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Recombination

Example

In the fruit fly Drosophila melanogaster, the gene white with alleles w +

and w determines eye color (red or white) and the gene miniature with
alleles m+ and m determines wing size (normal or miniature). Both genes
are located on the X chromosome, so female flies will have two alleles for
each gene while male flies will have only one. During meiosis (in animals,
the formation of gametes) in the female fly, if the X chromosome pair do
not exchange segments, the resulting eggs will contain two alleles, each
from the same X chromosome. However, if the strands of DNA cross-over
during meiosis then some progeny may inherit alleles from different X
chromosomes. This process is known as recombination. There is biological
interest in determining the proportion of recombinants. Genes that have a
positive probability of recombination are said to be genetically linked.

Proportions Case Studies Example 1 2 / 84



Recombination (cont.)

Example

In a pioneering 1922 experiment to examine genetic linkage between the
white and miniature genes, a researcher crossed wm+/w +m female flies
with male wm+/Y chromosomes and looked at the traits of the male
offspring. (Males inherit the Y chromosome from the father and the X
from the mother.) In the absence of recombination, we would expect half
the male progeny to have the wm+ haplotype and have white eyes and
normal-sized wings while the other half would have the w +m haplotype
and have red eyes and miniature wings. This is not what happened.
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Recombination (cont.)

Example

The phenotypes of the male offspring were as follows:

Wing Size
Eye color normal miniature

red 114 202
white 226 102

There were 114 + 102 = 216 recombinants out of 644 total male offspring,
a proportion of 216/644

.
= 0.335 or 33.5%. Completely linked genes have

a recombination probability of 0, whereas unlinked genes have a
recombination probability of 0.5. The white and miniature genes in fruit
flies are incompletely linked. Measuring recombination probabilities is an
important tool in constructing genetic maps, diagrams of chromosomes
that show the positions of genes.
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Chimpanzee Example

Example

Do chimpanzees exhibit altruistic behavior? Although observations of
chimpanzees in the wild and in captivity show many examples of altruistic
behavior, previous researchers have failed to demonstrate altruism in
experimental settings. In part of a new study, researchers place two
chimpanzees side-by-side in separate enclosures. One chimpanzee, the
actor, selects a token from 15 each of two colors and hands it to the
researcher. The researcher displays the token and two food rewards visibly
to both chimpanzees. When the prosocial token is selected, both the actor
and the other chimpanzee, the partner, receive food rewards from the
researcher. When the selfish token is selected, the actor receives a food
reward, the partner receives nothing, and the second food reward is
removed.

Show video.
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Chimpanzee Example (cont.)

Example

Here are some experimental details.

Seven chimpanzees are involved in the study; each was the actor for
three sessions of 30 choices, each session with a different partner.

Tokens are replaced after each choice so that there is always a mix of
15 tokens of each of the two colors.

The color sets change for each session.

Before the data is collected in a session, the actor is given ten tokens,
five of each color in random order, to observe the consequences of
each color choice.
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Chimpanzee Example (cont.)

Example

If a chimpanzee chooses the prosocial token at a rate significantly
higher than 50 percent, this indicates prosocial behavior.

Chimpanzees are also tested without partners.

In these notes, we will examine only a subset of the data, looking at
the results from a single chimpanzee in trials with a partner.

In later notes, we will revisit these data to examine different
comparisons.
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Proportions in Biology

Many problems in biology fit into the framework of using sampled
data to estimate population proportions or probabilities.

In reference to our previous discussion about data, we may be
interested in knowing what proportion of a population are in a specific
category of a categorical variable.

For this fly genetics example, we may want to address the following
questions:

I How close is the population recombination probability to the observed
proportion of 0.335?

I Are we sure that these genes are really linked? If the probability was
really 0.5, might we have seen this data?

I How many male offspring would we need to sample to be confident
that our estimated probability was within 0.01 of the true probability?

To understand statistical methods for analyzing proportions, we will
take our first foray into probability theory.
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Bar Graphs
Proportions are fairly simple statistics, but bar graphs can help one to
visualize and compare proportions.
The following graph shows the relative number of individuals in each
group and helps us see that there are about twice as many parental
types as recombinants.

Male Offspring Types

Type

F
re

qu
en

cy

0

100

200

300

400

parental recombinant

Proportions Graphs 10 / 84



Bar Graphs (cont.)

The following graph shows the totals in each genotype.

A later section will describe the R code to make these and other
graphs.
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Motivating Example

We begin by considering a small and simplified example based on our
case study.

Assume that the true probability of recombination is p = 0.3 and that
we take a small sample of n = 5 flies.

The number of recombinants in this sample could potentially be 0, 1,
2, 3, 4, or 5.

