
Chapter 7

Selection of terms in a model

Often we are faced with a large number of potential terms in the model based upon several covari-
ates. (Recall that one or more covariates may generate a large number of terms through interactions,
powers of numeric terms, etc.)

We wish to determine a simple, adequate model. If we include too few terms our model will
be inadequate and we will introduce bias into the results. Including too many terms will introduce
excess variability in the parameter estimates and the predictions from the model.

In the past, model selection procedures were considered as applying to individual columns of the
model matrix for the “largest” model being considered. That often resulted in nonsensical results,
either because individual columns associated with a categorical term were deleted while others were
retained, or because the terms left in the model did not respect the hierarchy of terms. As stated
in the documentation for the drop1 function in the stats package,

The hierarchy is respected when considering terms to be added or dropped: all main
effects contained in a second-order interaction must remain, and so on.

R Exercise: Consider the timetemp data from the EngrExpt package, shown in Fig. 7.1 Potential
models for these data, assuming that the within-type relationship between time and temp is more-
or-less linear, which seems to be a reasonable assumption, are:

> lm1 <- lm(time ~ temp, timetemp)

> lm1a <- lm(time ~ type + temp, timetemp)

> lm1b <- lm(time ~ type + temp + type:temp, timetemp)

for which the summaries of the coefficients are

Estimate Std. Error t value Pr(>|t|)

(Intercept) -38.995 5.588 -6.98 5.3e-07

temp -1.858 0.217 -8.57 1.8e-08

Estimate Std. Error t value Pr(>|t|)

(Intercept) -33.6872 2.4432 -13.79 5.4e-12

typeOEM -3.7166 0.3721 -9.99 2.0e-09

temp -1.7178 0.0936 -18.35 2.1e-14
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Figure 7.1: Time for panels to reach the temperature -10 C. according to the freezer tempera-
ture. There are two types of panels: Repaired and OEM (Original Equipment Manufacture). The
Repaired panels have extra coats of pain.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -37.490 3.065 -12.23 9.7e-11

typeOEM 4.891 4.582 1.07 0.298

temp -1.864 0.118 -15.84 8.8e-13

typeOEM:temp 0.336 0.178 1.88 0.074

The first model, lm1, which does not incorporate the type variable, corresponds to the fit on the
left panel. The third model, lm1b, corresponds to the two lines in the right-hand plot. Model lm1a
is an intermediate model. It corresponds to parallel lines, one for the Repaired panels and one for
the OEM panels.

If we know that the panels being tested are of two types, as shown in the right-hand panel, then
the nature of the bias from having too few terms in the model is obvious; the time for Repaired
panels is being underpredicted and the time for OEM panels is over-predicted. The “canned”
residual plots, Fig. 7.2 show this to some extent because there are clearly two groups of residuals,
one centered around +2 on the scale of the raw residuals and one centered around -2.

The two groups of residuals are even more obvious if we consider these residuals and how they
are related to type. One possibility is to consider a comparative empirical density plot by type or
a normal QQ plot by type, Fig. 7.3.

Inflation of the variability in the parameter estimates when terms are added is clear from the
change in the standard error for the typeOEM coefficient from model lm1a to lm1b. The interpretation
of this coefficient also changes: in model lm1a it is the vertical distance between two parallel lines
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Figure 7.2: Residuals versus fitted values and a normal Q-Q plot for the residuals from model lm1.

whereas in model lm1b it is the change in the intercept of the two lines. That is, in model lm1b it
is the vertical deviation at a temperature of Oo C. only.

Using either the t-statistics in the coefficients tables or the comparative analysis of variance
output

> anova(lm1, lm1a)

Analysis of Variance Table

Model 1: time ~ temp

Model 2: time ~ type + temp

Res.Df RSS Df Sum of Sq F Pr(>F)

1 22 97.4

2 21 16.9 1 80.4 99.8 2.0e-09

> anova(lm1a, lm1b)

Analysis of Variance Table

Model 1: time ~ type + temp

Model 2: time ~ type + temp + type:temp

Res.Df RSS Df Sum of Sq F Pr(>F)

1 21 16.9

2 20 14.4 1 2.55 3.55 0.074
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Figure 7.3: Comparative empirical density plot and normal Q-Q plot of the residuals from model
lm1b by panel type.

we would conclude that model lm1a is a significantly better fit than lm1, which is obvious from
the plots, and that the decision between lm1a and lm1b is in the gray area with a p-value for the
comparison of 7.4%. If we adopt the standard of 5% or less for a significant term then we would
accept the simpler model, lm1a.

When we check model lm1b with drop1 to see if any of the terms could be dropped, it examines
only the interaction term, because of the hierarchy principle. If the interaction term is retained
then both the main effects terms should be retained.

> drop1(lm1b)

Single term deletions

Model:

time ~ type + temp + type:temp

Df Sum of Sq RSS AIC

<none> 14.4 -4.29

type:temp 1 2.55 16.9 -2.37

In this comparison the model with the interaction term produces a lower value of Akaike’s
Information Criterion (AIC), indicating that we should retain the interaction, corresponding to
distinct non-parallel lines. Because of the hierarchy, the terms type and temp are retained when
type:temp is retained.

