Lecture 17: Likelihood ratio and asymptotic tests

Likelihood ratio

When both H_0 and H_1 are simple (i.e., $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$), Theorem 6.1 applies and a UMP test rejects H_0 when

$$\frac{f_{\theta_1}(X)}{f_{\theta_0}(X)} > c_0$$

for some $c_0 > 0$.

The following definition is a natural extension of this idea.

Definition 6.2

Let $\ell(\theta) = f_\theta(X)$ be the likelihood function. For testing $H_0 : \theta \in \Theta_0$ versus $H_1 : \theta \in \Theta_1$, a likelihood ratio (LR) test is any test that rejects H_0 if and only if $\lambda(X) < c$, where $c \in [0, 1]$ and $\lambda(X)$ is the likelihood ratio defined by

$$\lambda(X) = \sup_{\theta \in \Theta_0} \ell(\theta) \bigg/ \sup_{\theta \in \Theta} \ell(\theta).$$
Discussions

If \(\lambda(X) \) is well defined, then \(\lambda(X) \leq 1 \).

The rationale behind LR tests is that when \(H_0 \) is true, \(\lambda(X) \) tends to be close to 1, whereas when \(H_1 \) is true, \(\lambda(X) \) tends to be away from 1.

If there is a sufficient statistic, then \(\lambda(X) \) depends only on the sufficient statistic.

LR tests are as widely applicable as MLE’s in §4.4 and, in fact, they are closely related to MLE’s.

If \(\hat{\theta} \) is an MLE of \(\theta \) and \(\hat{\theta}_0 \) is an MLE of \(\theta \) subject to \(\theta \in \Theta_0 \) (i.e., \(\Theta_0 \) is treated as the parameter space), then

\[
\lambda(X) = \frac{\ell(\hat{\theta}_0)}{\ell(\hat{\theta})}.
\]

For a given \(\alpha \in (0, 1) \), if there exists a \(c_\alpha \in [0, 1] \) such that

\[
\sup_{\theta \in \Theta_0} P_{\theta}(\lambda(X) < c_\alpha) = \alpha,
\]

then an LR test of size \(\alpha \) can be obtained.

Even when the c.d.f. of \(\lambda(X) \) is continuous or randomized LR tests are introduced, it is still possible that such a \(c_\alpha \) does not exist.
When a UMP or UMPU test exists, an LR test is often the same as this optimal test.

Proposition 6.5

Suppose that X has a p.d.f. in a one-parameter exponential family:

$$f_{\theta}(x) = \exp\{\eta(\theta) Y(x) - \xi(\theta)\} h(x)$$

w.r.t. a σ-finite measure ν, where η is a strictly increasing and differentiable function of θ.

(i) For testing $H_0 : \theta \leq \theta_0$ versus $H_1 : \theta > \theta_0$, there is an LR test whose rejection region is the same as that of the UMP test T^* given in Theorem 6.2.

(ii) For testing $H_0 : \theta \leq \theta_1$ or $\theta \geq \theta_2$ versus $H_1 : \theta_1 < \theta < \theta_2$, there is an LR test whose rejection region is the same as that of the UMP test T^* given in Theorem 6.3.

(iii) For testing the other two-sided hypotheses, there is an LR test whose rejection region is equivalent to $Y(X) < c_1$ or $Y(X) > c_2$ for some constants c_1 and c_2.
Proof

We prove (i) only.

Let $\hat{\theta}$ be the MLE of θ.

Note that $\ell(\theta)$ is increasing when $\theta \leq \hat{\theta}$ and decreasing when $\theta > \hat{\theta}$. Thus,

$$\lambda(X) = \begin{cases} 1 & \hat{\theta} \leq \theta_0 \\
\frac{\ell(\theta_0)}{\ell(\theta)} & \hat{\theta} > \theta_0. \end{cases}$$

Then $\lambda(X) < c$ is the same as $\hat{\theta} > \theta_0$ and $\ell(\theta_0)/\ell(\hat{\theta}) < c$.

