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What I should have described in class today

Sorry for botching the description of the deviance calculation in a generalized linear model and how
it relates to the function dev.resids in a glm family object in R.

Once again Chen Zuo pointed out the part that I had missed.
We need to use positive contributions to the deviance for each observation if we are later to take

the square roots of these quantities. To ensure that these are all positive we establish a baseline level
for the deviance, which is the lowest possible value of the deviance, corresponding to a saturated model
in which each observation has one parameter associated with it.

Another value quoted in the summary output is the null deviance, which is the deviance for the
simplest possible model (the “null model”) corresponding to a formula like

> data(Contraception, package = "mlmRev")
> summary(cm0 <- glm(use ~ 1, binomial, Contraception))

Call:
glm(formula = use ~ 1, family = binomial, data = Contraception)
Deviance Residuals:

Min 1Q Median 3Q Max
-0.9983 -0.9983 -0.9983 1.3677 1.3677

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.43702 0.04657 -9.385 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2590.9 on 1933 degrees of freedom
Residual deviance: 2590.9 on 1933 degrees of freedom
AIC: 2592.9

Number of Fisher Scoring iterations: 4

Notice that the coefficient estimate, -0.437022, is the logit transformation of the proportion of positive
responses

> str(y <- as.integer(Contraception[["use"]]) - 1L)

int [1:1934] 0 0 0 0 0 0 0 0 0 0 ...

> mean(y)

[1] 0.3924509

> qlogis(mean(y))

[1] -0.4370216

> all.equal(qlogis(mean(y)), coef(cm0), check.attr = FALSE)

[1] TRUE

In the Poisson model, the deviance is

d(β|y) = −2 log(p(y|µ)) = −2
n∑

i=1

(log(yi!)− µi + yi log(µi)) .
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The deviance for the saturated model is this expression evaluated at µ = y. The difference between
the deviance for the given model (and parameters) versus that of the saturated model deviance is

d(β|y)− dS(y) = −2
n∑

i=1

(log(yi!)− µi + yi log(µi)− log(yi!) + yi − yi log(yi))

= 2
n∑

i=1

(yi(log(yi/µi))− (yi − µi))

which is what is evaluated in

> poisson()$dev.resids

function (y, mu, wt)
2 * wt * (y * log(ifelse(y == 0, 1, y/mu)) - (y - mu))
<environment: 0x1d37da0>

For the binomial family, the dev.resids function calls a compiled function

> binomial()$dev.resids

function (y, mu, wt)
.Call("binomial_dev_resids", y, mu, wt, PACKAGE = "stats")
<environment: 0x22edb20>

the crux of which is also based on an expression like log(ifelse(y == 0, 1, y/mu)). In C it looks like

double y_log_y(double y, double mu)
{

return (y) ? (y * log(y/mu)) : 0;
}
for(i = 0, i < n; i++)

dr[i] = 2 * wt[i] * (y_log_y(y[i], mu[i]) + y_log_y(1-y[i], 1-mu[i]))

Recall that the log-likelihood for the Bernoulli distribution is

log(p(y|µ)) = (1− y) log(1− µ) + y logµ 0 < µ < 1, y = 0, 1.

so the deviance, for a collection of binary responses is

d(β|y) = −2

n∑
i=1

((1− yi) log(1− µi) + yi log(µi)) , 0 < µ < 1, y = 0, 1.

The deviance for the saturated model is

dS(y) = −2

n∑
i=1

((1− yi) log(1− yi) + yi log(yi))

and the difference is

d(β|y)− dS(y) = 2

n∑
i=1

(
(1− yi) log

(
1− yi
1− µi

)
+ yi log(yi/µi)

)
taking into account that limyi→0 yi log(yi/µi) = 0 (use l’Hôpital’s rule or just experiment numerically).
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> xx <- 10^(-(10:20))
> cbind(xx, xx * log(xx))

xx
[1,] 1e-10 -2.302585e-09
[2,] 1e-11 -2.532844e-10
[3,] 1e-12 -2.763102e-11
[4,] 1e-13 -2.993361e-12
[5,] 1e-14 -3.223619e-13
[6,] 1e-15 -3.453878e-14
[7,] 1e-16 -3.684136e-15
[8,] 1e-17 -3.914395e-16
[9,] 1e-18 -4.144653e-17
[10,] 1e-19 -4.374912e-18
[11,] 1e-20 -4.605170e-19

In the case of a binomial distribution the mean, µi, is taken to be the probability of a positive
response and the observed data, yi, are the proportions of observed positive responses. The prior
weights, wi, are the number of observations, ni. Then the likelihood is

log(p(y|µ)) = log

(
n

ny

)
+ n [(1− y) log(1− µ) + y logµ] , 0 < µ < 1, 0 ≤ y ≤ 1

and a similar derivation shows that this provides the difference d(β|y,w)− dS(y,w) is as above.
In the model we fit in class

> Contraception <- within(Contraception, ch <- factor(livch !=
+ 0, labels = c("N", "Y")))
> summary(cm3 <- glm(use ~ age * ch + urban + I(age^2), binomial,
+ Contraception))

Call:
glm(formula = use ~ age * ch + urban + I(age^2), family = binomial,

data = Contraception)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.4863 -1.0203 -0.6777 1.2206 2.0859

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2593975 0.1985853 -6.342 2.27e-10
age -0.0483951 0.0212105 -2.282 0.02251
chY 1.1551578 0.2008875 5.750 8.91e-09
urbanY 0.7891625 0.1066433 7.400 1.36e-13
I(age^2) -0.0054347 0.0008073 -6.732 1.68e-11
age:chY 0.0680242 0.0246991 2.754 0.00589

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2590.9 on 1933 degrees of freedom
Residual deviance: 2409.4 on 1928 degrees of freedom
AIC: 2421.4

Number of Fisher Scoring iterations: 4

the fitted values on the probability scale (i.e. the scale of µ) are
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> str(fitted(cm3))

Named num [1:1934] 0.31 0.409 0.669 0.614 0.307 ...
- attr(*, "names")= chr [1:1934] "1" "2" "3" "4" ...