We can obtain the value of the F test (relative to the original model) in addition to the AIC
values as

> drop1(lm1b, test="F")
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Single term deletions

Model:

time ~ type + temp + type:temp

Df Sum of Sq RSS AIC F value Pr(F)

<none> 14.4 -4.29

type:temp 1 2.55 16.9 -2.37 3.55 0.074

which shows apparently inconsistent results between the AIC comparison, which favors the model
with the interaction, and the F test, which favors the model without.

This is not uncommon. Comparisons based on AIC or Schwartz’s Bayesian Information criterion
(BIC or, sometimes, SBC) often end up contradicting each other. This is why model selection
criteria should be considered as guidance, not absolute.

To obtain a comparison using BIC with drop1 we use the optional argument k=log(n) where n

is the number of observations — 24 in this case. One way to count the number of observations used
to fit the model (i.e. after possible eliminations of rows due to missing data) is as the number of
rows in the model frame. A slightly safer way (which would take into account cases with a weight
of zero) is show in

> drop1(lm1b, test="F", k=log(df.residual(lm1b) + lm1b$rank))

Single term deletions

Model:

time ~ type + temp + type:temp

Df Sum of Sq RSS AIC F value Pr(F)

<none> 14.4 0.419

type:temp 1 2.55 16.9 1.162 3.55 0.074

Even though the column is still labelled as AIC, it is BIC that is being calculated.

7.1 General model selection problem

The general model selection problem is often phrased in terms of selecting a subset of the columns
x1, . . . ,xp of a model matrix X to form a simple adequate model. However, this confuses the
columns of X with terms in the model and those two are not always interchangeable — because
a single term can correspond to more than one column. Also, this treats all terms as being equal,
which they are not according to the hierarchy of terms.

Assuming that we had a multiple linear regression model in which there is a one-to-one corre-
spondence between terms and columns we could examine all possible subsets but that would entail
checking 2p potential models (or 2p−1 if we assume that the intercept is always included). It would
quickly become unmanageable to try to create F or t-tests to compare potential models. Instead
we use a mechanism or algorithm to enumerate the potential models and usually derive a criterion
to choose between them (always taking into account that this is only advisory, not prescriptive).

Some of the criteria commonly used are:

• Mallow’s Cp
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• AIC/BIC

• Cross Validation

R Exercise We have mentioned and used AIC and BIC in conjunction with the drop1 function.
You can also use Mallow’s Cp statistic with the drop1 or step functions. To show the more general
usage of the step function we examine another data set, swiss, which provides certain measures on
the cantons in Switzerland, including a fertility measure. (See ?swiss for details.)

> str(swiss)

'data.frame': 47 obs. of 6 variables:

$ Fertility : num 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...

$ Agriculture : num 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...

$ Examination : int 15 6 5 12 17 9 16 14 12 16 ...

$ Education : int 12 9 5 7 15 7 7 8 7 13 ...

$ Catholic : num 9.96 84.84 93.4 33.77 5.16 ...

$ Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...

> printCoefmat(coef(summary(lm2 <- lm(Fertility ~ ., swiss))))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.9152 10.7060 6.25 1.9e-07

Agriculture -0.1721 0.0703 -2.45 0.0187

Examination -0.2580 0.2539 -1.02 0.3155

Education -0.8709 0.1830 -4.76 2.4e-05

Catholic 0.1041 0.0353 2.95 0.0052

Infant.Mortality 1.0770 0.3817 2.82 0.0073

> printCoefmat(coef(summary(mod <- step(lm2))))

Start: AIC=191

Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

Df Sum of Sq RSS AIC

- Examination 1 53 2158 190

<none> 2105 191

- Agriculture 1 308 2413 195

- Infant.Mortality 1 409 2514 197

- Catholic 1 448 2553 198

- Education 1 1163 3268 209

Step: AIC=190

Fertility ~ Agriculture + Education + Catholic + Infant.Mortality

Df Sum of Sq RSS AIC

<none> 2158 190

- Agriculture 1 264 2422 193
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- Infant.Mortality 1 410 2568 196

- Catholic 1 957 3115 205

- Education 1 2250 4408 221

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.1013 9.6049 6.47 8.5e-08

Agriculture -0.1546 0.0682 -2.27 0.0286

Education -0.9803 0.1481 -6.62 5.1e-08

Catholic 0.1247 0.0289 4.31 9.5e-05

Infant.Mortality 1.0784 0.3819 2.82 0.0072

> drop1(lm2, scale=deviance(lm2)/df.residual(lm2))

Single term deletions

Model:

Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

scale: 51.3

Df Sum of Sq RSS Cp

<none> 2105 6.00

Agriculture 1 308 2413 9.99

Examination 1 53 2158 5.03

Education 1 1163 3268 26.64

Catholic 1 448 2553 12.72

Infant.Mortality 1 409 2514 11.96

From the coefficient matrix for model lm2 we see that the Examination term is not at all sig-
nificant. The test for the reduced model without this term versus the full model has a p-value of
about 32% and we prefer the simpler model. Applying drop1 without other arguments

> drop1(lm2)

Single term deletions

Model:

Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

Df Sum of Sq RSS AIC

<none> 2105 191

Agriculture 1 308 2413 195

Examination 1 53 2158 190

Education 1 1163 3268 209

Catholic 1 448 2553 198

Infant.Mortality 1 409 2514 197

produces a table based on the AIC values. We need to look at the AIC column to see which model
produces the lowest AIC value. In this case it is the current model minus the Examination term. It
is easier to see this if we order the rows by increasing AIC
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> d1 <- drop1(lm2)

> d1[order(d1[["AIC"]]), ]

Single term deletions

Model:

Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

Df Sum of Sq RSS AIC

Examination 1 53 2158 190

<none> 2105 191

Agriculture 1 308 2413 195

Infant.Mortality 1 409 2514 197

Catholic 1 448 2553 198

Education 1 1163 3268 209

As before, we can include the F tests

> d1 <- drop1(lm2, test="F")

> d1[order(d1[["AIC"]]),]

Single term deletions

Model:

Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

Df Sum of Sq RSS AIC F value Pr(F)

Examination 1 53 2158 190 1.03 0.3155

<none> 2105 191

Agriculture 1 308 2413 195 5.99 0.0187

Infant.Mortality 1 409 2514 197 7.96 0.0073

Catholic 1 448 2553 198 8.72 0.0052

Education 1 1163 3268 209 22.64 2.4e-05

As all the sub-models correspond to single term deletions and all the potential terms for deletion
involve one coefficient only, ordering by increasing AIC is the same as ordering by increasing F
value. We usually order by increasing AIC because AIC is defined even for the model with no
deletions.

The same approach is followed for BIC

> d1 <- drop1(lm2, test="F", k=log(df.residual(lm2)+lm2$rank))

> d1[order(d1[["AIC"]]),]

Single term deletions

Model:

Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

Df Sum of Sq RSS AIC F value Pr(F)

Examination 1 53 2158 199 1.03 0.3155

<none> 2105 202
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Agriculture 1 308 2413 204 5.99 0.0187

Infant.Mortality 1 409 2514 206 7.96 0.0073

Catholic 1 448 2553 207 8.72 0.0052

Education 1 1163 3268 219 22.64 2.4e-05

To use Mallow’s Cp criterion (derived below) we specify a scale argument, which is an estimate
of σ2 to which all the models could be compared. Typically this will be the residual mean square
for the most complex model

> drop1(lm2, scale=deviance(lm2)/df.residual(lm2))

Single term deletions

Model:

Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

scale: 51.3

Df Sum of Sq RSS Cp

<none> 2105 6.00

Agriculture 1 308 2413 9.99

Examination 1 53 2158 5.03

Education 1 1163 3268 26.64

Catholic 1 448 2553 12.72

Infant.Mortality 1 409 2514 11.96

and, again, it helps to order these by increasing value of Cp

> d1 <- drop1(lm2, scale=deviance(lm2)/df.residual(lm2))

> d1[order(d1[["Cp"]]), ]

Single term deletions

Model:

Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

scale: 51.3

Df Sum of Sq RSS Cp

Examination 1 53 2158 5.03

<none> 2105 6.00

Agriculture 1 308 2413 9.99

Infant.Mortality 1 409 2514 11.96

Catholic 1 448 2553 12.72

Education 1 1163 3268 26.64

However, we must be careful in interpreting these results. We evaluate AIC and BIC according
to a “smaller is better” rule. This does not apply to Mallows’ Cp. Desirable values of Cp are those
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close to or less than the number of coefficients in the model. The definition is such that the Cp will
be exactly the number of coefficients in the model from which the scale parameter is derived. In
this case there are 6 coefficients in the original model and its value of Cp is exactly 6. The Cp values
for the other models should be compared to 5, which indicates that the model with Examination

removed should be considered but not the others.
So bear in mind that the model producing the lowest value of Cp is not chosen automatically.

7.2 Underfitting / Overfitting

The term underfitting means that we exclude covariates that should be included whereas overfitting
refers to using additional covariates that should be excluded.

If the “true” model is Y ∼ N (Xβ, σ2I) and we derive an estimate β̃ where E[β̃] = β∗ and not
β, then

E[(β̃ − β)2] = E[(β̃ − β∗ + β∗ − β)2]

= E[(β̃ − β∗)2] + E[(β∗ − β)2] + 2E[(β̃ − β∗)(β∗ − β)]

= Var(β̃) + Bias2 + 0

So the mean squared error (MSE) is composed of the variance and the bias and sometimes we
trade them off against each other. If we write the “true” mean as

Xβ =
[
X1 X2

] [β1

β2

]
then fitting Y ∼ N (X1β

∗
1, σ

2I) would be underfitting while Y ∼ N (X1β
∗
1 +X2β

∗
2 +X3β

∗
3, σ

2I)
results in overfitting.

The underfitting case is the same as setting β2 = 0 and β̂∗1 6= β̂1 unless X1 ⊥ X2, in which

case β̃ = (β̂∗1,0).