From the property of exponential families, $\hat{\theta}$ is a solution of the likelihood equation

$$\frac{\partial \log \ell(\theta)}{\partial \theta} = \eta'(\theta)Y(X) - \xi'(\theta) = 0$$

and $\psi(\theta) = \xi'(\theta)/\eta'(\theta)$ has a positive derivative $\psi'(\theta)$.

Since $\eta'(\hat{\theta})Y - \xi'(\hat{\theta}) = 0$, $\hat{\theta}$ is an increasing function of Y and $\frac{d\hat{\theta}}{dY} > 0$.

Consequently, for any $\theta_0 \in \Theta$, ...
\[
\frac{d}{dY} \left[\log \ell(\hat{\theta}) - \log \ell(\theta_0) \right] = \frac{d}{dY} \left[\eta(\hat{\theta}) Y - \xi(\hat{\theta}) - \eta(\theta_0) Y + \xi(\theta_0) \right] \\
= \frac{d\hat{\theta}}{dY} \eta'(\hat{\theta}) Y + \eta(\hat{\theta}) - \frac{d\hat{\theta}}{dY} \xi'(\hat{\theta}) - \eta(\theta_0) \\
= \frac{d\hat{\theta}}{dY} [\eta'(\hat{\theta}) Y - \xi'(\hat{\theta})] + \eta(\hat{\theta}) - \eta(\theta_0) \\
= \eta(\hat{\theta}) - \eta(\theta_0),
\]

which is positive (or negative) if \(\hat{\theta} > \theta_0 \) (or \(\hat{\theta} < \theta_0 \)), i.e., \(\log \ell(\hat{\theta}) - \log \ell(\theta_0) \) is strictly increasing in \(Y \) when \(\hat{\theta} > \theta_0 \) and strictly decreasing in \(Y \) when \(\hat{\theta} < \theta_0 \).

Hence, for any \(d \in \mathbb{R}, \hat{\theta} > \theta_0 \) and \(\ell(\theta_0)/\ell(\hat{\theta}) < c \) is equivalent to \(Y > d \) for some \(c \in (0, 1) \).

Example 6.20

Consider the testing problem \(H_0 : \theta = \theta_0 \) versus \(H_1 : \theta \neq \theta_0 \) based on i.i.d. \(X_1, ..., X_n \) from the uniform distribution \(U(0, \theta) \).

We now show that the UMP test with rejection region \(X_{(n)} > \theta_0 \) or \(X_{(n)} \leq \theta_0 \alpha^{1/n} \) given in Exercise 19(c) is an LR test.
Note that \(\ell(\theta) = \theta^{-n} I_{X(n),\infty}(\theta) \).

Hence
\[
\lambda(X) = \begin{cases}
(X(n)/\theta_0)^n & X(n) \leq \theta_0 \\
0 & X(n) > \theta_0
\end{cases}
\]

and \(\lambda(X) < c \) is equivalent to \(X(n) > \theta_0 \) or \(X(n)/\theta_0 < c^{1/n} \).

Taking \(c = \alpha \) ensures that the LR test has size \(\alpha \).

Example 6.21

Consider normal linear model \(X = N_n(Z\beta, \sigma^2 I_n) \) and the hypotheses

\[
H_0 : L\beta = 0 \quad \text{versus} \quad H_1 : L\beta \neq 0,
\]

where \(L \) is an \(s \times p \) matrix of rank \(s \leq r \) and all rows of \(L \) are in \(\mathcal{R}(Z) \).

The likelihood function in this problem is
\[
\ell(\theta) = \left(\frac{1}{2\pi\sigma^2} \right)^{n/2} \exp \left\{ -\frac{1}{2\sigma^2} \|X - Z\beta\|^2 \right\}, \quad \theta = (\beta, \sigma^2).
\]

