
R for Statistics 571

Bret Larget

August 25, 2011

1 Preliminaries

Before the first discussion section, you ought to install R onto your computer. If you have laptop,
install R on the laptop and bring it to discussion section.

1.1 Installing R

To install R, connect your computer to the web and go to the Comprehensive R Archive Network
(CRAN)

http://cran.r-project.org/

or its US mirror site

http://cran.us.r-project.org/

Click on the link to Linux, Mac OS X, or Windows, depending on your computer. (If you are a
power user who wants to compile your own version from source code, there is a link for you too and
you do not need these instructions.)

1.1.1 Mac OS X

Click on the link to the latest version of the software (R-2.13.1.pkg as of this writing), download
the 40 MB file, double-click on the resulting icon, and follow onscreen instructions.

1.1.2 Windows

Click on the link named base and then on the link Download R 2.13.1 for Windows (or a more
recent version). Double-click on the executable file R-2.13.1-win.exe (or more recent version) and
follow installation instructions.

1.2 Installing Packages

The easiest way to install a package is from within R when your computer is connected to the web.
We will use the package lattice in the class. From the command line, you can type

> install.packages("lattice")
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which will open a dialog asking you to pick a server (there are several in the US, or travel somewhere
exotic around the world). Pick the server, wait a few moments, and the package and any other
packages which lattice depends on will also be insalled. If successful, there will be a message to
the screen indicating what was installed and the prompt will return.

In Windows and Macs, you can also install packages through a menu. On a Mac, the menu
is named Packages & Data from which you select Package Installer. When you click on the Get
List button, a box opens ask you to pick a CRAN server (unless you have already been to one this
session). Over 1000 package names will appear. You can use the search box to find the name of
the package you are seeking, select it, and then click the Install Selected button. A similar process
works in Windows.

This is an excellent example of how the command line can be easier than the menu, but only if
you already know the right command to type.

To prepare for discussion section next week, install R and the lattice package on your computer.

2 Basics

Prompts. When you start R, the first window that pops up is a console window with a prompt >.
You type commands at the prompt, press return, and something happens. If you ever see a prompt
+, this means that the previous command was incomplete and R is waiting for you to complete it.
Most likely, your previous command included a left parenthesis ‘(’ that was not matched by a right
one ‘)’. Type something to complete the command, even if it results in a syntax error, and then
continue. You can also press the Esc key one or more times to return to a new prompt.

Output. When R writes out an array of numbers to the screen, it labels each line with the position
in the array of the first element of the array between square brackets (for example, [1]). This label
is not part of the array.

> 100

[1] 100

> 1:100

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[21] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

[41] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

[61] 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

[81] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Changing your workspace. R keeps all of the variables you create in memory as it runs. When
you end an R session, you may save your workspace. This allows you to have variables you have
previously defined available without the need to create them all again from scratch. My recom-
mendation, however, is to not save the workspace, but rather keep a text file with the commands
needed to read in data and do any necessary manipulations, as well as analyses. In this way, you
have a record of what is there and can create the workspace from scratch. (More on this later.)

By default, R will use as its workspace the folder in which the executable program exists. You
will most likely want to change the workspace to a new folder where you might keep data from
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the textbook and your homework. You change the workspace for R under Windows by using the
File menu and selecting Change Directory... with your mouse. For Macs, the menu Misc has
the selection Change Working Directory.... My advice is to have a folder where you keep work
for this course and to change the workspace to this folder each time you start R. You may want a
separate folder for each project or assignment.

Quitting R. To quit, you can type q() on a command line or you can quit through the File

menu. R will prompt you if you want to save your workspace.

Calculating with numbers. You can use R like a calculator. The * symbol stands for multi-
plication and the ^ symbol stands for exponentiation. The colon operator : creates an array of
numbers from the first to the second. R has a number of built-in functions such as mean(), sum(),
median(), sd(), sqrt(), log(), and exp() that have obvious meaning. Note that log() com-
putes the natural (base e) logarithm; use a second argument (log(1000,10) or log(1024,2), for
example) to compute the logarithm with a different base. Try these example.

> 2 + 2

> 12 * 3 - 10/2 + sqrt(16)

> 3^2

> 1:10

> sum(1:10)

> mean(1:10)

> sd(1:10)

> log(1000)

> log(1000, 10)

> log(1024, 2)

Calculating with arrays. R can do arithmetic operations on arrays. If you multiply an array of
numbers by a single number, the multiplication happens separately for each number. You can also
add or multiply equal-sized arrays of numbers.

> 2 * (1:15)

> (1:10) + (10:1)

> (1:4)^2

Assigning variables. You can use the = sign to create new variables. Typing the name of a
variable displays it.

> a = 1:10

> mean(a)

An alternative (and the original) to the = syntax is to use the key combination <- which was
created to look like an arrow. Most R users do use the <- key combination and much available R
documentation written by others uses the arrow instead of the equal sign for assignment, but both
are valid methods. The equal sign is standard for assignment for most other computer languages
and it is my strong preference, but you may use whichever fits your style. One point of view is that
you are only blessed with a certain number of key-strokes in life, and you do not want to waste
them. On the other hand, writing comments for code and using long and meaningful variable names
is worthwhile.
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3 Entering Data

3.1 Entering Data Directly

Single variables can be entered directly into R using c() for concatenation.

