REGRESSION DESIGN FOR SOME EQUIVALENCE CLASSES OF KERNELS

BY GRACE WAHBA

University of Wisconsin, Madison

Earlier results on asymptotically optimal sequences of regression designs for autoregressive stochastic processes are extended (nearly) to the equivalence classes of such processes.

1. Introduction. Let \(\{Y(t), \ t \in T\} \) be a stochastic process of the form

\[
Y(t) = \theta f(t) + X(t)
\]

where \(\theta \) is an unknown constant, \(f(t) \) is a known function on \(T \), \(T \) is a closed bounded interval which we take to be \([0, 1]\), and \(\{X(t), \ t \in T\} \) is a zero-mean Gaussian stochastic process with known continuous covariance kernel \(Q \), \(EX(t)X(t') = Q(t, t') \). The regression design problem is to choose an \(n \)-point subset (or “design”) \(T_n \),

\[
T_n = \{t_1 < t_2 < \cdots < t_n, \ t_i \in T\}
\]

so that the variance \(\sigma^2_{T_n} \) of the Gauss–Markov estimate of \(\theta \) given \(\{Y(t), \ t \in T_n\} \) is as small as possible.

This problem has been considered by Sacks and Ylvisaker, Wahba, and Hájek and Kimeldorf [3], [11], [12], [13], [14], [16] for various special cases of \(Q \). It is known that \(\sigma^2_{T_n} \) is bounded away from 0 as \(\Delta = \max_i |t_{i+1} - t_i| \) tends to 0 if and only if \(f \in Q \), where \(H_Q \) is the unique reproducing kernel Hilbert space (RKHS) with reproducing kernel (RK)\(Q \), see [8]. It will be assumed that the reader is familiar with the basic properties of RKHS as given in [8], [16], see also [1].

For fixed \(t \in T \), let \(\langle \cdot, \cdot \rangle_{Q} \) represent the evaluation functional at \(t \) in \(H_Q \), that is

\[
\langle Q_t, f \rangle_{Q} = f(t), \quad f \in H_Q
\]

and

\[
Q_t(t') = Q(t, t')
\]

where \(\langle \cdot, \cdot \rangle_{Q} \) is the inner product in \(H_Q \).

Let \(P_{T_n} \) be the projection operator in \(H_Q \) onto the subspace spanned by \(\{Q_t, \ t \in T_n\} \). It is well known that if \(f \in H_Q \), then \(\sigma^2_{T_n} = \|P_{T_n}f\|_Q^2 \) and \(\sigma^{-2} = \|f\|_Q^2 \), where \(\|\cdot\|_Q \) is the norm in \(H_Q \) and \(\sigma^2 \) is the variance of the Gauss Markov estimate of \(\theta \), given \(\{Y(t), \ t \in T\} \). Hence \(\sigma^2_{T_n} \) is minimized by minimizing \(\|f - P_{T_n}f\|_Q^2 \). From this point of view, the problem becomes one of choosing

Received April 1972; revised September 1973.

1 This work was supported by the Air Force Office of Scientific Research under Grant AFOSR 72-2363.

AMS 1970 subject classifications. 6262, 6255, 6285.

Key words and phrases. Regression design.
an optimal subspace in H_Q of the form span \{Q_t, t \in T_n\}, for the purpose of approximating the given element f. In this context, the problem has been considered by Karlin [5], [6]. The solution also has applications to the approximate solution of linear differential and integral equations, see [17], [18].

