s

dy = O(1)
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When d = 1, another useful distance for measuring the closeness
between Fn and F is the Lp distance ρLp

induced by the Lp-norm
(p ≥ 1)

ρLp
(G1,G2) = ‖G1−G2‖Lp =

[∫
|G1(t)−G2(t)|pdt

]1/p

, Gj ∈F1,

where F1 = {G ∈F :
∫
|t |dG(t) < ∞}.

Theorem 5.2
Let Fn be the empirical c.d.f. based on i.i.d. random variables X1, ...,Xn
from a c.d.f. F ∈F1.
(i) ρLp

(Fn,F )→a.s. 0;
(ii) E [

√
nρLp

(Fn,F )] = O(1) if 1≤ p < 2 and
∫
{F (t)[1−F (t)]}p/2dt < ∞,

or p ≥ 2.

Proof
(i) Since [ρLp

(Fn,F )]p ≤ [ρ∞(Fn,F )]p−1[ρL1
(Fn,F )] and, by Theorem

5.1, ρ∞(Fn,F )→a.s. 0, it suffices to show the result for p = 1.
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Let Yi =
∫ 0
−∞

[I(−∞,t](Xi)−F (t)]dt .
Then Y1, ...,Yn are i.i.d. and

E |Yi | ≤
∫

E |I(−∞,t](Xi)−F (t)|dt = 2
∫

F (t)[1−F (t)]dt ,

which is finite under the condition that F ∈F1. By the SLLN,∫ 0

−∞

[Fn(t)−F (t)]dt =
1
n

n

∑
i=1

Yi →a.s. E(Y1) = 0.

Since [Fn(t)−F (t)]− ≤ F (t) and
∫ 0
−∞

F (t)dt < ∞ (Exercise 55 in §1.6), it
follows from Theorem 5.1 and the dominated convergence theorem
that

∫ 0
−∞

[Fn(t)−F (t)]−dt →a.s. 0, which with
∫ 0
−∞

[Fn(t)−F (t)]dt →a.s. 0
implies ∫ 0

−∞

|Fn(t)−F (t)|dt →a.s. 0.

The result follows since we can similarly show∫
∞

0
|Fn(t)−F (t)|dt →a.s. 0.

(ii) Omitted.
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Nonparametric MLE
In §4.4 and §4.5, we have shown that the method of using likelihoods
provides some asymptotically efficient estimators.
Can we use the method of likelihoods in nonparametric models?
This not only provides another justification for the use of the empirical
c.d.f., but also leads to a useful method of deriving estimators in
various (possibly non-i.i.d.) cases.
Let PG be the probability measure corresponding to G ∈F .
Given X1 = x1, ...,Xn = xn, the nonparametric likelihood function is
defined to be the following functional from F to [0,∞):

`(G) =
n

∏
i=1

PG({xi}), G ∈F .

Apparently, `(G) = 0 if PG({xi}) = 0 for at least one i .
The following result, due to Kiefer and Wolfowitz (1956), shows that the
empirical c.d.f. Fn is a nonparametric MLE of F .

Theorem 5.3
For X1, ...,Xn i.i.d. from F ∈F , the empirical c.d.f. Fn maximizes the
nonparametric likelihood function `(G) over G ∈F .
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Proof
Let c ∈ (0,1] and F (c) be the subset of F containing G’s satisfying
pi = PG({xi}) > 0, i = 1, ...,n, and ∑

n
i=1 pi = c.

We now apply the Lagrange multiplier method to solve the problem of
maximizing `(G) over G ∈F (c):

H(p1, ...,pn,λ ) =
n

∏
i=1

pi + λ

(
n

∑
i=1

pi −c

)
,

where λ is the Lagrange multiplier.
Set

∂H
∂λ

=
n

∑
i=1

pi −c = 0,
∂H
∂pj

= p−1
j

n

∏
i=1

pi + λ = 0, j = 1, ...,n.