The chance of each outcome, however, is not the same.
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Simulation
Using the computer, we can simulate many (say 1000) samples of size
5, for each sample counting the number of recombinants.
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Simulation Results

If we let X represent the number of recombinants in the sample, we
can describe the distribution of X by specifying;

I the set of possible values; and
I a probability for each possible value.

In this example, the possible values and the probabilities (as
approximated from the simulation) are:

0 1 2 3 4 5

0.17 0.36 0.31 0.13 0.03 0.00

Rather than depending on simulation, we will derive a mathematical
expression for these probabilities.
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The Binomial Distribution Family

The binomial distribution family is based on the following
assumptions:

1 There is a fixed sample size of n separate trials.
2 Each trial has two possible outcomes (or classes of outcomes, one of

which is counted, and one of which is not).
3 Each trial has the same probability p of being in the class of outcomes

being counted.
4 The trials are independent, which means that information about the

outcomes for some subset of the trials does not affect the probabilities
of of the other trials.

The values of n (some positive integer) and p (a real number between
0 and 1) determine the full distribution (list of possible values and
associated probabilities).
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Binomial Probability Formula

Binomial Probability Formula

If X ∼ Binomial(n, p), then

P
(

X = k
)

=

(
n

k

)
pk(1− p)n−k , for k = 0, . . . , n

where(
n

k

)
=

n!

k!(n − k)!
is the number of ways to choose k objects from n.
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Example

In the example, let p represent a parental type and R a recombinant
type.

There are 32 possible samples in order of these types, organized below
by the number of recombinants.

(5
0)=1︷ ︸︸ ︷

ppppp

(5
1)=5︷ ︸︸ ︷

ppppR

(5
2)=10︷ ︸︸ ︷

pppRR

(5
3)=10︷ ︸︸ ︷

ppRRR

(5
4)=5︷ ︸︸ ︷

pRRRR

(5
5)=1︷ ︸︸ ︷

RRRRR
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pRRpp RpRpR
RpppR RpRRp
RppRp RRppR
RpRpp RRpRp
RRppp RRRpp
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Example (cont.)

In the example, p has probability 0.7 and R has probability 0.3;

The sequence ppppp has probability (0.7)5

Since this is the only sequence with 0 Rs,
P(X = 0) = 1× (0.3)0(0.7)5 .

= 0.1681.

The sequence ppRpR has probability (0.3)2(0.7)3 as do each of the 10
sequences with exactly two Rs, so
P(X = 2) = 10× (0.3)2(0.7)3 .

= 0.3087.

The complete distribution is:

0 1 2 3 4 5

0.1681 0.3601 0.3087 0.1323 0.0284 0.0024

In the general formula P
(

X = k
)

=
(n
k

)
pk(1− p)n−k :

I
(
n
k

)
is the number of different patterns with exactly k of one type; and

I pk(1− p)n−k is the probability of any single such sequence.
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Random Variables

Definition

A random variable is a rule that attaches a numerical value to a chance
outcome.

In our example, we defined the random variable X to be the number
of recombinants in the sample.

This random variable is discrete because it has a finite set of possible
values.

(Random variables with a countably infinite set of possible values,
such as 0, 1, 2, . . . are also discrete, but with a continuum of possible
values are called continuous. We will learn more about continuous
random variables later in the semester.)

Associated with each possible value of the random variable is a
probability, a number between 0 and 1 that represents the long-run
relative frequency of observing the given value.

The sum of the probabilities for all possible values is one.
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Discrete Probability Distributions

The probability distribution of a random variable is a full description
of how a unit of probability is distributed on the number line.

For a discrete random variable, the probability is broken into discrete
chunks and placed at specific locations.

To describe the distribution, it is sufficient to provide a list of all
possible values and the probability associated with each value.

The sum of these probabilities is one.

Frequently (as with the binomial distribution), there is a formula that
specifies the probability for each possible value.
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The Mean (Expected Value)

Definition

The mean or expected value of a random variable X is written as E(X ).
For discrete random variables,

E(X ) =
∑
k

kP(X = k)

where the sum is over all possible values of the random variable.

Note that the expected value of a random variable is a weighted
average of the possible values of the random variable, weighted by the
probabilities.

A general discrete weighted average takes the form∑
i

(value)i (weight)i where
∑

i

(weight)i = 1

The mean is the location where the probabilities balance.
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The Variance and Standard Deviation

Definition

The variance of a random variable X is written as Var(X ). For discrete
random variables,

Var(X ) = E
(

(X − E(X ))2
)

=
∑
k

(k − µ)2P(X = k) = E(X 2)−
(

E(X )
)2

where the sum is over all possible values of the random variable and
µ = E(X ).

The variance is a weighted average of the squared deviations between
the possible values of the random variable and its mean.

