Chapter 4

The Gauss-Markov Theorem

In Chap. 3 we showed that the least squares estimator, $\widehat{\beta}_{LSE}$, in a Gaussian linear model has is unbiased, meaning that $E[\widehat{\beta}_{LSE}] = \beta$, and that its variance-covariance matrix is

$$\operatorname{Var} \widehat{\boldsymbol{\beta}}_{LSE} = \sigma^2 \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} = \sigma^2 \boldsymbol{R}^{-1} (\boldsymbol{R}^{-1})'.$$

The Gauss-Markov theorem says that this variance-covariance (or dispersion) is the best that we can do when we restrict ourselved to linear unbiased estimators, which means estimators that are linear functions of \mathcal{Y} and are unbiased.

To make these definitions more formal:

Definition 5 (Minimum Dispersion). Let $\mathcal{T} = (\mathcal{T}_1, \dots, \mathcal{T}_p)'$ be an estimator of $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)'$. The dispersion of \mathcal{T} is $\mathbf{D}(\mathcal{T}) = E[(\mathcal{T} - \boldsymbol{\theta})(\mathcal{T} - \boldsymbol{\theta})']$. If \mathcal{T} is unbiased then its dispersion is simply its variance-covariance matrix, $\mathbf{D}(\mathcal{T}) = \operatorname{Var}(\mathcal{T})$. \mathcal{T} is minimum dispersion unbiased estimator of $\boldsymbol{\theta}$ if $\mathbf{D}(\tilde{\mathcal{T}}) - \mathbf{D}(\mathcal{T})$ is positive semidefinite for any unbiased estimator $\tilde{\mathcal{T}}$. That is

$$a'[D(\tilde{T}) - D(T)]a \ge 0 \quad \forall a \in \mathbb{R}^p$$

Because the dispersion matrices of unbiased estimators are the variance-covariance matrices, this condition is equivalent to

$$\mathbf{a}' \operatorname{Var}(\tilde{\mathcal{T}}) \mathbf{a} - \mathbf{a}' \operatorname{Var}(\mathcal{T}) \mathbf{a} \ge 0 \Rightarrow \operatorname{Var}(\mathbf{a}'\tilde{\mathcal{T}}) - \operatorname{Var}(\mathbf{a}'\mathcal{T}) \ge 0$$

Theorem 8 (Gauss-Markov). In the full-rank case (i.e. rank(X) = p) the minimum dispersion linear unbiased estimator of β is $\widehat{\beta}_{LSE}$ with dispersion matrix $\sigma^2(X'X)^{-1}$. It is also called the best linear unbiased estimator or BLUE of β .

Proof. Any linear estimator of β can be written as $A\mathcal{Y}$ for some $p \times n$ matrix A. (That's what it means to be a linear estimator.) To be an unbiased linear estimator we must have

$$\boldsymbol{\beta} = E[\boldsymbol{A}\boldsymbol{\mathcal{Y}}] = \boldsymbol{A} E[\boldsymbol{\mathcal{Y}}] = \boldsymbol{A} \boldsymbol{X} \boldsymbol{\beta} \quad \forall \ \boldsymbol{\beta} \in \mathbb{R}^p \ \Rightarrow \ \boldsymbol{A} \boldsymbol{X} = \boldsymbol{I}_p$$

The variance-covariance matrix such a linear unbiased estimator, $A\mathcal{Y}$, is

$$\operatorname{Var}(\mathbf{A}\mathcal{Y}) = \mathbf{A}\operatorname{Var}(\mathcal{Y})\mathbf{A}' = \mathbf{A}\sigma^2\mathbf{I}_n\mathbf{A}' = \sigma^2\mathbf{A}\mathbf{A}'.$$

Now we must show that

$$\operatorname{Var}(\boldsymbol{a}'\boldsymbol{A}\boldsymbol{\mathcal{Y}}) - \operatorname{Var}(\boldsymbol{a}'\widehat{\boldsymbol{\beta}}_{LSE}) = \sigma^2 \boldsymbol{a}' \left(\boldsymbol{A}\boldsymbol{A}' - (\boldsymbol{X}'\boldsymbol{X})^{-1}\right) \boldsymbol{a} \geq 0, \ \forall \ \boldsymbol{a} \in \mathbb{R}^p.$$

In other words, the symmetric matrix, $(AA' - (X'X)^{-1})$, must be positive semi-definite. Consider

$$\begin{split} \boldsymbol{A}\boldsymbol{A}' = & [\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'][\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}']' \\ = & [\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'][\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}']' + [\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'][(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}]' + \\ & (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}[\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}']' + [(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'][\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}] \\ = & [\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'][\boldsymbol{A} - (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}']' + (\boldsymbol{X}'\boldsymbol{X})^{-1}, \end{split}$$

showing that $AA' - (X'X)^{-1}$ is the positive semi-definite matrix $[A - (X'X)^{-1}X'][A - (X'X)^{-1}X']'$. Therefore $\widehat{\beta}_{LSE}$ is the BLUE for β .

