An overview

- In the independent two-sample t-test, we assume normality, independence, and equal variances.
- This t-test is robust against nonnormality, but is sensitive to dependence.
- If n_1 is close to n_2 , then the test is moderately robust against unequal variance $(\sigma_1^2 \neq \sigma_2^2)$. But if n_1 and n_2 are quite different (e.g. differ by a ratio of 3 or more), then the test is much less robust.
- How to determine whether the equal variance assumption is appropriate?
- Under normality, we can compare σ_1^2 and σ_2^2 using S_1^2 and S_2^2 , but such tests are very sensitive to nonnormality. Thus we avoid using them.
- Instead we consider a *nonparametric test* called Levene's test for comparing two variances, which does not assume normality while still assuming independence.
- Later on we will also consider nonparametric tests for comparing two means.

Levene's test

Consider two independent samples Y_1 and Y_2 :

Sample 1: 4, 8, 10, 23 Sample 2: 1, 2, 4, 4, 7 Test $H_0: \sigma_1^2 = \sigma_2^2$ vs $H_A: \sigma_1^2 \neq \sigma_2^2$.

- Note that $s_1^2 = 67.58, s_2^2 = 5.30.$
- The main idea of Levene's test is to turn testing for equal variances using the original data into testing for equal means using modified data.
- Suppose normality and independence, if Levene's test gives a small p-value (< 0.01), then we use an approximate test for $H_0: \mu_1 = \mu_2$ vs $H_A: \mu_1 \neq \mu_2$. See Section 10.3.2 of the bluebook.

Levene's test

- (1) Find the median for each sample. Here $\tilde{y}_1 = 9, \tilde{y}_2 = 4$.
- (2) Subtract the median from each obs.

Sample 1: -5, -1, 1, 14 Sample 2: -3, -2, 0, 0, 3

(3) Take absolute values of the results.

Sample 1*: 5, 1, 1, 14 Sample 2*: 3, 2, 0, 0, 3

(4) For any sample that has an odd sample size, remove 1 zero.

Sample 1*: 5, 1, 1, 14 Sample 2*: 3, 2, 0, 3

(5) Perform an independent two-sample t-test on the modified samples, denoted as Y_1^* and Y_2^* . Here $\bar{y}_1^* = 5.25, \bar{y}_2^* = 2, s_1^{2*} = 37.58, s_2^{2*} = 2.00$. Thus $s_p^2 = 19.79, s_p = 4.45$ on df = 6 and the observed

$$t = \frac{5.25 - 2}{4.45\sqrt{1/4 + 1/4}} = 1.03$$

on df = 6. The p-value $2 \times P(T_6 \ge 1.03)$ is more than 0.20. Do not reject H_0 at the 5% level.

Mann-Whitney test

- We consider a nonparametric Mann-Whitney test (aka Wilcoxon test) for independent two samples, although analogous tests are possible for paired two samples.
- We relax the distribution assumption, but continue to assume independence.
- The main idea is to base the test on the ranks of obs.
- Consider two independent samples Y_1 and Y_2 :

Sample 1: 11, 22, 14, 21 Sample 2: 20, 9, 12, 10

Test $H_0: \mu_1 = \mu_2$ vs $H_A: \mu_1 \neq \mu_2$.

Mann-Whitney test

(1) Rank the obs

rank obs sample

1	9	2
2	10	2
3	11	1
4	12	2
5	14	1
6	20	2
7	21	1
8	22	1

- (2) Compute the sum of ranks for each sample. Here RS(1) = 3 + 5 + 7 + 8 = 23 and RS(2) = 1 + 2 + 4 + 6 = 13.
- (3) Under H_0 , the means are equal and thus the rank sums should be about equal. To compute a p-value, we list all possible ordering of 8 obs and find the rank sum of each possibility. Then p-value is $2 \times P(\text{RS}(2) \le 13)$. Here

$$P(\text{RS}(2) \le 13) = P(\text{RS}(2) = 10) + P(\text{RS}(2) = 11) + P(\text{RS}(2) = 12) + P(\text{RS}(2) = 13) = 7/70 = 0.1$$

and thus p-value = 0.2.

Mann-Whitney test

- If we had observed 10, then p-value = $2 \times 1/70 = 0.0286$.
- If we had observed 11, then p-value = $2 \times 2/70 = 0.0571$.
- Thus for this sample size, we can only reject at 5% if the observed rank sum is 10.
- Table A10 gives the cut-off values for different sample sizes. For $n_1 = n_2 = 4$ and $\alpha = 0.05$, we can only reject H_0 if the observed rank sum is 10.

Mann-Whitney test

Recorded below are the longevity of two breeds of dogs.