We suppose that $\{X(t), t \in T\}$ has exactly $m - 1$ quadratic mean derivatives. This entails that the functions $Q_t^{(v)}(\cdot)$ defined by
\[
Q_t^{(v)}(\cdot) = \left(\frac{\partial^v}{\partial s^v}\right)Q(s, \cdot)\bigg|_{s=t}
\]
are all well defined and in H_Q, for $t \in T$ and $v = 1, 2, \ldots, m - 1$. Let P_{m,T_n} be the projection operator in H_Q onto the subspace of H_Q spanned by
\[
\{Q_t^{(v)}, t \in T_n, v = 0, 1, \ldots, m - 1\}.
\]
The optimal experimental design problem becomes tractable if we attempt to minimize $\|f - P_{m,T_n}f\|_Q$ rather than $\|f - P_{T_n}f\|_Q$, and the results are still useful, because of the relation ([16], (1.15))
\[
\inf_{T_n} \|f - P_{m,T_n}f\|_Q \leq \inf_{T_n} \|f - P_{m,T_n}f\|_Q \leq \inf_{T_n} \|f - P_{T_n}f\|_Q.
\]

Further information about the role of derivatives may be found in Karlin [6], especially Theorem 3(i) and Theorem 4, and Sacks and Ylvisaker [13]. In particular, ([6], equation (13), [13], Theorem 4) if $m = 2$ and other conditions are satisfied, the right hand inequality in (1.2) becomes an equality.

Following [13], a sequence $T_n^*, n = 1, 2, \ldots$ of designs is said to be asymptotically optimal (with derivatives) if
\[
\lim_{n \to \infty} \frac{\|f - P_{m,T_n^*}f\|_Q}{\inf_{T_n} \|f - P_{m,T_n}f\|_Q} = 1.
\]

In [16], asymptotically optimal designs (with derivatives) are found for the case where X is a stochastic process formally satisfying the stochastic differential equation
\[
\begin{align*}
(L_m X)(t) &= dW(t), \quad t \in [0, 1] \\
X^{(v)}(0) &= \xi_v, \quad \nu = 0, 1, \ldots, m - 1,
\end{align*}
\]
where L_m is defined by
\[
(L_m f)(t) = \sum_{j=0}^m a_{m-j} f^{(j)}(t),
\]
$\{W(t), t \in [0, 1]\}$ is a Wiener process and $\{\xi_v\}_{v=0}^m$ are m zero mean Gaussian random variables independent of $W(t), t \in [0, 1]$. L_m (in [16]) is such that its null space is spanned by $\{\phi_v\}_{v=0}^m$ where $\{\phi_v\}_{v=1}^m$ is an extended, complete Tchebychev (ECT) system of continuity class C^m. In [3], the conditions on L_m are relaxed to: $a_0 \neq 0, a_{m-j} \in C^j$, with $E\xi_v^2 = 0$. It is the purpose of this note to show that the results of [3] and [16] may be extended to “nearly all” stochastic processes equivalent to X of (1.3).
A sequence of designs may be conveniently described by a continuous positive density h on $T = [0, 1]$. Let $T_n = T_n(h) = \{t_{0n}, t_{1n}, \ldots, t_{nn}\}$ be defined by

$$\int_{t_{im}}^t h(x) \, dx = \frac{i}{n},$$

$i = 0, 1, \ldots, n$.

(For ease of notation we are now letting T_n contain $n + 1$ points.)

We have the following result from [16] (as a consequence of Lemma 3).

Proposition 1. Let X be as in (1.3), and suppose

$$f(t) = \int_0^t Q(t, s)\rho(s) \, ds$$

where $\rho > 0$, and ρ possess a bounded first derivative. Let $T_n = T_n(h)$. Then

$$||f - P_{m, T_n}f||_Q^2 = \frac{1}{n^{2m}} \frac{(m!)^2}{(2m)! (2m + 1)!} \int_0^1 \frac{\rho^2(s)\alpha(s)}{h^{2m}(s)} \, ds + o\left(\frac{1}{n^{2m}}\right)$$

where

$$\alpha(s) = \frac{1}{a_0^2(s)}.$$

Following [11], asymptotically optimal sequences of designs are found from (1.4) by using a Hölder inequality and the fact that $\int_0^1 h(s) \, ds = 1$ to show that

$$\int_0^1 \frac{\rho^2(s)\alpha(s)}{h^{2m}(s)} \, ds \geq \left[\int_0^1 \left[\rho^2(s)\alpha(s)\right]^{1/(2m+1)} \, ds\right]^{2m+1}$$

with equality iff

$$h(s) = \frac{\left[\rho^2(s)\alpha(s)\right]^{1/(2m+1)}}{\int_0^1 \left[\rho^2(u)\alpha(u)\right]^{1/(2m+1)} \, du}.$$