If a random variable has units, the units of the variance are those
units squared, which is hard to interpret.

We also define the standard deviation to be the square root of the
variance, so it has the same units as the random variable.

A notation is SD(X ) =
√

Var(X ).
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Chalkboard Example

Find the mean, variance, and standard deviation for a random variable
with this distribution.

k 0 1 5 10

P(X = k) 0.1 0.5 0.1 0.3

E(X ) = 4, Var(X ) = 17, SD(X ) =
√

17
.
= 4.1231
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Formulas for the Binomial Distribution Family

Moments of the Binomial Distribution

If X ∼ Binomial(n, p), then E(X ) = np, Var(X ) = np(1− p), and
SD(X ) =

√
np(1− p).

Each of these formulas involves considerable algebraic simplification
from the expressions in the definitions.

The expression for the mean is intuitive: for example, in a sample
where n = 5 and we expect the proportion p = 0.3 of the sample to
be of one type, then it is not surprising that the distribution is
centered at 30% of 5, or 1.5.
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Example

Here is a plot of the distribution in our small example.

The exact probabilities are very close to the values from the
simulation.
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What you should know (so far)

You should know:

when a random variable is binomial (and if so, what its parameters
are);

how to compute binomial probabilities;

how to find the mean, variance, and standard deviation from the
definition for a general discrete random variable;

how to use the simple formulas to find the mean and variance of a
binomial random variable;

that the expected value is the mean (balancing point) of a probability
distribution;

that the expected value is a measure of the center of a distribution;

that variance and standard deviation are measures of the spread of a
distribution.
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Sampling Distribution

Definition

A statistic is a numerical value that can be computed from a sample of
data.

Definition

The sampling distribution of a statistic is simply the probability
distribution of the statistic when the sample is chosen at random.

Definition

An estimator is a statistic used to estimate the value of a characteristic of
a population.

We will explore these ideas in the context of using sample proportions
to estimate population proportions or probabilities.
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The Sample Proportion

Let X count the number of observations in a sample of a specified
type.

For a random sample, we often model X ∼ Binomial(n, p) where:
I n is the sample size; and
I p is the population proportion.

The sample proportion is

p̂ =
X

n

Adding a hat to a population parameter is a common statistical
notation to indicate an estimate of the parameter calculated from
sampled data.

What is the sampling distribution of p̂?
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Sampling distribution of p̂

The possible values of p̂ are 0 = 0/n, 1/n, 2/n, . . . , n/n = 1.

The probabilities for each possible value are the binomial probabilities:

P
(

p̂ =
k

n

)
= P

(
X = k

)
The mean of the distribution is E(p̂) = p.

The variance of the distribution is Var(p̂) = p(1−p)
n .

The standard deviation of the distribution is SD(p̂) =
√

p(1−p)
n .

We connect these formulas to the binomial distribution.
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Expected Values and Constants

While it is intuitively clear that the expected value of all sample
proportions ought to be equal to the population proportion, it is
helpful to understand why.

First, for any constant c, E(cX ) = cE(X ).

This follows because constants can be factored out of sums.

The number 1/n is a constant, so

E(p̂) = E

(
X

n

)
=

1

n
E(X ) =

1

n
(np) = p
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Expected Values and Sums

Expectation of a Sum

If X1,X2, . . . ,Xn are random variables, then
E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn).

The expected value of a sum is the sum of the expected values.

This follows because sums can be rearranged into other sums.

For example,

(a1 +b1)+(a2 +b2)+ · · ·+(an +bn) = (a1 + · · ·+an)+(b1 + · · ·+bn)

There is also a naturally intuitive explanation of this result: for
example, if we expect to see 5 recombinants on average in one sample
and 6 recombinants on average in a second, then we expect to see 11
on average when the samples are combined.

Proportions Sampling Distribution Mean and Standard Error 31 / 84



The Binomial Moments Revisited

k 0 1

P(X = k) 1− p p

If n = 1, then the binomial distribution is as above and

E(X ) = 0(1− p) + 1(p) = p .

In addition,

VarX = (0−p)2(1−p)+(1−p)2p = p2(1−p)+p(1−p)2 = p(1−p)
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The Binomial Mean Revisited

For larger n, a sample of size n can be thought of as combining n
samples of size 1, so

X = X1 + X2 + · · ·+ Xn

where each Xi has possible values 0 and 1 (the ith element of the
sample is not counted or is).

E(X ) = E(X1 + · · ·+ Xn)

= E(X1) + · · ·+ E(Xn)

= p + · · ·+ p︸ ︷︷ ︸
n times

= np
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Variance and Sums

Variance of a Sum

If X1,X2, . . . ,Xn are random variables, and if the random variables are
independent, then Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn).

