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 SUMMARY

 Spline and generalized spline smoothing is shown to be equivalent to Bayesian
 estimation with a partially improper prior. This result supports the idea that spline
 smoothing is a natural solution to the regression problem when one is given a set of
 regression functions but one also wants to hedge against the possibility that the
 true model is not exactly in the span of the given regression functions. A natural
 measure of the deviation of the true model from the span of the regression functions
 comes out of the spline theory in a natural way. An appropriate value of this measure
 can be estimated from the data and used to constrain the estimated model to have
 the estimated deviation. Some convergence results and computational tricks are
 also discussed.
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 1. INTRODUCTION

 CONSIDER the model

 Y(t) = g(t)+e, i = 1,2, ...,n,n te , (1.1)

 where e = (er, ..., e 0)' 6(,2 2I.x,) and g(-) is some "smooth" function defined on some
 index set S-. When 5 is an inverval of the real line, cubic polynomial smoothing splines are
 well known to provide an aesthetically satisfying method for estimating g( ), from a
 realization y = (y, ...,yn)' of Y = (Y(t), ..., Y(tQ)). See Rowlands, Liber and Daniel
 (1974) for a very useful example. Splines are an appealing alternative to fitting a specified
 set of m regression functions, for example polynomials of degree less than m, when one is
 uncertain that the true curve g(-) is actually in the span of the specified regression functions.
 Kimeldorf and Wahba (1970a, b, 1971) explored certain relationships between Bayesian
 estimation and spline smoothing. In this note we provide a somewhat different formulation
 and generalization of the result in Kimeldorf and Wahba (1971). Here we prove that poly-
 nomial spline (respectively generalized spline) smoothing is equivalent to Bayesian estimation
 with a prior on g which is "diffuse" on the coefficients of the polynomials of degree <m
 (respectively specified set of m regression functions), and "proper" over an appropriate set
 of random variables not including the coefficients of the regression functions. Since Gauss
 Markov estimation is equivalent to Bayesian estimation with a prior diffuse over the coefficients
 of the regression functions, this result leads to the conclusion that spline smoothing is a (the ?)
 natural extension of Gauss-Markov regression with m specified regression functions. We
 claim that spline smoothing is an appropriate solution to the problem arising when one wants
 to fit a given set of regression functions to the data but one also wants to "hedge" against
 model errors, that is, against the possibility that the true model g is not exactly in the span of
 the given set of regression functions. We show that the spline smoothing approach leads to a
 natural measure of the deviation of the true g from the span of the regression functions and,
 furthermore, a good value of this measure can be estimated from the data. The estimated
 value of the measure is then used to control the deviation of the estimated g.
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 From another point of view this measure can be viewed as the "bandwidth parameter"
 which controls the "smoothness" of the estimated g, and so in this approach to non-parametric
 (or semi-parametric) regression, a good value of the bandwidth parameter can be estimated
 from the data.

 Smith (1973) introduced uncertainty about a particular form of regression model in a
 Bayesian context, though he did not assume a non-parametric form for the regression function.
 The present work is philosophically close to that of Blight and Ott (1975), who adopted a
 Bayesian approach to estimating g, and part of this work may be considered to be a
 generalization of theirs. O'Hagan (1978) also treats the model (1.1) from a Bayesian view-
 point, but the details of his approach appear to be somewhat different. The model of Young
 (1977) can also be seen, in part, to be a special case of our generalized spline model with m = 1,
 although our approach diverges from Young's at the point where he introduces priors on
 his "hyperparameters". None of these works provide the feature of estimating the bandwidth
 parameter from the data. The present set-up is briefly mentioned in my discussion to O'Hagan's
 paper, where it is observed that O'Hagan's experimental design criteria (for the choice of

 ti, ..., t) can be formulated in the context of the approach in the present paper.
 Other approaches to the estimation of g in the model (1.1) have been made by Priestly

 and Chao (1972), Benedetti (1977), Clark (1977) and Stone (1977). Priestly and Chao, and
 Benedetti use kernel non-parametric regression to estimate g and provide mean square error
 convergence rates. For the polynomial smoothing splines considered here, integrated m.s.e.

 convergence rates of the estimated g to the true g, as maxij t+1 - ti -?0, have been recently
 found by Craven and Wahba (1977) and are quoted ini Section 5 for comparison with Priestly
 and Chao's, and Benedetti's results.

