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Chapter 1

The Gaussian Linear Model

Statistics 849 is part of a two-semester sequence, 849 & 850, on Theory and Applications of Regres-
sion and Analysis of Variance. In these courses we study statistical models that relate a response
to values of one or more covariates, which are variables that are observed in conjunction with the
response.

The statistical inferences are based on a probability model that characterizes the distribution
of the vector-valued random variable, Y, as it depends on values of the covariates. We build the
model based on observed values of the responses, represented by the vector y, and corresponding
values of the covariates.

All the models we will study are based on a linear predictor expression, Xβ, where the n × p
matrix X is the model matrix created from a model specification and the values of the covariates.
Here n is the number of observations and p is the dimension of the coefficient vector, β, The
coefficients are parameters in the model. We form estimates, β̂, of these parameters from the
observed data.

We assume that n ≥ p. That is, we have at least as many observations are we have coefficients
in the model.

1.1 Gaussian Linear Model

A basic model for a response, Y, that is measured on a continuous scale, is the Gaussian Linear
Model

Y ∼ N (XβT , σ
2In) (1.1)

where In is the n-dimensional identity matrix, βT is the“true”, but unknown, value of the coefficient
vector and N denotes the multivariate Gaussian (also called normal) distribution.

The probability density of Y,

fY(y) =
1

(2πσ2)n/2
exp

(
−‖y −XβT ‖2

2σ2

)
, (1.2)

is called a spherical normal density, because contours of constant density are concentric spheres
centered at XβT .

1



2 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

The likelihood, L(β, σ|y), of the parameters, β and σ, given the observed responses, y, and
the model matrix, X, is the same expression as the probability density, fY(y), but regarded as a
function of the parameters given the data, as opposed to the density, which is a function of y for
known values of the parameters.

L(β, σ|y) =
1

(2πσ2)n/2
exp

(
−‖y −Xβ‖2

2σ2

)
. (1.3)

The maximum likelihood estimates (mles) of the parameters are, as the name suggests, the values
of the parameters that maximize the likelihood(

β̂′, σ̂L

)′
= arg max

β,σ
L(β, σ|y) (1.4)

As often happens it is much easier to maximize the expression for the log-likelihood

`(β, σ|y) = log (L(β, σ|y)) = −n
2

log(2πσ2)− ‖y −Xβ‖
2

2σ2
(1.5)

than to maximize the likelihood. Because the logarithm function is monotonic increasing, the values
of the parameters that maximize the log-likelihood, written arg maxβ,σ `(β, σ|y), are exactly the
same as the values that maximize the likelihood, arg maxβ,σ L(β, σ|y).

The expression can be simplified further by converting to the deviance, which is negative twice
the log-likelihood,

d(β, σ|y) = −2`(β, σ|y) = n log(2πσ2) +
‖y −Xβ‖2

σ2
. (1.6)

Because of the negative sign, the mle’s are the values that minimize the deviance. For any fixed
value of σ2, the deviance is minimized with respect to β when the residual sum of squares,

S(β|y) = ‖y −Xβ‖2,

is minimized. Thus the mle of the coefficient vector, β̂, in the Gaussian linear model is the least
squares estimate

β̂ = arg min
β
‖y −Xβ‖2. (1.7)

1.2 Linear algebra of least squares

Because the Gaussian Linear Model, Y ∼ N (XβT , σ
2In), is intimately tied to the Euclidean

distance, ‖y − Xβ‖2, and because the set of all possible fitted values, {Xβ : β ∈ Rp}, which
is called the column span of X and written col(X), is a linear subspace of Rn, linear algebra,
especially as related to the model matrix, X, and the response vector, y, is fundamental to the
theory and practice of linear regression analysis.

We will concentrate on the theoretical and computational aspects of linear algebra as related
to the linear model and the implementation of such models in R.
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1.3 Matrix decompositions

1.3.1 Orthogonal matrices

An orthogonal n× n matrix, Q has the property that its transpose is its inverse,

Q′Q = QQ′ = In.

These properties imply that the columns of Q must be orthogonal to each other and must all have
unit length. The same is true for the rows.

An orthogonal matrix has a special property that it preserves lengths.

Preserving lengths

For any x ∈ Rn

‖Qx‖2 = (Qx)′Qx = x′Q′Qx = x′x = ‖x‖2

Thus the linear transformation determined byQ or byQ′ must be a rigid transformation, composed
of reflections or rotations.

Orthogonal transformations of the response space, Rn, will be important to us because they
preserve lengths and because the likelihood of the parameters, β, is related to the squared length
of the residual vector, ‖y −Xβ‖2.

1.3.2 The QR decomposition

Any n × p matrix X has a QR decomposition consisting of an orthogonal n × n matrix Q and a
p× p matrix R that is zero below the main diagonal (in other words, it is upper triangular). The
QR decomposition of the model matrix X is written

X = Q

[
R
0

]
=
[
Q1 Q2

] [R
0

]
= Q1R (1.8)

where Q1 is the first p columns of Q and Q2 is the last n− p columns of Q.

That fact that matrices Q and R must exist is proved by construction. The matrix Q is the
product of p Householder reflections (see the Wikipedia page for the QR decomposition). The
process of generating the upper triangular matrix R is similar to the Gram-Schmidt orthogonaliza-
tion process, but more flexible and more numerically stable. If the diagonal elements of R are all
non-zero (in practice this means that none of them are very small in absolute value) then X has
full column rank and the columns of Q1 form an orthonormal basis for col(X).

The implementation of the QR decomposition in R guarantees that any elements on the diagonal
of R that are considered effectively zero are rearranged by column permutation to occur in the
trailing columns. That is, if the rank of X is k < p then the first k columns of Q form an
orthonormal basis for col(XP ) where P is a p × p permutation matrix, which means that it is a
rearrangement of the columns of Ip.

http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/Gram-Schmidt_process
http://en.wikipedia.org/wiki/Gram-Schmidt_process
http://en.wikipedia.org/wiki/Permutation_matrix
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Our text often mentions rank-deficient cases where rank(X) = k < p. In practice the rank
deficient case rarely occurs because the process of building the model matrix in R involves a consid-
erable amount of analysis of the model formula to remove the most common cases of rank deficiency.
Nevertheless, rank deficiency can occur and is detected and handled in the lm function in R.

Because multiplication by an orthogonal matrix like Q′ preserves lengths we can write

β̂ = arg min
β
‖y −Xβ‖2

= arg min
β
‖Q′(y −Xβ)‖2

= arg min
β
‖Q′y −Q′Xβ‖2

= arg min
β
‖c1 −Rβ‖2 + ‖c2‖2

(1.9)

where c1 = Q′1y is the first p elements of Q′y and c2 = Q′2y is the last n − p elements. If

rank(X) = p then rank(R) = p and R−1 exists so we can write β̂ = R−1c1 (although you don’t
actually calculate R−1 to solve the triangular linear system Rβ̂ = c1 for β̂).

In a model fit by the lm() or aov() functions in R there is a component $effects which is Q′y.
The component $qr is a condensed form of the QR decomposition of the model matrix X. The
matrix R is embedded in there but the matrix Q is a virtual matrix represented as a product of
Householder reflections and not usually evaluated explicitly.

R Exercise: To see this theory in action, we will start with a very simple linear model. The
Formaldehyde data are six observations from a calibration experiment. The response, optden, is the
optical density. Only one covariate, carb, which is the carbohydrate concentration, is included in
the data frame.

> str(Formaldehyde)

'data.frame': 6 obs. of 2 variables:

$ carb : num 0.1 0.3 0.5 0.6 0.7 0.9

$ optden: num 0.086 0.269 0.446 0.538 0.626 0.782

The model.matrix() function extracts the model matrix, X, from a fitted linear model object

> (X <- model.matrix(lm1 <- lm(optden ~ 1 + carb, Formaldehyde)))

(Intercept) carb

1 1 0.1

2 1 0.3

3 1 0.5

4 1 0.6

5 1 0.7

6 1 0.9

attr(,"assign")

[1] 0 1
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The $qr component is an object of class "qr"

> class(qrlm1 <- lm1$qr)

[1] "qr"

for which there are many extractor functions and methods (see ?qr).

> (R <- qr.R(qrlm1))

(Intercept) carb

1 -2.449490 -1.2655697

2 0.000000 0.6390097

produces the R matrix while

> (Q1 <- qr.Q(qrlm1))

[,1] [,2]

[1,] -0.4082483 -0.65205066

[2,] -0.4082483 -0.33906635

[3,] -0.4082483 -0.02608203

[4,] -0.4082483 0.13041013

[5,] -0.4082483 0.28690229

[6,] -0.4082483 0.59988661

by default produces Q1. First we should check that their product is indeed X

> (Q1R <- Q1 %*% R)

(Intercept) carb

[1,] 1 0.1

[2,] 1 0.3

[3,] 1 0.5

[4,] 1 0.6

[5,] 1 0.7

[6,] 1 0.9

It seems to be the same, although as in all floating point calculations on a computer, there may
be some small imprecision caused by round-off error in the calculations. This is why we don’t use
exact comparisons on the results of floating point calculations

> all(X == Q1R)

[1] FALSE

but instead compare results using

> all.equal(X, Q1R, check.attr = FALSE)
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[1] TRUE

(As a model matrix, X has some additional attributes that are not present in the product Q1R, which
is why we turn off checking of the attributes of the two objects.)

Notice that X and y are not explicitly part of the fitted model object, lm1.

> names(lm1)

[1] "coefficients" "residuals" "effects" "rank" "fitted.values"

[6] "assign" "qr" "df.residual" "xlevels" "call"

[11] "terms" "model"

Both are generated from the model.frame, which is stored as the component $model. Althought this
is getting into more detail than is needed at present, the reason for introducing the model frame is
to say that the safe way of extracting the response vector, y, is

> (y <- model.response(model.frame(lm1)))

1 2 3 4 5 6

0.086 0.269 0.446 0.538 0.626 0.782

We have already seen that model.matrix returns the matrix X from the fitted model object.