In words, the variance of a sum of independent random variables is
the sum of the variances.

Later sections will explore variances of general sums.
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The Binomial Variance Revisited

For X ∼ Binomial(n, p), we can think of X as a sum of independent
random variables

X = X1 + X2 + · · ·+ Xn

where each Xi has possible values 0 and 1, and

Var(X ) = Var(X1 + · · ·+ Xn)

= Var(X1) + · · ·+ Var(Xn)

= p(1− p) + · · ·+ p(1− p)︸ ︷︷ ︸
n times

= np(1− p)
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Constants and Variance

As the variance squares units, when a constant is factored out, its
value is also squared.

Var(cX ) = c2Var(X )

This can be understood from the definition.

Var(cX ) = E
(

(cX − E(cX ))2
)

= E
(

(cX − cE(X ))2
)

= E
(

c2(X − E(X ))2
)

= c2Var(X )
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The Variance of p̂

Var(p̂) = Var
(X

n

)
=

1

n2
Var(X )

=
1

n2
np(1− p)

=
p(1− p)

n

Then, SD(p̂) =
√

p(1−p)
n .
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Standard Error

Definition

The standard deviation of the sampling distribution of an estimate is called
the standard error of the estimate.

A standard error can be thought of as the size of a the typical distance
between an estimate and the value of the parameter it estimates.

Standard errors are often estimated by replacing parameter values
with estimates.

For example,

SE(p̂) =

√
p(1− p)

n
, ŜE(p̂) =

√
p̂(1− p̂)

n
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Problem

Problem

In a large population, the frequency of an allele is 0.25. A cross results in a
random sample of 8 alleles from the population.

1 Find the mean, variance, and standard error of p̂.

2 Find P(p̂ = 0.4).

3 Find P(p̂ = 0.5).

4 Find P(|p̂ − p| > 2SE(p̂)).
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Solutions

1 E(p̂) = 0.25, Var(p̂)
.

= 0.0234, SE(p̂)
.

= 0.1531.

2 P(X = 3.2) = 0

3 P(X = 4)
.

= 0.0865

4 P(X ≥ 5)
.

= 0.0273.
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What you should know (so far)

You should know:

that the sampling distribution of the sample proportion (from a
random sample) is simply a rescaled binomial distribution;

the two linearity rules of expectation:
I E(cX ) = cE(X );
I E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn)

how the expectation rules work for variances:
I Var(cX ) = c2Var(X );
I Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn) if X1, . . . ,Xn are

independent.

how to do probability calculations for small sample proportion
problems.
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The Big Picture for Estimation

In some settings, we may think of a population as a large bucket of
colored balls where the population proportion of red balls is p.

In a random sample of n balls from the population, if there are X red
balls in the sample, then p̂ = X

n is the sample proportion.

p̂ is an estimate of p.

We wish to quantify the uncertainty in the estimate.

We will do so by expressing a confidence interval; a statement such as
we are 95% confident that 0.28 < p < 0.39.

Confidence intervals for population proportions are based on the
sampling distribution of sample proportions.
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Recombination Example

Example

Recall our previous example involving recombination in fruit flies; In a
genetics experiment, 216 of 644 male progeny were recombinants. We
estimate the recombination probability between the white and miniature
genes to be p̂ = 216/644

.
= 0.335. How confident are we in this estimate?
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Sampling Distribution
If p = 0.335, the sampling distribution of p̂ would look like this.
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Comments on the Sampling Distribution

The shape of the graph of the discrete probabilities is well described
by a continuous, smooth, bell-shaped curve called a normal curve.

The mean of the sampling distribution is E(p̂) = p = 0.335.

The standard deviation of the sampling distribution is

SE(p̂) =
√

0.335(1−0.335)
644

.
= 0.019, which is an estimate of the size of

the difference between p and p̂.

Even if p were not exactly equal to 0.335, the numerical value of
SE(p̂) would be very close to 0.019.

In an ideal normal curve, 95% of the probability is within z = 1.96
standard deviations of the mean.

As long as n is large enough, the sampling distribution of p̂ will be
approximately normal.

A rough rule of thumb for big enough is that X and n−X are each at
least five; here X = 216 and n − X = 428.
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Confidence Interval Procedure

A 95% confidence interval for p is constructed by taking an interval
centered at an estimate of p and extending 1.96 standard errors in
each direction.

Statisticians have learned that using an estimate p′ = X+2
n+4 results in

more accurate confidence intervals than the more natural p̂.

The p′ estimate is the sample proportion if the sample size had been
four larger and if two of the four had been of each type.