Theorem 12.
β̂ = (X ′X)−1X ′Y full model

β̂ =

(
β̂1

β̂2

)
from Y = Xβ+ε β̂∗1 = (X ′1X1)

−1X ′1Y estimated from reduced model fit Y = X1β
∗
1+ε

1. E[β̂∗1] = β1 + Aβ2 where A = (X ′1X1)
−1X ′1X2 ⇒ estimator is biased (unbiased if X2 is

orthogonal to X1)

2. Cov(β̂∗1) = σ(X ′1X1)
−1

3. Cov(β̂1) − Cov(β̂∗1) = AB−1A′ where A = (X ′1X1)
−1X ′1X2 and B = X ′2X2 − X ′2X1A ⇒

V ar(β̂j) > V ar(β̂∗j )

4. V ar(X ′01β̂1)− V ar(X ′01β̂∗1) ≥ 0 where X01 is a p x 1 matrix

5. V ar(X ′0β̂) − V ar(X ′01β̂∗1) ≥ 0 ∀ X0 where V ar(X ′01β̂
∗
1) is the fitted value from the reduced

model
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7.3 Risk

Want to fit E[(X∗1 β̂
∗
1 −Xβ)2]. µ = Xβ and µ̂ = X1β

∗
1 (X1 is an n x k matrix).

E[(X1β
∗
1 −Xβ)′(X1β̂

∗
1 −Xβ)] = (∗) = σ2k + β′X ′(I − P1)Xβ = R(k)

P1 = X1(X
′
1X1)

−1X1

As k increases, β′X ′(I − P1)Xβ decreases. We don’t know σ2 and true β. If we did, choose k with

minimum risk. Assume

 ↑ ↑
X1 Xp

↓ ↓


Need an estimator of (∗)

7.3.1 Estimating Risk

RSS(k) = ||Y −X1β̂
∗
1||2

= ||Y − P1Y ||2

= Y ′(I − P1)Y

E[RSS(k)] = E[Y ′(I − P1)Y ]

= E[tr(Y ′(I − P1)Y )]

= E[tr(I − P1)Y Y
′]

= tr[(I − P1)E[Y Y ′]]

= tr[(I − P1)(σ
2I +Xββ′X ′)]

= σ2(n− k) + β′X ′(I − P1)Xβ

R̂(k) = RSS(k)− (n− 2k)σ2

E(R̂(k)) = E(RSS(k))− (n− 2k)σ2

= (n− k)σ2 + β′X ′(I − P1)Xβ − (n− 2k)σ2

= σ2k + β′X ′(I − P1)Xβ

7.4 Mallow’s Cp

Cp(k) =
RSS(k)

s2
+ 2k − n

E[Cp(k)] = E[(n− k) +
β′X(I − P1)Xβ

σ2
+ 2k − n]
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Should be roughly equal to k. In practice this is evaluated for the model with k coefficients
that provides the lowest residual sum of squares. Limitation: we need to decide what estimate, s2

of σ2 to use. Typically this is s2 from the full model?

7.5 AIC - Akaike’s Information Criterion

f(y) is the true density of data Y ∼ N (Xβ, σ2I) and g(y) is the density corresponding to the

model of interest (candidate model) Y ∼ N (X1β1, σ
2I), evaluated at the estimate, β̂∗1. The

Kullback-Leibler divergence is defined as

KL(f, g) =

∫
Rn

[
log

f(y)

g(y)

]
f(y) dy = Ef

[
log

f(y)

g(y)

]
Two properties of the Kullback-Leibler divergence are

KL(f, g) ≤ KL(f, f) = 0 and KL(f, g) 6= KL(g, f)

As described in Chap. 1, the log-likelihood, `(β, σ|y), of a linear model is

`(β, σ|y) = log (L(β, σ|y)) = −n
2

log(2πσ2)− ‖y −Xβ‖
2

2σ2

Once we have fit the model we evaluate this quantity at the parameter estimates. Typically we use
the maximum likelihood estimate, σ̂ML = S(β̂)/n, where S(β̂) is the sum of squared residuals at
the parameter estimates providing

`(β̂, σ̂ML|y) = `(β̂|y) = −n
2

[
log

(
1 +

2πS(β̂)

n

)]

The AIC criterion is defined as
AIC = −2`(β̂|y) + 2r

where r is the dimension of the parameter vector. Most definitions include σ2 as one of the
parameters so, in a model with p coefficients, r = p+ 1. The BIC criterion is defined as

BIC = −2`(β̂|y) + 2 log(n) r

Because these criteria are derived from the deviance, which is negative twice the log-likelihood,
smaller is better. The deviance measures the fidelity of the model to the observed data and the
term 2r, for AIC, or 2 log(n) r, for BIC, is a penalty on the number of parameters required to
achieve this fidelity.

AIC is a simple criterion. It comes down to preferring a model with an additional parameter if
the deviance can be reduced by 2 (or, equivalently, the log-likelihood can be increased by 1). BIC
is a bit more subtle in that an additional parameter must increase the log-likelihood by log(n) or
more to be judged effective.
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R Exercise We have seen the use of AIC and BIC as model selection criteria in earlier sections.
The values quoted for AIC and BIC in the drop1 function are not exactly the same as the definitions
given above but the differences are. In the drop1 function AIC is calculated as

> AIC <- n * log(RSS/n) + 2 * p

where p is the number of coefficients. For the full model in

> drop1(lm1b)

Single term deletions

Model:

time ~ type + temp + type:temp

Df Sum of Sq RSS AIC

<none> 14.4 -4.29

type:temp 1 2.55 16.9 -2.37

we have n = 24 and p = 4 providing

> 24 * log(deviance(lm1b)/24) + 2 * 4

[1] -4.29

and for the reduced model it is

> 24 * log(deviance(lm1a)/24) + 2 * 3

[1] -2.37

(Recall that the deviance function applied to a linear model returns the residual sum of squares
and not the quantity we are calling the deviance - a regretable confusion.)