 In Section 4 we make some remarks concerning the efficient computation of generalized
 splines.

 We note that the method for estimating the "bandwidth" parameter of this paper can also
 be used in connection with certain density and log spectral density estimates, see Wahba
 (1978a, b).

 Other recent related work is Silverman (1978a) who provides a different approach to
 estimating the bandwidth parameter in the density estimation context, and (1978b) provides
 a spline estimate of the log density ratio, and Leonard (1978) who develops density estimates
 from a Bayesian point of view.

 2. POLYNOmiAL SPLINES AS PoSTERIoR MEANS WrTH A PARTIALLY IMPROPER PRIOR
 ON THE POLYNOMIALS OF DEGREE LESS THAN m

 Let .Y = [0,1]. Given data {y(t1), ...,y(t")}, 0< t1...t. <1, the smoothing polynomial
 spline of degree 2m-1 to the data, call it g,,n is defined as the solution to the minimization
 problem: Find gE W(m): {g: g,g', ...,g(ml) abs. cont. g(m) e2[0 l]} to minimize

 B (g(t1) -y)2+ A (g(m)(U))2du., (2.1)

 where yj = y(t1), and A is to be chosen. If y cannot be interpolated exactly by some poly-
 nomial of degree less than m, then the solution is well known to be unique, and to be a poly-
 nomial spline of degree 2m -1 (see Schoenberg, 1964), that is, it is piecewise a polynomial of
 degree 2m- 1 in each interval [ti, ti+], i = 1,2, ..., n-1, with the pieces joined so that the
 resulting function has 2m-2 continuous derivatives. An efficient computational algorithm
 for the cubic polynomial smoothing spline (m = 2) is given by Reinsch (1967) and code is
 available in the IMSL library (1977). We show that the spline solution gn,A to the minimi-
 zation problem of (2.1) is a Bayesian estimate for g with a "partially diffuse" prior; the quantity
 J= J (g L)(u))2 du is a natural measure of the deviation of gn,A from the span of the poly-
 nomials of degree less than m, and furthermore a good value of Jcan be estimated from the data.
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 Theorem 1. Let g(t), t e [0,1] have the prior distribution which is the same as the

 distribution of the stochastic process Xg(t), t E [0, 1],
 m

 Xg(t) = , Oj i>(t) + biZ(t), (2.2)
 :1=1

 where 0 = (01, Oj m)' X(, eImxm), Oj(t) = t-111(j- 1)!, j = 1,2, ..., m, b is fixed, and Z(t)
 is the m-fold integrated Wiener process (Shepp, 1966),

 Z(t)J (-) d(u). (2.3)

 Then

 (i) The polynomial spline g.k(-) which is the minimizer of (2.1) has the property

 gn,A(t) = lim Eg{g(t)I Y = y} (2.4)

 with A= a2/nb, where EC is expectation over the posterior distribution of g(t) with the prior
 (2.2). (e = oo corresponds to the "diffuse" prior on 0.)

 (ii) Suppose y cannot be interpolated exactly by some polynomial of degree less than m.
 Then limgnQ( ), as A -oo, is the polynomial of degree mr-1 best fitting the data in a least
 squares sense, limgn,,(), as A--O, is that function in W(m) which minimizes Jf(g(m)(u))2du
 subject to the condition that it interpolates y, and J(A) = f1(g.(T)(U))2 du is a monotone strictly
 decreasing function of A.