Thus if

$$\int_0^1 \left[\rho^2(s)\alpha(s)\right]^{1/(2m+1)} \, ds = \frac{i}{n} \int_0^1 \left[\rho^2(s)\alpha(s)\right]^{1/(2m+1)} \, ds,$$

$i = 0, 1, \ldots, n$ then $T_n^* = \{t_{0n}^*, t_{1n}^*, \ldots, t_{nn}^*\}, n = 1, 2, \ldots$, is an asymptotically optimal sequence of designs with

$$||f - P_{m, T_n^*}f||_Q^2 = \frac{1}{n^{2m}} \frac{(m!)^2}{(2m)! (2m + 1)!} \left[\int_0^1 \left[\rho^2(s)\alpha(s)\right]^{1/(2m+1)} \, ds\right]^{2m+1} + o\left(\frac{1}{n^{2m}}\right).$$

The "parameter function" $\alpha(s), s \in [0, 1], \alpha(s) = 1/a_0^2(s)$, plays a central role in the solution. It is not hard to convince one's self (see e.g. Hájek [2]) that two stochastic processes of the form (1.3) considered in [16] are equivalent iff their "initial value" rv's (1.3 b) are equivalent and the leading coefficient $a_0(s)$ of the defining differential operator is the same for both processes.

Thus, a maximal generalization of Theorem 1 would appear to be to X's equivalent to those of the form (1.3). In the remainder of this note we show that this is, in fact, the case, modulo a regularity condition on Q which we cannot seem to get rid of.

2. **Equivalence classes of kernels for X of (1.3).** Let $\{X_i(t), t \in [0, 1]\}, i = 0, 1$ be two zero mean Gaussian stochastic processes with continuous covariances
$Q_0(s, t)$ and $Q_1(s, t)$ respectively. Now, let Q_0 and Q_1 also denote the Hilbert–
Schmidt operators on $L_2[0, 1]$, with Hilbert–Schmidt kernels $Q_0(s, t)$ and $Q_1(s, t)$,
defined by

$$(Q_i p)(t) = \int_0^1 Q_i(t, s)p(s) ds, \quad p \in L_2[0, 1], \ i = 0, 1.$$

A version of the Hájek–Feldman Theorem stated in Root [10] says that the
measures corresponding to X_1 and X_2 are equivalent iff

$$(2.1) \quad Q_0^{-1}Q_1Q_0^{-1} = I - B$$

where Q_i^{-1} is the symmetric square root of Q_i^{-1}, $i = 0, 1$, and B is a Hilbert–
Schmidt operator with $I - B$ invertible. For simplicity we will say that Q_0 and
Q_1 are equivalent if (2.1) holds.

Let

$$(2.2) \quad G_0(s, u) = \left(\frac{s - u}{m - 1}\right)^{m-1} c(u)$$

where

$$c(u) = \frac{1}{a_0(u)}$$

and $(x)_+ = x, x \geq 0$, $(x)_+ = 0$ otherwise. Let

$$(2.3) \quad Q_0(s, t) = \int_0^1 G_0(s - u)G_0(t - u) du .$$

Q_0 is the covariance of X of (1.3) with $L_m = a_0D_m$ and $E_{\nu}^{2, \nu} = 0, \nu = 0, 1, \ldots, m - 1$. The Hilbert–Schmidt operator Q_0 may be written

$$Q_0 = G_0G_0^*$$

where G_0^* is the adjoint operator to G_0, the Hilbert–Schmidt operator with kernel (2.2). Since

$$Q_0 = Q_0^1Q_0^1 = G_0G_0^*,$$

$Q_0^{-1}Q_1Q_0^{-1}$ is unitarily equivalent to $G_0^{-1}Q_1G_0^{*-1}$ and

$$Q_0^{-1}Q_1Q_0^{-1} = I - B$$

with B Hilbert–Schmidt and $I - B$ invertible iff

$$G_0^{-1}Q_1G_0^{*-1} = I + A$$

for A some Hilbert–Schmidt operator with $I + A$ invertible. Thus Q_0 and Q_1
are equivalent if and only if