Breed	А	Breed	В
obs	rank	obs	rank
12.4	9	11.6	7
15.9	14	9.7	4
11.7	8	8.8	3
14.3	11.5	14.3	11.5
10.6	6	9.8	5
8.1	2	7.7	1
13.2	10		
16.6	15		
19.3	16		
15.1	13		
$n_2 = 10$		$n_1 = 6$	
		$T^* = 31.5$	
		•	

Mann-Whitney test

- Here n_1 is the sample size in the smaller group and n_2 is the sample size in the larger group.
- T^* is the sum of ranks in the smaller group. Let $T^{**} = n_1(n_1 + n_2 + 1) T^* = 6 \times 17 31.5 = 70.5.$
- Let $T = \min(T^*, T^{**}) = 31.5$ and look up Table A10.
- Since the observed T is between 27 and 32, the p-value is between 0.01 and 0.05. Reject H_0 at 5%.

Remarks

- If there are ties, Table A10 gives approximation only.
- The test does not work well if the variances are very different.
- It is not easy to extend the idea to more complex types of data. There is no CI.
- For paired two samples, consider using signed rank test.
- See p.251 of the bluebook for a decision tree.

Key R commands

```
> # Levene's test
> levene.test = function(data1, data2){
+ levene.trans = function(data){
+ a = sort(abs(data-median(data)))
+ if (length(a)\%2)
+ a[a!=0|duplicated(a)]
+ else a
+ }
+ t.test(levene.trans(data1), levene.trans(data2), var.equal=T)
+ }
> y1 = c(4,8,10,23)
> y2 = c(1,2,4,4,7)
> levene.test(y1, y2)
        Two Sample t-test
data: levene.trans(data1) and levene.trans(data2)
t = 1.0331, df = 6, p-value = 0.3414
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.447408 10.947408
sample estimates:
mean of x mean of y
     5.25
          2.00
>
> # Mann-Whitney test example
> samp1 = c(11, 22, 14, 21)
> samp2 = c(20, 9, 12, 10)
> # W = 23-10 = 13
> wilcox.test(samp1, samp2)
        Wilcoxon rank sum test
data: samp1 and samp2
W = 13, p-value = 0.2
alternative hypothesis: true mu is not equal to 0
```

```
> 
> breedA = c(12.4, 15.9, 11.7, 14.3, 10.6, 8.1, 13.2, 16.6, 19.3, 15.1)
> breedB = c(11.6, 9.7, 8.8, 14.3, 9.8, 7.7)
> # W = 70.5-21 = 49.5
> wilcox.test(breedA, breedB)
```

Wilcoxon rank sum test with continuity correction

data: breedA and breedB W = 49.5, p-value = 0.03917 alternative hypothesis: true mu is not equal to 0

Warning message: Cannot compute exact p-value with ties in: wilcox.test.default(breedA, breedB) >

Test procedure

Consider two binomial distributions $Y_1 \sim B(n_1, p_1), Y_2 \sim B(n_2, p_2)$, and Y_1, Y_2 are independent. We want to test

 $H_0: p_1 = p_2 \quad \text{vs} \quad H_A: p_1 \neq p_2$

- Use the point estimator $\hat{p}_1 \hat{p}_2$, where $\hat{p}_1 = Y_1/n_1$, $\hat{p}_2 = Y_2/n_2$ are the sample proportions.
- Note that $\mu_{\hat{p}_1-\hat{p}_2} = E(\hat{p}_1 \hat{p}_2) = p_1 p_2$ and $\sigma_{\hat{p}_1-\hat{p}_2}^2 = Var(\hat{p}_1 \hat{p}_2) = p_1(1 p_1)/n_1 + p_2(1 p_2)/n_2.$
- Under $H_0: p_1 = p_2 = p$, $\mu_{\hat{p}_1 \hat{p}_2} = 0$ and $\sigma_{\hat{p}_1 \hat{p}_2}^2 = p(1 p)(1/n_1 + 1/n_2)$.
- Under H_0 , the test statistic is approximately normal,

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{p(1-p)(1/n_1 + 1/n_2)}} \approx N(0,1)$$

• But we do not know p and thus estimate it by

$$\hat{p} = \frac{Y_1 + Y_2}{n_1 + n_2}$$

• Thus the test statistic is $Z = \frac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{\hat{p}(1-\hat{p})(1/n_1+1/n_2)}} \approx N(0,1)$ under H_0 .

Potato cure rate example

A plant pathologist is interested in comparing the effectiveness of two fungicide used on infested potato plants. Let Y_1 denote the number of plants cured using fungicide A among n_1 plants and let Y_2 denote the number of plants cured using fungicide B among n_2 plants. Assume that $Y_1 \sim B(n_1, p_1)$ and $Y_2 \sim$ $B(n_2, p_2)$, where p_1 is the cure rate of fungicide A and p_2 is the cure rate of fungicide B. Suppose the obs are $n_1 = 105$, $p_1 = 71$ for fungicide A and $n_2 = 87$, $p_2 = 45$ for fungicide B. Test $H_0: p_1 = p_2$ vs $H_A: p_1 \neq p_2$.