95% Confidence Interval for p

A 95% confidence interval for p is

p′ − 1.96

√
p′(1− p′)

n′
< p < p′ + 1.96

√
p′(1− p′)

n′

where n′ = n + 4 and p′ = X+2
n+4 = X+2

n′ .
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Application

Using our example data, p′ = (216 + 2)/(644 + 4)
.

= 0.336.

Notice this is shifted a small amount toward 0.5 from p̂ = 0.335.

The estimated standard error is
√

0.336(1−0.336)
648

.
= 0.019.

This means that the true p probably differs from our estimate by
about 0.019, give or take.

The margin of error is 1.96× 0.019
.

= 0.036.

We then construct the following 95% confidence interval for p.

0.300 < p < 0.373

This is understood in the context of the problem as:

We are 95% confident that the recombination probability for the
white and miniature genes in fruit flies is between 0.300 and
0.373.
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Interpretation

Confidence means something different than probability, but the
distinction is subtle.

From a frequentist point of view, the interval 0.300 < p < 0.373 has
nothing random in it since p is a fixed, unknown constant.

Thus, it would be wrong to say there is a 95% chance that p is
between 0.300 and 0.373: it is either 100% true or 100% false.

The 95% confidence arises from using a procedure that has a 95%
chance of capturing the true p.

There is a 95% chance that some confidence interval will capture p;
we are 95% confident that the fixed interval (0.300, 0.373) based on
our sample is one of these.

From a Bayesian statistical point of view, all uncertainty is described
with probability and it would be perfectly legitimate to say simply
that there is a 95% probability that p is between 0.300 and 0.373.

Most biologists and many statisticians do not get overly concerned
with this distinction in interpretations.
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A Second Example

Example

Male radiologists may be exposed to much more radiation than typical
people, and this exposure might affect the probability that children born to
them are male. In a study of 30 “highly irradiated” radiologists, 30 of 87
offspring were male (Hama et al. 2001). Treating this data as a random
sample, find a confidence interval for the probability that the child of a
highly irradiated male radiologist is male.
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Calculation

We find p̂ = 30/87
.

= 0.345 and p′ = 32/91
.

= 0.352.

The estimated standard error is
√

0.352(1−0.352)
91

.
= 0.050.

The estimated margin of error is 1.96× SE
.

= 0.098.

The confidence interval is 0.254 < p < 0.450.

We are 95% confident that the proportion of children of highly
irradiated male radiologists that are boys is between 0.254 and
0.450.

This confidence interval does not contain 0.512, the proportion of male
births in the general population. The inference is that exposure to high
levels of radiation in men may decrease the probability of having a male
child.
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Probability Models

Definition

A probability model P(x | θ) relates possible values of data x with
parameter values θ.

If θ is fixed and x is allowed to vary, the probability model describes
the probability distribution of a random variable.

The total amount of probability is one.

For a discrete random variable with possible values x1, x2, . . ., and a
fixed parameter θ, this means that∑

i

P(xi | θ) = 1

In words, the sum of the probabilities of all possible values is one.

Each different fixed value of θ corresponds to a possibly different
probability distribution.

Proportions Likelihood Probability Models 51 / 84



Likelihood

Definition

The likelihood is a function of the parameter θ that takes a probability
model P(x | θ), but treats the data x as fixed while θ varies.

L(θ) = P(x | θ), for fixed x

Unlike probability distributions, there is no constraint that the total
likelihood must be one.

Likelihood can be the basis of the estimation of parameters:
parameter values for which the likelihood is relatively high are
potentially good explanations of the data.
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Log-Likelihood

Definition

The log-likelihood is the natural logarithm of the likelihood.

As probabilities for large sets of data often become very small and as
probability models often consist of products of probabilities, it is
common to represent likelihood on the natural log scale.

`(θ) = ln L(θ)

Proportions Likelihood General Definition 53 / 84



Likelihood and Proportions

The estimate p̂ can also be justified on the basis of likelihood.

The binomial probability model for data x and parameter p is

P(x | p) =

(
n

x

)
px(1− p)n−x

where x takes on possible values 0, 1, . . . , n and p is a real number
between 0 and 1.

For fixed x , the likelihood model is

L(p) =

(
n

x

)
px(1− p)n−x

The log-likelihood is

`(p) = ln

(
n

x

)
+ x ln(p) + (n − x) ln(1− p)

Recall these facts about logarithms:
I ln(ab) = ln(a) + ln(b);
I ln(ab) = b ln(a).
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Graphs

In our example, x = 216
recombinants out of n = 644
fruit flies.

The top graph shows the
likelihood.

The bottom graph shows the
log-likelihood.

Note that even though the
shapes of the curves are
different and the scales are quite
different, the curves are each
maximized at the same point.
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Maximum Likelihood Estimation

Definition

The maximum likelihood estimate of a parameter is the value of the
parameter that maximizes the likelihood function.