$$Q_1 = G_0(I + A)G_0^*$$

where A is Hilbert–Schmidt and $I + A$ invertible. We summarize these remarks as

Proposition 2. A kernel Q_1 is equivalent to Q_0 of (2.3) iff

$$(2.4) \quad Q_1(s, t) = \int_0^1 \left(\frac{s - u}{m - 1}\right)^{m-1}\left(\frac{t - u}{m - 1}\right)^{m-1} c(u) du$$

$$+ \int_0^1 \int_0^u \left(\frac{s - u}{m - 1}\right)^{m-1}\left(\frac{t - v}{m - 1}\right)^{m-1} c(u) A(u, v)c(v) du dv$$

This content downloaded from 128.104.46.206 on Fri, 29 Apr 2016 00:16:46 UTC
All use subject to http://about.jstor.org/terms
where
\[\int_0^1 \int_0^1 A(s, t) \, ds \, dt < \infty \]
and \(I + A \) is invertible, \(A \) being the operator with (symmetric) Hilbert–Schmidt kernel \(A(s, t) \).

Now let \(\tilde{Q}_0 \) be
\[\tilde{Q}_0(s, t) = \sum_{j=0}^{m-1} \phi_j(s)\phi_j(t) + \int_0^s G_0(s, u)G_0(t, u) \, du \]
with \(G_0 \) given by (2.2) and \(\phi_j(s) = s^{j-1}(j - 1)!, j = 1, \ldots, m \). A process \(\{X_0(t), t \in [0, 1]\} \) with covariance (2.5) has a representation
\[X_0(t) = \sum_{j=0}^{m-1} X_0^{(j)}(0)\phi_j(t) + (X_0(t) - P_{m,0}X_0(t)), \quad t \in [0, 1], \]
where \(P_{m,0}X_0(t) = E\{X_0(t) | X_1^{(j)}(0), j = 0, \ldots, m - 1\} \) and \(\{X_1^{(j)}(0)\}_{j=0}^{m-1} \) are i.i.d. \(\mathcal{N}(0, 1) \). The process \((X_0(t) - P_{m,0}X_0(t)) \) has covariance \(Q_0 \) of (2.4). For \(\tilde{Q}_1 \) to be equivalent to \(\tilde{Q}_0 \) it is necessary and sufficient that \(\{X_1^{(j)}(0)\}_{j=0}^{m-1} \) exist in q.m. and have a covariance matrix of full rank, and that the process \(X_1(t) - P_{m,0}X_1(t) \) have a covariance \(Q_1 \) of the form (2.4). In this case \(X_1(t) \) has a representation of the form
\[X_1(t) = \sum_{j=0}^{m-1} X_1^{(j)}(0)\phi_j(t) + (X_1(t) - P_{m,0}X_1(t)) \]
where
\[\phi_j(t) = \sum_{j=0}^{m-1} \sigma^{j,j} \eta_j(t) \]
with
\[\{\sigma^{j,j}\} = \{\sigma_{\nu,j}\}^{-1}, \quad \sigma_{\nu,j} = EX_1^{(\nu)}(0)X_1^{(j)}(0), \quad \nu, j = 0, 1, \ldots, m - 1 \]
and
\[\eta_j(t) = EX(t)X_0^{(j)}(0) = \frac{\partial^{\nu}}{\partial s^\nu} \tilde{Q}_1(t, s) \bigg|_{s=0}, \quad \nu = 0, 1, \ldots, m - 1. \]

By the properties of RKHS (see [8]), the \(\{\eta_j\} \) must all be in \(\mathcal{H}_{\tilde{Q}_1} \), and if \(\tilde{Q}_1 \) is equivalent to \(\tilde{Q}_0 \), they must also be in \(\mathcal{H}_{\tilde{Q}_0} \).

