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1 Matrix decompositions

1.1 Orthogonal matrices

An orthogonal n× n matrix, Q has the property that its transpose is its inverse. That is,

Q′Q = QQ′ = In

That is, the columns of Q must be orthogonal to each other and all have unit length, and the
same for the rows.

Two consequences of this property are that the transformation from Rn to Rn determined
by Q or Q′ preserves lengths and that the determinant of Q is ±1.

1.1.1 Preserving lengths

For any x ∈ Rn
‖Qx‖2 = (Qx)′Qx = x′Q′Qx = x′x = ‖x‖2

Thus the transformation determined by Q or by Q′ must be a rigid transformation, com-
posed of reflections or rotations.

1.1.2 The determinant of an orthogonal matrix

The determinants of n×n matricesA andB, written |A| and |B|, are scalars with the property
that

|AB| = |A||B|

Furthermore, the determinant of a diagonal matrix or a triangular matrix is simply the product
of its diagonal elements. Also, |A| = |A′|.

From these properties we can derive

1 = |In| = |QQ′| = |Q||Q′| = |Q|2 ⇒ |Q| = ±1.

As described on the Wikipedia page, the determinant of Q is the volume of the paral-
lelepiped spanned by the columns (or by the rows) of Q. We know that the columns of Q
are orthonormal hence they span a unit volume. The sign indicates whether the transforma-
tion preserves orientation. In two dimensions a rotation preserves orientation and a reflection
reverses the orientation.

1.2 The QR decomposition

An n× p matrix X has a QR decomposition consisting of an orthogonal n× n matrix Q and
an n× p matrix R that is zero below the main diagonal. In the cases we consider in regression
analysis the matrix X is the model matrix where n is the number of observations, p is the
number of coefficients (or parameters) in the model and n ≥ p. Our basic model is that the
observed responses y are the realization of a vector-valued random variable Y with distribution

Y ∼ N (Xβ0, σ
2In)

for some unknown value β0 of the coefficient vector β.

http://en.wikipedia.org/wiki/Determinant
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The QR decomposition of the model matrix X is written

X = Q

[
R
0

]
=
[
Q1 Q2

] [R
0

]
= Q1R (1)

where R is a p× p upper triangular matrix, Q1 is the first p columns of Q and Q2 is the last
n− p columns of Q.

That fact that matrices Q and R must exist is proved by construction. The matrix Q is
the product of p Householder reflections (see the Wikipedia page for the QR decomposition).
The process is similar to the Gram-Schmidt orthogonalization process, but more flexible and
numerically stable. If the diagonal elements of R are all non-zero (in practice this means that
none of them is very small in absolute value) then X has full column rank and the columns of
Q1 form an orthonormal basis of the column span of X.

The implementation of the QR decomposition in R guarantees that any near-zero elements
on the diagonal of R are rearranged by column permutation to occur in the trailing columns.
That is, if the rank of X is k < p then the first k columns of Q form an orthogonal basis for
the column span of XP where P is a p× p permutation matrix.

Our text often mentions rank-deficient cases where rank(X) = k < p. In practice these
occur rarely because the process of building the model matrix in R involves a considerable
amount of analysis of the model formula to remove the most common cases of rank deficiency.
Nevertheless, rank deficiency can occur and is detected and handled in the lm function in R.

2 Least squares estimation

The reason that we are interested in a QR decomposition ofX is because the probability model
is linked to geometric properties of the response y and the column span of X.

2.1 Spherical normal distributions and least squares estimators

A distribution of the form
Y ∼ N (Xβ0, σ

2In) (2)

is called a spherical normal distribution because the contours of constant probability density
are spheres centered at Xβ0. In other words, the probability density function of Y, evaluated
at y is determined by the distance, ‖y −Xβ0‖2 with larger distances corresponding to lower
densities.

The maximum likelihood estimate, β̂ of the coefficient vector, β, is

β̂ = argmin
β
‖y −Xβ‖2 (3)

These estimates are also called the least squares estimates of β.
Because multiplication by an orthogonal matrix like Q′ preserves lengths we can write

β̂ = argmin
β
‖y −Xβ‖2 = argmin

β
‖Q′y −Q′Xβ‖2 = argmin

β
‖c1 −Rβ‖2 + ‖c2‖2 (4)

where c1 = Q′1y is the first p elements of Qy and c2 = Q′2y is the last n − p elements. If
rank(X) = p then rank(R) = p and R−1 exists and we can write β̂ = R−1c1 (although you
don’t actually calculate R−1 to solve the triangular linear system Rβ̂ = c1 for β̂).
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In a model fit by the lm or aov functions in R there is a component e$ffects which is Q′y.
The component $qr is a condensed form of the QR decomposition of the model matrixX. The
matrix R is embedded in there but the matrix Q is a virtual matrix represented as a product
of Householder reflections and not usually evaluated explicitly.

2.2 Comparison to the usual text-book formulas

Most text books state that the least squares estimates are

β̂ = (X ′X)−1X ′y (5)

giving the impression that β̂ is calculated this way. It isn’t.
If you substitute X = Q1R in 5 you get

(X ′X)−1X ′y = (R′R)−1R′Q′1y = R−1(R′)−1R′Q′1y = R−1Q′1y,

our previous result.
Whenever you see X ′X in a formula you should mentally replace it by R′R and similarly

replace (X ′X)−1 by R−1(R′)−1 then see if you can simplify the result.
For example, the variance of the least squares estimator β̂ is

(β̂) = σ2(X ′X) = σ2R−1(R−1)′

The R function chol2inv calculates R−1(R−1)′ directly from R (not a big deal in most cases
but when p is very large it should be faster and more accurate than evaluating R−1 explicitly).
The determinant of X ′X is

|X ′X| = |R′R| = |R|2 =

(
p∏
i=1

ri,i

)2

The fitted values ŷ are Q1Q
′
1y and thus the hat matrix (which puts a “hat” on y by

transforming it to ŷ) is the n × n matrix Q1Q
′
1. Often we are interested in the diagonal

elements of the hat matrix, which are the sums of the squares of rows of Q1. (In practice you
don’t want to calculate the entire n × n hat matrix just to get the diagonal elements when n
could be very large.)