> milk = c(3.46, 3.55, 3.21, 3.78)

> treatment = factor(c("Control", "Low", "Medium", "High"))

This is useful for very small data sets, but it generally more useful to use either a word processor
or Excel to enter larger data sets in a format that can later be read into R.

3.2 Entering Data from a Text File

The commands read.table() and read.csv() can be used to read data from a text file. For these
commands to work, the files to be read should be in the working directory for R, or you will need
to specify a full path name. It is simplest to change the working directory for R to where the data
files are.

The file cows.txt contains the cow data we encountered in class. This file is in a plain text file
(not a Word or rich-text formatted file) which can be created in Windows using Notepad or on a
Mac using Text Edit (or with another program). The first row contains variable names, separated
by white space, which are spaces or tabs. Subsequent rows contain the data. Each row must contain
the same number of fields, but it is not necessary to line up all of the data into neat columns.

The function that reads data into R from a text file in this format is read.table(). For historical
reasons, the default is to not include a header line, so we add the argument header=T (T for true)
to let R know that the first line of the file contains a header row with variable names.

> cows = read.table("cows.txt", header = T)

> str(cows)

'data.frame': 50 obs. of 11 variables:

$ treatment : Factor w/ 4 levels "control","high",..: 1 1 1 1 1 1 1 1 1 1 ...

$ level : num 0 0 0 0 0 0 0 0 0 0 ...

$ lactation : int 3 3 2 2 2 1 1 1 3 3 ...

$ age : int 49 47 36 33 31 22 34 21 65 61 ...

$ initial.weight: int 1360 1498 1265 1190 1145 1035 1090 960 1495 1439 ...

$ dry : num 15.4 18.8 17.9 18.3 17.3 ...

$ milk : num 45.6 66.2 63 68.4 59.7 ...

$ fat : num 3.88 3.4 3.44 3.42 3.01 2.97 2.99 3.54 2.65 4.04 ...

$ solids : num 8.96 8.44 8.7 8.3 9.04 8.6 8.46 8.78 9.04 8.51 ...

$ final.weight : int 1442 1565 1315 1285 1182 1043 1030 1057 1520 1300 ...

$ protein : num 3.67 3.03 3.4 3.37 3.61 3.03 3.31 3.48 3.42 3.27 ...

The function str() shows the structure of the data we just read in. Notice that numerical variables
and categorical variables (factors) are distinguished. If levels of a categorical variable had been
stored as numbers, we would have needed to tell R to reclassify the variable as a factor.

R calls a rectangular array of data where rows are observations and columns are variables a data
frame.
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3.3 Entering Data from an Excel Worksheet

Many of you may be more comfortable using Excel then a plain text editor. To enter data into
an Excel spreadsheet for subsequent entry into R, use the first row as a header row with variable
names and put the values of each variable in a column. After the data is entered, save the file as
a comma-separated-variable file (CSV file, for short). Excel will ask if you really mean to do this
and warn you of all of the things you will lose of you do so, but disregard the warning and save the
data in this format nevertheless. The resulting file is a plain text file where each field is separated
by a comma rather than white space. This file can be read into R using the function read.csv().
There is no need with this function to specify header=T.

> cows = read.csv("cows.csv")

> str(cows)

'data.frame': 50 obs. of 11 variables:

$ treatment : Factor w/ 4 levels "control","high",..: 1 1 1 1 1 1 1 1 1 1 ...

$ level : num 0 0 0 0 0 0 0 0 0 0 ...

$ lactation : int 3 3 2 2 2 1 1 1 3 3 ...

$ age : int 49 47 36 33 31 22 34 21 65 61 ...

$ initial.weight: int 1360 1498 1265 1190 1145 1035 1090 960 1495 1439 ...

$ dry : num 15.4 18.8 17.9 18.3 17.3 ...

$ milk : num 45.6 66.2 63 68.4 59.7 ...

$ fat : num 3.88 3.4 3.44 3.42 3.01 2.97 2.99 3.54 2.65 4.04 ...

$ solids : num 8.96 8.44 8.7 8.3 9.04 8.6 8.46 8.78 9.04 8.51 ...

$ final.weight : int 1442 1565 1315 1285 1182 1043 1030 1057 1520 1300 ...

$ protein : num 3.67 3.03 3.4 3.37 3.61 3.03 3.31 3.48 3.42 3.27 ...

4 Working with Data Frames

4.1 Access to Variables

The operator $ is used to specify variables within a data frame. For example, we can work with the
variable milk by typing cows$milk.