Since \(\|X - Z\beta\|^2 \geq \|X - Z\hat{\beta}\|^2 \) for any \(\beta \) and the LSE \(\hat{\beta} \),
\[
\ell(\theta) \leq \left(\frac{1}{2\pi\sigma^2} \right)^{n/2} \exp \left\{ -\frac{1}{2\sigma^2} \|X - Z\hat{\beta}\|^2 \right\}.
\]
Treating the right-hand side of this expression as a function of σ^2, it is easy to show that it has a maximum at $\sigma^2 = \hat{\sigma}^2 = \|X - Z\hat{\beta}\|^2 / n$ and
\[
\sup_{\theta \in \Theta} \ell(\theta) = (2\pi\hat{\sigma}^2)^{-n/2} e^{-n/2}.
\]
Similarly, let $\hat{\beta}_{H_0}$ be the LSE under H_0 and $\hat{\sigma}^2_{H_0} = \|X - Z\hat{\beta}_{H_0}\|^2 / n$:
\[
\sup_{\theta \in \Theta_0} \ell(\theta) = (2\pi\hat{\sigma}^2_{H_0})^{-n/2} e^{-n/2}.
\]
Thus,
\[
\lambda(X) = (\hat{\sigma}^2 / \hat{\sigma}^2_{H_0})^{n/2} = \left(\frac{\|X - Z\hat{\beta}\|^2}{\|X - Z\hat{\beta}_{H_0}\|^2} \right)^{n/2}.
\]
For a two-sample problem, we let $n = n_1 + n_2$, $\beta = (\mu_1, \mu_2)$, and
\[
Z = \begin{pmatrix} J_{n_1} & 0 \\ 0 & J_{n_2} \end{pmatrix}.
\]
Testing $H_0 : \mu_1 = \mu_2$ versus $H_1 : \mu_1 \neq \mu_2$ is the same as testing $H_0 : L\beta = 0$ versus $H_1 : L\beta \neq 0$ with $L = \begin{pmatrix} 1 & -1 \end{pmatrix}$.
The LR test is the same as the two-sample two-sided t-tests in §6.2.3.
Example: Exercise 6.84

Let F and G be two known cumulative distribution functions on \mathbb{R} and X be a single observation from the cumulative distribution function $\theta F(x) + (1 - \theta) G(x)$, where $\theta \in [0, 1]$ is unknown. We first derive the likelihood ratio $\lambda(X)$ for testing

$$H_0 : \theta \leq \theta_0 \quad \text{versus} \quad H_1 : \theta > \theta_0$$

where $\theta_0 \in [0, 1)$ is a known constant.

Let f and g be the probability densities of F and G, respectively, with respect to the measure corresponding to $F + G$. Then, the likelihood function is

$$\ell(\theta) = \theta [f(X) - g(X)] + g(X)$$

and

$$\sup_{0 \leq \theta \leq 1} \ell(\theta) = \begin{cases} f(X) & f(X) \geq g(X) \\ g(X) & f(X) < g(X) \end{cases}.$$

For $\theta_0 \in [0, 1)$,

$$\sup_{0 \leq \theta \leq \theta_0} \ell(\theta) = \begin{cases} \theta_0 [f(X) - g(X)] + g(X) & f(X) \geq g(X) \\ g(X) & f(X) < g(X) \end{cases}.$$
Hence,
\[
\lambda(X) = \begin{cases}
\frac{\theta_0 [f(X) - g(X)] + g(X)}{f(X)} & f(X) \geq g(X) \\
1 & f(X) < g(X).
\end{cases}
\]

Choose a constant \(c \) with \(\theta_0 \leq c < 1 \).
Then \(\lambda(X) \leq c \) is the same as
\[
\frac{g(X)}{f(X)} \leq \frac{c - \theta_0}{1 - \theta_0}.
\]

We may find a \(c \) with \(P(\lambda(X) \leq c) = \alpha \) when \(\theta = \theta_0 \).
Consider next
\[
H_0 : \theta_1 \leq \theta \leq \theta_2 \quad \text{versus} \quad H_1 : \theta < \theta_1 \text{ or } \theta > \theta_2
\]
where \(0 \leq \theta_1 < \theta_2 \leq 1 \) are known constants.
For \(0 \leq \theta_1 \leq \theta_2 \leq 1 \),
\[
\sup_{0 \leq \theta_1 \leq \theta \leq \theta_2 \leq 1} \ell(\theta) = \begin{cases}
\theta_2 [f(X) - g(X)] + g(X) & f(X) \geq g(X) \\
\theta_1 [f(X) - g(X)] + g(X) & f(X) < g(X)
\end{cases}
\]