The solution is pi = c/n, i = 1, ...,n, λ =−(c/n)n−1, which is a
maximum of H(p1, ...,pn,λ ) over pi > 0, i = 1, ...,n, ∑

n
i=1 pi = c.

This shows that
max

G∈F (c)
`(G) = (c/n)n,

which is maximized at c = 1 for any fixed n.
The result follows from PFn ({xi}) = n−1 for given Xi = xi , i = 1, ...,n.
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Empirical likelihoods
The nonparametric MLE can be extended to various situations with
some modifications of `(G) and/or constraints on pi ’s.
Modifications of the likelihood `(G) are called empirical likelihoods.
An estimator obtained by maximizing an empirical likelihood is then
called a maximum empirical likelihood estimator (MELE).

Estimation of F with auxiliary information about F
In some cases we have some information about F .
For instance, suppose that there is a known Borel function u from Rd

to Rs such that ∫
u(x)dF = 0

For example, let Xi = (yi ,zi), yi is the income for the current year, and
zi is the income for the current year.
From tax return, we know E(zi) = c.
Then u(x) = z−c.
It is reasonable to expect that any estimate F̂ of F has property∫

u(x)dF̂ = 0, which is not true for the empirical c.d.f. Fn, since
UW-Madison (Statistics) Stat 710, Lecture 9 Jan 2019 9 / 16



beamer-tu-logo

∫
u(x)dFn =

1
n

n

∑
i=1

u(Xi) 6= 0

even if E [u(X1)] = 0.
Using the method of empirical likelihoods, a natural solution is to put
another constraint in the process of maximizing the likelihood.
That is, we maximize `(G) subject to

pi > 0, i = 1, ...,n,
n

∑
i=1

pi = 1, and
n

∑
i=1

piu(xi) = 0,

where pi = PG({xi}).
Using the Lagrange multiplier method and an argument similar to the
proof of Theorem 5.3, it can be shown that an MELE of F is

F̂ (t) =
n

∑
i=1

p̂i I(−∞,t](Xi),

where
p̂i = n−1[1 + λ

τ
n u(Xi)]−1, i = 1, ...,n,

and λn ∈Rs is the Lagrange multiplier satisfying
n

∑
i=1

p̂iu(Xi) =
1
n

n

∑
i=1

u(Xi)

1 + λ τ
n u(Xi)

= 0.
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To see that the last equation has a solution asymptotically, note that

∂

∂λ

[
1
n

n

∑
i=1

log
(
1 + λ

τu(Xi)
)]

=
1
n

n

∑
i=1

u(Xi)

1 + λ τu(Xi)

and

∂ 2

∂λ∂λ τ

[
1
n

n

∑
i=1

log
(
1 + λ

τu(Xi)
)]

=−1
n

n

∑
i=1

u(Xi)[u(Xi)]τ

[1 + λ τu(Xi)]2
,

which is negative definite if Var(u(X1)) is positive definite.
Also,

E

{
∂

∂λ

[
1
n

n

∑
i=1

log
(
1 + λ

τu(Xi)
)]∣∣∣∣

λ=0

}
= E [u(X1)] = 0.

Hence, using the same argument as in the proof of Theorem 4.17, we
can show that there exists a unique sequence {λn(X )} such that

P

(
1
n

n

∑
i=1

u(Xi)

1 + λ τ
n u(Xi)

= 0

)
→ 1 and λn→p 0.
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Theorem 5.4

Let u be a Borel function on Rd satisfying
∫

u(x)dF = 0 and F̂ be the
MELE of F .
Suppose that U = Var(u(X1)) is positive definite.
Then, for any m fixed distinct t1, ..., tm in Rd ,

√
n[
(
F̂ (t1), ..., F̂ (tm)

)
−
(
F (t1), ...,F (tm)

)
]→d Nm(0,Σu),

where
Σu = Σ−W τU−1W ,

Σ is the covariance matrix of
√

n[
(
Fn(t1), ...,Fn(tm)

)
−
(
F (t1), ...,F (tm)

)
],

W =
(
W (t1), ...,W (tm)

)
, and W (tj)=E [u(X1)I(−∞,tj ](X1)].

