Another popular method of constructing confidence sets is to use a close relationship between confidence sets and hypothesis tests. For any test T, the set $\{x : T(x) \neq 1\}$ is called the acceptance region. This terminology is not precise when T is a randomized test.

Theorem 7.2

For each $\theta_0 \in \Theta$, let T_{θ_0} be a test for $H_0 : \theta = \theta_0$ (versus some H_1) with significance level α and acceptance region $A(\theta_0)$. For each x in the range of X, define

$$C(x) = \{\theta : x \in A(\theta)\}.$$

Then $C(X)$ is a level $1 - \alpha$ confidence set for θ. If T_{θ_0} is nonrandomized and has size α for every θ_0, then $C(X)$ has confidence coefficient $1 - \alpha$.

Proof

We prove the first assertion only. The proof for the second assertion is similar. Under the given condition,

\[
\sup_{\theta=\theta_0} P(X \not\in A(\theta_0)) = \sup_{\theta=\theta_0} P(T_{\theta_0} = 1) \leq \alpha,
\]

which is the same as

\[
1 - \alpha \leq \inf_{\theta=\theta_0} P(X \in A(\theta_0)) = \inf_{\theta=\theta_0} P(\theta_0 \in C(X)).
\]

Since this holds for all \(\theta_0 \), the result follows from

\[
\inf_{P \in \mathcal{P}} P(\theta \in C(X)) = \inf_{\theta_0 \in \Theta} \inf_{\theta=\theta_0} P(\theta_0 \in C(X)) \geq 1 - \alpha.
\]

The converse of Theorem 7.2 is partially true.
Proposition 7.2

Let \(C(X) \) be a confidence set for \(\theta \) with confidence level (or confidence coefficient) \(1 - \alpha \).

For any \(\theta_0 \in \Theta \), define a region \(A(\theta_0) = \{ x : \theta_0 \in C(x) \} \).

Then the test \(T(X) = 1 - I_{A(\theta_0)}(X) \) has significance level \(\alpha \) for testing \(H_0 : \theta = \theta_0 \) versus some \(H_1 \).

Discussions

In general, \(C(X) \) in Theorem 7.2 can be determined numerically, if it does not have an explicit form.

Suppose \(A(\theta) = \{ Y : a(\theta) \leq Y \leq b(\theta) \} \) for a real-valued \(\theta \) and statistic \(Y(X) \) and some nondecreasing functions \(a(\theta) \) and \(b(\theta) \).

When we observe \(Y = y \), \(C(X) \) is an interval with limits \(\underline{\theta} \) and \(\overline{\theta} \), which are the \(\theta \)-values at which the horizontal line \(Y = y \) intersects the curves \(Y = b(\theta) \) and \(Y = a(\theta) \) (Figure 7.1), respectively.

If \(y = b(\theta) \) (or \(y = a(\theta) \)) has no solution or more than one solution, \(\underline{\theta} = \inf\{ \theta : y \leq b(\theta) \} \) (or \(\overline{\theta} = \sup\{ \theta : a(\theta) \leq y \} \)).

\(C(X) \) does not include \(\underline{\theta} \) (or \(\overline{\theta} \)) if and only if at \(\underline{\theta} \) (or \(\overline{\theta} \)), \(b(\theta) \) (or \(a(\theta) \)) is only left-continuous (or right-continuous).
Figure 7.1. A confidence interval obtained by inverting $A(\theta) = [a(\theta), b(\theta)]$.
Example 7.7

Suppose that X has the following p.d.f. in a one-parameter exponential family:

$$f_\theta(x) = \exp\{\eta(\theta)Y(x) - \xi(\theta)\}h(x),$$

where θ is real-valued and $\eta(\theta)$ is nondecreasing in θ.

First, we apply Theorem 7.2 with $H_0 : \theta = \theta_0$ and $H_1 : \theta > \theta_0$.

By Theorem 6.2, the acceptance region of the UMP test of size α is

$$A(\theta_0) = \{x : Y(x) \leq c(\theta_0)\},$$

where $c(\theta_0) = c$ in Theorem 6.2.

It can be shown that $c(\theta)$ is nondecreasing in θ.

Inverting $A(\theta)$ according to Figure 7.1 with $b(\theta) = c(\theta)$ and $a(\theta)$ ignored, we obtain

$$C(X) = [\underline{\theta}(X), \infty) \quad \text{or} \quad (\bar{\theta}(X), \infty),$$

a one-sided confidence interval for θ with confidence level $1 - \alpha$.

$\underline{\theta}(X)$ is a called a lower confidence bound for θ in §2.4.3.