The residuals, ê = y − ŷ, are calculated as ê = Q2Q
′
2y.

The matrices Q1Q
′
1 and Q2Q

′
2 are projection matrices, which means that they are symmet-

ric and idempotent. (A square matrix A is idempotent if AA = A.) When rank(X) = p, the
hat matrix Q1Q

′
1 projects any vector in Rn onto the column span of X. The other projection,

Q2Q
′
2, is onto the subspace orthogonal to the column span of X (see the figure on the front

cover of the text).

2.3 R functions related to the QR decomposition

As mentioned above, every time you fit a linear model with lm or aov or lm.fit, the returned
object contains a $qr component. This is a condensed form of the decomposition, only slightly
larger than X itself. Its class is "qr".

There are several extractor functions for a "qr" object: qr.R(). qr.Q() and qr.X(), which
regenerates the original matrix. By default qr.Q() returns the matrix called Q1 above with p

3



columns but you can specify the number of columns desired. Typical alternative choices are n
or rank(X).

The $rank component of a "qr" object is the computed rank of X (and, hence, of R). The
$pivot component is the permutation applied to the columns. It will be 1:p when rank(X) = p
but when rank(X) < p it may be other than the identity permutation.

Several functions are applied to a "qr" object and a vector or matrix. These include
qr.coef(), qr.qy(), qr.qty(), qr.resid() and qr.fitted(). The qr.qy() and qr.qty()
functions multiply an n-vector or an n×mmatrix byQ orQ′ without ever formingQ. Similarly,
qr.fitted() creates Q1Q

′
1x and qr.resid() creates Q2Q

′
2x without forming Q.

The is.qr() function tests an object to determine if it is of class "qr".

3 Related matrix decompositions

3.1 The Cholesky decomposition

The Cholesky decomposition of a positive definite symmetric matrix, which means a p × p
symmetric matrix A such that x′Ax > 0$forallnon− zerox ∈ Rp is of the form

A = R′R = LL′

where R is an upper triangular p × p matrix and L = R′ is lower triangular. The two forms
are the same decomposition: it is just a matter of whether you want R, the factor on the right,
or L, the factor on the left. Generally statisticians write the decomposition as R′R.

The decomposition is only determined up to changes in sign of the rows of R (or, equiva-
lently, the columns of L). For definiteness we require positive diagonal elements in R.

When rank(X) = p the Cholesky decomposition R of X ′X is the equal to the matrix R
from the QR decomposition up to changes in sign of rows. The matrixX ′X matrix is obviously
symmetric and it is positive definite because

x′(X ′X)x = x′(R′R)x = ‖Rx‖2 ≥ 0

with equality only when Rx = 0, which, when rank(R) = p, implies that x = 0.

3.2 Evaluation of the Cholesky decomposition

The R function chol() evaluates the Cholesky decomposition. As mentioned above chol2inv()
creates (X ′X)−1 directly from the Cholesky decomposition of X ′X.

Generally the QR decomposition is preferred to the Cholesky decomposition for least squares
problems because there is a certain loss of precision when forming X ′X. However, when n is
very large you may want to build up X ′X using blocks of rows. Also, if X is sparse it is an
advantage to use sparse matrix techniques to evaluate and store the Cholesky decomposition.

The Matrix package for R provides even more capabilities related to the Cholesky decom-
position, especially for sparse matrices.

For everything we will do in Statistics 849 the QR decomposition should be the method of
choice.
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3.3 The singular value decomposition

Another decomposition related to orthogonal matrices is the singular value decomposition (or
SVD) in which the matrix X is reduced to a diagonal form

X = U1DV
′ = U

[
D
0

]
V ′

where U is an n×n orthogonal matrix,D is a p×p diagonal matrix with non-negative diagonal
elements (which are called the singular values of X) and V is a p × p orthogonal matrix. As
for Q and Q1, U1 consists of the first p columns of U . For definiteness we order the diagonal
elements of D, which must be non-negative, in decreasing order.

The singular value decomposition of X is related to the eigendecomposition or spectral
decomposition of X ′X because

X ′X = V DU ′1U1DV
′ = V D2V ′

implying that the eigenvalues of X ′X are the squares of the singular values of X and the right
singular vectors, which are the columns of V are also the eigenvectors of X ′X

Calculation of the SVD is an iterative (as opposed to a direct) computation and potentially
more computing intensive than the QR decomposition, although modern methods for evaluating
the SVD are very good indeed.

Symbolically we can write the least squares solution in the full-rank case as

β̂ = V D−1U ′1y

where D−1 is a diagonal matrix whose diagonal elements are the inverses of the diagonal
elements of D.

The pseudo-inverse or generalized inverse of X, written X− is calculated from the pseudo-
inverse of the diagonal matrix, D. In theory the diagonal elements of D− are 1/di, i when
di,i 6= 0 and 0 when di,i = 0. However, we can’t count on di,i being 0 even when, in theory, it
should be. You need to decide when the singular values are close to zero, which is actually a
very difficult problem. At best we can some heuristics, based on the ratio of di,i/d1,1 to decide
when a diagonal element is “effectively zero”.

The use of the pseudo-inverse seems to be a convenient way to handle rank-deficient X
matrices but, as mentioned above, the best way to handle rank-deficient X matrices is not to
produce them in the first place.
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