> cows$milk

[1] 45.552 66.221 63.032 68.421 59.671 44.045 55.153 46.957 63.948 65.994 57.603

[12] 63.254 57.053 69.699 71.337 68.276 74.573 66.672 72.237 58.168 48.063 60.412

[23] 45.128 53.759 52.799 76.604 64.536 71.771 59.323 62.484 70.178 48.013 60.140

[34] 56.506 40.245 45.791 59.373 54.281 71.558 56.226 49.543 55.351 64.509 74.430

[45] 68.030 46.888 53.164 53.096 50.471 66.619

> mean(cows$milk)

[1] 59.54314

Assuming that this variable is measured in kg/day and that the density of milk is 1.03 kg/liter, we
could add a new variable volume to the cow data set equal to the number of liters of milk produced
on average each day.
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> cows$volume = cows$milk/1.03

> str(cows)

'data.frame': 50 obs. of 12 variables:

$ treatment : Factor w/ 4 levels "control","high",..: 1 1 1 1 1 1 1 1 1 1 ...

$ level : num 0 0 0 0 0 0 0 0 0 0 ...

$ lactation : int 3 3 2 2 2 1 1 1 3 3 ...

$ age : int 49 47 36 33 31 22 34 21 65 61 ...

$ initial.weight: int 1360 1498 1265 1190 1145 1035 1090 960 1495 1439 ...

$ dry : num 15.4 18.8 17.9 18.3 17.3 ...

$ milk : num 45.6 66.2 63 68.4 59.7 ...

$ fat : num 3.88 3.4 3.44 3.42 3.01 2.97 2.99 3.54 2.65 4.04 ...

$ solids : num 8.96 8.44 8.7 8.3 9.04 8.6 8.46 8.78 9.04 8.51 ...

$ final.weight : int 1442 1565 1315 1285 1182 1043 1030 1057 1520 1300 ...

$ protein : num 3.67 3.03 3.4 3.37 3.61 3.03 3.31 3.48 3.42 3.27 ...

$ volume : num 44.2 64.3 61.2 66.4 57.9 ...

4.2 Subsets

It is frequently useful to partition data into smaller groups, often on the basis of the levels of a
categorical variable. For example, with the cows data, we may want to calculate the mean protein
level for cows by treatment group. In R, we can get subsets of a data frame using the square brackets
[ and ]. It may help you to think of the square brackets as a verbal such that. For example, to
display the protein numbers for all cows in the control group, we can do the following

> cows$protein[cows$treatment == "control"]

[1] 3.67 3.03 3.40 3.37 3.61 3.03 3.31 3.48 3.42 3.27 3.31 3.32

which you can think of as listing the protein data for all cows such that the treatment group is
control. Note that two equal signs without a space == is a comparison operator (answer True or
False for each comparison) and that a single equal sign will not work. Use = for variable assignment
and when specifying arguments in functions and == when asking if two items are equal to each
other.

The array cows$treatment=="control" has length 50 (the length of the cows$treatment vari-
able) and the values are True and False. Inside the square brackets, only those elements corre-
sponding to True are retained.

> cows$treatment == "control"

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

[14] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[27] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[40] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

We could find the mean of each group in turn.

> mean(cows$protein[cows$treatment == "control"])
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[1] 3.351667

> mean(cows$protein[cows$treatment == "low"])

[1] 3.378462

> mean(cows$protein[cows$treatment == "medium"])

[1] 3.242308

> mean(cows$protein[cows$treatment == "high"])

[1] 3.341667

There is a shortcut using the functions split() which partitions a variable into a list for each level
of a factor and sapply() which applies a function to each element of a list.

> sapply(split(cows$protein, cows$treatment), mean)

control high low medium

3.351667 3.341667 3.378462 3.242308

Notice that the ordering of the levels of treatment is alphabetical. Here, it makes sense to order by
level. The reorder() function in the lattice package can be used for this purpose.

> cows$treatment = reorder(cows$treatment, cows$level)

> sapply(split(cows$protein, cows$treatment), mean)

control low medium high

3.351667 3.378462 3.242308 3.341667

The first argument to reorder() is the factor whose levels should be reordered, the second argument
is a quantitative variable of the same length as the first argument. The new order is from lowest to
highest mean value for each level of the factor.

The square brackets can also be used to find subsets of a data frame. Here, the command has
the form data frame[row subset,column subset]. For example, to show columns 1, 7, and 11 for the
first five cows, we could do the following.

> cows[1:5, c(1, 7, 11)]

treatment milk protein

1 control 45.552 3.67

2 control 66.221 3.03

3 control 63.032 3.40

4 control 68.421 3.37

5 control 59.671 3.61
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4.3 Simple Lattice Plots

The lattice package is loaded using this command.

> library("lattice")

The graphics function in lattice are particularly useful for displaying data separately for each group
of a categorical variable. Compare the commands for showing a density plot of all of the protein
measurements

> plot(densityplot(~protein, cows))
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with density plot of protein for each treatment group in a different panel

> plot(densityplot(~protein | treatment, cows))
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with a plot with the density plots overlayed.

> plot(densityplot(~protein, cows, groups = treatment, auto.key = T))
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The raw data can be displayed with dotplot() with a layout with one column and four rows as
follows.