We can produce the full n×n orthogonal matrixQ from qr.Q() by setting the optional argument
complete=TRUE. We do this for illustration only. In practice the matrix Q is never explicitly created
— it is a “virtual” matrix in the sense that it is a product of Householder reflections that are stored
much more compactly than Q would be stored.

> (Q <- qr.Q(qrlm1, complete=TRUE))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.4082483 -0.65205066 -0.37370452 -0.3405290 -0.3073534 -0.2410023

[2,] -0.4082483 -0.33906635 0.05460995 0.2207196 0.3868293 0.7190487

[3,] -0.4082483 -0.02608203 0.86857638 -0.1439791 -0.1565346 -0.1816455

[4,] -0.4082483 0.13041013 -0.15359661 0.8125532 -0.2212971 -0.2889976

[5,] -0.4082483 0.28690229 -0.17576960 -0.2309146 0.7139404 -0.3963496

[6,] -0.4082483 0.59988661 -0.22011559 -0.3178501 -0.4155847 0.3889463

The $effects vector should be the product Q′y but it happens that they are stored differently.
The $effects vector is a vector of length n and the product Q′y is an n × 1 matrix. To compare
them, we need to make $effects an n× 1 matrix or make Q′y into a vector. A convenient way of
making an n × 1 matrix from an n-vector is the function cbind(), which creates matrices or data
frames by binding columns together. If we give it a single vector argument it creates an n × 1
matrix

> str(cbind(lm1$effects))
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num [1:6, 1] -1.12146 0.55996 0.00514 0.00992 0.01069 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:6] "(Intercept)" "carb" "" "" ...

..$ : NULL

> str(crossprod(Q, y))

num [1:6, 1] -1.12146 0.55996 0.00514 0.00992 0.01069 ...

> all.equal(cbind(lm1$effects), crossprod(Q, y), check.attr=FALSE)

[1] TRUE

(The function crossprod(A,B) creates A′B directly, without creating A′ from A. It is most com-
monly used to create matrices like X ′X as

> crossprod(X)

(Intercept) carb

(Intercept) 6.0 3.10

carb 3.1 2.01

The companion function, tcrossprod, creates XX ′.)
If we wish to do the comparison by converting Q′y to a vector, we can use

> all.equal(lm1$effects, as.vector(crossprod(Q, y)), check.attr=FALSE)

[1] TRUE

I find cbind easier to type than as.vector.
Another way of generating Q′y is with the function qr.qty()

> all.equal(lm1$effects, qr.qty(qrlm1, y), check.attr=FALSE)

[1] TRUE

We should check that Q is indeed orthogonal and that Q′1Q1 = Ip. The matrix Ik is generated
by diag(nrow=k).

> all.equal(crossprod(Q1), diag(nrow=ncol(Q1)))

[1] TRUE

> all.equal(crossprod(Q), diag(nrow=nrow(Q)))

[1] TRUE

> all.equal(tcrossprod(Q), diag(nrow=nrow(Q)))
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[1] TRUE

When we print a matrix that may have negligibly small non-zero values in it

> crossprod(Q1)

[,1] [,2]

[1,] 1.000000e+00 1.197637e-16

[2,] 1.197637e-16 1.000000e+00

we can clean up the output with zapsmall() which, as the name suggests, zeros the very small
values.

> zapsmall(crossprod(Q1))

[,1] [,2]

[1,] 1 0

[2,] 0 1

> zapsmall(crossprod(Q))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1

Because the diagonal elements of R are all safely non-zero, we can solve the system Rβ̂ = Q′1y

for the coefficient estimates, β̂. We could use the function solve() to do this but it us better to
use backsolve() for the solution to upper triangular systems,

> coef(lm1)

(Intercept) carb

0.005085714 0.876285714

> backsolve(R, crossprod(Q1, y))

[,1]

[1,] 0.005085714

[2,] 0.876285714

> all.equal(coef(lm1), as.vector(backsolve(R, crossprod(Q1, y))), check.attr=FALSE)

[1] TRUE

The function qr.coef combines the multiplication of y by Q′1 and the backsolve step

> qr.coef(qrlm1, y)

(Intercept) carb

0.005085714 0.876285714
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R Exercise: As seen above, a linear model is specified as a model formula and the data frame in
which to evaluate the formula. Because the formula is analyzed for conditions that may introduce
rank deficiency and consequently removes those conditions, rank deficient cases occur infrequently.
Of course, it is possible to artificially generate data with a built-in rank dependency

> set.seed(1234) # allow for reproducible "random" numbers

> badDat <- within(data.frame(x1=1:20, x2=rnorm(20,mean=6,sd=0.2),

+ x4=rexp(20,rate=0.02),

+ y=runif(20,min=18,max=24)),

+ x3 <- x1 + 2*x2) # create linear combination

> (summary(lm2 <- lm(y ~ x1 + x2 + x3 + x4, badDat)))

Call:

lm(formula = y ~ x1 + x2 + x3 + x4, data = badDat)

Residuals:

Min 1Q Median 3Q Max

-2.3444 -1.7670 -0.3585 1.6159 3.0292

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.793e+01 1.390e+01 1.290 0.215

x1 4.140e-02 8.553e-02 0.484 0.635

x2 3.822e-01 2.358e+00 0.162 0.873

x3 NA NA NA NA

x4 3.901e-05 8.680e-03 0.004 0.996

Residual standard error: 2.02 on 16 degrees of freedom

Multiple R-squared: 0.021, Adjusted R-squared: -0.1626

F-statistic: 0.1144 on 3 and 16 DF, p-value: 0.9504

> (lm2qr <- lm2$qr)$rank

[1] 4

> qr.R(lm2qr) # the columns are rearranged

(Intercept) x1 x2 x4 x3

1 -4.472136 -46.95743 -26.6086150 -182.87421 -1.001747e+02

2 0.000000 25.78759 0.1721295 83.85993 2.613185e+01

3 0.000000 0.00000 -0.8668932 35.62409 -1.733786e+00

4 0.000000 0.00000 0.0000000 232.75139 2.005660e-15

5 0.000000 0.00000 0.0000000 0.00000 5.179752e-15

> lm2qr$pivot # the permutation vector

[1] 1 2 3 5 4
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but we don’t do this in practice.
The common case of an analysis of variance model which, when written as

yi,j = µ+ αi + εi,j i = 1, . . . , I, j = 1, . . . , ni

would generate linearly dependent columns for µ and the αi, i = 1, . . . , I is analyzed and represented
by the intercept column and I − 1 columns for the factor.

> str(InsectSprays)

'data.frame': 72 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

> unique(mm <- model.matrix(lm3 <- lm(count ~ spray, InsectSprays)))

(Intercept) sprayB sprayC sprayD sprayE sprayF

1 1 0 0 0 0 0

13 1 1 0 0 0 0

25 1 0 1 0 0 0

37 1 0 0 1 0 0

49 1 0 0 0 1 0

61 1 0 0 0 0 1

> attr(mm, "assign")

[1] 0 1 1 1 1 1

> qr.R(lm3[["qr"]])

(Intercept) sprayB sprayC sprayD sprayE sprayF

1 -8.485281 -1.414214 -1.4142136 -1.4142136 -1.4142136 -1.4142136

2 0.000000 3.162278 -0.6324555 -0.6324555 -0.6324555 -0.6324555

3 0.000000 0.000000 3.0983867 -0.7745967 -0.7745967 -0.7745967

4 0.000000 0.000000 0.0000000 3.0000000 -1.0000000 -1.0000000

5 0.000000 0.000000 0.0000000 0.0000000 2.8284271 -1.4142136

6 0.000000 0.000000 0.0000000 0.0000000 0.0000000 2.4494897

This shows only the unique rows in the model matrix. The six levels of the spray factor are
represented by 5 indicator columns.

Because we are discussing an analysis of variance model we also show the "assign" attribute
of the model matrix. This indicates that the first column is associated with the 0th term, which
is the intercept, and the second through sixth columns are associated with the first term, which is
spray.

In general, a factor with I levels is converted to a set of I−1 columns. These are called contrasts,
but be warned that these do not fulfill the definition of contrasts as used in some texts. You should
think of them as being a set of columns representing changes between levels of the factor.

The type of contrasts generated is controlled by the option called "contrasts".
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> getOption("contrasts")

unordered ordered

"contr.treatment" "contr.poly"

(By the way, plotting these data first would show that this is not a good model. The count

variable is, not surprisingly, a count and does not have constant variance. A better model would
use the square root of the count as a response.)

The determinant of an orthogonal matrix

As described on its Wikipedia page, the determinant, |A|, of the k × k square matrix, A, is the
volume of the parallelepiped spanned by its columns (or, equivalently, the volume spanned by its
rows). Because we can consider either the rows or the columns when evaluating the determinant,
we must have

|A| = |A′|.

We can regard |A| as the magnification factor in the transformation x → Ax from Rk to
Rk. This transformation takes the unit cube to a parallelopiped with volume |A|. Composing
transformations will just multiply the magnification factors so we must have

|AB| = |A| |B|

We know that the columns of an orthogonal matrix Q are orthonormal hence they span a unit
volume. That is, for an n× n matrix Q

Q′Q = In ⇒ |Q| = ±1.

The sign indicates whether the transformation preserves orientation. In two dimensions a rotation
preserves orientation and a reflection reverses orientation.

Furthermore, the determinant of a diagonal matrix or a triangular matrix is simply the product
of its diagonal elements. (For a triangular matrix, first consider the 2 × 2 case and the shape of
the parallelogram spanned by the columns. The width of the parallelogram is the (1,1) element
and the height is the (2,2) element so the area is the product of the diagonal elements (up to sign).
Then convince yourself that this property scales to a parellelopiped in k dimensions.)

From these properties we can formally derive

1 = |In| = |QQ′| = |Q||Q′| = |Q|2 ⇒ |Q| = ±1.

