

Stat 849: ggplot2 graphics

Douglas Bates

University of Wisconsin - Madison and R Development Core Team <Douglas.Bates@R-project.org>

Sept 08, 2010

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

・ 日 ・ ・ 二 ・ ・ 二 ・ ・ 日 ・ ・ 日 ・ ・ ・

- Another advanced graphics package for *R* is ggplot2 by Hadley Wickham (a recent Iowa State Stats Ph.D., now at Rice).
- His book is listed as one of the references on the course web site.
- The core chapter introducing the basic function called qplot can be obtained from the URL in the links section on the course web site.
- I will use data from the faraway package to accompany Julian Faraway's freely available book "Practical Regression and Anova using R" to illustrate the use of qplot.

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

pima	data

Examining the pima data

- > library(faraway)
- > str(pima)

'da	ata.frame':	768	obs. of 9 variables:
\$	pregnant :	int	6 1 8 1 0 5 3 10 2 8
\$	glucose :	int	148 85 183 89 137 116 78 115 197 125
\$	diastolic:	int	72 66 64 66 40 74 50 0 70 96
\$	triceps :	int	35 29 0 23 35 0 32 0 45 0
\$	insulin :	int	0 0 0 94 168 0 88 0 543 0
\$	bmi :	num	33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0
\$	diabetes :	num	0.627 0.351 0.672 0.167 2.288
\$	age :	int	50 31 32 21 33 30 26 29 53 54
\$	test :	int	1 0 1 0 1 0 1 0 1 1

> head(pima)

	pregnant	glucose	diastolic	triceps	insulin	bmi	diabetes	age	tes	t
1	6	148	72	35	0	33.6	0.627	50		1
2	1	85	66	29	0	26.6	0.351	31		0
3	8	183	64	0	0	23.3	0.672	32		1
4	1	89	66	23	94	28.1	0.167	21		0
5	0	137	40	35	168	43.1	2.288	33		1
6	5	116	74	0	0	25.6	▶ 0.201	≣ 30	臣 。	0

Recoding the missing data

- As Faraway indicates, several of the values of variables that cannot reasonably be zero are recorded as zero.
- A bit of research shows that these are missing data values. Also the test variable is a factor, not numeric.

```
> pima <- within(pima, {
+     diastolic[diastolic == 0] <- glucose[glucose ==
+                           0] <- triceps[triceps == 0] <- insulin[insulin ==
+                                0] <- bmi[bmi == 0] <- NA
+        test <- factor(test, labels = c("negative", "positive"))
+ })
> head(pima, 3)
```

	pregnant	glucose	diastolic	triceps	insulin	bmi	diabetes	age	
1	6	148	72	35	NA	33.6	0.627	50	
2	1	85	66	29	NA	26.6	0.351	31	
3	8	183	64	NA	NA	23.3	0.672	32	
	test								
1	positive								
2	negative								
3	positive				•			≣≯	E 990

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

ggplot2 pima data Univariate Bivariate Regression lines Ar

Histogram of diastolic blood pressure

> qplot(diastolic, data = pima, geom = "histogram")

◆□> ◆□> ◆三> ◆三> ● ○ ○ ○

ggplot2 Univariate Empirical density plot > qplot(diastolic, data = pima, geom = "density") 0.030 -0.025 -0.020 density 0.015 -

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Univariate Empirical density of diastolic by test > qplot(diastolic, data = pima, geom = "density", color = test) 0.030 -0.020 test Atisua density negative positive

0.005 -

0.000 -

40

bio and pressure (mg Hg)

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

・ロト ・ 一下・ ・ ヨト ・ э **B** b

Adding a scatterplot smoother

> qplot(diastolic, diabetes, data = pima, geom = c("point", + "smooth"))

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

na data

Multiple smoothers by group

> qplot(diastolic, diabetes, data = pima, geom = c("point", + "smooth"), color = test)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

Adding a simple linear regression line - c.f. Fig. 1.3, p. 14 > (p <- qplot(midterm, final, data = stat500, geom = c("point",

> (p <- qpiot(midterm, final, data = stat500, geom = c("point"
+ "smooth"), method = "lm"))</pre>

Regression lines

ggplot2 pima data Univariate Bivariate Regression lines And

Adding a reference line - c.f. Fig. 1.3, p. 14

> p + geom_abline(intercept = 0, slope = 1, color = "red")

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Suppressing the confidence band

It happens that the defaults are intercept=0 and slope=1
> (p <- qplot(midterm, final, data = stat500, geom = c("point",
+ "smooth"), method = "lm", se = FALSE) + geom_abline(color</pre>

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova

くちゃくゆ キャンド・ (中)・ (日)・

Plotting multiple groups and lines, c.f. Fig. 15.2, p. 163
> levels(cathedral\$style) <- c("Gothic", "Romanesque")
> qplot(x, y, data = cathedral, geom = c("point", "smooth"),
+ method = "lm", color = style, xlab = ...)

500

Ancova

+

Plotting multiple groups in separate panels > qplot(x, y, data = cathedral, geom = c("point", "smooth"), method = "lm", facets = . ~ style, xlab = ...)