Hence,
\[
\lambda(X) = \begin{cases}
\frac{\theta_2 [f(X) - g(X)] + g(X)}{f(X)} & f(X) \geq g(X) \\
\frac{\theta_1 [f(X) - g(X)] + g(X)}{g(X)} & f(X) < g(X).
\end{cases}
\]
Choose a constant c with \(\max\{1 - \theta_1, \theta_2\} \leq c < 1 \).

Then \(\lambda(X) \leq c \) is the same as
\[
\frac{g(X)}{f(X)} \leq \frac{c - \theta_0}{1 - \theta_0} \quad \text{or} \quad \frac{g(X)}{f(X)} \geq \frac{\theta_1}{c - (1 - \theta_1)}.
\]

How to find a c with \(\sup_{\theta_1 \leq \theta \leq \theta_2} P(\lambda(X) \leq c) = \alpha \)?

Finally, consider
\[
H_0 : \theta \leq \theta_1 \quad \text{or} \quad \theta \geq \theta_2 \quad \text{versus} \quad \theta_1 < \theta < \theta_2
\]
where \(0 \leq \theta_1 \leq \theta_2 \leq 1 \) are known constants.

Note that
\[
\sup_{0 \leq \theta \leq \theta_1, \theta_2 \leq \theta \leq 1} \ell(\theta) = \sup_{0 \leq \theta \leq 1} \ell(\theta).
\]

Hence,
\[
\lambda(X) = 1
\]
This means that, unless we consider randomizing, we cannot find a c such that \(\sup_{\theta \leq \theta_1 \text{ or } \theta \geq \theta_2} P(\lambda(X) \leq c) = \alpha \).
It is often difficult to construct a test with exactly size \(\alpha \) or level \(\alpha \). Tests whose rejection regions are constructed using asymptotic theory (so that these tests have asymptotic level \(\alpha \)) are called asymptotic tests, which are useful when a test of exact size \(\alpha \) is difficult to find.

Definition 2.13 (asymptotic tests)

Let \(X = (X_1, \ldots, X_n) \) be a sample from \(P \in \mathcal{P} \) and \(T_n(X) \) be a test for \(H_0 : P \in \mathcal{P}_0 \) versus \(H_1 : P \in \mathcal{P}_1 \).

(i) If \(\limsup_n \alpha_{T_n}(P) \leq \alpha \) for any \(P \in \mathcal{P}_0 \), then \(\alpha \) is an asymptotic significance level of \(T_n \).

(ii) If \(\lim_{n \to \infty} \sup_{P \in \mathcal{P}_0} \alpha_{T_n}(P) \) exists, it is called the limiting size of \(T_n \).

(iii) \(T_n \) is consistent iff the type II error probability converges to 0.

- If \(\mathcal{P}_0 \) is not a parametric family, the limiting size of \(T_n \) may be 1. This is the reason why we consider the weaker requirement in (i).

- If \(\alpha \in (0,1) \) is a pre-assigned level of significance for the problem, then a consistent test \(T_n \) having asymptotic significance level \(\alpha \) is called **asymptotically correct**, and a consistent test having limiting size \(\alpha \) is called **strongly asymptotically correct**.
In the i.i.d. case we can obtain the asymptotic distribution (under H_0) of the likelihood ratio $\lambda(X)$ so that an LR test having asymptotic significance level α can be obtained.

Theorem 6.5 (asymptotic distribution of likelihood ratio)

Assume the conditions in Theorem 4.16.

Suppose that $H_0 : \theta = g(\vartheta)$, where ϑ is a $(k - r)$-vector of unknown parameters and g is a continuously differentiable function from \mathbb{R}^{k-r} to \mathbb{R}^k with a full rank $\partial g(\vartheta) / \partial \vartheta$.