Interestingly, one way that the determinant, |A| is evaluated in practice is by forming the QR
decomposition of A, taking the product of the diagonal elements of R, and determining whether
|Q| has a plus or a minus sign.

http://en.wikipedia.org/wiki/Determinant
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R Exercise: The det() function evaluates the determinant of a square matrix (although if you
check its definition you will find that it just calls another function determinant, which is the preferred
approach).

> all.equal(det(R), prod(diag(R)))

[1] TRUE

> det(crossprod(Q1))

[1] 1

> det(crossprod(Q))

[1] 1

1.3.3 Comparison to the usual text-book formulas

Most text books state that the least squares estimates are

β̂ = (X ′X)−1X ′y (1.10)

giving the impression that β̂ is calculated this way. It isn’t.
If you substitute X = Q1R in eqn. 1.10 you get

(X ′X)−1X ′y = (R′R)−1R′Q′1y = R−1(R′)−1R′Q′1y = R−1Q′1y,

our previous result.
Whenever you see X ′X in a formula you should mentally replace it by R′R and similarly

replace (X ′X)−1 by R−1(R′)−1 then see if you can simplify the result.
For example, the variance of the least squares estimator β̂ is

Var(β̂) = σ2(X ′X) = σ2R−1(R−1)′

The R function chol2inv calculates R−1(R−1)′ directly from R without evaluating R−1 explicitly
(not a big deal in most cases but when p is very large it should be faster and more accurate than
evaluating R−1 explicitly).

Also, the determinant of X ′X is

|X ′X| = |R′R| = |R|2 =

(
p∏
i=1

ri,i

)2

The fitted values ŷ areQ1Q
′
1y and thus the hat matrix (which puts a“hat”on y by transforming

it to ŷ) is the n × n matrix Q1Q
′
1. Often we are interested in the diagonal elements of the hat

matrix, which are the sums of the squares of rows of Q1. (In practice you don’t want to calculate
the entire n× n hat matrix just to get the diagonal elements when n could be very large.)
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The residuals, ê = y − ŷ, are calculated as ê = Q2Q
′
2y.

The matrices Q1Q
′
1 and Q2Q

′
2 are projection matrices, which means that they are symmetric

and idempotent. (A square matrix A is idempotent if AA = A.) When rank(X) = p, the hat
matrix Q1Q

′
1 projects any vector in Rn onto the column span of X. The other projection, Q2Q

′
2,

is onto the subspace orthogonal to the column span of X (see the figure on the front cover of the
text).

R Exercise: We have already seen that β̂ can be calculated as

> backsolve(R, crossprod(Q1, y))

[,1]

[1,] 0.005085714

[2,] 0.876285714

or as

> qr.coef(qrlm1, y)

(Intercept) carb

0.005085714 0.876285714

The functions qr.fitted() and qr.fitted() perform projection onto col(X) and onto its or-
thogonal complement, respectively.

The fitted values are, unsurprisingly, calculated as

> qr.fitted(qrlm1, y)

1 2 3 4 5 6

0.09271429 0.26797143 0.44322857 0.53085714 0.61848571 0.79374286

> all.equal(qr.fitted(qrlm1, y), fitted(lm1))

[1] TRUE

and the residuals as

> qr.resid(qrlm1, y)

1 2 3 4 5 6

-0.006714286 0.001028571 0.002771429 0.007142857 0.007514286 -0.011742857

> all.equal(qr.resid(qrlm1, y), residuals(lm1))

[1] TRUE

We use the explicit calculations for illustration only. In practice, use of the “extractor” methods,
fitted() and residuals(), is preferred.

If we wanted the projection matrices P1 for projection onto colX and onto the residual space
we could form them as
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> (P1 <- tcrossprod(Q1))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.59183673 0.38775510 0.1836735 0.08163265 -0.02040816 -0.22448980

[2,] 0.38775510 0.28163265 0.1755102 0.12244898 0.06938776 -0.03673469

[3,] 0.18367347 0.17551020 0.1673469 0.16326531 0.15918367 0.15102041

[4,] 0.08163265 0.12244898 0.1632653 0.18367347 0.20408163 0.24489796

[5,] -0.02040816 0.06938776 0.1591837 0.20408163 0.24897959 0.33877551

[6,] -0.22448980 -0.03673469 0.1510204 0.24489796 0.33877551 0.52653061

and

> (P2 <- tcrossprod(Q[, -(1:2)]))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.40816327 -0.38775510 -0.1836735 -0.08163265 0.02040816 0.22448980

[2,] -0.38775510 0.71836735 -0.1755102 -0.12244898 -0.06938776 0.03673469

[3,] -0.18367347 -0.17551020 0.8326531 -0.16326531 -0.15918367 -0.15102041

[4,] -0.08163265 -0.12244898 -0.1632653 0.81632653 -0.20408163 -0.24489796

[5,] 0.02040816 -0.06938776 -0.1591837 -0.20408163 0.75102041 -0.33877551

[6,] 0.22448980 0.03673469 -0.1510204 -0.24489796 -0.33877551 0.47346939

respectively (the expression Q[, -(1:2)] drops the first two columns of Q producing Q2). (And, of
course, we don’t do this in practice, especially if n is large. Instead we use qr.fitted or qr.resid

if we want to project vectors other than y.)
We can check that P1 and P2 are projection matrices. They are obviously symmetric by con-

struction so we check the idempotent property

> all.equal(P1 %*% P1, P1)

[1] TRUE

> all.equal(P2 %*% P2, P2)

[1] TRUE

Because P1 is projection onto col(X) it should take X to itself

> all.equal(P1 %*% X, X, check.attr=FALSE)

[1] TRUE

and P2 should take X to zeros, although in practice we expect very small but possibly non-zero
values.

> all.equal(P2 %*% X, 0 * X, check.attr=FALSE)

[1] TRUE
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(The weird construction, 0 * X, create a matrix of zeros that is the same size as X.)
Because P1 is the hat matrix, we can get its diagonal elements as

> diag(P1)

[1] 0.5918367 0.2816327 0.1673469 0.1836735 0.2489796 0.5265306

As mentioned, the alternative calculation is

> rowSums(Q1^2)

[1] 0.5918367 0.2816327 0.1673469 0.1836735 0.2489796 0.5265306

and a third way, preferred in practice, is

> hatvalues(lm1)

1 2 3 4 5 6

0.5918367 0.2816327 0.1673469 0.1836735 0.2489796 0.5265306

rank(X), which is the number of linearly independent columns in X, is calculated during the
decomposition and also stored as the $rank component of the fitted model

> lm1$rank

[1] 2

> qrlm1$rank

[1] 2

1.3.4 R functions related to the QR decomposition

To review, every time you fit a linear model with lm or aov or lm.fit, the returned object contains
a $qr component. This is a condensed form of the QR decomposition of X, only slightly larger
than X itself. Its class is "qr".

There are several extractor functions for a "qr" object: qr.R(). qr.Q() and qr.X(), which
regenerates the original matrix. By default qr.Q() returns the matrix called Q1 above with p
columns but you can specify the number of columns desired. Typical alternative choices are n or
rank(X).

The $rank component of a "qr" object is the computed rank of X (and, hence, of R). The
$pivot component is the permutation applied to the columns. It will be 1:p when rank(X) = p
but when rank(X) < p it may be other than the identity permutation.

Several functions are applied to a "qr" object and a vector or matrix. These include qr.coef(),
qr.qy(), qr.qty(), qr.resid() and qr.fitted(). The qr.qy() and qr.qty() functions multiply an
n-vector or an n ×m matrix by Q or Q′ without ever forming Q. Similarly, qr.fitted() creates
Q1Q

′
1x and qr.resid() creates Q2Q

′
2x without forming Q.

The is.qr() function tests an object to determine if it is of class "qr".
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1.4 Related matrix decompositions

1.4.1 The Cholesky decomposition

The Cholesky decomposition of a positive definite symmetric matrix, which means a p×p symmetric
matrix A such that x′Ax > 0 for all non-zero x ∈ Rp is of the form

A = R′R = LL′

where R is an upper triangular p × p matrix and L = R′ is lower triangular. The two forms are
the same decomposition: it is just a matter of whether you want R, the factor on the right, or L,
the factor on the left. Generally statisticians write the decomposition as R′R.

The decomposition is only determined up to changes in sign of the rows of R (or, equivalently,
the columns of L). For definiteness we require positive diagonal elements in R.

When rank(X) = p the Cholesky decomposition R of X ′X is the equal to the matrix R
from the QR decomposition up to changes in sign of rows. The matrix X ′X matrix is obviously
symmetric and it is positive definite because

x′(X ′X)x = x′(R′R)x = ‖Rx‖2 ≥ 0

with equality only when Rx = 0, which, when rank(R) = p, implies that x = 0.

1.4.2 Evaluation of the Cholesky decomposition

The R function chol() evaluates the Cholesky decomposition. As mentioned above chol2inv()

creates (X ′X)−1 directly from the Cholesky decomposition of X ′X.

Generally the QR decomposition is preferred to the Cholesky decomposition for least squares
problems because there is a certain loss of precision when forming X ′X. However, when n is very
large you may want to build up X ′X using blocks of rows. Also, if X is sparse it is an advantage
to use sparse matrix techniques to evaluate and store the Cholesky decomposition.

The Matrix package for R provides even more capabilities related to the Cholesky decomposition,
especially for sparse matrices.

For everything we will do in Statistics 849 the QR decomposition should be the method of
choice.

R Exercises:

> chol(crossprod(X))

(Intercept) carb

(Intercept) 2.449490 1.2655697

carb 0.000000 0.6390097

http://en.wikipedia.org/wiki/Cholesky_decomposition
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1.4.3 The singular value decomposition

Another decomposition related to orthogonal matrices is the singular value decomposition (or SVD)
in which the matrix X is reduced to a diagonal form

X = U1DV
′ = U

[
D
0

]
V ′ (1.11)

where U is an n × n orthogonal matrix, D is a p × p diagonal matrix with non-negative diagonal
elements (which are called the singular values of X) and V is a p× p orthogonal matrix. As for Q
and Q1, U1 consists of the first p columns of U . For definiteness we order the diagonal elements of
D, which must be non-negative, in decreasing order.