> plot(dotplot(~protein | treatment, cows, layout = c(1, 4)))
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5 Bar Graphs

We will create bar graphs in R using barchart() in the lattice package. Begin by loading the
lattice package.

> library(lattice)

The first argument to barchart() is a formula of the form y ~ x where y is an array with the
frequencies and x is an array with the names of the groups. By default, barchart() may not extend
bars down to 0. (Why, Deepayan, why?!?) To remedy this poor and misleading default behavior,
barchart() should always include an additional argument origin=0. Note the general behavior
of functions in R: if arguments are not named, their position in the list of arguments determines
which argument it is interpreted as. But, if the argument is named, it can appear anywhere in the
list. Here is a simple bar graph for the fruit fly recombination data.

In addition, the commands shown here include the function plot() wrapped around the com-
mand to make plots. This is not necessary (but not harmful) when typing lattice plotting commands
directly into R, but is needed for documents like this one where R reads commands in from a file.
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> freq = c(216, 428)

> type = c("recombinant", "parental")

> plot(barchart(freq ~ type, origin = 0))

fr
eq

0

100

200

300

400

parental recombinant

This plot can be customized by adding additional arguments to specify, for example, labels on
the x- and y-axes (with arguments xlab and ylab), a title (with argument main), and color (with
argument col).

> plot(barchart(freq ~ type, origin = 0, xlab = "Type", ylab = "Frequency",

+ main = "Male Offspring Types", col = "red"))
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The next example is very similar, but uses a data frame to hold the frequencies and multiple
factors. Note the use of paste() to paste together the level names for color and wing and factor()

to create a new factor with the four combinations of color and wing.

> frequency = c(226, 202, 114, 102)

> color = c("white", "red", "red", "white")

> wing = c("normal", "miniature", "normal", "miniature")

> phenotype = c("parental", "parental", "recombinant", "recombinant")

> my.data = data.frame(frequency = frequency, color = color, wing = wing,

+ phenotype = phenotype)

> plot(barchart(frequency ~ factor(paste(color, wing)), data = my.data,

+ origin = 0, xlab = "Genotype", ylab = "Frequency", main = "Male Offspring Genotypes"))
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The documentation on barchart() is available by typing ?barchart at the prompt. Like most
lattice documentation, it is incomplete (any mention of the argument origin?) and assumes more
familiarity with R than beginners typically possess.

6 Binomial Probabilities

The two primary functions for computing binomial probabilities are dbinom() which computes
probabilites at individual values and pbinom() which computes sums of binomial probabilites. The
function sum() may be used in conjunction with dbinom() also to compute sums of binomial
probabilities. Specifically, dbinom(k,n,p) calculates P(X = k) when X ∼ Binomial(n, p) and
pbinom(k,n,p) calculates P(X ≤ k).

The second homework set had a couple questions with X ∼ Binomial(5, 0.7). Here are several
example calculations.

Find P(X = 4).

> dbinom(4, 5, 0.7)

[1] 0.36015

Find P(X ≤ 4) using both dbinom() and pbinom().

> sum(dbinom(0:4, 5, 0.7))

[1] 0.83193

> pbinom(4, 5, 0.7)

[1] 0.83193

Find P(X ≥ 3) using both dbinom() and pbinom(). Note that P(X ≥ 3) = 1 − P(X < 3) =
1− P(X ≤ 2).

> sum(dbinom(3:5, 5, 0.7))

[1] 0.83692

> 1 - pbinom(2, 5, 0.7)
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[1] 0.83692

The entire distribution can be found by giving more than one value for the first argument.

> dbinom(0:5, 5, 0.7)

[1] 0.00243 0.02835 0.13230 0.30870 0.36015 0.16807

The second and third argument can also be replaced by sequences. For example, here is P(X = 0)
for n = 1, 2, 4, 8, 16, 32 and p = 0.5 and P(X = 5) for n = 10 and p = 0.1, 0.2, . . . , 0.9.

> dbinom(0, 2^(0:5), 0.5)

[1] 5.000000e-01 2.500000e-01 6.250000e-02 3.906250e-03 1.525879e-05 2.328306e-10

> dbinom(5, 10, (1:9)/10)

[1] 0.001488035 0.026424115 0.102919345 0.200658125 0.246093750 0.200658125

[7] 0.102919345 0.026424115 0.001488035

7 Binomial Random Variables

The function rbinom() generates pseudo-random numbers. This series of commands will generate
10,000 different binomial random variables, each with n = 8 and p = 0.2. The table() function
will display how many outcomes of each value were sampled.

> s = rbinom(10000, 8, 0.2)

> table(s)

s

0 1 2 3 4 5 6 7

1678 3375 3001 1423 422 88 12 1

8 Graphing the Binomial Distribution

To graph the binomial distribution, we will write a function to do the job. Once the function is
written, you can put it into a file, use source() to read it into R when desired, and then have
access to it. It is also possible to construct the graph separately each time, but writing and saving a
function is a good way to reduce repetitive typing of complicated series of commands. The function
gbinom() is defined in the file gbinom.R. It includes quite a few complicated features. We will
describe the function writing in more detail with a simpler example.