• Here $\hat{p}_1 = 71/105 = 0.676$, $\hat{p}_2 = 45/87 = 0.517$, and the pooled estimate of cure rate is

$$\hat{p} = \frac{71 + 45}{105 + 87} = 0.604$$

- Thus the observed test statistic is $z = \frac{(0.676 - 0.517) - 0}{\sqrt{0.604 \times 0.396 \times (1/105 + 1/87)}} = 2.24$
- Compared to Z, the p-value is $2 \times P(Z \ge 2.24) = 0.025$.
- Reject H_0 at the 5% level. There is moderate evidence against H_0 .

Remarks

• For constructing a $(1 - \alpha)$ CI for $p_1 - p_2$, there is no H_0 . Since $Var(\hat{p}_1 - \hat{p}_2) = p_1(1-p_1)/n_1 + p_2(1-p_2)/n_2$, estimate by

$$\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}$$

and the CI is

$$\hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \sqrt{\hat{p}_1 (1 - \hat{p}_1)/n_1 + \hat{p}_2 (1 - \hat{p}_2)/n_2} \le p_1 - p_2$$

$$\le \hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \sqrt{\hat{p}_1 (1 - \hat{p}_1)/n_1 + \hat{p}_2 (1 - \hat{p}_2)/n_2}$$

• In the potato cure rate example, a 95% CI for $p_1 - p_2$ is

$$(0.676 - 0.517) \pm 1.96 \times \sqrt{\frac{0.676 \times 0.324}{105} + \frac{0.517 \times 0.483}{87}}$$

which is 0.159 ± 0.138 or $[0.021, 0.297]$.

- In constructing CI for $p_1 p_2$, normal approximation works well if $n_1\hat{p}_1 \ge 5$, $n_1(1-\hat{p}_1) \ge 5$, $n_2\hat{p}_2 \ge 5$, $n_2(1-\hat{p}_2) \ge 5$.
- In testing $H_0: p_1 = p_2$, normal approximation works well if $n_1 \hat{p} \ge 5, n_1(1-\hat{p}) \ge 5, n_2 \hat{p} \ge 5, n_2(1-\hat{p}) \ge 5.$

Key R commands

```
> # potato cure rate example
> y1 = 71
> n1 = 105
> y2 = 45
> n2 = 87
> p1 = y1/n1
> p2 = y2/n2
> poolp = (y1+y2)/(n1+n2)
> poolp
[1] 0.6041667
> z.value = (p1-p2)/sqrt(poolp*(1-poolp)*(1/n1+1/n2))
> z.value
[1] 2.241956
> # p-value
> 2*pnorm(z.value, lower.tail=F)
[1] 0.02496419
> # 95% CI
> alpha = 0.05
> qnorm(alpha/2, lower.tail=F)*sqrt(p1*(1-p1)/n1+p2*(1-p2)/n2)
[1] 0.1379716
> c(p1-p2-qnorm(alpha/2, lower.tail=F)*sqrt(p1*(1-p1)/n1+p2*(1-p2)/n2),
+ p1-p2+qnorm(alpha/2, lower.tail=F)*sqrt(p1*(1-p1)/n1+p2*(1-p2)/n2))
[1] 0.02097751 0.29692068
>
> prop.test(c(71, 45), c(105, 87), correct=F)
        2-sample test for equality of proportions without continuity
        correction
data: c(71, 45) out of c(105, 87)
X-squared = 5.0264, df = 1, p-value = 0.02496
alternative hypothesis: two.sided
95 percent confidence interval:
0.02097751 0.29692068
sample estimates:
   prop 1
           prop 2
0.6761905 0.5172414
```

> > prop.test(c(71, 45), c(105, 87))

2-sample test for equality of proportions with continuity correction

```
data: c(71, 45) out of c(105, 87)
X-squared = 4.3837, df = 1, p-value = 0.03628
alternative hypothesis: two.sided
95 percent confidence interval:
    0.01046848 0.30742971
sample estimates:
    prop 1    prop 2
0.6761905 0.5172414
```

An overview

- So far we have learned statistical methods for comparing two trts.
- One-way analysis of variance (ANOVA) provides us with a way to compare more than two trts.
- One-way ANOVA can be viewed as an extension of the independent two sample case to independent multiple samples.
- The key idea is to break up the sum of squares

$$\sum (Y_i - \bar{Y})^2$$

• First reconsider the independent two-sample case and then generalize the idea to independent multiple samples.