If you wish to use the original definition instead (which is probably a good idea if you are
reporting a model fit and want to compare the AIC to values from other software), you could use

> logLik(lm1a); logLik(lm1b)

'log Lik.' -29.9 (df=4)

'log Lik.' -27.9 (df=5)

providing

> AIC(lm1a, lm1b)

df AIC

lm1a 4 67.7

lm1b 5 65.8

These correspond to the formulas given above
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> all.equal(unclass(logLik(lm1a)),

+ -12*(1 + log(2*pi*deviance(lm1a)/24)), check.attr=FALSE)

[1] TRUE

> all.equal(AIC(lm1a), -2*unclass(logLik(lm1a)) + 2*4, check.attr=FALSE)

[1] TRUE

as does the function BIC in the stats4 package.

> all.equal(stats4::BIC(lm1a), -2*unclass(logLik(lm1a))+log(24)*4, check.attr=FALSE)

[1] TRUE

This use of non-standard definitions would be troublesome except for the fact that the AIC and
BIC values are not of interest by themselves. It is only the differences between models for these
criteria that are important and those are consistent

> diff(drop1(lm1b)$AIC)

[1] 1.92

> diff(AIC(lm1b, lm1a)$AIC)

[1] 1.92

> diff(drop1(lm1b, k=log(24))$AIC)

[1] 0.744

> diff(stats4::BIC(lm1b, lm1a)$BIC)

[1] 0.744

7.6 Forward Selection and Backward Deletion

To this point we have only used drop1 to perform what is called backward selection on a model. We
begin with the largest model we want to entertain then drop terms as appropriate. An alternative is
forward selection implemented in add1. A combination of forward and backward selection is called
stepwise selection and is implemented in the step function. Very occasionally a term that is already
in the model will no longer be significant when another term is added or a term that was deleted
can be added back in when another term is deleted, which is why the step function will consider
changes in both directions.

For add1 we must specify a scope argument to indicate the largest model to be entertained and
we can do the same for step
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> add1(lm1a, ~ type + temp + type:temp)

Single term additions

Model:

time ~ type + temp

Df Sum of Sq RSS AIC

<none> 16.9 -2.37

type:temp 1 2.55 14.4 -4.29

> summary(step(lm(Fertility ~ 1, swiss),

+ ~ Agriculture + Examination + Education +

+ Catholic + Infant.Mortality))

Start: AIC=238

Fertility ~ 1

Df Sum of Sq RSS AIC

+ Education 1 3163 4015 213

+ Examination 1 2994 4184 215

+ Catholic 1 1543 5635 229

+ Infant.Mortality 1 1246 5932 231

+ Agriculture 1 895 6283 234

<none> 7178 238

Step: AIC=213

Fertility ~ Education

Df Sum of Sq RSS AIC

+ Catholic 1 961 3054 202

+ Infant.Mortality 1 891 3124 203

+ Examination 1 466 3550 209

<none> 4015 213

+ Agriculture 1 62 3953 214

- Education 1 3163 7178 238

Step: AIC=202

Fertility ~ Education + Catholic

Df Sum of Sq RSS AIC

+ Infant.Mortality 1 632 2422 193

+ Agriculture 1 486 2568 196

<none> 3054 202

+ Examination 1 2 3052 204

- Catholic 1 961 4015 213

- Education 1 2581 5635 229

Step: AIC=193

Fertility ~ Education + Catholic + Infant.Mortality
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Df Sum of Sq RSS AIC

+ Agriculture 1 264 2158 190

<none> 2422 193

+ Examination 1 9 2413 195

- Infant.Mortality 1 632 3054 202

- Catholic 1 702 3124 203

- Education 1 2380 4803 224

Step: AIC=190

Fertility ~ Education + Catholic + Infant.Mortality + Agriculture

Df Sum of Sq RSS AIC

<none> 2158 190

+ Examination 1 53 2105 191

- Agriculture 1 264 2422 193

- Infant.Mortality 1 410 2568 196

- Catholic 1 957 3115 205

- Education 1 2250 4408 221

Call:

lm(formula = Fertility ~ Education + Catholic + Infant.Mortality +

Agriculture, data = swiss)

Residuals:

Min 1Q Median 3Q Max

-14.676 -6.052 0.751 3.166 16.142

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.1013 9.6049 6.47 8.5e-08

Education -0.9803 0.1481 -6.62 5.1e-08

Catholic 0.1247 0.0289 4.31 9.5e-05

Infant.Mortality 1.0784 0.3819 2.82 0.0072

Agriculture -0.1546 0.0682 -2.27 0.0286

Residual standard error: 7.17 on 42 degrees of freedom

Multiple R-squared: 0.699, Adjusted R-squared: 0.671

F-statistic: 24.4 on 4 and 42 DF, p-value: 1.72e-10

Careful examination of the output from step shows that, at some steps, terms were considered for
inclusion (prefaced by +) and for deletion (prefaced by -).