We create a function in R using function(). We will use xyplot() from lattice to do the
work. We can write the function so that by default, it shows the entire distribution, but includes
an argument scale which will cause the graph to be drawn from the 4 SDs below to 4SDs above
the mean.

The following two graphs show the effects of setting scale.

> source("gbinom.R")

> plot(gbinom(1000, 0.3))
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> plot(gbinom(1000, 0.3, scale = T))
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9 Graphing the Likelihood

The following example shows how to use xyplot() with argument type="l" to graph a line rep-
resenting the likelihood and then log-likelihood from the fruit fly data in class. We use seq() to
create an array of the values for which we want to compute the likelihood and dbinom() for the
values themselves. The first two arguments to seq() are the start and end values and the third
argument is the difference between points. Here we evaluate p from 0.2 to 0.45 in steps of size 0.001.
Optional arguments to xyplot() include lwd=2 to make the line width twice as large as normal,
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xlim=c(0.2,0.45) to force the limits of the x-axis to span these values, and ylab to specify a label
for the y-axis. In the second plot, log() is the natural logarithm.

> p = seq(0.2, 0.45, 0.001)

> y = dbinom(216, 644, p)

> plot(xyplot(y ~ p, type = "l", ylab = "Likelihood", lwd = 2, xlim = c(0.2,

+ 0.45)))
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> plot(xyplot(log(y) ~ p, type = "l", ylab = "log-Likelihood", lwd = 2,

+ xlim = c(0.2, 0.45)))
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10 Confidence Intervals

The text describes a method for building confidence intervals that uses a small adjustment to the
sample proportion. The calculations are simple enough, but we can write a function in R to do all
the steps for us. Here, we select the name of the function to be p.ci and the two arguments to be
x and n, the summary statistics form the sample. Here is code to create a function to do the work,
and then an application of it using data from lecture. The function return() specifies the value
that is returned by the function. By default, it is whatever object is created last, but an explicit
use of return() make reading the function easier. Note that c() is a common utility function used
to concatenate (combine) different objects into one. In this case, c() concatenates expressions for
the lower and upper endpoints of the confidence interval.

> p.ci = function(x, n) {

+ p.prime = (x + 2)/(n + 4)

+ margin.error = 1.96 * sqrt(p.prime * (1 - p.prime)/(n + 4))

+ return(c(p.prime - margin.error, p.prime + margin.error))

+ }

> p.ci(212, 644)

[1] 0.2940355 0.3664583

11 Hypothesis Tests

The method for hypothesis tests we have explored so far is the binomial test. R’s version of this
test is binom.test(), the first argument of which is the count x and the second of which is the
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total sample size n. Additional arguments are p which is the null proportion (default value is
0.5) and alternative which must be one of "two.sided" (the default), "less", and "greater".
As with any argument in an R function which specifies a list of possible values, you need only
type enough characters to distinguish it for other options (but for code clarity, typing the whole
thing is helpful). For one-sided tests, the calculated p-value is the sum of binomial probabilities
less than x for alternative="less" and the sum of binomial probabilities greater than x for
alternative="greater". For alternative="less", binom.test() computes the p-value as the
sum of all probabilities with outcomes less than or equal to the probability of x under the null
hypothesis. This behavior is consistent with a likelihood-based approach to inference, but differs
from the method presented in lecture in which at least as extreme as is interpreted as at least as far
from the mean as and not at most as probable as. For the specific example in lecture, this results
in a difference, but most of the time, the calculations will be the same.

Here, for example, is the result if we changed the problem and there had been 60 left-handed
offspring from 270 total and the null hypothesis p = 0.25. Using the method in lecture, X ∼
Binomial(270, 0.25) so E(X) = 67.5 and outcomes at least as extreme as 60 are those 60 and below
or 67.5 + 7.5 = 75 or higher. The p-value is

> sum(dbinom(c(0:60, 75:270), 270, 0.25))

[1] 0.3251164

using the distance-from-the-mean definition of extreme and

> binom.test(60, 270, p = 0.25, alternative = "two.sided")

Exact binomial test

data: 60 and 270

number of successes = 60, number of trials = 270, p-value = 0.3251

alternative hypothesis: true probability of success is not equal to 0.25

95 percent confidence interval:

0.1740749 0.2765797

sample estimates:

probability of success

0.2222222

12 Creating Tables

The function matrix() will make a table of numbers, here filled with counts in a contingency table,
using rownames() and colnames() to add the names for each category. This code creates a table
for the data from Example 9.3-1.