When the c.d.f. of $Y(X)$ is continuous, $C(X)$ has confidence coefficient $1 - \alpha$.
If $H_0 : \theta = \theta_0$ and $H_1 : \theta < \theta_0$ are considered, then $C(X) = \{ \theta : Y(X) \geq c(\theta) \}$ and is of the form

$$(-\infty, \bar{\theta}(X)] \text{ or } (-\infty, \bar{\theta}(X)).$$

$\bar{\theta}(X)$ is called an upper confidence bound for θ.

Consider next $H_0 : \theta = \theta_0$ and $H_1 : \theta \neq \theta_0$.

By Theorem 6.4, the acceptance region of the UMPU test of size α is given by $A(\theta_0) = \{ x : c_1(\theta_0) \leq Y(x) \leq c_2(\theta_0) \}$, where $c_i(\theta)$ are nondecreasing (exercise).

A confidence interval can be obtained by inverting $A(\theta)$ according to Figure 7.1 with $a(\theta) = c_1(\theta)$ and $b(\theta) = c_2(\theta)$.

Let us consider a specific example in which X_1, \ldots, X_n are i.i.d. binary random variables with $p = P(X_i = 1)$.

Note that $Y(X) = \sum_{i=1}^n X_i$.

Suppose that we need a lower confidence bound for p so that we consider $H_0 : p = p_0$ and $H_1 : p > p_0$.
From Example 6.2, the acceptance region of a UMP test of size \(\alpha \in (0, 1) \) is \(A(p_0) = \{ y : y \leq m(p_0) \} \), where \(m(p_0) \) is an integer between 0 and \(n \) such that

\[
\sum_{j=m(p_0)+1}^{n} \binom{n}{j} p_0^j (1-p_0)^{n-j} \leq \alpha < \sum_{j=m(p_0)}^{n} \binom{n}{j} p_0^j (1-p_0)^{n-j}.
\]

Thus, \(m(p) \) is an integer-valued, left-continuous, nondecreasing step-function of \(p \).

Define

\[
\underline{p} = \inf \{ p : m(p) \geq y \} = \inf \left\{ p : \sum_{j=y}^{n} \binom{n}{j} p^j (1-p)^{n-j} > \alpha \right\}.
\]

We want to show that a level \(1 - \alpha \) confidence interval for \(p \) is \((\underline{p}, 1]\). Inverting \(A(p) \) we obtain that

\[
C(y) = \{ p : y \leq m(p) \}.
\]
We need to show that

\[\{ p : y \leq m(p) \} = \{ p : p < p \} \]

Suppose that \(p < p \).
If \(m(p) < y \), then, by the definition of \(p \), we must have \(p \leq p \), a contradiction.
Hence, we must have \(y \leq m(p) \).
This shows

\[\{ p : p < p \} \subset \{ p : y \leq m(p) \} \]

Suppose that \(y \leq m(p) \).
By the definition of \(p \), \(p \leq p \).
But we cannot have \(p = p \), because \(m(p) \) is left-continuous and flat, i.e., if \(y \leq m(p) \), then there is a \(p < p \) such that \(y \leq m(p) \).
Thus, \(p < p \) and, hence,

\[\{ p : y \leq m(p) \} \subset \{ p : p < p \} \]

One can compare this confidence interval with the one obtained by applying Theorem 7.1 (exercise).
See also Example 7.16.
Example 7.8

Suppose that X has the following p.d.f. in a multiparameter exponential family:

$$f_{\theta, \varphi}(x) = \exp \{ \theta Y(x) + \varphi^\tau U(x) - \zeta(\theta, \varphi) \}$$

By Theorem 6.4, the acceptance region of a UMPU test of size α for testing $H_0 : \theta = \theta_0$ versus $H_1 : \theta > \theta_0$ or $H_0 : \theta = \theta_0$ versus $H_1 : \theta \neq \theta_0$ is

$$A(\theta_0) = \{(y, u) : y \leq c_2(u, \theta_0)\}$$

or

$$A(\theta_0) = \{(y, u) : c_1(u, \theta_0) \leq y \leq c_2(u, \theta_0)\},$$

where $c_i(u, \theta)$, $i = 1, 2$, are nondecreasing functions of θ. Confidence intervals for θ can then be obtained by inverting $A(\theta)$ according to Figure 7.1 with $b(\theta) = c_2(u, \theta)$ and $a(\theta) = c_1(u, \theta)$ or $a(\theta) \equiv -\infty$, for any observed u.