The likelihood principle states that all information in data about
parameters is contained in the likelihood function.

The principle of maximum likelihood says that the best estimate of a
parameter is the value that maximizes the likelihood.

This is the value that makes the probability of the observed data as
large as possible.
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Example

In our example, the sample
proportion is
p̂ = 216/644

.
= 0.335.

The vertical lines are drawn at
this value.

We see that p = p̂ is the
maximum likelihood estimate.
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Derivation

If you recall your calculus. . .

`(p) = ln

(
n

x

)
+ x ln(p) + (n − x) ln(1− p)

`′(p) =
x

p
− n − x

1− p
= 0

x

p
=

n − x

1− p

x − xp = np − xp

p =
x

n

So, p̂ = x
n .
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Case Study

Example

Mouse genomes have have 19 non-sex chromosome pairs and X and Y sex
chromosomes (females have two copies of X, males one each of X and Y).
The total percentage of mouse genes on the X chromosome is 6.1%. There
are 25 mouse genes involved in sperm formation. An evolutionary theory
states that these genes are more likely to occur on the X chromosome than
elsewhere in the genome (in an independence chance model) because
recessive alleles that benefit males are acted on by natural selection more
readily on the X than on autosomal (non-sex) chromosomes. In the mouse
genome, 10 of 25 genes (40%) are on the X chromosome. This is larger
than expected by an independence chance model, but how unusual is it?
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The Big Picture

For proportions, the typical scenario is that there is a population which
can be modeled as a large bucket with some proportion p of red balls.

A null hypothesis is that the proportion is exactly equal to p0.

In a random sample of size n, we observe p̂ = X/n red balls.

The sample proportion p̂ is typically not exactly equal to the null
proportion p0.

A hypothesis test is one way to explore if the discrepancy can be
explained by chance variation consistent with the null hypothesis or if
there is statistical evidence that the null hypothesis is incorrect and
that the data is better explained by an alternative hypothesis.

Some legitimate uses of hypothesis tests for proportions do not fit
into this framework, such as the next example.

It is very important to interpret results carefully.
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Hypothesis Tests

Conducting a hypothesis test consists of these steps:
1 State null and alternative hypotheses;
2 Compute a test statistic;
3 Determine the null distribution of the test statistic;
4 Compute a p-value;
5 Interpret and report the results.

We will examine these steps for this case study.
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Null and Alternative Hypotheses

Definition

A hypothesis is a statement about a probability model.

Definition

A null hypothesis is a specific statement about a probability model that
would be interesting to reject. A null hypothesis is usually consistent with
a model indicating no relationship between variables of interest. For
proportions, a null hypothesis almost always takes the form H0 : p = p0.

Definition

An alternative hypothesis is a set of hypotheses that contradict the null
hypothesis. For proportions, one-sided alternative hypotheses almost
always takes the form HA : p < p0 or HA : p > p0 whereas two-sided
alternative hypotheses take the form HA : p 6= p0.
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Stating Hypotheses

In the mouse spermatogenesis genes example, the null hypothesis and
alternative hypotheses are as follows.

H0 : p = 0.061

HA : p > 0.061

We choose the one-sided hypothesis p > 0.061 because this is the
interesting biological conclusion in this setting.
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Hypothesis Test Framework

Note that here p0 = 0.061 refers to the probability in a hypothetical
probability model, not an unknown proportion in a large population:
we have observed all 25 genes in the population of mouse
spermatogenesis genes and the observed proportion 10/25 = 0.40 of
them on the X chromosome. These 25 genes are not a random
sample from some larger population of mouse spermatogenesis genes.

Here is the question of interest is:

If the location of genes in the mouse genome were
independent of the function of the genes, would we expect
to see as many spermatogenesis genes on the X
chromosome as we actually observe?

We are comparing the observed proportion to its expected value under
a hypothetical probability model.
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Compute a Test Statistic

The observed number of genes, on the X chromosome, here X = 10,
is the test statistic.

Other approaches for proportions will use other test statistics, such as
one based on the normal distribution.

z =
p̂ − p0√
p0(1−p0)

n

Proportions Hypothesis Testing Mechanics 65 / 84



Null Distribution

Definition

The null distribution of a test statistic is the sampling distribution of the
test statistic, assuming that the null hypothesis is true.

Here, we assume X ∼ Binomial(25, 0.061).

The expected value of this distribution is E(X ) = 25(0.061)
.

= 1.52.

The standard deviation is SD(X ) =
√

25(0.061)(0.939)
.

= 1.2.