The value of the step function is the linear model fit that is chosen as the best, according to
the criteria.

We have shown the use of the step, drop1 and add1 functions in the stats package. There are
several other functions in other packages, notably the mle.stepwise function in the wle package
and the leaps and regsubsets functions in the leaps package, that perform stepwise procedures
but these are typically based on old Fortran code that considers the columns of the model matrix
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as unrelated to each other and, thus, can produce nonsensical models.

7.7 Cross-Validation

Cross validation is a general method for variable selection. It is not constrained to linear models.
Motivation for cross-validation:

1. Can find best possible scenario for model

2. Useful if there is other data of the same nature

3. Use model to predict values for other data

Let n = sample size

Y train = β̂train0 + β̂train1 X1 RSS =
1

n

n∑
i=1

(Y train
i − β̂train0 − β̂train1 Xtest

1 )2

Using residual sum of squares for test data ⇒ prediction error, a.k.a. test set error

7.7.1 Theory Behind Cross-Validation

Data: n iid observations Xi = (Yi,Wi1, . . . ,Wip). X1, . . . , Xn learning set data used to learn
population parameters. P0 is the true data generating distribution. Xi ∼ P0

Model: Y = Wβ + ε E(ε|W ) = 0
Parameter of interest:
Denote parameters of interest µ0 = µ(W ) = EP0(Y |W )
Loss functions - quantify error in prediction. L : (X,µ)→ L(X,µ) ∈ R. L(y, ŷ) elaborates loss

incurred when predicting y by ŷ
Squared error loss function L(y, ŷ) = (y − ŷ)2

Risk functions - for given loss function L(X,µ) with µ ∈ ψ (ψ is parameter space Rp for β with
p explanatory variables). R(µ, P0) = EP0 [L(X,µ)] =

∫
L(X,µ)dP0(X) =

∫
L(X,µ)f(x)dx. When

P0 known, µopt = argminµ∈ψR(µ, P0)
Pn - empirical distribution of data (X1, . . . , Xn) each data point gets mass 1

n

Definition 7. µ̂ estimator is mapping from empirical distributions to parameter space ψ
µn = W β̂LS full model
µn = W1β̂1,LS sub model

True unknown risk: Eβ[L(X,µn)] =
∫
L(X,µn)dP0(x) where L(X,µn) = (Y − µn(w))2

Loss reduces to RSS: EPn [L(X,µn)] = 1
n

n∑
i=1

(Yi −Wiβ̂)2 (estimator of risk, but overfits)

µ0(w) like true Xβ and Xn(w) like Xβ̂
As nTS →∞, empirical distribution converges to the true distribution.
Can reserve 1/3 of the dataset as test and 2/3 as training, but we don’t usually have luxury to

set aside part of the data set



118 CHAPTER 7. SELECTION OF TERMS IN A MODEL

7.7.2 Utilizing Cross Validation

Eβn

∫ Risk︷ ︸︸ ︷
L(X, µ̂(P 0

n,Bn
)︸ ︷︷ ︸

training

)dP 1
n,Bn

(x)︸ ︷︷ ︸
validation

where L(X, µ̂(P 0
n,Bn

))dP 1
n,Bn

(x) is the risk, µ̂(P 0
n,Bn

) is from training, dP 1
n,Bn

(x) is from valida-
tion.

Calculate EBn by 1
n1

∑
i|Bn(i)=1

L(Xi, µ̂(P 0
n,Bn

))

Leave One Out Cross Validation(LOOCV)

n-1 training set 1 point for testing set

Compute statistic for each data point

V-fold Cross-Validation

5 or 10 fold used in practice

Example:

1 2 3 4 5

x3 x2 x1 x4 x7
x5 x8 x6 x9 x10

n data points, v parts (Example - 5 fold cross validation with 10 data points)

1. Randomly submit 10 observations into 5 mutually exclusive and exhaustive sets of size n
v

2. Cycle 1: Box 1 validation set, boxes 2-5 learning set

3. Construct estimators based on training set x1, x2, x4, x6, x7, x8, x9, x10
µn,1 = β̂0 + β̂1W5

µn,2 = β̂0 + β̂1W6 + β̂2W10

µn,3 = β̂0 + β̂1W3 + . . .

(Forward, backward, stepwise regression)

4. Compute validation set error

CV1(µn,1) = 1
2 [(Y3 − µn1(X3))

2] + [(Y5 − µn1(X5))
2]

CV1(µn,2) =
...

5. Cycle 2: Exclude box 2 and repeat using the same training models as previously selected
(µn,1, µn,2, etc.)
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6. Final CV error

CV (µn,1) = 1
5

5∑
i=1

CVi(µn,1)

CV (µn,2) =
1

5

5∑
i=1

CVi(µn,2)

...