Just like Q1, the columns of U1 form an orthonormal basis for col(X) when X has full column
rank (which means that the singular values are all safely positive). If rank(X) = r < p then the
first r columns of U form the orthonormal basis.

One way to visualize the singular value decomposition of X is to remember that a p-sphere
in Rp will get mapped to an ellipsoid in col(X) by X. The singular values are the lengths of the
principal axes of this ellipsoid. The right singular vectors (columns of V ) are the directions in the
parameter space that map onto the principal axes of the ellipsoid. The first rank(X) left singular
vectors (columns of U) are the principal axes of the ellipsoid.

The singular value decomposition of X is related to the eigendecomposition or spectral decom-
position of X ′X because

X ′X = V DU ′1U1DV
′ = V D2V ′

implying that the eigenvalues of X ′X are the squares of the singular values of X and the right
singular vectors, which are the columns of V , are also the eigenvectors of X ′X

Calculation of the SVD is an iterative (as opposed to a direct) computation and potentially
more computing intensive than the QR decomposition, although modern methods for evaluating
the SVD are very good indeed.

Symbolically we can write the least squares solution in the full-rank case as

β̂ = V D−1U ′1y

where D−1 is a diagonal matrix whose diagonal elements are the inverses of the diagonal elements
of D.

The pseudo-inverse or generalized inverse of X, written X−, is calculated from the pseudo-
inverse of the diagonal matrix, D. In theory the diagonal elements of D− are 1/di,i when di,i 6= 0
and 0 when di,i = 0. However, we can’t count on di,i being 0 even when, in theory, it should be.
We need to decide when the singular values are close to zero, which is actually a very difficult
problem. At best we can use some heuristics, based on the ratio of di,i/d1,1, to decide when a
diagonal element is “effectively zero”.

The use of the pseudo-inverse seems to be a convenient way to handle rank-deficient X matrices
but, as mentioned above, the best way to handle rank-deficient X matrices is not to produce them
in the first place. Even when a rank-deficient X is produced we use a pivoted QR decomposition
rather than a pseudo-inverse.

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
http://en.wikipedia.org/wiki/Spectral_decomposition
http://en.wikipedia.org/wiki/Spectral_decomposition
http://en.wikipedia.org/wiki/Pseudo-inverse
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R Exercises: The SVD of our model matrix X is

> str(Xsv <- svd(X))

List of 3

$ d: num [1:2] 2.773 0.564

$ u: num [1:6, 1:2] 0.334 0.368 0.403 0.42 0.437 ...

$ v: num [1:2, 1:2] 0.878 0.479 -0.479 0.878

We see that, by default, the svd() function produces the diagonal of D, the matrix U1 and the
matrix V . We should check that X = U1DV

′, as advertised. We could form a diagonal matrix
D from the $d component of Xsv but multiplication of a matrix on the left by a diagonal matrix
corresponds to scaling its rows, so we write the reconstruction as

> Xsv$u %*% (Xsv$d * t(Xsv$v))

[,1] [,2]

[1,] 1 0.1

[2,] 1 0.3

[3,] 1 0.5

[4,] 1 0.6

[5,] 1 0.7

[6,] 1 0.9

> all.equal(Xsv$u %*% (Xsv$d * t(Xsv$v)), X, check.attr=FALSE)

[1] TRUE

We check that the matrix U1 has orthonormal columns and that V is orthogonal

> zapsmall(crossprod(Xsv$u))

[,1] [,2]

[1,] 1 0

[2,] 0 1

> zapsmall(crossprod(Xsv$v))

[,1] [,2]

[1,] 1 0

[2,] 0 1

The squares of the singular values should be the eigenvalues of X ′X and the eigenvectors of
X ′X should be the columns of V , up to changes in sign along columns. (The eigenvectors, which
are really just directions, are only determined up to changes in sign, and in the case of repeated
eigenvalues, only up to orthogonal transformation within the repeated eigenvalue’s eigenspace.)

> str(ev <- eigen(crossprod(X)))
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List of 2

$ values : num [1:2] 7.691 0.319

$ vectors: num [1:2, 1:2] -0.878 -0.479 0.479 -0.878

> Xsv$d^2

[1] 7.6914651 0.3185349

> all.equal(ev$values, Xsv$d^2)

[1] TRUE

> ev$vectors

[,1] [,2]

[1,] -0.8778294 0.4789735

[2,] -0.4789735 -0.8778294

> Xsv$v

[,1] [,2]

[1,] 0.8778294 -0.4789735

[2,] 0.4789735 0.8778294

> all.equal(-Xsv$v, ev$vectors)

[1] TRUE

In practice, you never need to calculate the eigenvalues and eigenvectors of X ′X. It is more
effective and more stable to calculate the singular value decomposition of X and use the squares of
the singular values and the $v component (assuming that you really do need the eigenvalues and
eigenvectors which, most of the time, you don’t).

The reason that it is preferable to work with decompositions of X rather than forming X ′X
is related to the condition number of these matrices. As described on the Wikipedia page, the
condition number of a matrix, written κ(X), is the ratio of its largest and smallest singular values.
Obviously we must have κ(X) ≥ 1. A matrix with κ close to 1 is well-conditioned. A matrix
with a very large condition number is close to being singular, in that spheres are mapped to highly
elongated ellipsoids.

An orthogonal matrix or a rectangular matrix with orthonormal columns must have a condition
number of 1 because it maps a sphere to a sphere. (Recall that, for us, rectangular matrices like
X have more rows than columns. In the opposite case, more columns than rows, it would be the
rows that are orthonormal.) In fact, all the singular values of an orthogonal matrix must be unity
because it preserves lengths so the unit sphere gets mapped to the unit sphere.

We can check that matrices like Q, Q1 and U1 have a condition number of 1.

> svd(Q, nu=0, nv=0)$d

http://en.wikipedia.org/wiki/Condition_number
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[1] 1 1 1 1 1 1

> kappa(Q)

[1] 1

> svd(Q1, nu=0, nv=0)$d

[1] 1 1

> kappa(Q1)

[1] 1

> kappa(Xsv$u)

[1] 1

The condition number of X can be explicitly calculated as

> Xsv$d

[1] 2.773349 0.564389

> (kappaX <- Xsv$d[1]/Xsv$d[length(Xsv$d)])

[1] 4.913897

(The complicated expression in the last line is to generalize the calculation. It will give the
correct answer when there are more than two singular values.) The kappa() function, by default,
produces an upper bound on the condition number, because this upper bound can be calculated
directly. To get the exact value set the optional argument exact=TRUE.

> kappa(X)

[1] 5.1073

> kappa(X, exact=TRUE)

[1] 4.913897

In practice we usually calculate the reciprocal of the condition number because its value is in
[0, 1] and it is easier to decide when it is close to zero instead of trying to decide when κ(X) is
“close to”∞. We compare the reciprocal condition number to the relative machine precision,

> .Machine$double.eps

[1] 2.220446e-16

http://en.wikipedia.org/wiki/Machine_epsilon
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Figure 1.1: The image of the unit circle in R2 after mapping by U ′1X (left panel) and by Q′1X
(right panel)

A matrix is considered computationally singular when its reciprocal condition number is within
some multiple, typical values are 10 or 100, of this number.

Getting back to the question of why we prefer to work with X directly, instead of forming X ′X,
it is because κ(X ′X) = κ(X)2. If κ(X) = 106, which is large but not catastrophically so, then
κ(X ′X) will be 1012, which means it is very close to being singular.

Finally, let’s revisit the idea of the singular values being the lengths of the principal axes of the
image of the unit sphere in the map β → Xβ. When p = 2 the unit sphere is the circle of radius
1 centered at the origin and the ellipsoid mentioned above will be an ellipse.

A convenient way of creating a 2×N matrix whose columns are the points on the unit circle is
to start with a sequence of values from 0 to 2π and use its sines and cosines

> str(rad <- seq(0, 2*pi, len=201))

num [1:201] 0 0.0314 0.0628 0.0942 0.1257 ...

> str(circ <- rbind(cos(rad), sin(rad)))

num [1:2, 1:201] 1 0 0.9995 0.0314 0.998 ...

The n-dimensional response vectors corresponding to these points on the circle are

> fits <- X %*% circ

To plot the this image in two dimensions (Fig. 1.1) we need to represent these points with
respect to an orthogonal basis for col(X). Fortunately we have two such bases: the columns of Q1

and of U1. In the U1 basis the principal axes of the ellipse correspond to the coordinate axes. In
the Q1 basis the principal axes are skewed.

1.5 Theoretical results on the eigendecomposition

1.5.1 Eigenvalues and Eigenvectors

For any k × k matrix A, the roots of the kth degree polynomial equation in λ, |λIk − A| = 0,
which we will write as λ1, . . . , λk are called the eigenvalues of A. The polynomial is called the
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characteristic polynomial of A.

Any nonzero n× 1 vector vi 6= 0 such that Avi = λivi is an eigenvector of A corresponding to
the eigenvalue λi.

For any diagonal matrix D = diag(d1, . . . , dk), |λIk −D| =
∏k
i=1(λ − di) = 0 has roots di,

therefore the diagonal elements di, i = 1, . . . , n are the eigenvalues of D

If Q is an orthogonal matrix, then QAQ′ and A have the same eigenvalues.

Proof.

|λI −QAQ′| = |λQQ′ −QAQ′|
= |Q||λQ′ −AQ′|
= |Q||λI −A||Q′|
= |Q|2|λI −A| = 1|λI −A|
= |λI −A|

(1.12)

Note: Although the eigenvalues are defined as the roots of the characteristic polynomial, in
practice they are not calculated this way. In fact, if you check the documentation for function
solve.polynomial() in the polynom package for R you will find that it uses the numerical methods
for evaluating the eigenvalues of the companion matrix of a polynomial to solve for the polynomial’s
roots.