Independent two samples

- Consider the following independent two samples:
 - X: 4, 12, 8
 - Y: 17, 8, 11
- The summary statistics are

$$\bar{x} = 8, \quad s_x^2 = 16, \quad \sum_{i=1}^3 (x_i - \bar{x})^2 = 32$$

 $\bar{y} = 12, \quad s_y^2 = 21, \quad \sum_{i=1}^3 (y_i - \bar{y})^2 = 42, \quad s_p^2 = 18.5$

• For testing $H_0: \mu_1 = \mu_2 \text{ vs } H_A: \mu_1 \neq \mu_2$, use t-test $t = \frac{(12-8) - 0}{\sqrt{18.5(1/3 + 1/3)}} = 1.14$

on df = 4. The p-value $2 \times P(T_4 \ge 1.14)$ is great than 0.10. Thus do not reject H_0 at 5% and there is no evidence against H_0 .

• Now we will examine this using the idea of breaking up sums of squares.

Sums of squares (SS)

• Total SS: Pretend that all obs are from a single population. The overall mean is

$$\frac{4+12+8+17+8+11}{6} = 10$$

and the SS Total is

 $(4-10)^2 + (12-10)^2 + (8-10)^2 + (17-10)^2 + (8-10)^2 + (11-10)^2 = 98$ on df = 5.

• Treatment SS: How much of the total SS can be attributed to the differences between the two trt groups? Replace each obs by its group mean.

X: 8, 8, 8 Y: 12, 12, 12

The overall mean here is $\frac{8+8+8+12+12+12}{6} = 10$ and the SS Trt is $(8-10)^2 + (8-10)^2 + (8-10)^2 + (12-10)^2 + (12-10)^2 = 24$

on df = 1.

Sums of squares (SS)

• Error SS: How much of the total SS can be attributed to the differences within each trt group? The SS Error is

$$(4-8)^2 + (12-8)^2 + (8-8)^2 + (17-12)^2 + (8-12)^2 + (11-12)^2 = 74$$

on df = 4.

- Note that SSError/df = $74/4 = 18.5 = s_p^2$.
- Note also that

SS Total = SS Trt + SS Error (98 = 24 + 74)df Total = df Trt + df Error (5 = 1 + 4)

• An ANOVA table summarizes the information.

	Source	df	SS	MS
	Trt	1	24	24
	Error	4	74	18.5
-	Total	5	98	

• Here MS = SS/df.

F-test

- $H_0: \mu_1 = \mu_2 \text{ vs } H_A: \mu_1 \neq \mu_2$
- A useful fact is that, under H_0 , the test statistic is:

$$F = \frac{\text{MSTrt}}{\text{MSError}} \sim F_{\text{dfTrt,dfError}}$$

- In the example, the observed f = 24/18.5 = 1.30.
- Compare this to an F-distribution with 1 df in the numerator and 4 df in the denominator using Table D. The (one-sided) p-value $P(F_{1,4} \ge 1.30)$ is greater than 0.10. Do not reject H_0 at the 10% level. There is no evidence against H_0 .
- Note that a small difference between the two trt means relative to variability is associated with a small f, a large pvalue, and accepting H_0 , whereas a large difference between the two trt means relative to variability is associated with a large f, a small p-value, and rejecting H_0 .
- Note that $f = 1.30 = (1.14)^2 = t^2$. That is $f = t^2$, but only when the df in the numerator is 1.
- Note that the p-value is one-tailed, even though H_A is two-sided.

A recap

In the simple example above, there are 2 trts and 3 obs/trt. The overall mean is 10,

SSTotal =
$$\sum_{i=1}^{3} (x_i - 10)^2 + \sum_{i=1}^{3} (y_i - 10)^2 = 98$$

SSTrt = $3 \times (\bar{x} - 10)^2 + 3 \times (\bar{y} - 10)^2 = 24$
SSError = $\sum_{i=1}^{3} (x_i - 8)^2 + \sum_{i=1}^{3} (y_i - 12)^2 = 74$

with df = 5, 1, and 4, respectively.

Generalization to k independent samples

- Consider k trts and n_i obs for the i^{th} trt.
- Let y_{ij} denote the j^{th} obs in the i^{th} trt group.
- Tabulate the obs as follows.