Consider more specifically the case where X_1 and X_2 are independently distributed as the Poisson distributions $P(\lambda_1)$ and $P(\lambda_2)$, respectively, and we need a lower confidence bound for the ratio $\rho = \lambda_2/\lambda_1$.
From Example 6.11, a UMPU test of size \(\alpha \) for testing \(H_0 : \rho = \rho_0 \) versus \(H_1 : \rho > \rho_0 \) has the acceptance region

\[
A(\rho_0) = \{ (y, u) : y \leq c(u, \rho_0) \},
\]

where \(c(u, \rho_0) \) is determined by the conditional distribution of \(Y = X_2 \) given \(U = X_1 + X_2 = u \).

Since the conditional distribution of \(Y \) given \(U = u \) is the binomial distribution \(Bi(\rho/(1 + \rho), u) \), we can use the result in Example 7.7, i.e., \(c(u, \rho) \) is the same as \(m(p) \) in Example 7.7 with \(n = u \) and \(p = \rho/(1 + \rho) \).

Then a level \(1 - \alpha \) lower confidence bound for \(p \) is \(\underline{p} \) given by

\[
\underline{p} = \inf\{ p : m(p) \geq y \} = \inf \left\{ p : \sum_{j=y}^{u} \binom{u}{j} p^j (1-p)^{u-j} \geq \alpha \right\}
\]

Since \(\rho = p/(1 - p) \) is a strictly increasing function of \(p \), a level \(1 - \alpha \) lower confidence bound for \(\rho \) is \(\underline{p}/(1 - \underline{p}) \).
Confidence sets related to optimal tests

For a confidence set obtained by inverting the acceptance regions of some UMP or UMPU tests, it is expected that the confidence set inherits some optimality property.

Definition 7.2

Let \(\theta \in \Theta \) be an unknown parameter and \(\Theta' \) be a subset of \(\Theta \) that does not contain the true parameter value \(\theta \).

A confidence set \(C(X) \) for \(\theta \) with confidence coefficient \(1 - \alpha \) is said to be \(\Theta' \)-uniformly most accurate (UMA) iff for any other confidence set \(C_1(X) \) with confidence level \(1 - \alpha \),

\[
P(\theta' \in C(X)) \leq P(\theta' \in C_1(X)) \quad \text{for all } \theta' \in \Theta'.
\]

\(C(X) \) is UMA iff it is \(\Theta' \)-UMA with \(\Theta' = \{ \theta \}^c \).

- Intuitively, confidence sets with small probabilities of covering wrong parameter values are preferred.
- If we consider a lower confidence bound for a real-valued \(\theta \), we only need to worry about covering values of \(\theta \) that are too small, i.e., \(\Theta' = \{ \theta' \in \Theta : \theta' < \theta \} \).
Theorem 7.4

Let $C(X)$ be a confidence set for θ obtained by inverting the acceptance regions of nonrandomized tests T_{θ_0} for testing $H_0 : \theta = \theta_0$ versus $H_1 : \theta \in \Theta_{\theta_0}$.

Suppose that for each θ_0, T_{θ_0} is UMP of size α.

Then $C(X)$ is Θ'-UMA with confidence coefficient $1 - \alpha$, where $\Theta' = \{\theta' : \theta \in \Theta_{\theta'}\}$.

Proof

The fact that $C(X)$ has confidence coefficient $1 - \alpha$ follows from Theorem 7.2.

Let $C_1(X)$ be another confidence set with confidence level $1 - \alpha$.

By Proposition 7.2, the test

$$T_{1\theta_0}(X) = 1 - I_{A_1(\theta_0)}(X)$$

with $A_1(\theta_0) = \{x : \theta_0 \in C_1(x)\}$ has significance level α for testing $H_0 : \theta = \theta_0$ versus $H_1 : \theta \in \Theta_{\theta_0}$.
For any $\theta' \in \Theta'$, $\theta \in \Theta_{\theta'}$, i.e., P is in the family defined by $H_1 : \theta \in \Theta_{\theta'}$. Thus,

\[P(\theta' \in C(X)) = 1 - P(T_{\theta'}(X) = 1) \leq 1 - P(T_{1\theta'}(X) = 1) = P(\theta' \in C_1(X)), \]

where the first equality follows from the fact that $T_{\theta'}$ is nonrandomized and the inequality follows from the fact that $T_{\theta'}$ is UMP.

Discussions

Theorem 7.4 can be applied to construct UMA confidence bounds in problems where the population is in a one-parameter parametric family with monotone likelihood ratio so that UMP tests exist (Theorem 6.2). It can also be applied to a few cases to construct two-sided UMA confidence intervals.

