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1 Generalized Linear Models

Generalized Linear Models

e When using linear models (LMs) we assume that the response being modeled is on a
continuous scale.

e Sometimes we can bend this assumption a bit if the response is an ordinal response with
a moderate to large number of levels. For example, the Scottish secondary school test
results in the mlmRev package are integer values on the scale of 1 to 10 but we analyze
them on a continuous scale.

e However, an LM is not suitable for modeling a binary response, an ordinal response with

few levels or a response that represents a count. For these we use generalized linear
models (GLMs).

e To describe GLMs we return to the representation of the response as an n-dimensional,
vector-valued, random variable, Y.

Parts of LMs carried over to GLMs

e Random variables

— Y the response variable



e Parameters

— 3 - fixed-effects coeflicients
— 0 - a scale parameter (not always used)

e The linear predictor X 3 where

— X is the n x p model matrix for 3

The probability model
e For GLMs we retain some of the properties of the LM probability model
Y~N (Hy,UQI) where py = X3
Specifically

— The distribution of Y depends on 3 only through the mean, py = Xg.

— Elements of Y are independent. That is, the distribution of Y is completely specified
by the univariate distributions, V;, i =1,...,n.

— These univariate, distributions all have the same form. They differ only in their

means.

e GLMs differ from LMs in the form of the univariate distributions and in how py depends
on the linear predictor, X 3.

2 Specific distributions and links
Some choices of univariate distributions

e Typical choices of univariate distributions are:

— The Bernoulli distribution for binary (0/1) data, which has probability mass func-
tion
pylw) = (1 - '™, 0<p<l, y=0,1

— Several independent binary responses can be represented as a binomial response,
but only if all the Bernoulli distributions have the same mean.

— The Poisson distribution for count (0,1, ...) data, which has probability mass func-
tion

Y
p(ylu) = e “?, O<p, y=01,2,...

e All of these distributions are completely specified by the mean. This is different from the
normal (or Gaussian) distribution, which also requires the scale parameter, o.



The

link function, g

When the univariate distributions have constraints on p, such as 0 < g < 1 (Bernoulli)
or 0 < p (Poisson), we cannot define the mean, py, to be equal to the linear predictor,
X 3, which is unbounded.

We choose an invertible, univariate link function, g, such that n = g(u) is unconstrained.
The vector-valued link function, g, is defined by applying g component-wise.

n=g(pn) where n;=g(u), i=1,...,n
We require that g be invertible so that u = g~!(n) is defined for —0o < 7 < oo and is

in the appropriate range (0 < p < 1 for the Bernoulli or 0 < p for the Poisson). The
vector-valued inverse link, g7!, is defined component-wise.

“Canonical” link functions

The

There are many choices of invertible scalar link functions, g, that we could use for a given
set of constraints.

For the Bernoulli and Poisson distributions, however, one link function arises naturally
from the definition of the probability mass function. (The same is true for a few other,
related but less frequently used, distributions, such as the gamma distribution.)

To derive the canonical link, we consider the logarithm of the probability mass function
(or, for continuous distributions, the probability density function).

For distributions in this “exponential” family, the logarithm of the probability mass or
density can be written as a sum of terms, some of which depend on the response, y, only
and some of which depend on the mean, u, only. However, only one term depends on
both y and p, and this term has the form y - g(u), where g is the canonical link.

canonical link for the Bernoulli distribution

The logarithm of the probability mass function is

log(p(y|p)) = log(1 — p) + ylog <1MM> ,0<p<1, y=0,1.

Thus, the canonical link function is the logit link

n=g(p) =log (15/) :

Because p = P[Y = 1], the quantity u/(1 — i) is the odds ratio (in the range (0, 00)) and
g is the logarithm of the odds ratio, sometimes called “log odds”.

