DEPARTMENT OF STATISTICS
University of Wisconsin

1300 University Ave.

Madison, WI 53706

TECHNICAL REPORT NO. 1108

October 5, 2005

Robust Manifold Unfolding with Kernel
Regularization

Fan Lu'
Department of Statistics, University of Wisconsin, Madison, WI

Yi Lin?
Department of Statistics, University of Wisconsin, Madison, WI
Grace Wahba ?

Department of Statistics, Department of Computer Sciences and Department of
Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI

Key Words and Phrases: Kernel Regularization, positive definite matrices, noisy dissimi-
larity data, convex cone programming

"Research supported in part by NSF grant DMS0072292, NSF grant SCI0330538 and NIH grant EY09946.
Research supported in part by NSF Grant DMS0134987.
3Research supported in part by NSF grant DMS0072292 and NIH grant EY09946.



Robust Manifold Unfolding with Kernel Regularization

Fan Lu, Yi Lin and Grace Wahba
Department of Statistics
University of Wisconsin, Madison, 53706, USA

October 12, 2005

Abstract

We describe a robust method to unfold a low-dimensional manifold embedded in high-
dimensional Euclidean space based on only pairwise distance information (possibly noisy) from
the sampled data on the manifold. Our method is derived as one special extension of the recently
developed framework called Kernel Regularization, which is originally designed to extract in-
formation in the form of a positive definite kernel matrix from possibly crude, noisy, incom-
plete, inconsistent dissimilarity information between pairs of objects. The special formulation
is transformed into an optimization problem that can be solved globally and efficiently using
modern convex cone programming techniques. The geometric interpretation of our method will
be discussed.

1 Introduction

The dimensionality reduction problem appears in many research fields, where scientists try to con-
duct exploratory analysis or visualization of multivariate data. One special scenario happens often,
when the goal is to find a meaningful/expected low-dimensional structure behind high-dimensional
observations, or more precisely, to recover a low-dimensional parameterization of high-dimensional
data assuming the data all lie on a low-dimensional manifold. In several recent papers [1, 2, 3, 4, 5],
a large family of algorithms has been proposed to solve this particular type of dimensionality reduc-
tion problem (hereinafter, manifold-unfolding problem), in the spirit of reconstructing the manifold
structure globally, but respecting only local information from the observed data. It is also well
known [5, 6, 7, 8] that the solution to the manifold-unfolding problem is closely related to finding
a symmetric positive definite kernel (hereinafter “kernel”). Recall that an N x N kernel obtained
from data relating N objects may be used to assign Euclidean coordinates to the /V objects in some
p < N Euclidean space.

In a recent work [9], a novel framework called Kernel Regularization is proposed to extract
information in the form of a kernel matrix from possibly crude, noisy, incomplete, inconsistent
dissimilarity or distance-like information between pairs of objects, while controlling a certain com-
plexity measure of the kernel. A special formulation of the framework was applied to configure a set
of proteins globally in a Euclidean space based on pairwise dissimilarity information only (see [9]).
The configuration (in the form of a kernel) obtained can then be used by any clustering or classifi-
cation algorithm for further inference if visualization is not the only purpose. Kernel regularization
can be used replace of the roles of two traditional techniques, multidimensional scaling (MDS) and



principal component analysis (PCA), in a unified fashion using the special formulation in [9]. How-
ever, the manifold-unfolding problem is different from the problem targeted in [9], where global
information needs to be preserved.

In this paper, we describe a kernel approach to solve the manifold-unfolding problem using
another variation/formulation of the kernel regularization framework. We adopt the same essential
idea as in [1, 2, 3, 4, 5] which is, loosely speaking, to respect local information while flattening
the global structure. Nevertheless, our method is more flexible than the others in terms of the
assumptions on the data. All previous methods assume (at least implicitly) that there is no noise
associated with the observed data, while our method allows the existence of noise. One scenario
of the noisy-version manifold-unfolding problem is when the observed scattered data points can
fall off the ‘true’ underlying manifold. More precisely, one can assume the direct distance between
observed data points and the target manifold follows a compactly supported distribution with zero
mean and relatively small variance compared to the global spread of the original manifold . Another
possible source of noise is measurement error for either point coordinates or pairwise distances. A
related issue here is that to the extent that the desired solution to the manifold-unfolding problem
is translation and rotation invariant, a reasonable method should depend only on pairwise distance
information. The procedures in algorithms proposed in [2, 3, 4] use more than pairwise distances (at
least, procedure-wise), while implementation of our method, like the algorithms in [1, 5], needs only
pairwise distances. It is also worth mentioning that, when the distance/dissimilarity information is
actually noisy, it might also be non-Euclidean (e.g., the triangle inequality can be violated). Then,
in that case, the algorithm in [5] will try to solve an infeasible optimization problem. Nonetheless,
our method can naturally handle this noisy situation. Moreover, our algorithm is insensitive to the
non-convex case investigated in [4], which causes the algorithms proposed in [1, 2] to fail. So our
method is robust for the manifold-unfolding problem in the sense that it can handle both noisy and
non-convex data.

This paper is organized as follows. In Section 2, we review the Kernel Regularization frame-
work before proposing a new formulation of it in order to solve the (noisy) manifold-unfolding
problem. We also discuss the geometric interpretation of different formulations. In Section 3, we
show some simulation results from implementing our method. Finally, we conclude in Section 4
with a summary and discussion of future work.