Remark

F̂ is asymptotically more efficient than Fn, because of the use of the
information

∫
u(x)dF = 0.

F̂ is better when U is less variable and the covariance W is larger.
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Proof of Theorem 5.4
We prove the case of m = 1 only.
Let ū = n−1

∑
n
i=1 u(Xi).

It follows from the estimation equations and Taylor’s expansion that

ū =
1
n

n

∑
i=1

u(Xi)[u(Xi)]τ
λn[1 + op(1)].

By the SLLN and CLT,

U−1ū = λn + op(n−1/2).

Using Taylor’s expansion and the SLLN again, we have

1
n

n

∑
i=1

I(−∞,t](Xi)(np̂i −1) =
1
n

n

∑
i=1

I(−∞,t](Xi)

[
1

1 + λ τ
n u(Xi)

−1
]

= −1
n

n

∑
i=1

I(−∞,t](Xi)λ
τ
n u(Xi) + op(n−1/2)

= −λ
τ
n W (t) + op(n−1/2)

= −ūτU−1W (t) + op(n−1/2).
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Proof of Theorem 5.4 (continued)
Thus,

F̂ (t)−F (t) = Fn(t)−F (t) +
1
n

n

∑
i=1

I(−∞,t](Xi)(np̂i −1)

= Fn(t)−F (t)− ūτU−1W (t) + op(n−1/2)

=
1
n

n

∑
i=1

{
I(−∞,t](Xi)−F (t)−[u(Xi)]τU−1W (t)

}
+ op(n−1/2).

The result follows from the CLT and the fact that

Var
(
[W (t)]τU−1u(Xi)

)
= [W (t)]τU−1UU−1W (t)

= [W (t)]τU−1W (t)
= E{[W (t)]τU−1u(Xi)I(−∞,t](Xi)}
= Cov

(
I(−∞,t](Xi), [W (t)]τU−1u(Xi)

)
.
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Example 5.2 (Biased sampling)
Biased sampling is often used in applications.
Suppose that n = n1 + · · ·+ nk , k ≥ 2;
Xi ’s are independent random variables;
X1, ...,Xn1 are i.i.d. with F ;
and Xn1+···+nj+1, ...,Xn1+···+nj+1 are i.i.d. with the c.d.f.∫ t

−∞

wj+1(s)dF (s)

/∫
∞

−∞

wj+1(s)dF (s),

j = 1, ...,k −1, where wj ’s are some nonnegative Borel functions.
A simple example is that X1, ...,Xn1 are sampled from F and
Xn1+1, ...,Xn1+n2 are sampled from F but conditional on the fact that
each sampled value exceeds a given value x0 (i.e., w2(s) = I(x0,∞)(s)).
For instance, Xi ’s are blood pressure measurements;
X1, ...,Xn1 are sampled from ordinary people
and Xn1+1, ...,Xn1+n2 are sampled from patients whose blood pressures
are higher than x0.
The name biased sampling comes from the fact that there is a bias in
the selection of samples.
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For simplicity we consider the case of k = 2, (w2 = w).
An empirical likelihood with pi = PG({xi}) is

`(G) =
n1

∏
i=1

PG({xi})
n

∏
i=n1+1

w(xi)PG({xi})∫
w(s)dG(s)

=

[
n

∑
i=1

piw(xi)

]−n2 n

∏
i=1

pi

n

∏
i=n1+1

w(xi),

An MELE of F can be obtained by maximizing this empirical likelihood
subject to pi > 0, i = 1, ...,n, and ∑

n
i=1 pi = 1.

Using the Lagrange multiplier method we can show that an MELE F̂ is
as previously given with

p̂i = [n1 + n2w(Xi)/ŵ ]−1, i = 1, ...,n,

where ŵ satisfies
ŵ =

n

∑
i=1

w(Xi)

n1 + n2w(Xi)/ŵ
.

An asymptotic result similar to that in Theorem 5.4 can be established.
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