> fish = matrix(c(1, 49, 10, 35, 37, 9), 2, 3)

> rownames(fish) = c("Eaten", "Not Eaten")

> colnames(fish) = c("Uninfected", "Lightly Infected", "Highly Infected")

> fish

Uninfected Lightly Infected Highly Infected

Eaten 1 10 37

Not Eaten 49 35 9
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The first argument to matrix() is an array of the data in the matrix by columns. (If the data is
entered by row, add the argument byrow=true to the matrix() command.) The second and third
arguments are the number of rows and number of columns of data; the command could have been
called matrix(c(1,49,10,35,37,9),nrow=2,ncol=3). If only one of these dimension commands is
specified, R will compute the other using the size of the data. Like all R functions, if the arguments
are not named, R interprets based on their position in the list of arguments. Named arguments can
appear anywhere in the list.

13 Bar Graphs

We use barchart() from the lattice package to make stacked bar graphs to display contingency
tables. By default, barchart() draws horizontal bars; set horizontal=F makes the bars vertical.
The function t() will transpose a matrix; transposing the input matrix will cause the other variable
to be the one used for the main division of the data. The argument ylab can be set to change the
label on the y-axis (and xlab has the same obvious behavior). The argument auto.key works for
may lattice packages to add a key to a graph. Here, we specify the key to be written in columns
across the top of the graph. One command creates an object which is then plotted with plot().
Compare the use of fish and t(fish) in these next two plots.

> library(lattice)

> fish.plot = barchart(t(fish), horizontal = F, auto.key = list(columns = nrow(fish)),

+ ylab = "Frequency")

> plot(fish.plot)
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> fish.2.plot = barchart(fish, horizontal = F, auto.key = list(columns = ncol(fish)),

+ ylab = "Frequency")

> plot(fish.2.plot)
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13.1 Mosaic Plots

The text introduces the idea of a mosaic plot which shows nearly the same information as the stacked
bar graphs, but each bar is rescaled to the same size so that the graph highlights comparisons
between relative frequencies and not absolute frequencies. The function mosaic() below handles
the conversion from frequencies to relative frequencies, so you can just call mosaic() on a matrix
(or its transpose).

> mosaic = function(x, ...) {

+ col.sums = apply(x, 2, sum)

+ for (j in 1:ncol(x)) x[, j] = x[, j]/col.sums[j]

+ my.plot = barchart(t(x), horizontal = F, ylab = "Relative Frequency",

+ auto.key = list(columns = nrow(x)), ...)

+ plot(my.plot)

+ }

Here is an example of its use.

> mosaic(t(fish))
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14 Chisquare Test and G-Test

The function chisq.test() will carry out a χ2 test. The only argument you need to include is the
matrix.

> chisq.test(fish)

Pearson's Chi-squared test

data: fish

X-squared = 69.7557, df = 2, p-value = 7.124e-16

For the G-test, there is no built-in function in base R. An internet search will undoubtedly find
someone who has made the function available. However, coding a few line of R code to find the
expected counts in each table and then the values of the test statistics (for both G- and χ2 tests) is
informative. The following code uses the function apply() to apply the sum() function to both rows
and columns to find the marginal counts and the %o% operator to form the outer sum of the arrays
of row and column counts. In the example with a 2-array for rows and a 3-array for columns, the
outer sum will be a 2× 3 matrix where each element is the product of the corresponding values for
the row and column. Dividing this table by the sum of all elements of the table gives the expected
counts. The three arguments for apply() are a matrix, a number to indicate the dimension (1
for rows, 2 for columns), and a function to apply to each row or column. The observed counts
and expected counts now be combined to find both test statistics. The following function takes a
matrix as an argument, computes both the χ2 and G − test test statistics, and returns a list with
the expected counts, the values of the test statistics, and the p-values. In R, a list() is an object
that can contain any number of potentially different types of items. Components of a list can be
accessed with $ and the name of the component. For example, to print only the matrix of expected
values, one could append $expected to the name of the returned value from this function.
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> chisq.g.test = function(x) {

+ row.sum = apply(x, 1, sum)

+ col.sum = apply(x, 2, sum)

+ n = sum(x)

+ x.expected = row.sum %o% col.sum/n

+ x2 = sum((x - x.expected)^2/x.expected)

+ g = 2 * sum(x * log(x/x.expected))

+ degf = (length(row.sum) - 1) * (length(col.sum) - 1)

+ p.x2 = 1 - pchisq(x2, degf)

+ p.g = 1 - pchisq(g, degf)

+ return(list(expected = x.expected, x2 = x2, p.x2 = p.x2, g = g,

+ p.g = p.g))

+ }

> fish.out = chisq.g.test(fish)

> fish.out$expected

Uninfected Lightly Infected Highly Infected

Eaten 17.02128 15.31915 15.65957

Not Eaten 32.97872 29.68085 30.34043

> fish.out

$expected

Uninfected Lightly Infected Highly Infected

Eaten 17.02128 15.31915 15.65957

Not Eaten 32.97872 29.68085 30.34043

$x2

[1] 69.7557

$p.x2

[1] 6.661338e-16

$g

[1] 77.89698

$p.g

[1] 0

15 Fisher’s Exact Test

The R function fisher.test() conducts Fisher’s exact test ona 2 × 2 matrix. Note that the
alternative hypothesis is in reference to the top left cell of the matrix. In this example, we ask
what is the chance if the interior of the table were resampled leavin the margins constant, what is
the probability that the upper left corner would be 15 or more. Here is code for an example from
lecture.
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> x = matrix(c(15, 7, 6, 322), nrow = 2, ncol = 2)