For example, $[X(n), \alpha^{-1/n}X(n)]$ in Example 7.13 is UMA.
As we discussed in §6.2, in many problems there are UMPU tests but not UMP tests.

Definition 7.3

Let $\theta \in \Theta$ be an unknown parameter, Θ' be a subset of Θ that does not contain the true parameter value θ, and $1 - \alpha$ be a given confidence level.

(i) A level $1 - \alpha$ confidence set $C(X)$ is said to be Θ'-unbiased (unbiased when $\Theta' = \{\theta\}^c$) iff

$$P(\theta' \in C(X)) \leq 1 - \alpha$$

for all $\theta' \in \Theta'$.

(ii) Let $C(X)$ be a Θ'-unbiased confidence set with confidence coefficient $1 - \alpha$. If

$$P(\theta' \in C(X)) \leq P(\theta' \in C_1(X))$$

for all $\theta' \in \Theta'$.

holds for any other Θ'-unbiased confidence set $C_1(X)$ with confidence level $1 - \alpha$, then $C(X)$ is Θ'-uniformly most accurate unbiased (UMAU).

$C(X)$ is UMAU if and only if it is Θ'-UMAU with $\Theta' = \{\theta\}^c$.
Theorem 7.5

Let $C(X)$ be a confidence set for θ obtained by inverting the acceptance regions of nonrandomized tests T_{θ_0} for testing $H_0 : \theta = \theta_0$ versus $H_1 : \theta \in \Theta_{\theta_0}$.

If T_{θ_0} is unbiased of size α for each θ_0, then $C(X)$ is Θ'-unbiased with confidence coefficient $1 - \alpha$, where $\Theta' = \{ \theta' : \theta \in \Theta_{\theta'} \}$.

If T_{θ_0} is also UMPU for each θ_0, then $C(X)$ is Θ'-UMAU.

Examples 7.9 and 7.15.

Consider the normal linear model $X = N_n(Z\beta, \sigma^2 I_n)$ and the problem of constructing a confidence set for $\theta = L\beta$, where L is an $s \times p$ matrix of rank s and all rows of L are in $\mathcal{R}(Z)$.

The LR test of size α for $H_0 : \theta = \theta_0$ versus $H_1 : \theta \neq \theta_0$ has the acceptance region

$$A(\theta_0) = \{ X : W(X, \theta_0) \leq c_\alpha \},$$

where c_α is the $(1 - \alpha)$th quantile of the F-distribution $F_{s,n-r}$,

$$W(X, \theta) = \frac{[\|X - Z\hat{\beta}(\theta)\|^2 - \|X - Z\hat{\beta}\|^2]/s}{\|X - Z\hat{\beta}\|^2/(n-r)},$$
\(r \) is the rank of \(Z \), \(r \geq s \), \(\hat{\beta} \) is the LSE of \(\beta \) and, for each fixed \(\theta \), \(\hat{\beta}(\theta) \) is a solution of
\[
\|X - Z\hat{\beta}(\theta)\|^2 = \min_{\beta: L\beta = \theta} \|X - Z\beta\|^2.
\]

Inverting \(A(\theta) \), we obtain the following confidence set for \(\theta \) with confidence coefficient \(1 - \alpha \):
\[
C(X) = \{ \theta : W(X, \theta) \leq c_\alpha \},
\]
which forms a closed ellipsoid in \(\mathbb{R}^s \).

Consider the special case of \(s = 1 \), \(\theta = l^\tau \beta \), where \(l \in \mathbb{R}(Z) \).
From §6.2.3, the nonrandomized test with acceptance region
\[
A(\theta_0) = \left\{ X : l^\tau \hat{\beta} - \theta_0 > t_{n-r, \alpha} \sqrt{l^\tau(Z^\tau Z)^{-1}lSSR/(n-r)} \right\}
\]
is UMPU with size \(\alpha \) for testing \(H_0 : \theta = \theta_0 \) versus \(H_1 : \theta < \theta_0 \), where \(t_{n-r, \alpha} \) is the \((1 - \alpha)\)th quantile of the t-distribution \(t_{n-r} \).

Inverting \(A(\theta) \) we obtain the following \(\Theta' \)-UMAU upper confidence bound with confidence coefficient \(1 - \alpha \) and \(\Theta' = (\theta, \infty) \):
\[
\bar{\theta} = l^\tau \hat{\beta} - t_{n-r, \alpha} \sqrt{l^\tau(Z^\tau Z)^{-1}lSSR/(n-r)}.
\]
A UMAU confidence interval for \(\theta \) can be similarly obtained.