7. Choose model with minimum CV error

Note: run forward selection/backward deletion on all data yields candidate models

Run candidate models for each box. Choose model size based on cross-validation

V-fold cross-validation is implemented in the CVlm function from the DAAG package.

7.8 Notes about Variable Selection

7.8.1 Role of the Intercept

1
n

n∑
i=1

ε̂i = 0⇔ β̂0 = ȳ − β̂1X̄1 − · · · − β̂pX̄p (Only if there is an intercept)

7.8.2 Bias-Variance Tradeoff

MSE = E(β̂ − β)2

= E(β̂ − E(β̂))2 + (E(β̂)− β)2

= Variance + Bias2

V ar(β̂1) =
σ2

n∑
i=1

(xi1 − x̄1)2

1

1− r212

Goal - achieve balance between bias and variance

7.8.3 Singular Design Matrices

In some cases, (XTX)−1 is almost singular

1. if n < p

2. if some variables are highly correlated (Solution: don’t use all variables - choose using variable
selection)

(XTX + λI)−1 Removes singularity
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7.8.4 Reasons for Variable Selection

1. Too many variables

2. Deal with collinearity (predictors are highly correlated)

3. Reasonably smaller size of predictors can simplify results



Chapter 8

Dealing with Multicollinearity

8.0.5 Dealing with Multicollinearity with large number of variables

1. Subset selection / methods for model construction
Selection among models - Cp, AIC/BIC, CV

2. Shrinkage methods
Ridge regression - uses all the covariates but imposes constraints on them
Lasso

3. Derived input directions - Principle components regression (PCR), partial least squares (PLS)
Use all the variables but form linear combinations (meta - predictors)

8.1 Ridge Regression

β̂ridge = arg min
n∑
i=1

(Yi −
p∑
j=1

Xijβj)
2 such that

p∑
j=1

β2j ≤ s

where s is user specified

⇒ β̂ridge = argmin

n∑
i=1

(Yi −
p∑
j=1

Xijβj)
2 + λ

p∑
j=1

β2j

with λ ≥ 0. There is a 1-1 correspondance between s, λ
Ridge regression does not penalize the intercept. Xij is replaced by Xij − X̄j

Use cross-validation to find the appropriate λ

RSSridge(λ) = (Y −Xβ)T (Y −Xβ) + λβTβ

∂

∂β
RSSridge(λ) = −2XTY + 2(XTX + λI)β

β̂ridge = (XTX + λI)−1XTY

121
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XTX + λI =

 +

λ . . . 0

0
. . . 0

0 . . . λ


Adding λ makes (XTX)−1 stable

OLS ⇒ s =∞. As s decreases, it forces βi to be smaller

8.1.1 Shrinkage Properties of Ridge Regression

R = XTX assuming R−1 exists

β̂ridgeλ = (XTX + λIp)
−1XTY

= (R+ λIp)
−1R(R−1XTY )

= [R(Ip + λR)−1]−1R[(XTX)−1XTY ]

= [Ip + λR−1]−1R−1Rβ̂LSE

= [Ip + λR−1]−1β̂LSE

E[β̂ridgeλ ] = E[(Ip + λR−1)−1β̂LSE ]

= (Ip + λR−1)−1β

8.1.2 Special Case: If XTX = Ip

β̂LSE = (XTX)−1XTY = XTY β̂ridgeλ = 1
1+λX

TY = 1
1+λ β̂LSE

Each element of β̂LSE being shrunk by 1
1+λ ⇒ large λ, more shrinkage

ŶLSE = Xβ̂LSE = X(X ′X)−1XTY

= UDV T [(UDV T )′(UDV T )]−1(UDV T )TY

= UUTY

=

p∑
j=1

Ujnx1U
T
j1xnYnx1

Ŷridge = Xβ̂ridge =

p∑
j=1

Uj
d2j

d2j + λ
UTj Y

If di < dj ⇒
d2i

d2i+λ
<

d2j
d2j+λ

As dj decreases, sample variance decreases

Model selection form of shrinkage-setting certain covariates to zero
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8.1.3 MSE of β̂LSE, β̂
ridge

Let X = (X1, . . . , Xp) and Z = (XV1, . . . , XVp)← predictors
X̃ = XV = UDV TV = UD

β̂LSE = (X̃T X̃)−1X̃TY = (DTUTUD)−1DTUTY

β̂LSE = diag(
1

dj
)UTY

β̂LSE,j =
1

dj
UTj Y

β̂ridge = (X̃T X̃ + λIp)
−1X̃TY = diag(

dj
d2j + λ

)UTY

β̂ridgej =
dj

d2j + λ
UTj Y =

d2j
d2j + λ

β̂LSE

V ar(β̂LSE,j) =
σ2

d2j

V ar(β̂ridgej ) =
σ2d2j

(d2j + λ)2

E[(βj − β̂LSE,j)2] = MSE(β̂LSE,j) =
σ2

d2j

MSE(β̂ridgej ) = (βj − βj
d2j

d2j + λ
)2 +

σ2

d2j
(

d2j
d2j + λ

)2

=
σ2

d2j

d2j (d
2
j + λ2β2j /σ

2)

(d2j + λ2)

= MSE(β̂LSE) ∗ something greater than 1 ⇒MSE(β̂ridge) < MSE(β̂LSE)

8.2 Principle Components

Singular Value Decomposition: Xnxp = UnxpDpxpV
T
pxp where X is centered UTU = V TV = Ip D

diagonal d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 U provides an orthonormal basis for the column space of X
XTX = (UDV T )T (UDV T ) = V DV T

Definition 8. Columns of V are called principle component directions of X

Zj = XVj principle components ofX Zj = UDV TVj = Ujdj = jth column of U ∗jth element of D
V T
i Vj = 0 i 6= j

Z1 = XV1 = U1d1 =

X11V11 + · · ·+X1pV1p
...