Under H_0,

$$-2\log \lambda_n \rightarrow_d \chi_r^2,$$

where $\lambda_n = \lambda(X)$ and χ_r^2 is a random variable having the chi-square distribution χ_r^2.

Consequently, the LR test with rejection region $\lambda_n < e^{-\chi_{r, \alpha}^2 / 2}$ has asymptotic significance level α, where $\chi_{r, \alpha}$ is the $(1 - \alpha)$th quantile of the chi-square distribution χ_r^2.
Proof

Without loss of generality, we assume that there exist an MLE $\hat{\theta}$ and an MLE $\hat{\vartheta}$ under H_0 such that

$$\lambda_n = \sup_{\theta \in \Theta_0} \frac{\ell(\theta)}{\sup_{\theta \in \Theta} \ell(\theta)} = \frac{\ell(g(\vartheta))}{\ell(\hat{\theta})}.$$

Let $s_n(\theta) = \partial \log \ell(\theta) / \partial \theta$ and $l_1(\theta)$ be the Fisher information about θ contained in X_1.

Following the proof of Theorem 4.17 in §4.5.2, we can obtain that

$$\sqrt{n}l_1(\theta)(\hat{\theta} - \theta) = n^{-1/2} s_n(\theta) + o_p(1),$$

and

$$2[\log \ell(\hat{\theta}) - \log \ell(\theta)] = n(\hat{\theta} - \theta)^\tau l_1(\theta)(\hat{\theta} - \theta) + o_p(1).$$

Then

$$2[\log \ell(\hat{\theta}) - \log \ell(\theta)] = n^{-1} [s_n(\theta)]^{-1} s_n(\theta) + o_p(1).$$

Similarly, under H_0,

$$2[\log \ell(g(\vartheta)) - \log \ell(g(\vartheta))] = n^{-1} [\tilde{s}_n(\vartheta)]^{-1} \tilde{s}_n(\vartheta) + o_p(1).$$
where \(\tilde{s}_n(\vartheta) = \partial \log \ell(g(\vartheta))/\partial \vartheta = D(\vartheta)s_n(g(\vartheta)) \), \(D(\vartheta) = \partial g(\vartheta)/\partial \vartheta \), and \(\tilde{l}_1(\vartheta) \) is the Fisher information about \(\vartheta \) (under \(H_0 \)) contained in \(X_1 \). Combining these results, we obtain that, under \(H_0 \),

\[
-2 \log \lambda_n = 2[\log \ell(\hat{\vartheta}) - \log \ell(g(\tilde{\vartheta}))] = n^{-1}[s_n(g(\vartheta))]^\tau B(\vartheta)s_n(g(\vartheta)) + o_p(1)
\]

where \(B(\vartheta) = [l_1(g(\vartheta))]^{-1} - [D(\vartheta)]^\tau [\tilde{l}_1(\vartheta)]^{-1} D(\vartheta) \).

By the CLT, \(n^{-1/2}[l_1(\theta)]^{-1/2} s_n(\theta) \to_d Z \), where \(Z = N_k(0, I_k) \). Then, it follows from Theorem 1.10(iii) that, under \(H_0 \),

\[
-2 \log \lambda_n \to_d Z^\tau [l_1(g(\vartheta))]^{1/2} B(\vartheta)[l_1(g(\vartheta))]^{1/2} Z.
\]

Let \(D = D(\vartheta), B = B(\vartheta), A = l_1(g(\vartheta)), \) and \(C = \tilde{l}_1(\vartheta) \). Then

\[
(A^{1/2} B A^{1/2})^2 = A^{1/2} B A B A^{1/2} = A^{1/2}(A^{-1} - D^\tau C^{-1} D) A(A^{-1} - D^\tau C^{-1} D) A^{1/2} = (I_k - A^{1/2} D^\tau C^{-1} D A^{1/2})(I_k - A^{1/2} D^\tau C^{-1} D A^{1/2})
\]
\[\begin{align*}
&= I_k - 2A^{1/2} D^\tau C^{-1} DA^{1/2} + A^{1/2} D^\tau C^{-1} DAD^\tau C^{-1} DA^{1/2} \\
&= I_k - A^{1/2} D^\tau C^{-1} DA^{1/2} \\
&= A^{1/2} BA^{1/2},
\end{align*} \]