Trt	1	2		l		Trt	1	2	3	
							10	9	6	
Obs	y_{11}	y_{21}	• • •	y_{k1}			7	12		
	y_{12}	$egin{array}{c} y_{21} \ y_{22} \end{array}$	• • •	y_{k2}			8	6		
		:		•			_	0	4	
	2/1	y_{2n_2}					12		1	
Cum									9	
Sum Mean	y_1 .	y_2 .	• • •	y_k .	$y_{\cdot \cdot}$	Sum	37	27	28	92
Mean	\bar{y}_{1} .	$ar{y}_{2}$.	• • •	$ar{y}_k$.	$ ar{y}_{\cdot\cdot} $	Mean	9 25	g	5.6	767
						man	0.20	5	0.0	1.01

- Sum for the i^{th} trt: $y_{i.} = \sum_{j=1}^{n_i} y_{ij}$
- Mean for the i^{th} trt: $\bar{y}_{i.} = y_{i.}/n_i$
- Grand sum: $y_{..} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij} = \sum_{i=1}^{k} y_{i}$.
- Grand mean: $\bar{y}_{..} = y_{..}/N$ where the total # of obs is:

$$N = \sum_{i=1}^{k} n_i = n_1 + n_2 + \dots + n_k.$$

Basic partition of SS

SS Total = SS Trt + SS Errordf Total = df Trt + df Error

where

SS Total =
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{N}$$

df Total = $N - 1$
SS Trt = $\sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2 = \sum_{i=1}^{k} \frac{y_{i.}^2}{n_i} - \frac{y_{..}^2}{N}$
= df Trt = $k - 1$
SS Error = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$
= $(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2$
df Error = $N - k = (n_1 - 1) + \dots + (n_k - 1)$

or simply SS Error = SS Total - SS Trt and df Error = df Total - df Trt.

Fish length example

• Consider the length of fish (in inch) that are subject to one of three types of diet, with seven observations per diet group. The raw data are:

Y_1	18.2	20.1	17.6	16.8	18.8	19.7	19.1
Y_2	17.4	18.7	19.1	16.4	15.9	18.4	17.7
Y_3	15.2	18.8	17.7	16.5	15.9	17.1	16.7

• A stem and leaf display of these data looks like:

	Y_1	Y_2	Y_3
15.		9	29
16.	8	4	57
17.	6	47	71
18.	28	74	8
19.	71	1	
20.	1		1

• Summary statistics are:

$y_{1.} = 130.3$	$\bar{y}_{1.} = 18.61$	$s_1^2 = 1.358$	$n_1 = 7$
$y_{2.} = 123.6$	$\bar{y}_{2.} = 17.66$	$s_2^2 = 1.410$	$n_2 = 7$
$y_{3.} = 117.9$	$\bar{y}_{3.} = 16.84$	$s_3^2 = 1.393$	$n_3 = 7$
$y_{} = 371.8$	$\bar{y}_{} = 17.70$	N = 21	

Fish length example

• The sums of squares are:

SSTotal =
$$\sum_{i=1}^{3} \sum_{j=1}^{7} y_{ij}^2 - \frac{(y_{..})^2}{N}$$

= 6618.60 - 6582.63 = 35.97
SSTrt = $\sum_{i=1}^{3} \frac{(y_{i.})^2}{n_i} - \frac{(y_{..})^2}{N}$
= $\frac{1}{7} [(130.3)^2 + (123.6)^2 + (117.9)^2] - 6582.63$
= 11.01
SSErr = SSTot - SSTrt = 35.97 - 11.01 = 24.96

• Or SSErr = $6s_1^2 + 6s_2^2 + 6s_3^2 = 24.96$

• The corresponding ANOVA table is:

Source	df	SS	MS
Trt	2	11.01	5.505
Error	18	24.96	1.387
Total	20	35.97	

Fish length example

- Note that the MS for Error computed above is the same as the pooled estimate of variance, s_p^2 .
- The null hypothesis H_0 : "all population means are equal" versus the alternative hypothesis H_A : "not all population means are equal".
- The observed test statistic is:

$$f = \frac{\text{MSTrt}}{\text{MSErr}} = \frac{5.505}{1.387} = 3.97$$

- Compare this with $F_{2,18}$ from Table D: at 5% $f_{2,18} = 3.55$, and at 1% $f_{2,18} = 6.01$, so for our data 0.01 < p-value < 0.05.
- Reject H_0 at the 5% level. There is moderate evidence against H_0 . That is, there is moderate evidence that there is a diet effect on the fish length.

Assumptions

- 1. For each trt, a random sample $Y_{ij} \sim N(\mu_i, \sigma_i^2)$.
- 2. Equal variances $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$.
- 3. Independent samples across trts.

That is, independence, normality, and equal variances.

A unified model

$$Y_{ij} = \mu_i + e_{ij}$$

where e_{ij} are iid $N(0, \sigma^2)$. Let

$$\mu = \frac{1}{k} \sum_{i=1}^{k} \mu_i, \quad \alpha_i = \mu_i - \mu.$$

Then equivalently the model is:

$$Y_{ij} = \mu + \alpha_i + e_{ij}$$

where e_{ij} are iid $N(0, \sigma^2)$.

Hypotheses

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ vs. H_A : Not all μ_i 's are equal.