Xn1Vn1 + · · ·+XnpVnp
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V =

 ↑ ↑
V1 Vp
↓ ↓

 Vj =
(
Vij . . . Vpj

)
Sample variance of Z1 = sample variance of d1U1 = 1

n(U1d1)
T (U1d1) = 1

nd
2
1U

T
1 U1 = 1

nd
2
1 Sample

variance of Z2 = 1
nd

2
2 . . . Sample variance of Zp = 1

nd
2
p

By construction, SV(Z1) ≥ SV(Z2) · · · ≥ SV(Zp)

Principle components - Z1 trying to find greatest variance among X, the covariate space. Ex.
- Covariates X1 and X2

Z1 =

 ↑ ↑
X1 X2

↓ ↓


nx2

 ↑V1
↓


2x1

Each data point multiplied by the corresponding weights. Z1 lower dimensional summary of
covariate vector.

nxp, p = 5000 projection of data points on lower dimensional space.

Principle components are orthogonal so multicollinearity is mitigated.

8.2.1 Scree Plot

See the example for the function screeplot. It produces a plot of the variance of each of the
principle components or, alternatively, the proportions d2j/

∑p
k=1 d

2
k. It is used to decide how many

components to include.

8.2.2 Principle Components Regression

Zj = djUj = XVj

Idea: Regress on Zj Y = Zβ + ε = XV β + ε Y ∼ Z1 Y ∼ Z1 + Z2 Y ∼ Z1 + . . . Zp
Do variable selection on principle components using CV, AIC, BIC

Benefits - no multicollinearity, clear what order models should be looked at

However, no reason to believe why response is correlated more with Zi than Zi+1

Principle component analysis - look at X, summarize as XV1, . . . , XVp (lower dimensional)

Principle component regression - relate to response.

8.2.3 PCA Formulation

X =

 ↑ ↑
X1 . . . Xp

↓ ↓


Find Xw1 p x 1 vector such that it yields maximal sample variance - maxvar(Xw1) but ||w1|| =

1

maxwT1X
TXw1 subject to ||w1|| = 1

L = wT1X
TXw1 − λ(wT1 w1 − 1) ∂L

∂w1
= 2XTXw1 − 2λw1

XV1 - largest sample variance

(XTX)w1 = λw1 where w1 is eigenvector, λ is eigenvalue
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Choose w1 according to largest λ
XTX = V D2V T D2 eigenvalues of XTX

8.3 Partial Least Squares Regression

Algorithmic approach to deal with multicollinearity
maxw1 V ar(Xw1)︸ ︷︷ ︸

PCA

Cov2(Xw1, Y )︸ ︷︷ ︸
OLS

||w1|| = 1

⇒ maxw1Cov
2(Xw1, Y ) ⇒ eigenvalue problem for XTY Y TX, XTY Y Tw1 = λw1

8.3.1 Procedures in R

data in R - highly correlated predictors

library(MASS)

lm.ridge(Y~X, data, lambda(0,.1,.001))

#Argument for lambda (start, end, increment)

lm$lambda #list of lambda values

lm$coef #coefficients

matplot( ) #Ridge trace plot - change in coefficient based on change in lambda

#As lambda increases - estimates stabilize and approach constant value

#Use cross-validation and intuition

select(lm.ridge(...) )

#Ridge regression automatically centers and standardizes

lm$coef[,1]/lm$scales #regains OLS estimates

#OLS and lm$coef[1,] will be different

#lm.ridge automatically scales

#Use P.C. - must standardize

apply( )

eigen( ) # find eigenvalues and eigenvectors

#eigenvectors of X'X are principle components

Scree plot - tall group - eigenvectors that capture most variability
Linear combinations have little intuitive meaning.
With eigenvectors - form metapredictors
If there was more data, compare in terms of prediction error
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library(pls)

plsr( ) # partial least squares regression can deal with multivariate response

lm2$scores # XW vector

PCR -maxwT1X
TXw1 subject to wTw = 1 V [, 1] = w1 - eigenvector fromXTX V = eigen(XTX)$vector

- new predictor Xw1

Partial least squares maxwT1X
TY Y TXw1 such that wTw = 0 - new predictor Xw1

PC → Xw1 Y ∼ Xw1 where w1 is max(var(Xw))
w1 → V [, 1]
PLS → XW ∗1 Y ∼ Xw∗1 where w∗1 is maxCor2(Y,Xw)
R2 fair comparison - have the same number of covariates
Usually partial least squares need fewer components than principle components - more informed

way of forming direction vector
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