> str(dr <- binomial()$dev.resids(y, fitted(cm3), wt = rep(1, length(y))))

num [1:1934] 0.742 1.051 2.209 1.903 0.734 ...

> sum(dr)

[1] 2409.377

To get the fitted values on other scales, such as the linear predictor scale, we use

> str(linpred <- predict(cm3, type = "link"))

Named num [1:1934] -0.801 -0.369 0.702 0.463 -0.813 ...
- attr(*, "names")= chr [1:1934] "1" "2" "3" "4" ...

If we know that we are using the logit link we could evaluate this as

> str(qlogis(fitted(cm3)))

Named num [1:1934] -0.801 -0.369 0.702 0.463 -0.813 ...
- attr(*, "names")= chr [1:1934] "1" "2" "3" "4" ...

or, if we didn’t know which link we used we could evaluate it as

> str(cm3$family$linkfun(fitted(cm3)))

Named num [1:1934] -0.801 -0.369 0.702 0.463 -0.813 ...
- attr(*, "names")= chr [1:1934] "1" "2" "3" "4" ...

because the family argument is stored in the fitted model object.

Most of the time the deviance of the saturated model is zero

Having gone to all the trouble of defining the deviance with respect to the saturated model it turns
out that most of the time the deviance of the saturated model is zero, and there is no need for the
correction. In the usual cases it differs from zero only for a binomial model that has responses other
than 0 and 1.

This is why the results of deviance and logLik are not always consistent. They are calculated
in different ways. The deviance function uses the sum of the squared deviance residuals whereas the
logLik function reverts to the probability mass (or density) function. (Actually the logLik result is
evaluated by first evaluating the AIC, which is kind-of backwards.)

If they are, the deviance for the saturated model is zero, which we can check for Bernoulli responses
and for simulated Poisson responses

> range(binomial()$dev.resids(y, y, rep(1, length(y))))

[1] 0 0

> set.seed(1234)
> (yy <- rpois(20, lambda = exp(rnorm(20, mean = 2))))

[1] 2 11 19 1 12 9 3 5 4 1 4 3 5 5 23 3 3 0 2 87

> range(poisson()$dev.resids(yy, yy, rep(1, length(yy))))

[1] 0 0
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> deviance(cm3)

[1] 2409.377

> logLik(cm3)

'log Lik.' -1204.689 (df=6)

> -2 * unclass(logLik(cm3))

[1] 2409.377
attr(,"df")
[1] 6

To see a binomial but non-Bernoulli case consider the cbpp data from the lme4 package.

> data(cbpp, package = "lme4")
> str(cbpp)

'data.frame': 56 obs. of 4 variables:
$ herd : Factor w/ 15 levels "1","2","3","4",..: 1 1 1 1 2 2 2 3 3 3 ...
$ incidence: num 2 3 4 0 3 1 1 8 2 0 ...
$ size : num 14 12 9 5 22 18 21 22 16 16 ...
$ period : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 1 2 3 ...

> summary(cm4 <- glm(cbind(incidence, size - incidence) ~ period,
+ binomial, cbpp))

Call:
glm(formula = cbind(incidence, size - incidence) ~ period, family = binomial,

data = cbpp)
Deviance Residuals:

Min 1Q Median 3Q Max
-3.5194 -1.1089 -0.4411 0.5896 3.3865

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2690 0.1449 -8.757 < 2e-16
period2 -1.1708 0.2915 -4.017 5.90e-05
period3 -1.3014 0.3129 -4.159 3.19e-05
period4 -1.7823 0.4131 -4.315 1.60e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 154.82 on 55 degrees of freedom
Residual deviance: 114.10 on 52 degrees of freedom
AIC: 206.06

Number of Fisher Scoring iterations: 5

The size variable is the number of animals in the herd and the incidence variable is the number of
cases of the disease in the herd. One of the options for specifying the response for the binomial family
is to create a matrix with two columns, which are the number of positive and the number of negative
responses.

So we see here that the residual deviance is 114.10 which is what the deviance function returns.

> deviance(cm4)

[1] 114.1017
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> -2 * unclass(logLik(cm4))

[1] 198.0584
attr(,"df")
[1] 4

The difference is attributed to the deviance for the saturated model.
Just to make things even more confusing, the "aic" component of the family actually evaluates

the deviance - go figure.

> binomial()$aic

function (y, n, mu, wt, dev)
{

m <- if (any(n > 1))
n

else wt
-2 * sum(ifelse(m > 0, (wt/m), 0) * dbinom(round(m * y),

round(m), mu, log = TRUE))
}
<environment: 0x2ada470>

> binomial()$aic(cm4$y, cm4$prior.weights, fitted(cm4), cm4$prior.weights)

[1] 198.0584

which is finally how we can determine the deviance of the saturated model

> binomial()$aic(cm4$y, cm4$prior.weights, cm4$y, cm4$prior.weights)

[1] 83.9567