We summarize these remarks in the following

Proposition 3. \(\tilde{Q}_1 \) is equivalent to \(\tilde{Q}_0 \) of (2.5) iff
\[\tilde{Q}_1(s, t) = \sum_{j=0}^{m-1} \tilde{\phi}_j(s)\tilde{\phi}_j(t) + Q_1(s, t), \]
where \(\tilde{\phi}_j^{(\nu)} \) abs. cont., \(\nu = 0, 1, \ldots, m - 1 \), \(\tilde{\phi}_j^{(m)} \in \mathcal{L}_2 \), the \(m \times m \) matrix with \(ij \)th entry \(\sigma_{\nu,j} \),
\[\sigma_{\nu,j} = \frac{\partial^{\nu+j}}{\partial s^\nu \partial t^j} \left(\sum_{j=0}^{m-1} \tilde{\phi}_j(s)\tilde{\phi}_j(t) \right) \bigg|_{s=0}, \quad \nu, j = 0, 1, \ldots, m - 1 \]
is of full rank, and \(Q_1(s, t) \) is of the form (2.4).

Proposition 3 is a slight generalization of [15], Theorem 8; see also [4].

We have that \(\mathcal{H}_{\tilde{Q}_1} = \mathcal{H}_{\tilde{Q}_0} + \text{span} \{\tilde{\phi}_j\}_{j=1}^{m-1} \), and if \(T_n \) includes the point \(t = 0 \), then
\[||f - P_{m,T_n}f||_{\tilde{Q}_1}^2 = ||P_{Q_1}(f - P_{m,T_n}f)||_{\tilde{Q}_1}^2, \]
where \(P_{Q_1} \) is the projection operator.
in \mathcal{H}_{Q_1} onto the subspace \mathcal{H}_{Q_1}. Thus we may without loss of generality consider Q_1 of the form (2.4). This remark holds, of course, whatever the rank of the matrix $\{\sigma_{ij}\}$.

3. Asymptotically optimal designs for \tilde{Q}_1. The purpose of this section is to prove the following

Theorem. Let \tilde{Q}_1 have a representation

$$\tilde{Q}_1(s, t) = \sum_{i=0}^{m-1} \tilde{\phi}_i(s) \tilde{\phi}_i(t)$$

$$+ \int_0^1 \frac{(s-u)^{m-1}}{(m-1)!} \frac{(t-u)^{m-1}}{(m-1)!} c^2(u) \, du$$

$$+ \int_0^1 \int_0^1 \frac{(s-u)^{m-1}}{(m-1)!} \frac{(t-u)^{m-1}}{(m-1)!} c(u)A(u, v)c(v) \, du \, dv$$

where

(i) $\tilde{\phi}_i^{(s)}$, abs. cont., $\nu = 0, 1, \ldots, m - 1, \tilde{\phi}_i^{(m)} \in L_2[0, 1]$,

(ii) $c > 0$, c' bounded,

(iii) $\int_0^1 \int_0^1 A^2(u, v) \, du \, dv < \infty$,

(iv) the function γ_t given by

$$\gamma_t(s) = \int_0^s \frac{\partial}{\partial t} \frac{1}{c(t)} A(t, \eta) c(\eta) \, d\eta$$

is well defined and is in the RKHS \mathcal{H}_{K_1} with RK K_1 given by

$$K_1(s, t) = \int_0^{\min(s, t)} c^2(u) \, du + \int_0^1 \int_0^1 c(u)A(u, v)c(v) \, du \, dv$$

and

$$\|\gamma_t\|_{K_1} \leq M_1 < \infty$$

where $\|\cdot\|_{K_1}$ is the norm in \mathcal{H}_{K_1}.