> fisher.test(x, alternative = "greater")

Fisher's Exact Test for Count Data

data: x

p-value < 2.2e-16

alternative hypothesis: true odds ratio is greater than 1

95 percent confidence interval:

35.49817 Inf

sample estimates:

odds ratio

108.3894

The p-value of Fisher’s exact test is found by summing hypergeometric probabilities (the prob-
ability distribution for sampling without replacement). The arguments to dhyper() are: (1) the
value or values for which to compute the probability; (2) the number of good balls in the bucket; (3)
the number of bad balls in the bucket; and (4) the sample size (without replacement). Either the
row or column marginal totals can be used for the number of balls; the other becomes the sample
size. So, in this example, the p-value is the probability of choosing 15 or more balls from either: (1)
a bucket with 21 good balls and 329 bad balls with a sample of 22; or (2) a bucket with 22 good
balls and 328 bad balls with a sample of 21.

> sum(dhyper(15:21, 21, 329, 22))

[1] 1.004713e-16

> sum(dhyper(15:21, 22, 328, 21))

[1] 1.004713e-16

16 Normal Distribution

The functions pnorm() and qnorm() find probabilities (areas to the left) or quantiles from standard
or other normal distributions. The first argument is the quantity of interest. The second and
third (optional) specify the mean and standard deviation if these are not 0 or 1. Here are several
examples:

1. The area to the left of −1.57 under a standard normal curve;

> pnorm(-1.57)

[1] 0.05820756

2. The area to the right of 2.12 under a standard normal curve;

> 1 - pnorm(2.12)

[1] 0.01700302
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3. The 0.975 quantile of the standard normal distribution;

> qnorm(0.975)

[1] 1.959964

4. The cutoffs for the middle 99% of the standard normal distribution;

> qnorm(c(0.005, 0.995))

[1] -2.575829 2.575829

5. The area between 90 and 105 for the N(100, 42) distribution;

> pnorm(105, 100, 4) - pnorm(90, 100, 4)

[1] 0.8881406

6. The lower and upper quartiles of the same distribution;

> qnorm(c(0.25, 0.75), 100, 4)

[1] 97.30204 102.69796

17 Graphs for Quantitative Data

The following examples show examples of histograms, density plots, box-and-whisker plots, and dot
plots for the female sockeye salmon mass data set. First, read in the data. There is a single variable
named mass.

> salmon = read.table("sockeye.txt", header = T)

> str(salmon)

'data.frame': 228 obs. of 1 variable:

$ mass: num 3.09 2.91 3.06 2.69 2.88 2.98 1.61 2.16 1.56 1.76 ...

Histogram. The first argument is a formula specifying the variable to graph. The second argu-
ment is the name of the data frame where the variable can be found. Note the arguments nint to
suggest using 25 intervals and xlab to set the label on the x-axis. The function plot() is need for
this to execute when read in from a file, but is optional when typing at the command line.

> library(lattice)

> plot(histogram(~mass, salmon, nint = 25, xlab = "Body Mass (kg)"))
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Density plot. The density plot draws a curve which is estimated by averaging many (50 by
default) histograms, with the breakpoints shifted slightly for each. I usually bump this number up
using the argument n=201 so that the resulting curve appears smoother. To suppress the plotting
of points (useful when the sample size is enormous), add the argument plot.points=F.

> plot(densityplot(~mass, data = salmon, xlab = "Body Mass (kg)",

+ ylab = "Density", n = 201))
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Box-and-Whisker Plots. A box and whisker plot represents the middle half of the data, between
the 0.25 and 0.75 quantiles, with a box. The center of the box includes a point at the median.
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Whiskers are drawn left and right to extreme points; here, the largest and smallest individual
values between the fences, where there are invisible fences to the left and right of the box a distance
1.5 IQR (interquartile range units) from the ends of the box. In other words, if the lower and
upper quartiles are q0.25 and q0.75, the lower fence is at q0.25− 1.5(q0.75− q0.25), the upper fence is at
q0.75 + 1.5(q0.75− q0.25), the left whisker extends to the smallest value to the right of the lower fence,
the right whisker extends to the largest value to the left of the upper fence, and any observations
beyond the fences are marked individually.

> plot(bwplot(~mass, data = salmon, xlab = "Body Mass (kg)"))
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Dot Plots. A dot plot is simply a plot of dots on a number line for each value. To reduce plotting
points on top of one another, the argument jitter.y adds a small bit of random noise to each
point in the y direction. jitter.x is also available.

> plot(dotplot(~mass, data = salmon, xlab = "Body Mass (kg)", jitter.y = T))
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18 T-tests and Confidence Intervals

We demonstrate using t.test() for one-sample confidence intervals and hypothesis tests using a
sample of 25 body temperatures.