The inverse link is
el 1

T 14en 1+4en

=g '(n)



Plot of canonical link for the Bernoulli distribution
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Plot of inverse canonical link for the Bernoulli distribution
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Evaluating links for the Bernoulli
e As a monotone increasing function the maps (—o0,00) to (0, 1) the inverse link, g~ !, is
a cumulative distribution function for a continuous random variable. The link, ¢, is the
corresponding quantile function.

e The canonical link is the quantile function for the logistic distribution (2 functions qlogis
and plogis).



e In the past the "probit" link was sometimes used instead of the logit link. For this
the link is the standard normal quantile and the inverse link is the standard normal
cumulative, sometimes written ®(z) (1 functions qnorm and pnorm).

e As described in R’s help page for the binomial function

the binomial family (allows) the links "logit", "probit", "cauchit", (cor-
responding to logistic, normal and Cauchy CDFs respectively) "log" and
"cloglog" (complementary log-log)

The canonical link for the Poisson distribution
e The logarithm of the probability mass is
log(p(ylp)) = log(y!) — p + ylog(u)
e Thus, the canonical link function for the Poisson is the log link
n = g(p) = log(n)

e The inverse link is
p=g (n)=e

The canonical link related to the variance

e For the canonical link function, the derivative of its inverse is the variance of the response.

e For the Bernoulli, the canonical link is the logit and the inverse link is u = g=1(n) =
1/(1+e™"). Then
dp e B 1 e
dn (14+e M2 14eNl4e

— (1 = 1) = Var(y)

e For the Poisson, the canonical link is the log and the inverse link is u = g=(n) = €.
Then P
ﬁ =e'"=p = Var())

3 Estimating parameters

Estimating parameters

e We determine the maximum likelihood estimates, (mle’s), of the coefficients, 3, in the
linear predictor and, if used, the scale parameter.

e There is no direct algorithm for determining the mle’s in a GLM and we must use
iterative algorithms. Fortunately, there is a very effective iterative algorithm which is
based on weighted least squares to update parameter estimates. The weights are inversely
proportional to the variance of the response, but the variance depends on the mean which,
in turn, depends on the parameters.



e The IRLS (iteratively reweighted least squares) algorithm fixes the weights, determines
the parameter values that minimize the weighted sum of squared residuals, then updates
the weights and repeats the process until the weights stabilize.

e This algorithm converges very quickly.

e The original description of IRLS from McCullagh and Nelder’s book is, I feel, overly
complex.

4 Data description and initial exploration
Contraception data

e One of the data sets in the "mlmRev" package, derived from data files available on the
multilevel modelling web site, is from a fertility survey of women in Bangladesh.

e One of the (binary) responses recorded is whether or not the woman currently uses
artificial contraception.

e Covariates included the woman’s age (on a centered scale), the number of live children
she had, whether she lived in an urban or rural setting, and the district in which she
lived.

e Instead of plotting such data as points, we use the 0/1 response to generate scatterplot
smoother curves versus age for the different groups.

Contraception use versus age by urban and livch
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Comments on the data plot

These observational data are unbalanced (some districts have only 2 observations, some
have nearly 120). They are not longitudinal (no “time” variable).

Binary responses have low per-observation information content (exactly one bit per ob-
servation). Districts with few observations will not contribute strongly to estimates of
random effects.

Within-district plots will be too imprecise so we only examine the global effects in plots.

The comparisons on the multilevel modelling site are for fits of a model that is linear in
age, which is clearly inappropriate.

The form of the curves suggests at least a quadratic in age.
The urban versus rural differences may be additive.

It appears that the 1ivch factor could be dichotomized into “0” versus “1 or more”.