where the fourth equality follows from the fact that \(C = DAD^\tau \).
This shows that \(A^{1/2} BA^{1/2} \) is a projection matrix.
The rank of \(A^{1/2} BA^{1/2} \) is
\[
\begin{align*}
\text{tr}(A^{1/2} BA^{1/2}) &= \text{tr}(I_k - D^\tau C^{-1} DA) \\
&= k - \text{tr}(C^{-1} DAD^\tau) \\
&= k - \text{tr}(C^{-1} C) \\
&= k - (k - r) \\
&= r.
\end{align*}
\]

Thus, by Exercise 51 in §1.6,
\[Z^\tau [l_1(g(\phi))]^{1/2} B(\phi) [l_1(g(\phi))]^{1/2} Z = \chi_r^2 \]
There are two popular asymptotic tests based on likelihoods that are asymptotically equivalent to LR tests.

The hypothesis $H_0 : \theta = g(\vartheta)$ is equivalent to a set of $r \leq k$ equations:

$$H_0 : R(\theta) = 0,$$

where $R(\theta)$ is a continuously differentiable function from \mathbb{R}^k to \mathbb{R}^r.

Wald (1943) introduced a test that rejects H_0 when the value of

$$W_n = [R(\hat{\theta})]^{\tau} \left\{ \left[C(\hat{\theta}) \right]^{\tau} [I_n(\hat{\theta})]^{-1} C(\hat{\theta}) \right\}^{-1} R(\hat{\theta})$$

is large, where $C(\theta) = \partial R(\theta) / \partial \theta$, $I_n(\theta)$ is the Fisher information matrix based on $X_1, ..., X_n$, and $\hat{\theta}$ is an MLE or RLE of θ.

Rao (1947) introduced a score test that rejects H_0 when the value of

$$R_n = [s_n(\tilde{\theta})]^{\tau} [I_n(\tilde{\theta})]^{-1} s_n(\tilde{\theta})$$

is large, where $s_n(\theta) = \partial \log \ell(\theta) / \partial \theta$ is the score function and $\tilde{\theta}$ is an MLE or RLE of θ under $H_0 : R(\theta) = 0$.

- Wald’s test requires computing $\hat{\theta}$, not $\tilde{\theta} = g(\hat{\vartheta})$.
- Rao’s score test requires computing $\tilde{\theta}$, not $\hat{\theta}$.

Theorem 6.6

Assume the conditions in Theorem 4.16.
(i) Under $H_0 : R(\theta) = 0$, where $R(\theta)$ is a continuously differentiable function from \mathbb{R}^k to \mathbb{R}^r, $W_n \rightarrow_d \chi^2_r$ and, therefore, the test rejects H_0 if and only if $W_n > \chi^2_{r,\alpha}$ has asymptotic significance level α, where $\chi^2_{r,\alpha}$ is the $(1 - \alpha)$th quantile of the chi-square distribution χ^2_r.
(ii) The result in (i) still holds if W_n is replaced by R_n.

Proof

(i) Using Theorems 1.12 and 4.17,

$$\sqrt{n}[R(\hat{\theta}) - R(\theta)] \rightarrow_d N_r \left(0, [C(\theta)]^\tau l_1(\theta)^{-1} C(\theta)\right),$$

where $l_1(\theta)$ is the Fisher information about θ contained in X_1. Under H_0, $R(\theta) = 0$ and, therefore (by Theorem 1.10),

$$n[R(\hat{\theta})]^\tau \{[C(\theta)]^\tau l_1(\theta)^{-1} C(\theta)\}^{-1} R(\hat{\theta}) \rightarrow_d \chi^2_r$$

Then the result follows from Slutsky’s theorem (Theorem 1.11) and the fact that $\hat{\theta} \rightarrow_p \theta$ and $l_1(\theta)$ and $C(\theta)$ are continuous at θ.
(ii) See the textbook.