We note that the observed value is quite a few standard deviations
above the mean.
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Compute the P-value

Definition

The p-value is the probability of observing a test statistic at least as
extreme as that actually observed, assuming that the null hypothesis is
true. The outcomes at least as extreme as that actually observed are
determined by the alternative hypothesis.

In the example, observing ten or more genes on the X chromosome,
X ≥ 10, would be at least as extreme as the observed X = 10.

The null distribution is X ∼ Binomial(25, 0.061), so

P(X ≥ 10) = P(X = 10) + P(X = 11) + · · ·+ P(X = 25)
.

= 9.9× 10−7

In other words, only about 1 in a million random X s from
Binomial(25, 0.061) distributions take on the value 10 or more.

This is a very small probability.
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Interpretation

If the p-value is very small, this is used as evidence that the null
hypothesis is incorrect and that the alternative hypothesis is true.

The logic is that if the null hypothesis were true, we would need to
accept that a rare, improbable event just occurred; since this is very
unlikely, a better explanation is that the alternative hypothesis is true
and what actually occurred was not uncommon.

There is no universal cut-off for a small p-value, but P < 0.05 is a
commonly used range to call the results of a hypothesis test
statistically significant.

More formally, we can say that a result is statistically significant at
the α = 0.05 level if the p-value is less than 0.05. (Other choices of
α, such as 0.1 or 0.01 are also common.)

Note, however, that results P = 0.051 and P = 0.049, while on
opposite sides of 0.05, quantify strength of evidence against the null
hypothesis almost identically.
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Reporting Results

The report of a hypothesis test should include:
I the value of the test statistic;
I the sample size;
I the p-value; and
I the name of the test.

In the example,

The proportion of spermatogenesis genes on the X chromosome,
10/25 = 0.40, is significantly larger than the proportion of all
genes on the X chromosome, 0.061, (binomial test,
P = 9.9× 10−7).
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Applicability
The binomial test for proportions assumes a binomial probability
model.
The binomial distribution is based on assumptions of a fixed number
of independent, equal-probability, binary outcomes.
The assumption of independence is questionable; genes that work
together are often located near each other as operons, clusters of
related genes that are coregulated.
A hypothesis that many of the genes would cluster together, whether
on the X chromosome or not, is an alternative biological explanation
of the observed results.
The conclusion the observed X is inconsistent with a
Binomial(25, 0.061) model could be because the true p is larger, but
the binomial model fits, but also because of lack of appropriateness of
the binomial model itself.
It would help to know more about the specific genes and the
underlying biology to better assess the strength of support for the
evolutionary hypothesis.
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Using R to Compute the P-Value

In this example, computing the p-value by hand would be quite
tedious as it requires summing many separate binomial probabilities.

R automates this calculation.

The functions, sum(), dbinom(), and the colon operator combine to
compute the p-value.

Here 10:25 creates a sequence from 10 to 25.

dbinom() (d for density, binom for binomial) takes three arguments:
first one or more possible values of the random variable, second the
sample size n, and third the success probability p. The expression
dbinom(10:25,25,0.061) creates a vector of the individual
probabilities.

Finally, use sum() to sum the probabilities.

> sum(dbinom(10:25, 25, 0.061))

[1] 9.93988e-07
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Chimpanzee Behavior Example

In the chimpanzee experiment, one of the chimpanzees selects the
prosocial token 60 times and the selfish token 30 times.

We model the number of times the prosocial token is selected, X , as
a binomial random variable.

X ∼ Binomial(90, p)

Under the null hypothesis of no prosocial behavior, p = 0.5.

Under the alternative hypothesis of a tendency toward prosocial
behavior, p > 0.5.

The p-value is
P(X ≥ 60 | p = 0.5)

.
= 0.001.

There is substantial evidence that this specific chimpanzee
behaves in an altruistic manner in the setting of the experiment
and makes the prosocial choice more than half the time
(binomial test, p̂ = 60/90 = 0.667, P = 0.001).
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Another Example

Example

Example 6.4 on page 138 describes the mud plantain Heteranthera
multiflora in which the female sexual organ (the style) and male sexual
organ (the anther) deflect to different sides. The effect is that if a bee
picks up pollen from an anther on the right, it will only deposit the pollen
on a plant with a style on the right, and thus avoid self-pollination. The
handedness (left or right) of the plants describes the location of the style.
Crosses of pure-strain left- and right-handed plants result in only
right-handed offspring. Under a simple one-gene complete
dominance/recessive genetic model, p = 0.25 of the offspring from a
second cross between offspring of the first cross should be left-handed. In
the experiment there are 6 left-handed offspring and 21 right-handed
offspring. Test the hypothesis that p = 0.25.
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The Hypotheses

The hypotheses are:
H0 : p = 0.25

HA : p 6= 0.25

where p is the probability that an offspring is left-handed from the
given cross of right-handed F1 generation plants.