> temp = read.table("temperature.txt", header = T)

> str(temp)

'data.frame': 25 obs. of 1 variable:

$ temperature: num 98.4 98.6 97.8 98.8 97.9 99 98.2 98.8 98.8 99 ...

The variable can be specified from the data frame with the $ operator. The mean of the null
hypothesis is set with mu=98.6 and the confidence level is set with conf.level=0.99 (this can be
shortened to conf.

> t.test(temp$temperature, mu = 98.6, conf = 0.99)

One Sample t-test

data: temp$temperature

t = -0.5606, df = 24, p-value = 0.5802

alternative hypothesis: true mean is not equal to 98.6

99 percent confidence interval:

98.14485 98.90315

sample estimates:

mean of x

98.524
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19 The Bootstrap

We used the bootstrap to find a 95% confidence interval for the salmon data in lecture. Here is
the R code for this. The basic idea is to create a large matrix with B rows and n columns where
n is the sample size of the original data and B is the number of bootstrap data sets we wish to
replicate. We use matrix() to create the matrix and sample() with replace=T to sample data with
replacement. The function apply() with second argument 1 (the number one) and third argument
mean applies the function mean() to each row of the matrix. Finally, we use quantile() to find the
corresponding quantiles of the sample. Here is an application of the bootstrap using B = 10, 000.

> B = 10000

> n = length(salmon$mass)

> mass.boot = apply(matrix(sample(salmon$mass, size = n * B, replace = T),

+ nrow = B, ncol = n), 1, mean)

> quantile(mass.boot, c(0.025, 0.975))

2.5% 97.5%

1.959254 2.100352

A different bootstrap sample may differ a bit, but not a lot if B is large.

> mass.boot.2 = apply(matrix(sample(salmon$mass, size = n * B, replace = T),

+ nrow = B, ncol = n), 1, mean)

> quantile(mass.boot.2, c(0.025, 0.975))

2.5% 97.5%

1.960877 2.101009

Compare to the t-test.

> t.test(salmon$mass)

One Sample t-test

data: salmon$mass

t = 56.8042, df = 227, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

1.957804 2.098512

sample estimates:

mean of x

2.028158

The 95% confidence intervals are identical when rounded to two decimal places.
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20 Randomization Test

In lecture on October 21, we explored the randomization test to test if two population means were
equal. Here is R code to read in the data set using read.csv() which expects a text file where the
first line is a header line with variable names and subsequent lines have data. Values on each line
are separated by commas.

> pscorp = read.csv("pseudoscorpions.csv")

> str(pscorp)

'data.frame': 36 obs. of 2 variables:

$ mating: Factor w/ 2 levels "Different","Same": 2 2 2 2 2 2 2 2 2 2 ...

$ broods: int 4 0 3 1 2 3 4 2 4 2 ...

To carry out the randomization test, we will write a special function that will compute the mean
of the first 20 observations, the mean of the next 16 observations, and return the difference.

> f = function(x) {

+ return(mean(x[1:20]) - mean(x[21:36]))

+ }

Next, we create an array to store the difference in means for each randomized data set. We will
do this R = 100, 000 times. We will the array with missing values (NA) which we will replace.

> R = 100000

> out = rep(NA, R)

The function sample() with only one argument consisting of an array returns a random permu-
tation of the elements of the array. We think of this as the first 20 elements being the one randomly
sampled group and the next 16 as the second group. This command rerandomizes one time and
calls f() to find the difference in means.

> f(sample(pscorp$broods))

[1] 0.0375

Now, we ask R to do this R = 100, 000 times with the for() command. The variable i is set to
each value from 1 to R, and the difference in means for that particular rerandomization is stored
in out[i]. The test statistic is found by applying f() to the original data (which works because
the data is ordered with the Same group having the first 20 observations and the Different group
having the final 16 observations). The p-value is the proportion of randomized differences in sample
means that are less than this test statistic.

> test.stat = f(pscorp$broods)

> for (i in 1:R) {

+ out[i] = f(sample(pscorp$broods))

+ }

> p.value = sum((out <= test.stat))/R

> p.value

[1] 0.01515
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21 Two-sample T-test

Compare the previous result to the two-sample independent t-test.

> sample1 = with(pscorp, broods[mating == "Same"])

> sample2 = with(pscorp, broods[mating == "Different"])

> t.test(sample1, sample2, alternative = "less")

Welch Two Sample t-test

data: sample1 and sample2

t = -2.3424, df = 28.883, p-value = 0.01313

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -0.3911856

sample estimates:

mean of x mean of y

2.200 3.625

22 Graphs to Compare Distributions

The following graph compares the distribution of the number of broods for each group with his-
tograms. The vertical bar in the formula specifies the variable on the left to be split according
to the variable on the right and displayed in different panels. The layout argument specifies one
column and two rows (so the histograms are aligned vertically, making them easier to compare).

> plot(histogram(~broods | mating, data = pscorp, layout = c(1, 2),

+ breaks = seq(-0.5, 7.5)))
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