Equivalently

 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ vs. H_A : Not all α_i 's are zero.

F-test

Under H_0 , the test statistic is

$$F = \frac{\text{MSTrt}}{\text{MSError}} \sim F_{\text{dfTrt,dfError}}$$

Parameter estimation

- Estimate σ^2 by S_p^2 .
- Estimate μ_i by \bar{Y}_i .
- Or estimate μ by $\overline{Y}_{..}$ and estimate α_i by $\overline{Y}_{i.} \overline{Y}_{..}$
- We will discuss inference of parameters later on.

A brief review

Dist'n	One-Sample Inference	Two-Sample Inference
Normal	$H_0: \mu = \mu_0$	Paired $H_0: \mu_D = 0$, CI for μ_D (Z or T_{n-1})
	CI for μ	2 ind samples $H_0: \mu_1 = \mu_2$, CI for $\mu_1 - \mu_2 (T_{n_1+n_2-2})$
	σ^2 is known (Z) or unknown (T _{n-1})	k ind samples $H_0: \mu_1 = \mu_2 = \dots = \mu_k (F_{k-1,N-k})$
	σ^2 is known (Z) or unknown (T _{n-1}) $H_0: \sigma^2 = \sigma_0^2$, CI for $\sigma^2 (\chi^2_{n-1})$	$H_0: \sigma^2 = \sigma_0^2$, CI for $\sigma^2(\chi^2_{N-k})$
Arbitrary	$H_0: \mu = \mu_0$, CI for μ (CLT Z)	Paired $H_0: \mu_D = 0$ (Signed rank)
		2 ind samples $H_0: \mu_1 = \mu_2$ (Mann-Whitney)
		2 ind samples $H_0: \sigma_1^2 = \sigma_2^2$ (Levene's)
Binomial	$H_0: p = p_0 \text{ (Binomial } Y \sim B(n, p)\text{)}$ $H_0: p = p_0, \text{ CI for } p \text{ (CLT } Z\text{)}$	2 ind samples $H_0: p_1 = p_2$, CI for $p_1 - p_2$ (CLT Z)

- For testing or CI, address model assumptions (e.g. normality, independence, equal variance) via detection, correction, and robustness.
- In hypothesis testing, H_0 , H_A (1-sided or 2-sided), test statistic and its distribution, p-value, interpretation, rejection region, α , β , power, sample size determination.
- For paired t-test, the assumptions are $D \sim \text{iid } N(\mu_D, \sigma_D^2)$ where $D = Y_1 - Y_2$. Y_1, Y_2 need not be normal. Y_1 and Y_2 need not be independent.

More on assumptions

Assumptions	Detection
Normality	Stem-and-leaf plot; normal scores plot
Independence	Study design
Equal variance	Levene's test
Correct model	More later

Detect unequal variance

- Plot trt standard deviation vs trt mean.
- Or use an extension of Levene's test for

$$H_0: \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2.$$

The main idea remains the same, except that a one-way ANOVA is used instead of a two-sample t-test.

Levene's test

For example, consider k = 3 groups of data.

Sample 1: 2, 5, 7, 10 Sample 2: 4, 8, 19 Sample 3: 1, 2, 4, 4, 7

(1) Find the median for each sample. Here $\tilde{y}_1 = 6, \tilde{y}_2 = 8, \tilde{y}_3 = 4$.

(2) Subtract the median from each obs and take absolute values.

```
Sample 1*: 4, 1, 1, 4
Sample 2*: 4, 0, 11
Sample 3*: 3, 2, 0, 0, 3
```

(3) For any sample that has an odd sample size, remove 1 zero.

Sample 1*: 4, 1, 1, 4 Sample 2*: 4, 11 Sample 3*: 3, 2, 0, 3

(4) Perform a one-way ANOVA f-test on the final results.

Source	df	SS	MS	F	p-value
Group	2	44.6	22.30	3.95	0.05
Error	7	39.5	5.64		
Total	9	84.1			

Key R commands

```
> # Fish length example
> y1 = c(18.2,20.1,17.6,16.8,18.8,19.7,19.1)
> y2 = c(17.4,18.7,19.1,16.4,15.9,18.4,17.7)
> y3 = c(15.2,18.8,17.7,16.5,15.9,17.1,16.7)
> y = c(y1, y2, y3)
> n1 = length(y1)
> n2 = length(y2)
> n3 = length(y3)
> trt = c(rep(1,n1),rep(2,n2),rep(3,n3))
> oneway.test(y<sup>factor(trt)</sup>, var.equal=T)
        One-way analysis of means
data: y and factor(trt)
F = 3.9683, num df = 2, denom df = 18, p-value = 0.03735
> fit.lm = lm(y<sup>factor(trt))</sup>
> anova(fit.lm)
Analysis of Variance Table
Response: y
            Df Sum Sq Mean Sq F value Pr(>F)
factor(trt) 2 11.0067 5.5033 3.9683 0.03735 *
Residuals 18 24.9629 1.3868
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> # Alternatively use data frame
> eg = data.frame(y=y, trt=factor(trt))
> eg
      y trt
1 18.2
          1
2 20.1
        1
3 17.6
        1
4 16.8 1
5 18.8
          1
6 19.7
        1
```