Let

$$f(t) = \int_0^t \tilde{Q}_1(t, s) \rho(s) \, ds$$

with $\rho > 0$, ρ' bounded, and let $T_n = \{t_i\}_{i=0}^n$ with

$$\int_0^1 h(u) \, du = \frac{i}{n}, \quad i = 0, 1, \ldots, n$$

where

$$\int_0^1 h(u) \, du = 1, \quad h > 0, \, h \ \text{continuous}.$$

Then where $\alpha = c^2$

$$\|f - P_{m, T_n} f\|_{\tilde{Q}_1}^2 = \frac{1}{n^{2m}} \left(\frac{(m!)^2}{(2m)! (2m + 1)!} \int_0^1 \rho^2(s) \alpha(s) \, ds \right) + o\left(\frac{1}{n^{2m}} \right).$$

Remark. The hypotheses of the Theorem do not include $I + A$ invertible. On the other hand, if $I + A$ is invertible then condition (iv) is equivalent to $\gamma_t \in \mathcal{H}_{K_0}$, the RKHS with RK

$$K_0(s, t) = \int_0^{\min(s, t)} c^2(u) \, du,$$
where $\mathcal{H}_{K_0} = \{ f : f(0) = 0, f \text{ abs. cont.}, f'/c \in \mathcal{L}_2 \}$. Thus if $I + A$ is invertible and (ii) holds then (iv) is equivalent to

$$\int_0^1 \left(\frac{1}{c(t)} A(t, \eta) \right)^2 d\eta < M < \infty.$$

Condition (iv) is similar to a condition used in [11]. This condition is used in the proof of Lemma 1 to follow, and we see no way to eliminate it there.

Proof. The proof below follows closely along the lines of the proof of Theorem 1 of [13], generalized with the aid of [16].

The proof begins with Lemma 1.

Lemma 1. Let

$$K_0(s, t) = \int_0^{\min(s, t)} c^2(u) \, du$$

$$K_1(s, t) = \int_0^{\min(s, t)} c^2(u) \, du + \int_0^s \int_0^t c(u) A(u, v) c(v) \, du \, dv$$

$$f_0(t) = \int_0^t K_0(t, u) \rho(u) \, du$$

$$f_1(t) = \int_0^t K_1(t, u) \rho(u) \, du$$

where $\int_0^s \int_0^t A(u, v) \, du \, dv < \infty$, where $c, \rho > 0$, continuous, c', ρ' bounded. Let \mathcal{H}_i, $i = 0, 1$, be the RKHS's with reproducing kernels K_i, $i = 0, 1$, and inner products $\langle \cdot, \cdot \rangle_{K_0}$ and $\langle \cdot, \cdot \rangle_{K_1}$ respectively. Suppose further that, for each t, the function γ_t defined by

$$\gamma_t(s) = \int_s^1 \frac{1}{c(t)} A(t, \eta) c(\eta) \, d\eta$$

satisfies

$$(3.1) \quad \gamma_t \in \mathcal{H}_i, \quad ||\gamma_t||_{K_i} \leq M_i < \infty, \quad t \in [0, 1].$$

Then, there exists an ε independent of ρ such that, for sufficiently large n,

$$(3.2) \quad 1 - \varepsilon \Delta \leq \frac{||f_1 - P_{T_n} f_1||_K}{||f_0 - P_{T_n} f_0||_K} \leq 1 + \varepsilon \Delta$$

where

$$\Delta = \max_t |t_{i+1} - t_i|.$$

Here, for $i = 0, 1$, $P_{T_n} f_i$ is the projection of f_i in \mathcal{H}_i onto the subspace of \mathcal{H}_i spanned by $\{K_{it}, t \in T_\delta\}$, where $K_{it}(t') = K_i(t, t')$.

Proof. For $i = 0, 1$,

$$\langle f_i - P_{T_n} f_i, f_i - P_{T_n} f_i \rangle_{K_i} = \langle f_i, f_i - P_{T_n} f_i \rangle_{K_i} = \int_0^1 \rho(u) (f_i(u) - P_{T_n} f_i(u)) \, du.$$

Then

$$||f_0 - P_{T_n} f_0||_{K_0}^2 = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \rho(u) (f_0(u) - P_{T_n} f_0(u)) \, du$$

$$= \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \rho(u) \, du \int_{t_i}^{t_{i+1}} B_i(u, v) \rho(v) \, dv$$