 (iii) Let loss be measured by the mean square prediction error R(A) given by

 n

 R(A) = n-1 , (g(t1) -gns,(tJ))2.
 J=1

 Define A(A) by

 A(A) = n-'{Jj (I-A((A)) y||2 + a2 tr A2(A) - a2 tr (I- A(A))2},

 where A(A) is the symmetric non-negative definite matrix satisfying

 gn,A = A (A)y,
 where

 gn,L = (gn,Atl), gn,L(tn)) @

 If g = (g(tl), ...,g(tn))' is viewed as fixed, and expectation taken with respect to C, then

 E(.A) = ER(A)

 so that an optimum A for squared error of prediction loss may be estimated from the data by
 minimizing A(A).

 Before giving the proof we discuss the meaning of this Theorem. We interpret (i) and (ii)
 as saying that estimation with the polynomial spline gn; should be viewed as a (the ?) natural
 extension of Gauss-Markov estimation with polynomial regression functions (i.e. estimation
 with gn,.). This is because the Gauss-Markov regression estimate can be obtained as the
 posterior mean of g when g has a prior diffuse on the coefficients of the polynomials; gn,
 A < oo is obtained as the posterior mean of g when g has a diffuse prior on the coefficients of
 the polynomials modified by the addition of biZ(-) to the prior specification, b>O.

 In practice A = a2/nb is not generally known, so that it is fortunate that A can be estimated
 from the data via (iii). If a2 is not known an estimate of A which minimizes ER(A) asymp-
 totically for large n for fixed g e W(m) can be obtained by using the method of generalized
 cross-validation (GCV) as described in Craven and Wahba (1977).
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 Proof of Theorem 1. Part (ii) is well known, see Schoenberg (1964), Reinsch (1967, 1971),
 Anselone and Laurent (1968), Kimeldorf and Wahba (1970b). To prove (i) we use Lemma 5.1
 of Kimeldorf and Wahba (1971) where an explicit formula for gntA is given. It is

 gnA(t) = (#,(t), ... fOmQ(t)) (T' M-1 T)- T' Mly
 + (Q4(t), ..., Ql,,(t)) M-'(I- T(T' -1L T)-' T' M-1)y, (2.5)

 where T is the n x m matrix of rank m with jkth entry 0kQ), M = nAI,x + Qn, Qn is the
 n x n matrix with jkth entry Q(t1, tk) and Qti(t) -Q(ti, t), where

 Q(S9 t) = +w (( +!((*_l du.

 (We remark that Q(s, t) = EZ(s)Z(t).) With the prior of (2.2) it is easily seen that the prior

 covariances EY' Xg(t) and EY' Y are

 E9YtXg(t) = Omlt .. 7(t) T" + b(Qj:(t)9 ...* Qt"(t))i

 EYY' = eTT' +bQ, + a2I.

 Setting A = a2/nb, ,q = e/b and M = Q,, +nAI gives

 E{Xg(t) IY = y} = ('k(t), ... m(t)) cT'(-qTT' + M)-' y+ (Q11(t), ..., Qg,,(t)) (71'T' + M)-1 y. (2.6)
 By comparing (2.5) and (2.6), it remains only to show that

 lim -qT'(q7TT' + M)-1 = (T' M-1 T)-1 T' M-1 (2.7)

 and
 lim (97'T' + M)' = M-'(I- T(T' M-1 T)-1 T'M-1). (2.8)
 ?)-*00

 Now, it can be verified that

 (7YT' +M)-' = M-1L- M-1 T(T' M-1 T)-'{I+7r-'(T'M-L T)-'}-' T' M-1, (2.9)

 and expanding in powers of q and letting 710oo completes the proof of (2.7) and (2.8). Part
 (iii) appears in Craven and Wahba (1977), but since the proof is immediate we give it here:
 We have

 ER(A) = En-' 11 A(A) y g||2 = n-'{Jj (I-_A(A)) g||2 + 2 tr,A2(A)}

 and (iii) follows from

 Ell (I-A(tA)) yi12 = 11 (I-A(A)) gil2 + a2 tr (I-A(A))2.