1.5.2 Diagonalization of a Symmetric Matrix

For any k × k symmetric matrix A (i.e. A′ = A), there exists an orthogonal matrix Q such
that QAQ′ is a diagonal matrix Λ = diag(λ1, . . . , λn) where λi are the eigenvalues of A. The
corresponding eigenvectors of A are the column vectors of Q

Proof. Let ei, i = 1, . . . , n be n × 1 unit vectors that form the canonical basis of Rn, (i.e. ei =
(0, . . . , 1, . . . , 0)′ where the 1 is in the ith position) and qi be the ith column ofQ. That is, qi = Qei.
Then

Q′AQ = Λ⇒ Q′AQei = Λei = λiei

Multiplying on the left by Q produces

Aqi = QQ′︸︷︷︸
I

AQei = λiQei = λ1qi.

http://en.wikipedia.org/wiki/Characteristic_polynomial
http://en.wikipedia.org/wiki/Companion_matrix
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1.5.3 Spectral Decomposition

From the relationship Q′AQ = Λ just established for a k×k symmetric matrix A we can compute
its spectral decomposition,

A = QΛQ′ =
k∑
i=1

λiqiq
′
i

where qi is the ith column of Q.

QQ′ =
k∑
i=1

qiq
′
i = I

1.5.4 Trace and Determinant of A

The relationship Q′AQ = Λ for symmetric A implies that the trace, tr(A), and the determinant,
|A|, are the same as those of Λ.

tr(A) = tr(QΛQ′) = tr(ΛQQ′) = tr(Λ) =

k∑
i=1

λi

where we have used the property that tr(CD) = tr(D) for any conformable matrices C and D
(meaning that if C is m× n then D must be n×m).

|A| = |QΛQ′| = |Q||Λ||Q′| = |Q|2|Λ| =
k∏
i=1

λi

http://en.wikipedia.org/wiki/Spectral_decomposition_%28Matrix%29
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Chapter 2

Quadratic Forms of Random Variables

2.1 Quadratic Forms

For a k × k symmetric matrix A = {aij} the quadratic function of k variables x = (x1, . . . , xn)′

defined by

Q(x) = x′Ax =

k∑
i=1

k∑
j=1

ai,jxixj

is called the quadratic form with matrix A.
If A is not symmetric, we can have an equivalent expression/quadratic form replacing A by

(A+A′)/2.

Definition 1. Q(x) and the matrix A are called positive definite if

Q(x) = x′Ax > 0, ∀x ∈ Rk, x 6= 0

and positive semi-definite if
Q(x) ≥ ∀x ∈ Rk

For negative definite and negative semi-definite, replace the > and ≥ in the above definitions
by < and ≤, respectively.

Theorem 1. A symmetric matrix A is positive definite if and only if it has a Cholesky decompo-
sition A = R′R with strictly positive diagonal elements in R, so that R−1 exists. (In practice this
means that none of the diagonal elements of R are very close to zero.)

Proof. The “if” part is proven by construction. The Cholesky decomposition, R, is constructed a
row at a time and the diagonal elements are evaluated as the square roots of expressions calculated
from the current row of A and previous rows of R. If the expression whose square root is to be
calculated is not positive then you can determine a non-zero x ∈ Rk for which x′Ax ≤ 0.

Suppose that A = R′R with R invertible. Then

x′Ax = x′R′Rx = ‖Rx‖2 ≥ 0

with equality only if Rx = 0. But if R−1 exists then x = R−10 must also be zero.

25
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Transformation of Quadratic Forms:

Theorem 2. Suppose that B is a k × k nonsingular matrix. Then the quadratic form Q∗(y) =
y′B′ABy is positive definite if and only if Q(x) = x′Ax is positive definite. Similar results hold
for positive semi-definite, negative definite and negative semi-definite.

Proof.

Q∗(y) = y′B′ABy = x′Ax > 0

where x = By 6= 0 because y 6= 0 and B is nonsingular.

Theorem 3. For any k × k symmetric matrix A the quadratic form defined by A can be written
using its spectral decomposition as

Q(x) = x′Ax =

k∑
i=1

λi‖q′ix‖2

where the eigendecomposition of of A is Q′ΛQ with Λ diagonal with diagonal elements λi, i =
1, . . . , k, Q is the orthogonal matrix with the eigenvectors, qi, i = 1, . . . , k as its columns. (Be
careful to distinguish the bold face Q, which is a matrix, from the unbolded Q(x), which is the
quadratic form.)

Proof. For any x ∈ Rk let y = Q′x = Q−1x. Then

Q(x) = tr(x′Ax) = tr(x′QΛQ′x) = tr(y′Λy) = tr(Λyy′) ==
k∑
i=1

λiy
2
i =

k∑
i=1

λi‖q′ix‖2

This proof uses a common “trick” of expressing the scalar Q(x) as the trace of a 1 × 1 matrix so
we can reverse the order of some matrix multiplications.

Corollary 1. A symmetric matrix A is positive definite if and only if its eigenvalues are all positive,
negative definite if and only if its eignevalues are all negative, and positive semi-definite if all its
eigenvalues are non-negative.

Corollary 2. rank(A) = rank(Λ) hence rank(A) equals the number of non-zero eigenvalues of A

2.2 Idempotent Matrices

Definition 2 (Idempotent). The k × k matrix A, is idempotent if A2 = AA = A.

Definition 3 (Projection matrices). A symmetric, idempotent matrix A is a projection matrix.
The effect of the mapping x → Ax is orthogonal projection of x onto col(A).

Theorem 4. All the eigenvalues of an idempotent matrix are either zero or one.

http://en.wikipedia.org/wiki/Projection_%28linear_algebra%29
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Proof. Suppose that λ is an eigenvalue of the idempotent matrix A. Then there exists a non-zero
x such that Ax = λx. But Ax = AAx because A is idempotent. Thus

λx = Ax = AAx = A(λx) = λ(Ax) = λ2x

and
0 = λ2x− λx = λ(λ− 1)x

for some non-zero x, which implies that λ = 0 or λ = 1.

Corollary 3. The k×k symmetric matrix A is idempotent of rank(A) = r iff A has r eigenvalues
equal to 1 and k − r eigenvalues equal to 0

Proof. A matrix A with r eigenvalues of 1 and k− r eigenvalues of zero has r non-zero eigenvalues
and hence rank(A) = r. Because A is symmetric its eigendecomposition is A = QΛQ′ for an
orthogonal Q and a diagonal Λ. Because the eigenvalues of Λ are the same as those of A, they
must be all zeros or ones. That is all the diagonal elements of Λ are zero or one. Hence Λ is
idempotent, ΛΛ = Λ, and

AA = QΛQ′QΛQ′ = QΛQ′ = A

is also idempotent.

Corollary 4. For a symmetric idempotent matrix A, we have tr(A) = rank(A), which is the
dimension of col(A), the space into which A projects.

2.3 Expected Values and Covariance Matrices of Random Vectors

An k-dimensional vector-valued random variable (or, more simply, a random vector), X , is a k-vector
composed of k scalar random variables

X = (X1, . . . ,Xk)′

If the expected values of the component random variables are µi = E(Xi), i = 1, . . . , k then

E(X ) = µX = (µ1, . . . , µk)
′

Suppose that Y = (Y1, . . . ,Ym)′ is an m-dimensional random vector, then the covariance of X
and Y, written Cov(X ,Y) is

ΣXY = Cov(X ,Y) = E[(X − µX )(Y − µY)′]

The variance-covariance matrix of X is

Var(X ) = ΣXX = E[(X − µX )(X − µ§)

Suppose that c is a constant m-vector, A is a constant m × k matrix and Z = ZX + c is a
linear transformation of X . Then

E(Z) = AE(X ) + c
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and

Var(Z) = AVar(X )A′

If we let W = BY + d be a linear transformation of Y for suitably sized B and d then

Cov(Z,W) = ACov(X ,Y)B′

Theorem 5. The variance-covariance matrix ΣX ,X of X is a symmetric and positive semi-definite
matrix

Proof. The result follows from the property that the variance of a scalar random variable is non-
negative. Suppose that b is any nonzero, constant k-vector. Then

0 ≤ Var(b′X ) = b′ΣXXb

which is the positive, semi-definite condition.

2.4 Mean and Variance of Quadratic Forms

Theorem 6. Let X be a k-dimensional random vector and A be a constant k×k symmetric matrix.
If E(X ) = µ and Var(X ) = Σ, then

E(X ′AX ) = tr(AΣ) + µ′Aµ

Proof.
E(X ′AX ) = tr(E(X ′AX ))

= E[tr(X ′AX )]

= E[tr(AXX ′)]
= tr(AE[XX ′])
= tr(A(Cov(X ) + µµ′))

= tr(AΣXX ) + tr(Aµµ′)

= tr(AΣXX ) + µ′Aµ

2.5 Distribution of Quadratic Forms in Normal Random Variables

Definition 4 (Non-Central χ2). If X is a (scalar) normal random variable with E(X ) = µ and
Var(X ) = 1, then the random variable V = X 2 is distributed as χ2

1(λ
2), which is called the noncentral

χ2 distribution with 1 degree of freedom and non-centrality parameter λ2 = µ2. The mean and
variance of V are

E[V] = 1 + λ2 and Var[V] = 2 + 4λ2
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As described in the previous chapter, we are particularly interested in random n-vectors, Y ,
that have a spherical normal distribution.