7 19.1 1 8 17.4 2 9 18.7 2 10 19.1 2 11 16.4 2 12 15.9 2 13 18.4 2 14 17.7 2 15 15.2 3 16 18.8 3 17 17.7 3 18 16.5 3 19 15.9 3 20 17.1 3 21 16.7 З > eg.lm = lm(y^{trt}, eg) > anova(eg.lm) Analysis of Variance Table Response: y Df Sum Sq Mean Sq F value Pr(>F) 2 11.0067 5.5033 3.9683 0.03735 * trt Residuals 18 24.9629 1.3868 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > > # Kruskal-Wallis rank sum test > kruskal.test(y^{trt}) Kruskal-Wallis rank sum test data: y by trt Kruskal-Wallis chi-squared = 5.7645, df = 2, p-value = 0.05601

An overview

- In one-way ANOVA, if we reject H_0 , then we know that not all trt means are the same.
- But this may not be informative enough. We now consider particular comparisons of trt means.
- We will consider contrasts and all pairwise comparisons.

Fish length example continued

Recall the example with k = 3 trts and n = 7 obs/trt. Test $H_0: \mu_1 = \mu_3$ vs $H_A: \mu_1 \neq \mu_3$.

- $\bar{y}_{1.} = 18.61, \bar{y}_{3.} = 16.84, n_1 = n_3 = 7, s_p = 1.387$ on df = 18.
- The observed test statistic is

$$t = \frac{\bar{y}_{1.} - \bar{y}_{3.}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_3}}} = \frac{18.61 - 16.84}{\sqrt{1.387 \times \frac{2}{7}}} = 2.81$$

on df = 18. The p-value $2 \times P(T_{18} \ge 2.81)$ is between 0.01 and 0.02.

• We may also construct a $(1 - \alpha)$ CI for $\mu_1 - \mu_3$:

$$(\bar{y}_{1.} - \bar{y}_{3.}) \pm t_{\mathrm{df},\alpha/2} \ s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_3}}$$

• Suppose $\alpha = 0.05$. Thus $t_{18,0.025} = 2.101$ and a 95% CI for $\mu_1 - \mu_3$ is

$$(18.61 - 16.84) \pm 2.101 \times \sqrt{1.387 \times \frac{2}{7}}$$

which is [0.45, 3.09] or 1.77 ± 1.32 .

Fish length example continued

Now test $H_0: \mu_1 - \frac{1}{2}(\mu_2 + \mu_3) = 0$ vs $H_A: \mu_1 - \frac{1}{2}(\mu_2 + \mu_3) \neq 0.$

- Estimate $\mu_1 \frac{1}{2}(\mu_2 + \mu_3)$ by $\bar{Y}_{1.} \frac{1}{2}(\bar{Y}_{2.} + \bar{Y}_{3.})$.
- The test statistic is

$$T = \frac{\bar{Y}_{1.} - \frac{1}{2}(\bar{Y}_{2.} + \bar{Y}_{3.}) - \mu_{\bar{Y}_{1.} - \frac{1}{2}(\bar{Y}_{2.} + \bar{Y}_{3.})}}{S_{\bar{Y}_{1.} - \frac{1}{2}(\bar{Y}_{2.} + \bar{Y}_{3.})}}$$

• We will see that

$$\mu_{\bar{Y}_{1}.-\frac{1}{2}(\bar{Y}_{2}.+\bar{Y}_{3}.)} = \mu_{1} - \frac{1}{2}(\mu_{2} + \mu_{3})$$

and

$$S_{\bar{Y}_{1}.-\frac{1}{2}(\bar{Y}_{2}.+\bar{Y}_{3}.)} = S_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{4n_{2}} + \frac{1}{4n_{3}}}$$

• Thus a $(1 - \alpha)$ CI for $\mu_1 - \frac{1}{2}(\mu_2 + \mu_3)$ is

$$\bar{y}_{1.} - \frac{1}{2}(\bar{y}_{2.} + \bar{y}_{3.}) \pm s_p \sqrt{\frac{1}{n_1} + \frac{1}{4n_2} + \frac{1}{4n_3}}$$

• But first we will generalize this situation.

Contrast

• A *contrast* is a quantity of the form

$$\sum_{i=1}^k \lambda_i \mu_i$$

where k is the # of trts, μ_i is the i^{th} trt mean, and λ_i is the i^{th} contrast coefficient.