This content downloaded from 128.104.46.206 on Fri, 29 Apr 2016 00:16:46 UTC
All use subject to http://about.jstor.org/terms
where \(t_0 \equiv 0, t_n \equiv 1 \) and, according to [16] \(B_t(u, v) \) is, for \(u, v \in [t_i, t_{i+1}] \), the Green’s function for the differential operator \(L_m^*L_m = g \) with boundary conditions \(f(t_i) = f(t_{i+1}) = 0 \),

\[
(L_m^*L_m f)(t) = \frac{d}{dt} \frac{1}{c^2(t)} \frac{d}{dt} f(t).
\]

Similarly,

\[
||f_1 - P_{\tau_n}f_1||_{K_1}^2 = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \rho(u)(f_1(u) - P_{\tau_n}f_1(u)) \, du.
\]

Since \(f_1(u) - P_{\tau_n}f_1(u) = 0 \) for \(t = t_0, t_1, \ldots, t_n \), and \(f_1 - P_{\tau_n}f_1 \in D[0, 1] \), we may write

\[
(f_1 - P_{\tau_n}f_1)(u) = \int_{t_i}^{t_{i+1}} B_t(u, v) \frac{d}{dv} \frac{1}{c^2(v)} \frac{d}{dv} (f_1(v) - P_{\tau_n}f_1(v)) \, dv,
\]

where \(B_t \) is as before. But, since

\[
f_1(t) = \int_0^t K_0(t, u) \rho(u) \, du + \int_0^t \rho(u) \, du \int_0^t \int_0^1 c(\xi) A(\xi, \eta) c(\eta) \, d\xi \, d\eta,
\]

then

\[
\frac{d}{dt} \frac{1}{c^2(t)} \frac{d}{dt} f_1(t) = \rho(t) + \int_0^t \rho(u) \, du \int_0^t \frac{\partial}{\partial t} \frac{1}{c(t)} A(t, \eta) c(\eta) \, d\eta
\]

\[
= \rho(t) + \int_0^t \rho(u) \gamma_i(u) \, du.
\]

By our assumption, \(\gamma_t \in \mathcal{H}_{K_1} \), so that (3.5) becomes

\[
\frac{d}{dt} \frac{1}{c^2(t)} \frac{d}{dt} f_1(t) = \rho(t) + \int_0^t \rho(u) \gamma_i(u) = \rho(t) + \langle \gamma_t, f_1 \rangle_{K_1}.
\]

Also

\[
(P_{\tau_n}f_1)(t) = (K_1(t, t_1), K_1(t, t_2), \ldots, K_1(t, t_n))K_{1,n}^{-1}(f_1(t_1), f_1(t_2), \ldots, f_1(t_n))'
\]

where \(K_{1,n} \) is the \(n \times n \) matrix with \(ij \)th entry \(K_1(t_i, t_j) \). Now, for \(t \neq t_i \),

\[
\frac{d}{dt} \frac{1}{c^2(t)} \frac{d}{dt} K_1(t, t_i) = \frac{d}{dt} \frac{1}{c^2(t)} \frac{d}{dt} \left[\int_0^t \int_0^t c(\xi) A(\xi, n) c(\eta) \, d\xi \, d\eta \right] = \gamma_i(t_i)
\]

so that, for each fixed \(t \in T_n \),

\[
\frac{d}{dt} \frac{1}{c^2(t)} \frac{d}{dt} (P_{\tau_n}f_1(t))
\]

\[
= \langle \gamma_i(t_i), \gamma_i(t_2), \ldots, \gamma_i(t_n) \rangle K_{1,n}^{-1}(f_1(t_1), f_1(t_2), \ldots, f_1(t_n))'
\]

\[
= \langle \gamma_i, P_{\tau_n}f_1 \rangle_{K_1}.
\]

