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Chapter 4

The Gauss-Markov Theorem

In Chap. 3 we showed that the least squares estimator, β̂LSE , in a Gaussian linear model has is
unbiased, meaning that E[β̂LSE ] = β, and that its variance-covariance matrix is

Var β̂LSE = σ2
(
X ′X

)−1
= σ2R−1(R−1)′.

The Gauss-Markov theorem says that this variance-covariance (or dispersion) is the best that
we can do when we restrict ourselved to linear unbiased estimators, which means estimators that
are linear functions of Y and are unbiased.

To make these definitions more formal:

Definition 5 (Minimum Dispersion). Let T = (T1, . . . , Tp)′ be an estimator of θ = (θ1, . . . , θp)
′.

The dispersion of T is D(T ) = E[(T − θ)(T − θ)′]. If T is unbiased then its dispersion is simply
its variance-covariance matrix, D(T ) = Var(T ). T is minimum dispersion unbiased estimator of
θ if D(T̃ )−D(T ) is positive semidefinite for any unbiased estimator T̃ . That is

a′[D(T̃ )−D(T )]a ≥ 0 ∀ a ∈ Rp

Because the dispersion matrices of unbiased estimators are the variance-covariance matrices, this
condition is equivalent to

a′Var(T̃ )a− a′Var(T )a ≥ 0⇒ Var(a′T̃ )−Var(a′T ) ≥ 0

Theorem 8 (Gauss-Markov). In the full-rank case (i.e. rank(X) = p) the minimum dispersion
linear unbiased estimator of β is β̂LSE with dispersion matrix σ2(X ′X)−1. It is also called the best
linear unbiased estimator or BLUE of β.

Proof. Any linear estimator of β can be written as AY for some p× n matrix A. (That’s what it
means to be a linear estimator.) To be an unbiased linear estimator we must have

β = E[AY] = AE[Y] = AXβ ∀ β ∈ Rp ⇒ AX = Ip

The variance-covariance matrix such a linear unbiased estimator, AY, is

Var(AY) = AVar(Y)A′ = Aσ2InA
′ = σ2AA′.
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48 CHAPTER 4. THE GAUSS-MARKOV THEOREM

Now we must show that

Var(a′AY)−Var(a′β̂LSE ) = σ2a′
(
AA′ − (X ′X)−1

)
a ≥ 0, ∀ a ∈ Rp.

In other words, the symmetric matrix,
(
AA′ − (X ′X)−1

)
, must be positive semi-definite. Consider

AA′ =[A− (X ′X)−1X ′ + (X ′X)−1X ′][A− (X ′X)−1X ′ + (X ′X)−1X ′]′

=[A− (X ′X)−1X ′][A− (X ′X)−1X ′]′ + [A− (X ′X)−1X ′][(X ′X)−1X]′+

(X ′X)−1X[A− (X ′X)−1X ′]′ + [(X ′X)−1X ′][X(X ′X)−1]

=[A− (X ′X)−1X ′][A− (X ′X)−1X ′]′ + (X ′X)−1,

showing thatAA′−(X ′X)−1 is the positive semi-definite matrix [A−(X ′X)−1X ′][A−(X ′X)−1X ′]′.
Therefore β̂LSE is the BLUE for β.

Corollary 7. If rank(X) = p < n, the best linear unbiased estimator of a′β is a′β̂LSE.

To extend the Gauss-Markov theorem to the rank-deficient case we must define

Definition 6 (Estimable linear function). An estimable linear function of the parameters β in the
linear model, Y ∼ N (Xβ, σ2In), is any function of the form l′β where l is in the row span of X.
That is, l′β is estimable if and only if there exists c ∈ Rn such that l = X ′c.

The coefficients of the estimable functions form a rank(X) = k-dimensional linear subspace of
Rp. In the full-rank this subspace is all of Rp so any linear combination l′β is estimable.

In the rank-deficient case (i.e. rank(X) = k < p), consider the singular value decomposition
X = UDV ′ with D a diagonal matrix having non-negative, non-increasing diagonal elements, the
first k of which are positive and the last p− k are zero. Let Uk be the first k columns of U , Dk be
the first k rows and k columns of D, and Vk be the first k columns of V . The coefficients l for an
estimable linear function must lie in the column span of Vk because

l = X ′c = VkDkU
′
kc︸ ︷︷ ︸

a

= Vka

We will write the p× (p− k) matrix formed by the last p− k columns of V as Vp−k so that

β = V V ′β =
[
Vk V(p−k

] [ V ′k
V ′p−k

]
β = Vkγ + Vp−kδ

where γ = V ′kβ and δ = V ′p−kβ are the estimable and inestimable parts of the parameter vector in
the V basis.

Now any estimable function is of the form

l′β = a′V ′kβ = a′γ + 0 = a′γ,

where γ is the parameter in the full-rank model Y ∼ N (DkUkγ, σ
2In).

So anything we say about estimable functions of β can be transformed into a statement about
γ in the full rank model and anything we say about the fitted values, Xβ, or the residuals can be
expressed in terms of the full-rank DkUkγ. In particular, the hat matrix, H = UkU

′
k, and has

rank(H) = k and the projection into the orthogonal (residual) space is In −H.
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Corollary 8 (Gauss-Markov extension to rank-deficient cases). l′β̂LSE = a′γ̂LSE is the BLUE for
any estimable linear function, l′β, of β.

Proof. By the Gauss-Markov theorem γ̂LSE is the BLUE for γ and l′β = a′γ is a linear function
of γ.

Theorem 9. Suppose that k = rank(X) ≤ p. Then an unbiased estimator of σ2 is

S2 =
‖Y −Xβ̂‖2

n− k
=
‖ε̂‖2

n− k
=

∑n
i=1 ε̂

2
i

n− k
.

Proof. The simple proof is to observe that this estimator is the unbiased estimator of σ2 for the
full-rank version of the model, Y ∼ N (DkUkγ, σ

2In).
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