- For comparison, we require that $\sum_{i=1}^{k} \lambda_i = 0$.
- For example, we have seen two contrasts already.
- $\mu_1 \mu_3$ is a contrast with $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1$:

$$\sum_{i=1}^{k} \lambda_{i} \mu_{i} = 1 \times \mu_{1} + 0 \times \mu_{2} + (-1) \times \mu_{3}.$$

• $\mu_1 - \frac{1}{2}(\mu_2 + \mu_3)$ is a contrast with $\lambda_1 = 1, \lambda_2 = -1/2, \lambda_3 = -1/2$:

$$\sum_{i=1}^{k} \lambda_i \mu_i = 1 \times \mu_1 + (-1/2) \times \mu_2 + (-1/2) \times \mu_3$$

Contrast

- Estimate $\sum_{i=1}^{k} \lambda_i \mu_i$ by $X = \sum_{i=1}^{k} \lambda_i \overline{Y}_i$.
- Consider the distribution of

$$T = \frac{X - \mu_X}{S_X}$$

• Here $\mu_X = \sum_{i=1}^k \lambda_i \mu_i$, because

$$\mu_X = E(\sum_{i=1}^k \lambda_i \bar{Y}_{i\cdot}) = \sum_{i=1}^k \lambda_i E(\bar{Y}_{i\cdot}) = \sum_{i=1}^k \lambda_i \mu_i.$$

• For S_X , consider variance first.

$$Var(\sum_{i=1}^{k} \lambda_{i} \bar{Y}_{i}) = \sum_{i=1}^{k} \lambda_{i}^{2} Var(\bar{Y}_{i}) = \sum_{i=1}^{k} \lambda_{i}^{2} \frac{\sigma^{2}}{n_{i}} = \sigma^{2} \sum_{i=1}^{k} \frac{\lambda_{i}^{2}}{n_{i}}.$$

• Estimate $Var(\sum_{i=1}^{k} \lambda_i \bar{Y}_{i\cdot})$ by $S_p^2 \sum_{i=1}^{k} \frac{\lambda_i^2}{n_i}$ and

$$S_X = S_p \sqrt{\sum_{i=1}^k \frac{\lambda_i^2}{n_i}}$$

Fish length example continued

• For the first contrast, $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1$,

$$S_X = S_p \sqrt{\frac{1}{7} + \frac{0}{7} + \frac{1}{7}} = S_p \sqrt{\frac{2}{7}}$$

as before.

• For the second contrast, $\lambda_1 = 1, \lambda_2 = -1/2, \lambda_3 = -1/2,$

$$S_X = S_p \sqrt{\frac{1}{7} + \frac{1/4}{7} + \frac{1/4}{7}} = S_p \sqrt{\frac{3}{14}}$$

• Thus for testing $H_0: \mu_1 - \frac{1}{2}(\mu_2 + \mu_3) = 0$, the observed test statistic is

$$t = \frac{\bar{y}_{1.} - \frac{1}{2}(\bar{y}_{2.} + \bar{y}_{3.})}{s_p \sqrt{\frac{3}{14}}} = \frac{18.61 - (17.66 + 16.84)/2}{\sqrt{1.387 \times \frac{3}{14}}} = 2.49$$

on df = 18. The p-value $2 \times P(T_{18} \ge 2.49)$ is between 0.02 and 0.05.

Fish length example continued

• We may also construct a 95% CI for $\mu_1 - \frac{1}{2}(\mu_2 + \mu_3)$:

$$\bar{y}_{1.} - \frac{1}{2}(\bar{y}_{2.} + \bar{y}_{3.}) \pm t_{18,0.025} \ s_p \sqrt{\frac{3}{14}}$$

• A 95% CI for $\mu_1 - \frac{1}{2}(\mu_2 + \mu_3)$ is

$$18.61 - \frac{1}{2}(17.66 + 16.84) \pm 2.101 \times \sqrt{1.387 \times \frac{3}{14}}$$

which is [0.21, 2.51] or 1.36 ± 1.15 .

Remarks

• If all $n_i = n$, then

$$Var(\sum_{i=1}^{k} \lambda_i \bar{Y}_{i\cdot}) = \frac{\sigma^2}{n} \sum_{i=1}^{k} \lambda_i^2.$$

This is called a *balanced* case.

- Single sample $S_{\bar{Y}} = S\sqrt{\frac{1}{n}}$
- Two samples $S_{\bar{Y}_1 \bar{Y}_2} = S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
- Multiple samples

$$S_{\sum_{i=1}^{k} \lambda_i \bar{Y}_{i\cdot}} = S_p \sqrt{\sum_{i=1}^{k} \frac{\lambda_i^2}{n_i}}$$