Thus, by (3.3), (3.4), (3.6), (3.7),

\[
||f_1 - P_{\tau_n}f_1||_{K_1}^2 = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \rho(u) \, du \int_{t_i}^{t_{i+1}} B_t(u, v) \rho(v) \, dv
\]

\[
+ \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \rho(u) \, du \int_{t_i}^{t_{i+1}} B_1(u, v) \langle \gamma_i, f_1 - P_{\tau_n}f_1 \rangle_{K_1} \, dv.
\]
Now \(\rho \) and \(B_i \) are nonnegative, so we may write
\[
|\int \int_{t_i}^{t_{i+1}} \rho (u) \, du \int B_i(u, v) \langle \gamma_v, f_i - P_{T_n} f_i \rangle_{K_1} \, dv| \\
\leq \int \int_{t_i}^{t_{i+1}} \rho (u) \, du \int B_i(u, v) \, dv \times M_i \| f_i - P_{T_n} f_i \|_{K_1} ,
\]
where \(M_i \) is defined in (3.1).
Now, letting
\[
\xi_0 (t) = \delta K_0 (t, u) \, du
\]
it may be shown that
\[
(3.8) \quad \sum_{i=0}^{n-1} \int \int_{t_i}^{t_{i+1}} \rho (u) \, du \int B_i(u, v) \, dv = \left\langle f_0 - P_{T_n} f_0, \xi_0 - P_{T_n} \xi_0 \right\rangle_{K_0} .
\]
By (1.4),
\[
\| \xi_0 - P_{T_n} \xi_0 \|_{K_0} = M_2 \left(\frac{1}{n} \left(1 + o \left(\frac{1}{n} \right) \right) \right)
\]
for appropriately chosen \(M_2 \).
Thus
\[
\| f_1 - P_{T_n} f_1 \|_{K_1} = \| f_0 - P_{T_n} f_0 \|_{K_0} + \theta \frac{M_2}{n} \| f_1 - P_{T_n} f_1 \|_{K_1} \| f_0 - P_{T_n} f_0 \|_{K_0}
\]
for some \(\theta \) with \(|\theta| < 1 \) and \(M_3 = M_1 M_2 \), and so
\[
\| f_1 - P_{T_n} f_1 \|_{K_1} = 1 + \theta \frac{M_2}{n} \left(1 + o \left(\frac{1}{n} \right) \right) .
\]
Since \(1/n \leq \Delta \), the Lemma is proved.

Lemma 2. For \(m \geq 2 \) let
\[
Q_i (s, t) = \delta K_i (u, v) \, du \, dv i = 1, 2
\]
where \(K_i \), \(i = 0, 1 \) are as Lemma 1. Let
\[
f_i (t) = \int Q_i (t, u) \rho (u) \, du ,
\]
where \(f_i \) is the projection of \(f_i \) in \(H_{Q_i} \), \(i = 0, 1 \)
onto the subspace of (1.1) with \(Q = Q_i \).

Then, there exists an \(\epsilon \) independent of \(\rho \) such that, for sufficiently large \(n \),
\[
1 - \epsilon \Delta \leq \frac{\| f_1 - P_{m,T_n} f_1 \|_{Q_1}^2}{\| f_0 - P_{m,T_n} f_0 \|_{Q_0}^2} \leq 1 + \epsilon \Delta .
\]
Here \(P_{m,T_n} f_i \) is the projection of \(f_i \) in \(H_{Q_i} \), \(i = 0, 1 \) onto the subspace of (1.1) with \(Q = Q_i \).

The proof of this Lemma is contained within the proof of Theorem 1 of [13], page 2065 Equations (2.28)–(2.31), where it is shown that (3.2) implies (3.9).

Theorem now follows by using the proof of Lemma 3 of [16] (where only condition ii on \(c \) is needed for \(Q = Q_0 \) to show that
\[
\| f_0 - P_{m,T_n} f_0 \|_{Q_0}^2 = \frac{1}{n^{2m}} \frac{(m!)^2}{(m+1)!} \int \int \rho (s) \, ds + o \left(\frac{1}{n^{2m}} \right) .
\]

* Equation (3.8) may be checked by following the argument of Lemma 1 of [16]; see equations (3.4), (3.5) and (3.22). Equation (3.4a) there should read \(f(t) = EX(t) \int \mathcal{X}(u) \rho (u) \, du \).
REFERENCES