 We remark that A(A) is obtained from (2.5) and is

 A(A) = T(T M-1 T)-1 T' M-+ Q, M-'(I- T(T' M-1 T)-1 T M-1).

 Craven and Wahba (1977) and Utreras (1978) both give some aesthetically very pleasing

 plots of g,j, where A is chosen by the GCV method, and m = 2. (The GCV method chooses
 A to minimize V(A) = 11(I-A(A))yjj2/[tr (I-A(A))]2.) Both reports demonstrate nicely how
 well g,- recovers g. If a2 is known accurately, the minimizer of A(A) can be expected to
 behave much like A. In Craven and Wahba, the algorithm of Reinsch (1967) is used to
 compute gnA* Utreras (1978) gives approximate expressions for the eigenvalues of A(A) in
 the large n, equally spaced data case which can considerably simplify the calculation of A(A)
 or V(A).

 We remark that m as well as A can be estimated from the data by minimizing 1 (or V)
 as a function of both these parameters.
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 Numerical experiments in estimating m as well as A have been performed in connection
 with the log spectral density estimates of Wahba (1978b) and it was found that a modest
 improvement in mean square error can sometimes be made by estimating m, instead of using
 m = 2, the cubic spline case.

 3. GENERALIZED SPLINES AS POSTERIOR MEANS WITH A PARTIALLY IMPROPER PRIOR

 We now consider the general case where polynomials on [0,1] are replaced by some real-
 valued functions defined on some arbitrary index set .S. For example, J` may be
 a square or sphere. We require only that the n x m matrix with jkth entry #k(tl) be of rank m.
 Families of extensions of Gauss-Markov estimates analogous to the smoothing polynomial
 spline will be found. These estimates will be generalized splines.

 A very general form of Theorem 1, for these essentially arbitrary - and {b} can be stated
 in the context of reproducing kernel Hilbert spaces (r.k.h.s.). We have concluded from the
 work of Parzen (1961, 1970), that r.k.h.s. is in fact a natural setting for analysing arbitrary
 Gaussian stochastic processes with continuous time parameter. Thus, we beg the reader's
 indulgence while we give a definition of a generalized spline as the solution to a minimization
 problem in r.k.h.s. Then we proceed to the general form of Theorem 1.

 We note (Aronszajn, 1950), that a (real) r.k.h.s. at" is a Hilbert space of real-valued
 functions on f- with the property that, for each fixed t* e$-, the linear functional which maps
 g E-A.K to g(t*) is a continuous linear functional. Then, by the Riesz representation theorem
 (Akhiezer and Glazman, 1961, p. 33), there exists an element, call it St. in Y such that
 <g, St.> = g(t*), where < , * > is the inner product in i. We can associate with at the so-called
 reproducing kernel (r.k.) K(s, t), s, t e , defined by K(s, t) = <88, St>, clearly 88(t) = K(s, t).
 The kernel K(s, t) is always positive definite (since 11 la, 8"'II2 > 0) and so there always exists a
 Gaussian stochastic process with K as its covariance. We will denote by ax the r.k.h.s.
 with r.k. .9, and let the inner product in V*K be < >K.

 We now let AX be any r.k.h.s. of real-valued functions on f9 which contain the {fJ}.
 (Construction of such A#K when the {#j} are any extended Tchebychev system of functions on
 [0,1] may be found in Kimeldorf and Wahba (1971).) It is not hard to show that -Y". has a
 representation as the direct sum of span {b,} and AQ, the r.k.h.s. with r.k. Q(s, t), s, t e-9
 given by (see Wahba, 1973)

 m

 Q(s, t) = K(s, t) - E #i(s)kij #j(t),
 ij=1

 where ki1 is the ijth entry of the inverse of the (necessarily strictly positive definite) matrix
 with ijth entry <K#,+ j>K. Let PQ be the orthogonal projection operator in AK onto 4Q.
 (hat is, I-PQ is the orthogonal projection in A.E onto span Qb1}.) The analogue of
 fl(g(m)(u))2du is jJPQgJJ2, and this is, of course, a measure of the deviation of g from span
 {#j}, being the distance in XY- from g to span {+b}.