Preliminary model fit

Call:

glm(formula = use ~ age + I(age™2) + urban + livch, family = binomial,

data = Contraception)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.4738 -1.0369 -0.6683 1.2401 1.9765

Coefficients:

Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.9499521 0.1560118 -6.089 1.14e-09

age 0.0045837 0.0089084 0.515 0.607
I(age~2) -0.0042865 0.0007002 -6.122 9.23e-10
urbanY 0.7680975 0.1061916  7.233 4.72e-13
livchi 0.7831128 0.1569096 4.991 6.01e-07
livch2 0.8549040 0.1783573  4.793 1.64e-06
livch3+ 0.8060251 0.1784817 4.516 6.30e-06

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2590.9 on 1933 degrees of freedom
Residual deviance: 2417.7 on 1927 degrees of freedom
AIC: 2431.7

Number of Fisher Scoring iterations: 4

Comments on the model fit

There is a highly significant quadratic term in age.

The linear term in age is not significant but we retain it because the age scale has been
centered at an arbitrary value (which, unfortunately, is not provided with the data).

The urban factor is highly significant (as indicated by the plot).

Levels of livch greater than 0 are significantly different from 0 but may not be different
from each other.



5 Model building
Reduced model with dichotomized livch

Call:

glm(formula = use ~ age + I(age”2) + urban + ch, family = binomial,
data = Contraception)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.4544 -1.0371 -0.6682 1.2378 1.9790

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.9429355 0.1497300 -6.298 3.02e-10
age 0.0049675 0.0075889 0.655 0.513
I(age™2) -0.0043275 0.0006918 -6.255 3.97e-10
urbanyY 0.7663616 0.1059463 7.233 4.71e-13
chy 0.8062172 0.1422619 5.667 1.45e-08

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2590.9 on 1933 degrees of freedom
Residual deviance: 2417.9 on 1929 degrees of freedom

AIC: 2427.9

Number of Fisher Scoring iterations: 4

Comparing the model fits

e A likelihood ratio test can be used to compare these nested models.
> anova(cm2, cml, test="Chisq")

Analysis of Deviance Table

Model 1: use ~ age + I(age”2) + urban + ch

Model 2: use ~ age + I(age”2) + urban + livch
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 1929 2417.9

2 1927 2417.7 2 0.20525 0.9025

e The large p-value indicates that we would not reject cm2 in favor of cm1 hence we prefer
the more parsimonious cm2.

e The plot of the scatterplot smoothers according to live children or none indicates that
there may be a difference in the age pattern between these two groups.

6 Conclusions from the example

Conclusions from the example

e Carefully plotting the data is enormously helpful in formulating the model.



e Observational data tend to be unbalanced and have many more covariates than data
from a designed experiment. Formulating a model is typically more difficult than in a
designed experiment.

e A generalized linear model is fit with the function glm() which requires a family ar-
gument. Typical values are binomial or poisson. By default, the family will use the
canonical link. Other links can be specified as, e.g. binomial (1ink="cloglog").

e We use likelihood-ratio tests in model building. The z-tests provided in the model sum-
mary provide a good indication of the results but should be confirmed by fitting the
reduced model and performing a likelihood-ratio test.

A word about overdispersion

e In many application areas using “pseudo” distribution families, such as quasibinomial
and quasipoisson, is a popular and well-accepted technique for accomodating variability
that is apparently larger than would be expected from a binomial or a Poisson distribu-
tion.

e This amounts to adding an extra parameter, like o, the common scale parameter in a
LM, to the distribution of the response.

e [t is possible to form an estimate of such a quantity during the IRLS algorithm but it is
an artificial construct. There is no probability distribution with such a parameter.

7 Summary
Summary

e GLMs allow for the distribution of ) to be other than a Gaussian. A Bernoulli (or,
more generally, a binomial) distribution is used to model binary or binomial responses.
A Poisson distribution is used to model responses that are counts.

e The mean depends upon the linear predictor, X3, through the inverse link function,
g

e The mle’s of the parameters are determined through iteratively reweighted least squares
(IRLS).

o “Wald-type” tests on the coefficients are displayed in the summary but to be more con-
fident of the results we should fit both models and use a comparative anova with the
optional argument, test="Chisq".
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