Corollary 7. If rank(X) = p < n, the best linear unbiased estimator of $a'\beta$ is $a'\widehat{\beta}_{LSE}$.

To extend the Gauss-Markov theorem to the rank-deficient case we must define

Definition 6 (Estimable linear function). An estimable linear function of the parameters $\boldsymbol{\beta}$ in the linear model, $\mathcal{Y} \sim \mathcal{N}(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n)$, is any function of the form $\boldsymbol{l}'\boldsymbol{\beta}$ where \boldsymbol{l} is in the row span of \boldsymbol{X} . That is, $\boldsymbol{l}'\boldsymbol{\beta}$ is estimable if and only if there exists $\boldsymbol{c} \in \mathbb{R}^n$ such that $\boldsymbol{l} = \boldsymbol{X}'\boldsymbol{c}$.

The coefficients of the estimable functions form a rank(X) = k-dimensional linear subspace of \mathbb{R}^p . In the full-rank this subspace is all of \mathbb{R}^p so any linear combination $l'\beta$ is estimable.

In the rank-deficient case (i.e. $\operatorname{rank}(\boldsymbol{X}) = k < p$), consider the singular value decomposition $\boldsymbol{X} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{V}'$ with \boldsymbol{D} a diagonal matrix having non-negative, non-increasing diagonal elements, the first k of which are positive and the last p-k are zero. Let \boldsymbol{U}_k be the first k columns of \boldsymbol{U} , \boldsymbol{D}_k be the first k rows and k columns of \boldsymbol{D} , and \boldsymbol{V}_k be the first k columns of \boldsymbol{V} . The coefficients \boldsymbol{I} for an estimable linear function must lie in the column span of \boldsymbol{V}_k because

$$l = X'c = V_k \underbrace{D_k U_k'c}_{a} = V_k a$$

We will write the $p \times (p-k)$ matrix formed by the last p-k columns of V as V_{p-k} so that

$$oldsymbol{eta} = oldsymbol{V}oldsymbol{V}oldsymbol{eta} = egin{bmatrix} oldsymbol{V}_k & oldsymbol{V}_{(p-k)} \end{bmatrix} oldsymbol{V}_{k} & oldsymbol{eta} = oldsymbol{V}_k oldsymbol{\gamma} + oldsymbol{V}_{p-k} oldsymbol{\delta} & oldsymbol{\delta} & oldsymbol{V}_{p-k} oldsymbol{\delta} & oldsymbol{\delta} & oldsymbol{V}_{p-k} oldsymbol{\delta} & oldsymbol{\delta} &$$

where $\gamma = V_k' \beta$ and $\delta = V_{p-k}' \beta$ are the estimable and inestimable parts of the parameter vector in the V basis.

Now any estimable function is of the form

$$l'eta = a'V_k'eta = a'\gamma + 0 = a'\gamma,$$

where γ is the parameter in the full-rank model $\mathcal{Y} \sim \mathcal{N}(D_k U_k \gamma, \sigma^2 I_n)$.

So anything we say about estimable functions of β can be transformed into a statement about γ in the full rank model and anything we say about the fitted values, $X\beta$, or the residuals can be expressed in terms of the full-rank $D_k U_k \gamma$. In particular, the hat matrix, $H = U_k U'_k$, and has rank(H) = k and the projection into the orthogonal (residual) space is $I_n - H$.

Corollary 8 (Gauss-Markov extension to rank-deficient cases). $l'\widehat{\beta}_{LSE} = a'\widehat{\gamma}_{LSE}$ is the BLUE for any estimable linear function, $l'\beta$, of β .

Proof. By the Gauss-Markov theorem $\widehat{\gamma}_{LSE}$ is the BLUE for γ and $l'\beta = a'\gamma$ is a linear function of γ .

Theorem 9. Suppose that $k = rank(\mathbf{X}) \leq p$. Then an unbiased estimator of σ^2 is

$$S^2 = \frac{\|\mathcal{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2}{n-k} = \frac{\|\hat{\boldsymbol{\epsilon}}\|^2}{n-k} = \frac{\sum_{i=1}^n \hat{\epsilon}_i^2}{n-k}.$$

Proof. The simple proof is to observe that this estimator is the unbiased estimator of σ^2 for the full-rank version of the model, $\mathcal{Y} \sim \mathcal{N}(\mathbf{D}_k \mathbf{U}_k \boldsymbol{\gamma}, \sigma^2 \mathbf{I}_n)$.