 Suppose y is not in the span of the vectors {4s,Iln where 4s = (1(t1), ..., #j(tn))'. Then
 (Anselone and Laurent, 1968; Kimeldorf and Wahba, 1971) there is a unique solution, call
 it gn2,t to the minimization problem: Find geaSxE to minimize

 n

 n (g(t1)_-y)2+AJJPQgjJ2 (3.1)

 We shall call any gn,; obtained as a solution of this minimization problem a generalized
 smoothing spline, or, consistent with the terminology in Anselone and Laurent, just a smoothing
 spline.
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 Theorem 2. Let g(t), t eY have the prior distribution which is the same as the distribution
 of the stochastic process X(t),

 m

 Xg(t)= E OSj oj(t) +biZ(t), t e59, (3.2)
 1=1

 where 0 = t, * am) . AJ-X(0, eImxm), b is fixed > 0 and Z(t) is a zero mean Gaussian stochastic
 process with EZ(s)Z(t) = Q(s, t). Then:

 (i) The generalized spline g, which is the minimizer of (3.1) has the property

 gnJ,(t) = lim Ejg(t)I Y = y},

 with A = a2/nb, where Eg is expectation over the posterior distribution of g(t) with the prior
 (3.2).

 (ii) Suppose y is not in the span of the {cj2}. Then Hm;L_,gn,,&) is that element in span
 {bQ(-)} best fitting the data in a least squares sense. If Q., the n x n matrix with ijth entry
 Q(ti, t1), is of full rank, limt.,Ogn,A(.) is that function in EK which minimizes 11 PQ gII5 subject
 to the conditions that it interpolate the data, and J(A) = KjPQgn,f is a monotone decreasing
 function of A.

 (iii) Let

 R(A) = n' z (g(t)-gJ,(tJ))2,
 j=l

 and define A(A) by

 A(A) = n-1{II (I- A(A)) yjj2 + r2 tr A2(A) _ c2 tr (I- A(A))2},

 where A(A) is the symmetric, non-negative definite matrix satisfying

 gn = A(A)y.
 If g is viewed as fixed, then

 ER(A) = EA(A)

 so that an optimum A for squared error of prediction loss may be estimated from the data by
 minimizing A&(A).

 We remark that the function g.; is given by (2.5), with Q(s, t) = EZ(s)Z(t), similarly,
 the matrix A(A) is as in Section 2.

 Proof of Theorem. Beginning with Lemma 5.1 of Kimeldorf and Wahba (1971), the proof
 parallels directly the proof of Theorem 1, and is omitted.

 4. REPREsENTATIoNs OF gn ; FOR EFFIcENT COMPUrING
 We believe smoothing splines to be appropriate for solving a wide variety of practical

 problems, in practice, including smoothing surfaces, once efficient numerical algorithms are
 developed. If Xx is a space of periodic functions on [0,1] or a tensor product of periodic
 spaces on [0,1] x ... x [0,1], and the {t3 are equally spaced or the tensor product of equally
 spaced points then computing problems are readily solved. (See Wahba, 1977, for a com-
 puted example.) In general, however, the efficient computation of g.;L presents challenges,
 if n is very large, as would usually be the case if 'T is a rectangle in d-space. It will probably
 be necessary to choose Q with computational ease-an important consideration.