Theorem 7. Let Y ∼ N (µ, σ2In) be an n-vector with a spherical normal distribution and A
be an n × n symmetric matrix. Then the ratio Y ′AY/σ2 will have a χ2

r(λ
2) distribution with

λ2 = µ′Aµ/σ2 if and only if A is idempotent with rank(A) = r

Proof. Suppose that A is idempotent (which, in combination with being symmetric, means that it
is a projection matrix) and has rank(A) = r. Its eigendecomposition, A = V ΛV ′, is such that
V is orthogonal and Λ is n × n diagonal with exactly r = rank(A) ones and n − r zeros on the
diagonal. Without loss of generality we can (and do) arrange the eigenvalues in decreasing order
so that λj = 1, j = 1, . . . , r and λj = 0, j = r + 1, . . . , n Let X = V ′Y

Y ′AY
σ2

=
Y ′V ΛV ′Y

σ2

=
X ′ΛX
σ2

=
n∑
j=1

λj
X 2
j

σ2

=
r∑
j=1

X 2
j

σ2

(Notice that the last sum is to j = r, not j = n.) However,
Xj

σ ∼ N (v′jµ/σ, 1) so
X 2

j

σ2 ∼
χ2
1((v

′
jµ/σ)2). Therefore

r∑
j=1

X 2
j

σ2
∼ χ2

(r)(λ
2) where λ2 =

µ′V ΛV ′µ

σ2
=
µ′Aµ

σ2

Corollary 5. For A a projection of rank r, (Y ′AY)/σ2 has a central χ2 distribution if and only if
Aµ = 0

Proof. The χ2
r distribution will be central if and only if

0 = µ′Aµ = µ′AAµ = µ′A′Aµ = ‖Aµ‖2

Corollary 6. In the full-rank Gaussian linear model, Y ∼ N (Xβ, σ2In), the residual sum of
squares, ‖y −Xβ̂‖2 has a central σ2χ2

n−r distribution.



30 CHAPTER 2. QUADRATIC FORMS

Proof. In the full rank model with the QR decomposition of X given by

X =
[
Q1 Q2

] [R
0

]
and R invertible, the fitted values are Q1Q

′
1Y and the residuals are Q2Q2y so the residual sum

of squares is the quadratic form Y ′Q2Q
′
2Y. The matrix defining the quadratic form, Q2Q

′
2, is a

projection matrix. It is obviously symmetric and it is idempotent because Q2Q
′
2Q2Q

′
2 = Q2Q

′
2.

As

Q′2µ = Q′2Xβ0 = Q′2Q1Rβ0 = 0︸︷︷︸
(n−p)×n

Rβ0 = 0︸︷︷︸
(n−p)×p

β0 = 0n−p

the ratio
Y ′Q2Q

′
2Y

σ2
∼ χ2

n−p

and the RSS has a central σ2χ2
n−p distribution.

R Exercises: Let’s check some of these results by simulation. First we claim that if X ∼ N (µ, 1)
then X 2 ∼ χ2(λ2) where λ2 = µ2. First simulate from a standard normal distribution

> set.seed(1234) # reproducible "random" values

> X <- rnorm(100000) # standard normal values

> zapsmall(summary(V <- X^2)) # a very skew distribution

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.1026 0.4521 0.9989 1.3190 20.3300

> var(V)

[1] 1.992403

The mean and variance of the simulated values agree quite well with the theoretical values of 1 and
2, respectively.

To check the form of the distribution we could plot an empirical density function but this
distribution has its maximum density at 0 and is zero to the left of 0 so an empirical density is a
poor indication of the actual shape of the density. Instead, in Fig. 2.1, we present the quantile-
quantile plot for this sample versus the (theoretical) quantiles of the χ2

1 distribution.
Now simulate a non-central χ2 with non-centrality parameter λ2 = 4

> V1 <- rnorm(100000, mean=2)^2

> zapsmall(summary(V1))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 1.773 3.994 5.003 7.144 39.050

> var(V1)
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Figure 2.1: A quantile-quantile plot of the squares of simulated N (0, 1) random variables versus
the quantiles of the χ2

1 distribution. The dashed line is a reference line through the origin with a
slope of 1.

[1] 17.95924

The sample mean is close to the theoretical value of 5 = 1 + λ2 and the sample variance is close
to the theoretical value of 2 + 4λ2 although perhaps not as close as one would hope in a sample of
size 100,000.

A quantile-quantile plot versus the non-central distribution, χ2
1(4), (Fig. 2.2) and versus the

central distribution, χ2
1, shows that the sample does follow the claimed distribution χ2

1(4) and is
stochastically larger than the χ2

1 distribution.
More interesting, perhaps is the distribution of the residual sum of squares from a regression

model. We simulate from our previously fitted model lm1

> lm1 <- lm(optden ~ carb, Formaldehyde)

> str(Ymat <- data.matrix(unname(simulate(lm1, 10000))))

num [1:6, 1:10000] 0.088 0.258 0.444 0.521 0.619 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:6] "1" "2" "3" "4" ...

..$ : NULL
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Figure 2.2: Quantile-quantile plots of a sample of squares of N (2, 1) random variables versus the
quantiles of a χ2

1(4) non-central distribution (left panel) and a χ2
1 central distribution (right panel)

> str(RSS <- deviance(fits <- lm(Ymat ~ carb, Formaldehyde)))

num [1:10000] 0.000104 0.000547 0.00055 0.000429 0.000228 ...

> fits[["df.residual"]]

[1] 4

Here the Ymat matrix is 10,000 simulated response vectors from model lm1 using the estimated
parameters as the true values of β and σ2. Notice that we can fit the model to all 10,000 response
vectors in a single call to the lm() function.

The deviance() function applied to a model fit by lm() returns the residual sum of square,
which is not technically the deviance but is often the quantity of interest.

These simulated residual sums of squares should have a σ2χ2
4 distribution where σ2 is the residual

sum of squares in model lm1 divided by 4.

> (sigsq <- deviance(lm1)/4)

[1] 7.48e-05

> summary(RSS)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.997e-07 1.461e-04 2.537e-04 3.026e-04 4.114e-04 1.675e-03
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Figure 2.3: Quantile-quantile plot of the scaled residual sum of squares, RSSsq, from simulated
responses versus the quantiles of a χ2

4 distribution (left panel) and the corresponding probability-
probability plot on the right panel.

We expect a mean of 4σ2 and a variance of 2 ·4(σ2)2. It is easier to see this if we divide these values
by σ2

> summary(RSSsc <- RSS/sigsq)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.009354 1.953000 3.392000 4.045000 5.500000 22.390000

> var(RSSsc)

[1] 8.000057

A quantile-quantile plot with respect to the χ2
4 distribution (Fig. 2.3) shows very good agreement

between the empirical and theoretical quantiles. Also shown in Fig. 2.3 is the probability-probability
plot. Instead of plotting the sample quantiles versus the theoretical quantiles we take equally spaced
values on the probability scale (function ppoints()), evaluate the sample quantiles and then apply
the theoretical cdf to the empirical quantiles. This should also produce a straight line. It has the
advantage that the points are equally spaced on the x-axis.

We could also plot the empirical density of these simulated values and overlay it with the
theoretical density (Fig. 2.4).
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Figure 2.4: Empirical density plot of the scaled residual sums of squares, RSSsq, from simulated
responses. The overlaid dashed line is the density of a χ2

4 random variable. The peak of the empirical
density gets shifted a bit to the right because of the way the empirical density if calculated. It uses
a symmetric kernel which is not a good choice for a skewed density like this.



Chapter 3

Properties of coefficient estimates

In chapter 1 we described properties of the coefficient estimates, β̂, in the Gaussian linear model

Y ∼ N (Xβ, σ2In).

The estimates are called the least squares estimates because they minimize the sum of squared
residuals from the observed responses, y. That is,

β̂ = arg min
β
S(β) = arg min

β
‖y −Xβ‖2

3.1 Geometric Properties

Recall that col(X), the column span of the n × p model matrix X is a linear subspace of the
response space, Rn,

col(X) = {Xβ : β ∈ Rp}

The dimension of col(X) is k = rank(X) and the QR decomposition used in R uses column pivoting
to ensure that the first k columns of Q are an orthonormal basis for col(X).

At the risk of some confusion, we will refer to these k columns as Q1 which is equivalent to our
previous definition in the most common case of full column rank for X.

The fitted values, ŷ, are the (orthogonal) projection of y onto col(X)

ŷ = Hy = Q1Q
′
1y

where the “hat matrix”, H = Q1Q
′
1, is a projection matrix of rank

tr(Q1Q
′
1) = tr(Q′1Q1) = tr(Ik) = k

The diagonal matrix, D, in the singular value decomposition (sect. 1.4.3, p. 17), X = U1DV
′,

has exactly p − k values that are (effectively) zero and these will be in the last p − k positions.
(Recall that the singular values, which must be non-negative, are in decreasing order.) Thus the
first k columns of U1 also form an orthonormal basis for col(X).

35
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The residual at the parameter estimates, ê = y− ŷ is orthogonal to col(X). We can prove this
by showing that ê is orthogonal to the k columns of Q1 which form a basis for col(X).

Q′1ê = Q′1 (y − ŷ) = Q′1
(
In −Q1Q

′
1

)
y =

Q′1 −Q′1Q1︸ ︷︷ ︸
Ip

Q′1

y = 0

This is also an obvious geometric property that to minimize the distance between a point on
a hyperplane and a general point in the response space, arg minβ ‖y −Xβ‖2, you use orthogonal
projection of y onto col(X) which implies that the residual is orthogonal to col(X).

Often this relationship is characterized as the normal equations. The residual will be orthogonal
to col(X) if it is orthogonal to all the columns of X, which is to say

X ′
(
y −Xβ̂

)
= 0 ⇒

(
X ′X

)
β̂ = X ′y

3.2 Calculus Approach

The function
S(β) = ‖y −Xβ‖2

= (y −Xβ)′ (y −Xβ)

= y′y − y′Xβ − β′X ′y + β′X ′Xβ

= y′y − 2β′X ′y + β′X ′Xβ

is a real-valued function of the p-vector, β, (S : Rp → R), with gradient vector

dS

dβ
= −2X ′y + 2X ′Xβ.

Thus a critical point, βc, at which the gradient is zero, satisfies

X ′Xβc = X ′y.

The Hessian matrix of S(β),
d2 S

dβ dβ′
= 2X ′X

is positive semi-definite. If X is full rank then X ′X is positive definite and the critical point will
be the minimizer of S(β).