We select a two-sided test as it is biologically interesting if the true
probability is either smaller or larger than 0.25, and we have no a
priori reason to expect a deviation in either direction.
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The Test

Let X = # of left-handed offspring.

Under H0, X ∼ Binomial(27, 0.25).

The expected value of this distribution is
µ = E(X ) = 27(0.25) = 6.75.

The observed value X = 6 is 0.75 below the mean.

The value 6.75 + 0.75 = 7.5 is the same distance above the mean.

The probability of being at least as far from the expected value as the
actual data is

P = P(X ≤ 6) + P(X ≥ 7.5)

= P(X ≤ 6) + P(X ≥ 8)

= 1− P(X = 7)
.

= 0.828

P = 0.828 is not a small p-value.

The data is consistent with the null hypothesis.
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Interpretation

The proportion of left-handed offspring, p̂ = 6/27
.

= 0.222 is
consistent with the probability p = 0.25 predicted by the
one-gene complete dominance model (P = 0.828, binomial test).
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Comparison with the Text Method

The text describes finding p-values for the binomial test by doubling
the p-value from a one-sided test.

As the binomial distribution is only perfectly symmetric when p = 0.5,
this method employs a needless approximation, but the numerical
values will be qualitatively close to those computed by the method in
the notes.
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Comparison with R

The function binom.test() in R determines extreme values using a
likelihood-based criterion: the p-value is the sum of probabilities of all
outcomes with probabilities equal to or less than that of the outcome,
for a two-sided test.

In this example, P(X = 6) = P(X = 7), so the p-value is computed as
P(X ≤ 6) + P(X ≥ 7) = 1.

> binom.test(6, 27, p = 0.25, alternative = "two.sided")

Exact binomial test

data: 6 and 27

number of successes = 6, number of

trials = 27, p-value = 1

alternative hypothesis: true probability of success is not equal to 0.25

95 percent confidence interval:

0.08621694 0.42258306

sample estimates:

probability of success

0.2222222
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Errors in Hypothesis Tests

We advocate reporting p-values rather than making decisions in
hypothesis test settings because as biologists, we more typically are
presenting strength of evidence to our peers than making and then
acting on formal decisions.

However, some of the language associated with hypothesis tests arises
from decision theory and we should be aware of it.

The two decisions we can make are to Reject or Not Reject the null
hypothesis.

The two states of nature are the the null hypothesis is either True or
False.

These possibilities combine in four possible ways.

H0 is True H0 is False

Reject H0 Type I error Correct decision
Do not Reject H0 Correct decision Type II error
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Type I and Type II Errors

Definition

A Type I Error is rejecting the null hypothesis when it is true. The
probability of a type I error is called the significance level of a test and is
denoted α.

Definition

A Type II Error is not rejecting a null hypothesis when it is false. The
probability of a type II error is called β, but the value of β typically
depends on which particular alternative hypothesis is true.

Definition

The power of a hypothesis test for a specified alternative hypothesis is
1− β, which is the probability of rejecting a specific true alternative
hypothesis.

We will see power again later in the semester.
Type I and Type II errors are unrelated to house-training puppies.
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What you should know

You should know:

how to construct a confidence interval for p;

how to conduct a hypothesis test about p with a binomial test;

how to interpret confidence intervals and hypothesis tests in a
biological context;

what assumptions are inherent to these inference methods.
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Cautions

Statistical inference about proportions assumes a definition of a
population proportion or probability p; make sure it is understood
what this represents.

The methods assume random sampling from the population of
interest; when the data is not collected from a random sample, other
background information is necessary to justify inference to
populations of interest;

Inference based on the binomial distribution assumes independent,
equal-probability, fixed-sample-size, binary trials; if the assumptions
are not met, inference can mislead.
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Extensions

All focus so far has been on single populations; however, many
interesting biological questions involve comparisons between two or
among three or more populations. This topic comes soon.

When individuals are classified by two categorical variables with two
or more levels for each variable, the resulting data can be summarized
in a contingency table. This topic comes soon as well.

If there are also available other variables measured on individuals
(quantitative or categorical or both), more advanced statistical
methods will model individual probabilities as functions of these
covariates.

A class of statistical methods with binary response variables and some
covariates are known as logistic regression models.
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R Appendix

See the R handout to learn to:
I Create bar graphs with the function barchart();
I Calculate binomial probabilities with dbinom() and pbinom();
I Generate random binomial samples with rbinom();
I Write a function to graph the likelihood and log-likelihood functions for

the binomial model;
I Write a function to graph the binomial distribution;
I Write a function for confidence intervals using the text method;
I Use the function binom.test() for exact binomial hypothesis tests

and confidence intervals.
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