 Equation (2.5) will generally not be the best representation for computing gn ,t. We discuss
 some other representations for g.,; chosen with efficient computing in mind. We assume below
 that Q. is of full rank. Since

 T' M-1(I- T(T' M-1 T)-1 T' M-1) = mxn
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 it is clear that g,s has a representation

 m i-n
 gn,A = z oqb+ E cihi, (4.1)

 where 0 and c = (cl, ..., cn_m) are vectors of constants, and

 n-m

 hi-= E i ij-,
 J) 1

 where the (n -im) x n dimensional matrix B with ijth entry bw satisfies BT 0(n-m)xr but
 is otherwise arbitrary.

 We will demonstrate shortly that c, 0 and A(A) y = gn,A satisfy

 (Zh+nABB')c = By, (4.2)
 TO = y-MB'c (4.3)

 and

 g.,,= A(A)y = y-nAB'c, (4.4)

 where h is the (n-m)x(n-m) dimensional matrix with jkth entry <hi,hJ>Q. One attempts
 to choose B so that {hI}, B and Eh have convenient properties for computing, and then to
 obtain c, 0, gn,A and gnA(-) from (4.1) to (4.4) by first solving the linear system (4.2). In the
 polynomial spline case, by choosing the entries in B corresponding to divided differences,
 one can obtain Eh and B both banded matrices and an efficient code results (see Reinsch,
 1967; Anselone and Laurent, 1968). The span of the {h1} can be constructed from B-splines,
 which are nice hill-like functions (see Curry and Schoenberg, 1966; deBoor, 1972).

 Equation (4.2) can be shown to be equivalent to Anselone and Laurent, equations (8.26)
 and (9.1). However, we provide a direct proof of (4.2) using (2.5) without the elegant but
 lengthy machinery of their work. We must show that

 (h,...., hn-m)(h +nABB')-'By= (Q,,..., Qt,,) (M-l-M-'T(T'M-' T)-T'M-')y. (4.5)

 Now since <Q,,, Qt>E = Q(ti, t1), we have that Eh = BQn B' and so the left-hand side of (4.5)
 is given by

 (Qt, *.*, Qt) B'(BMB')- By. (4.6)
 However,

 B'(BMB')-1 B =_ M M -1 T(T' M-1 T7'-1 T' M-1 (4.7)

 T'
 as can be seen by observing that the n x n matrix X = BM is of full rank and

 0
 X{M-- M-MT(T'M-'T)-'TM-'}X' ) = X{B'(BMB') B} X'. (4.8)

 Equations (4.3) and (4.4) follow immediately from (4.2) and (3.3).

 5. CONVERGENCE PROPERTiES OF gnA
 In the case of polynomial splines with Y = [0,1] the mean square error convergence

 properties (of ER(A)) are known from Craven and Wahba (1977) and we give them here for
 comparison purposes. We have, from Theorem 1,

 n

 ER(A) = En-l , (g(t) -gn,;L(t,))2 _= n-'{J1 (I- A(A))gJJ2+ a2trA2(A)}.
 i=1
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 Using Lemmas 4.1 and 4.3 of Craven and Wahba it can be shown (ignoring terms of o(l)),

 that an upper bound on ER(A) is given by

 ER(A) < A J(g(m)(U))2du + nA/2Ms

 where

 c = a2max [n(t+,- t,)]1/2mf (1d+Xm)2

 This bound is minimized for A = constn-2m/(2m+l) and so

 minR(A) < O(n-2m/(2m+l)).
 A

 We remark on the comparison between this rate and that obtained by Priestly and Chao
 (1972) and Benedetti (1977) for kernel type non-parametric regression estimates. They
 obtain mean square error at a point convergence rates for their estimate, call it g, of the form

 E(g(t) -g(t))2 = O(n-2m/(2m+l))

 under the assumption that g(m)Q) is well defined and bounded at t. Their rates and ours are
 not directly comparable since we assume g e W(m), and compute an estimate of integrated
 mean square error. However, as in the case of density estimation (see Wahba, 1975a, 1976)
 it appears that the same convergence rates under identical assumptions will obtain if the method
 is matched to m and the bandwidth parameter is chosen optimally.
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