3.3 Algebraic Properties of β̂

1. β̂ satisfies X ′Xβ̂ = X ′y and minimizes S(β) = ‖y −Xβ‖2

2. If X is of rank p, then β̂ is unique, satisfying X ′Xβ̂ = X ′y or, equivalently, Rβ̂ = Q′1y for
an invertible, upper-triangular p× p matrix R.

http://en.wikipedia.org/wiki/Gradient_vector
http://en.wikipedia.org/wiki/Hessian_matrix
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3. If rank(X) < p, X ′Xβ̂ = X ′y has multiple solutions for β̂ but ŷ = Xβ̂ is the same for all
such β̂

Proof. To prove item 3: Suppose that β̂1 and β̂2 are such that X ′Xβ̂1 = X ′Xβ̂1 = X ′y. Then

X ′
(
Xβ̂1 −Xβ̂2

)
= 0

which implies that

0 = (β̂1 − β̂2)X
′X(β̂1 − β̂2) = ‖Xβ̂1 −Xβ̂2‖2 ⇒Xβ̂1 = Xβ̂2

3.4 Rank deficient cases and the Moore-Penrose inverse

In practice a rank-deficient model matrix, X, is handled by two methods

1. Don’t create it in the first place, use I − 1 contrasts for a factor with I levels.

2. Use the pivoted QR decomposition that retains the original order of the columns except
that columns whose diagonal elements in R would be effectively zero are moved to trailing
positions.

After that the calculation procedes as in the full-rank case except that only the first k = rank(X)
columns are used in Q1 and R is taken as the k×k upper-left submatrix of the calculated p× p R.

When discussion the singular value decomposition in Chap. 1, we mentioned the pseudo-inverse
or generalized inverse of X, written X−, which formally is called the Moore-Penrose generalized
inverse. If rank(X) = k < p then there are p− k singular values of zero (in practice, very close to
zero). The SVD is

X = U1DV
′ = ŨD̃V ′

where Ũ is the first k columns of U1 and D̃ is the first k rows of D. D−, the Moore-Penrose inverse
of D, is also a diagonal matrix with diagonal elements 1/di,i, i = 1, . . . , k and zero thereafter. The
Moore-Penrose inverse of D̃ is the first k columns of D−. Finally, the Moore-Penrose generalized
inverse of X is

X− = V D−U ′1 = V D̃−Ũ ′

This is an interesting theoretical tool but in practice it is not necessary to form the SVD in
order to solve rank-deficient least squares problems.

3.4.1 Properties of Generalized Inverses

Let A be an n × p matrix and A− be its p × n pseudo-inverse. The conditions that A and A−

must satisfy are

1. AA−A = A (i.e. AA− maps the columns of A to themselves.)

http://en.wikipedia.org/wiki/Pseudo-inverse
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2. A−AA− = A− (i.e. A−A maps the columns of A− to themselves.)

3. Both AA− and A−A are symmetric

(It is easy to verify these conditions for our case of X− = V D−U where X is n×p with rank(X) ≤
p ≤ n. In fact, you will do so on a homework assignment.)

Let H = A−A be the associated projection in Rp. Then the condition AA−A = A implies

1. H is idempotent because HH = A−AA−A = A−A = H.

2. AH = A (just plug in the definition of H) so rank(A) ≤ rank(H). However, we also have
rank(H) ≤ rank(A) because H = A−A. Thus rank(A) = rank(H) = tr(H)

3. A general solution of Ax = 0 is

x = (H − Ip)z

where z is any vector in Rp
Ax = A(H − Ip)z

= (AH −A)z

= (A−A)z = 0

4. A general solution to Ax = y is

x = A−y + (H − Ip)z

AA−Ax = Ax ⇒ AA−y = y

x = AA−y +A(H − Ip)z︸ ︷︷ ︸
0

and AA−y = y ⇒ y = Ax

β̂ = (X ′X)−X ′y is a particular least squares solution in the rank deficient case. The general
solution is

β̂ = (X ′X)−X ′y + (H − Ip)z, z ∈ Rp

where H = (X ′X)−(X ′X).

3.5 Properties of β̂

In the full-rank Gaussian linear model

E[β̂] = E[(X ′X)−1X ′Y]

= (X ′X)−1X ′E[Y]

= (X ′X)−1X ′Xβ

= β
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which is to say that the least squares estimator is an unbiased estimator of β. Furthermore

Var(β̂) = Var
(
(X ′X)−1X ′Y

)
= (X ′X)−1X ′Var(Y)X(X ′X)−1

σ2(X ′X)−1

R Exercises: Consider the models fit in Chap. 1

> lm1 <- lm(optden ~ 1 + carb, Formaldehyde)

> set.seed(1234) # allow for reproducible "random" numbers

> badDat <- within(data.frame(x1=1:20, x2=rnorm(20,mean=6,sd=0.2),

+ x4=rexp(20,rate=0.02),

+ y=runif(20,min=18,max=24)),

+ x3 <- x1 + 2*x2) # create linear combination

> lm2 <- lm(y ~ x1 + x2 + x3 + x4, badDat)

> lm3 <- lm(count ~ spray, InsectSprays)

> lmlst <- list(lm1=lm1, lm2=lm2, lm3=lm3)

> mmlst <- lapply(lmlst, model.matrix)

We know that models lm1 and lm3 are full-rank but model lm2 is rank-deficient.

> sapply(lmlst, function(fm) c(rank=fm[["rank"]], p=length(coef(fm))))

lm1 lm2 lm3

rank 2 4 6

p 2 5 6

which is reflected in the diagonal elements of the R matrices and in the singular values of the model
matrices and in the condition number

> lapply(lmlst, function(fm) diag(fm[["qr"]][["qr"]]))

$lm1

[1] -2.4494897 0.6390097

$lm2

[1] -4.472136e+00 2.578759e+01 -8.668932e-01 2.327514e+02 5.179752e-15

$lm3

[1] -8.485281 3.162278 3.098387 3.000000 2.828427 2.449490

> lapply(mmlst, function(mm) svd(mm, nu=0, nv=0)[["d"]])

$lm1

[1] 2.773349 0.564389

$lm2

[1] 3.197628e+02 8.828492e+01 1.396147e+01 1.446151e-01 3.340320e-15

$lm3

[1] 9.069136 3.464102 3.464102 3.464102 3.464102 1.323169

http://en.wikipedia.org/wiki/Unbiased_estimator


40 CHAPTER 3. PROPERTIES OF COEFFICIENT ESTIMATES

> sapply(lmlst, kappa, exact=TRUE)

lm1 lm2 lm3

4.913897e+00 1.512149e+17 6.854102e+00

For the full-rank models, lm1 and lm3, the pseudo-inverse, X− is simply the matrix the creates
the estimated coefficients, β̂ from the observed response vector y. We can write it in various forms
as

X− = (X ′X)−1X ′ = R−1Q′1 = V D−1U ′1

For full-rank models like these the pseudo-inverse, X− is unique and

X−X = R−1Q′1Q1︸ ︷︷ ︸
Ip

R = Ip

We can verify the conditions for the Moore-Penrose inverse symbolically. For example,

XX−X = Q1RR
−1︸ ︷︷ ︸

Ip

Q′1Q1︸ ︷︷ ︸
Ip

R = Q1R = X

or numerically

> X <- mmlst[[3]]

> lm3qr <- lmlst[[3]]$qr

> Q1 <- qr.Q(lm3qr)

> R <- qr.R(lm3qr)

> Xpinv <- backsolve(R, t(Q1))

> zapsmall(Xpinv %*% X)

(Intercept) sprayB sprayC sprayD sprayE sprayF

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1

> all.equal(X %*% Xpinv %*% X, X, check.attr=FALSE)

[1] TRUE

> all.equal(Xpinv %*% X %*% Xpinv, Xpinv, check.attr=FALSE)

[1] TRUE

For the rank-deficient model, lm2, there are many pseudo-inverses.
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> X <- mmlst[[2]]

> lm2qr <- lmlst[[2]]$qr

> SVD <- svd(X)

> (rr <- lm2qr$rank) # rank

[1] 4

> (rrind <- seq_len(rr)) # safer than 1:rr

[1] 1 2 3 4

> (dpinv <- c(1/SVD$d[rrind], rep(0, ncol(X) - rr)))

[1] 0.003127319 0.011326963 0.071625693 6.914905158 0.000000000

> str(Xpinv1 <- SVD$v %*% (dpinv * t(SVD$u)))

num [1:5, 1:20] 1.245927 0.048805 -0.055057 -0.061309 -0.000183 ...

> zapsmall(Xpinv1 %*% X)

(Intercept) x1 x2 x3 x4

[1,] 1 0.0000000 0.0000000 0.0000000 0

[2,] 0 0.8333333 -0.3333333 0.1666667 0

[3,] 0 -0.3333333 0.3333333 0.3333333 0

[4,] 0 0.1666667 0.3333333 0.8333333 0

[5,] 0 0.0000000 0.0000000 0.0000000 1

> all.equal(X %*% Xpinv1 %*% X, X, check.attr=FALSE)

[1] TRUE

> all.equal(Xpinv1 %*% X %*% Xpinv1, Xpinv1, check.attr=FALSE)

[1] TRUE

> ## An alternative construction is to reduce the SVD components to the first 4 columns

> str(SVDred <- list(d=SVD$d[rrind], u=SVD$u[,rrind], v=SVD$v[,rrind]))

List of 3

$ d: num [1:4] 319.763 88.285 13.961 0.145

$ u: num [1:20, 1:4] 0.0262 0.0559 0.155 0.0498 0.1678 ...

$ v: num [1:5, 1:4] 0.00901 0.11732 0.05349 0.2243 0.96591 ...

> str(Xpinv2 <- with(SVDred, v %*% (1/d * t(u))))

num [1:5, 1:20] 1.245927 0.048805 -0.055057 -0.061309 -0.000183 ...

> all.equal(Xpinv2, Xpinv1)
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[1] TRUE

> ## Finally, we can use a similar construction on the QR decomposition

> ## taking into account the rearrangement of the columns of X

> Xpiv <- X[, lm2qr$pivot]

> str(Xpinv3 <- rbind(backsolve(qr.R(lm2qr)[rrind, rrind], t(qr.Q(lm2qr)[, rrind])), 0))

num [1:5, 1:20] 1.245927 -0.012504 -0.177675 -0.000183 0 ...

> all.equal(Xpiv %*% Xpinv3 %*% Xpiv, Xpiv, check.attr=FALSE)

[1] TRUE

> all.equal(Xpinv3 %*% Xpiv %*% Xpinv3, Xpinv3, check.attr=FALSE)

[1] TRUE

The last two constructions show that the Moore-Penrose pseudo-inverse is a matter of collecting
the independent columns at the left hand side of the matrix and the linearly-dependent columns
on the right hand side, then truncating the decomposition. In other words, is X is less than full
rank then you just find a set of full-rank columns and proceed as before.

R Exercise: (Simulating linear model fits) The simulate functions allow us to simulate a
matrix of responses based on a fitted model, then fit all the simulated responses in a single call to
lm. This is much, much faster than any loop-based approach would be.

The result of simulate is a named list of response vectors so we drop the names and convert
the list to a matrix.

> str(Ymat <- data.matrix(unname(simulate(lm1, 10000))))

num [1:6, 1:10000] 0.0843 0.2584 0.4324 0.5263 0.6142 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:6] "1" "2" "3" "4" ...

..$ : NULL

> fits <- lm(Ymat ~ carb, Formaldehyde)

> str(coefs <- coef(fits))

num [1:2, 1:10000] -0.00201 0.87284 -0.00922 0.90215 0.00369 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:2] "(Intercept)" "carb"

..$ : NULL

Most of the time we want the coefficients to be a data frame instead with columns corresponding
to the coefficient names.

> str(coefs <- data.frame(t(coef(fits)), check.names=FALSE))
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'data.frame': 10000 obs. of 2 variables:

$ (Intercept): num -0.002005 -0.009224 0.003691 -0.001113 0.000131 ...

$ carb : num 0.873 0.902 0.887 0.896 0.892 ...

Recall that the “true” coefficients for this model are

> printCoefmat(coef(summary(lm1)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0050857 0.0078337 0.6492 0.5516

carb 0.8762857 0.0135345 64.7444 3.409e-07

For an unbiased estimator the mean of the distribution of the estimator should be the parameter
value.

> sapply(coefs, mean)

(Intercept) carb

0.005078325 0.876313251

and the standard deviations should be close to the standard errors

> sapply(coefs, sd)

(Intercept) carb

0.007943042 0.013647517

The correlation of sample of coefficient estimates should be close to the value for the fitted model

> summary(lm1, corr=TRUE)$correlation

(Intercept) carb

(Intercept) 1.000000 -0.892664

carb -0.892664 1.000000

> cor(coefs)

(Intercept) carb

(Intercept) 1.000000 -0.896498

carb -0.896498 1.000000

If, instead, we wish to consider the variance-covariance matrices, we use

> vcov(lm1)

(Intercept) carb

(Intercept) 6.136653e-05 -0.0000946449

carb -9.464490e-05 0.0001831837

> var(coefs)
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Figure 3.1: Empirical density plots of coefficient estimates from data simulated according to the
estimated parameters in model lm1

(Intercept) carb

(Intercept) 6.309192e-05 -0.0000971829

carb -9.718290e-05 0.0001862547

In Fig. 3.1 we show the empirical density plots for the coefficients separately Alternatively, we
could examine the normal Q-Q plots (Fig. 3.2).

We could also plot contours of the estimated 2-dimensional density (Fig. 3.3) The background
of the empirical density contours is like a two-dimensional histogram but using hexagonal shaped
bins instead of rectangles.
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Figure 3.2: Normal quantile-quantile plots of coefficient estimates from responses simulated accord-
ing to the estimated parameters in model lm1.
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Figure 3.3: Normal quantile-quantile plots of coefficient estimates from responses simulated accord-
ing to the estimated parameters in model lm1.
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Chapter 4

The Gauss-Markov Theorem

In Chap. 3 we showed that the least squares estimator, β̂LSE , in a Gaussian linear model has is
unbiased, meaning that E[β̂LSE ] = β, and that its variance-covariance matrix is

Var β̂LSE = σ2
(
X ′X

)−1
= σ2R−1(R−1)′.

The Gauss-Markov theorem says that this variance-covariance (or dispersion) is the best that
we can do when we restrict ourselved to linear unbiased estimators, which means estimators that
are linear functions of Y and are unbiased.

To make these definitions more formal:

Definition 5 (Minimum Dispersion). Let T = (T1, . . . , Tp)′ be an estimator of θ = (θ1, . . . , θp)
′.

The dispersion of T is D(T ) = E[(T − θ)(T − θ)′]. If T is unbiased then its dispersion is simply
its variance-covariance matrix, D(T ) = Var(T ). T is minimum dispersion unbiased estimator of
θ if D(T̃ )−D(T ) is positive semidefinite for any unbiased estimator T̃ . That is

a′[D(T̃ )−D(T )]a ≥ 0 ∀ a ∈ Rp

Because the dispersion matrices of unbiased estimators are the variance-covariance matrices, this
condition is equivalent to

a′Var(T̃ )a− a′Var(T )a ≥ 0⇒ Var(a′T̃ )−Var(a′T ) ≥ 0

Theorem 8 (Gauss-Markov). In the full-rank case (i.e. rank(X) = p) the minimum dispersion
linear unbiased estimator of β is β̂LSE with dispersion matrix σ2(X ′X)−1. It is also called the best
linear unbiased estimator or BLUE of β.

Proof. Any linear estimator of β can be written as AY for some p× n matrix A. (That’s what it
means to be a linear estimator.) To be an unbiased linear estimator we must have

β = E[AY] = AE[Y] = AXβ ∀ β ∈ Rp ⇒ AX = Ip

The variance-covariance matrix such a linear unbiased estimator, AY, is

Var(AY) = AVar(Y)A′ = Aσ2InA
′ = σ2AA′.

47
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Now we must show that

Var(a′AY)−Var(a′β̂LSE ) = σ2a′
(
AA′ − (X ′X)−1

)
a ≥ 0, ∀ a ∈ Rp.

In other words, the symmetric matrix,
(
AA′ − (X ′X)−1

)
, must be positive semi-definite. Consider

AA′ =[A− (X ′X)−1X ′ + (X ′X)−1X ′][A− (X ′X)−1X ′ + (X ′X)−1X ′]′

=[A− (X ′X)−1X ′][A− (X ′X)−1X ′]′ + [A− (X ′X)−1X ′][(X ′X)−1X]′+

(X ′X)−1X[A− (X ′X)−1X ′]′ + [(X ′X)−1X ′][X(X ′X)−1]

=[A− (X ′X)−1X ′][A− (X ′X)−1X ′]′ + (X ′X)−1,

showing thatAA′−(X ′X)−1 is the positive semi-definite matrix [A−(X ′X)−1X ′][A−(X ′X)−1X ′]′.
Therefore β̂LSE is the BLUE for β.

Corollary 7. If rank(X) = p < n, the best linear unbiased estimator of a′β is a′β̂LSE.

To extend the Gauss-Markov theorem to the rank-deficient case we must define

Definition 6 (Estimable linear function). An estimable linear function of the parameters β in the
linear model, Y ∼ N (Xβ, σ2In), is any function of the form l′β where l is in the row span of X.
That is, l′β is estimable if and only if there exists c ∈ Rn such that l = X ′c.

The coefficients of the estimable functions form a rank(X) = k-dimensional linear subspace of
Rp. In the full-rank this subspace is all of Rp so any linear combination l′β is estimable.

In the rank-deficient case (i.e. rank(X) = k < p), consider the singular value decomposition
X = UDV ′ with D a diagonal matrix having non-negative, non-increasing diagonal elements, the
first k of which are positive and the last p− k are zero. Let Uk be the first k columns of U , Dk be
the first k rows and k columns of D, and Vk be the first k columns of V . The coefficients l for an
estimable linear function must lie in the column span of Vk because

l = X ′c = VkDkU
′
kc︸ ︷︷ ︸

a

= Vka

We will write the p× (p− k) matrix formed by the last p− k columns of V as Vp−k so that

β = V V ′β =
[
Vk V(p−k

] [ V ′k
V ′p−k

]
β = Vkγ + Vp−kδ

where γ = V ′kβ and δ = V ′p−kβ are the estimable and inestimable parts of the parameter vector in
the V basis.

Now any estimable function is of the form

l′β = a′V ′kβ = a′γ + 0 = a′γ,

where γ is the parameter in the full-rank model Y ∼ N (DkUkγ, σ
2In).

So anything we say about estimable functions of β can be transformed into a statement about
γ in the full rank model and anything we say about the fitted values, Xβ, or the residuals can be
expressed in terms of the full-rank DkUkγ. In particular, the hat matrix, H = UkU

′
k, and has

rank(H) = k and the projection into the orthogonal (residual) space is In −H.
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Corollary 8 (Gauss-Markov extension to rank-deficient cases). l′β̂LSE = a′γ̂LSE is the BLUE for
any estimable linear function, l′β, of β.

Proof. By the Gauss-Markov theorem γ̂LSE is the BLUE for γ and l′β = a′γ is a linear function
of γ.

Theorem 9. Suppose that k = rank(X) ≤ p. Then an unbiased estimator of σ2 is

S2 =
‖Y −Xβ̂‖2

n− k
=
‖ε̂‖2

n− k
=

∑n
i=1 ε̂

2
i

n− k
.

Proof. The simple proof is to observe that this estimator is the unbiased estimator of σ2 for the
full-rank version of the model, Y ∼ N (DkUkγ, σ

2In).
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