2 Regularized Kernel Embedding

2.1 Framework of Kernel Regularization

In the same spirit of all regularization methods, the Kernel Regularization method is designed to
estimate a target, in our case, a kernel, from observed information, while controlling a certain com-
plexity measure of the resulting estimate to prevent overfitting. The most general framework can be
expressed as the following optimization problem:

min L(data, K) + AJ(K), (1)

KeSy

where S} is the convex cone of all real nonnegative definite matrices of dimension /N and L is some
reasonable loss function on K. J is a kernel penalty (regularizing) functional, and ) is a tuning



parameter balancing fit to the data and the penalty on K. The choice of L obviously depends on
the functional/distributional relationship (given or from model assumptions) between the observed
data and target kernel, which is usually straightforward after the underlying problem is clear. On the
other hand, a reasonable J can only be found after one understands/defines the complexity of the
estimated kernel properly for a particular problem. Moreover, computational convenience should be
considered when choosing L and J. In most cases, we want use L and J which makes the resulting
optimization problem convex.

The Kernel Regularization framework proposed in [9] is motivated by the need to extract useful
information from various kinds of dissimilarity information. Given a set of N objects, suppose we
have obtained a measure of dissimilarity, d;;, for certain object pairs (4, j). So the dissimilarity
measure becomes the proxy to construct the loss function for the target kernel. Also, trace is chosen
to be the kernel regularizing function J in order to promote dimension reduction in this case. One
special formulation of Kernel Regularization framework in this scenario is the following:

min Wij ’d” — Bij . K| + )\trace(K), )

where () is the set of pairs for which we utilize dissimilarity information and the w;;s are weights
that may, if desired, be associated with particular (4, j) pairs. The natural induced dissimilarity,
which is a real squared distance admitting of an inner product, is ciij = K(i,i) + K(j,7) —
2K (i,j) = B;j - K, where K (i, j) is the (¢, j) entry of K and B;; is a symmetric matrix of dimen-
sion NV with all elements 0 except B;;(4,1) = Byj(j,j) = 1, Bij(i,§) = Bij(j,4) = —1. The inner
(dot) product of two matrices of the same dimensions is defined as: A-B =}, ; A(i,j) - B(i, j) =
trace(A” B).

There are essentially no restrictions on the set of pairs other than requiring that the graph of the
objects with pairs connected by edges be connected. A pair may have repeated observations, which
just yield an additional term in (1) for each separate observation. If the pair set induces a connected
graph, then the minimizer of (1) will have no local minima.

2.2 Deriving the Regularized Kernel Embedding Formulation

Denote the observed squared distance between x; and z; by d;;. Let (i, j) € Qif z; is one of the
k-nearest neighbors of x;, according to this observed squared distance.
We formulate the problem as finding a new positioning of the N points in RP so that

(1) the repositioning respects local distance;
(ii) the repositioned points lie in a subspace of RP with as low a dimension as possible.

Denote the points after repositioning as y;, ¢« = 1,...,/N. That is, the positioning moves the
original point x; to y;, ¢ = 1,..., N. These N points are still in R?, but we hope they lie in a
low dimensional subspace in RP. Denote the distance between y; and y; in R? by r;;. Notice that
the positioning that satisfies these two conditions is not unique. In fact, for any positioning that
satisfies (i) and (ii), rotating the coordinate system or shifting the points by a common vector results
in a different positioning that also satisfies (i) and (ii). To take care of the shifting problem, we
require that the repositioned points are centered at 0,, the origin of the coordinate system. That is,
- _ 1N

= =) i—1Yi = 0p. As will be seen later, we shall take care of the rotation problem by formulating
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the problem in terms of the reproducing kernel matrix generated by the repositioned points, instead
of the repositioned points themselves. The reproducing kernel matrix K is the N by N matrix with
the element K (7, j) = (vi, y;), where (-, -) is the Euclidean inner product in RP. Notice this matrix
is invariant under rotation of the points ;.
Condition (i) requires that
5~ dig, V(i j) € Q. 3)

Now notice that among all possible positioning that satisfies condition (i), the positioning that
meets condition (ii) is one in which the distance between pairs of the repositioned points in R?
are maximized. This is most easily seen in the broken stick example coming up later, but it is also
easy to see in general. Therefore we try to maximize Zl]\i 1 Zj\f: 1 rgj subject to (3). To balance
the fidelity to local distances and the maximization of distance between all pairs, we use a penalty
approach and try to minimize:

N N

D (dig—rH)?=A> rd )

(4,§)€Q i=1 j=1

where A > 0 is a tuning parameter. Alternatively, we can try to minimize

=] — by 2
Z ’dw sz’ )\ZZTZ]7 (5)

(1,7)€Q i=1j=1
Adopting the matrix inner product definition defined in Section (2.1)

N N N N
SN = SN K(ii) + K (), ) - 2K (i, )

i=1 j=1 i=1 j=1

= 2NI-K—2iiK(i,j)

i=1 j=1
= 2NI-K—2E-K=2(NI-E)-K,

where [ is the N-dimensional identity matrix and E' is the N by N matrix with all elements being 1.
Plugging rfj = K(i,i) + K(4,7) — 2K (i, 7) into (4) or (5), the problem becomes: find K positive
semidefinite to minimize

> (dij — K (i) — K(j,§) + 2K(i, §))* = 2\(NI — E) - K, (6)
(1,5)€Q
or
> ldij — K(iyi) = K(j,5) + 2K (i, )| — 2A\(NI - E) - K. )
(1,7)€Q

We can also add weights wj;; into the first summation. There is an additional constraint needed
to guarantee that the points are centered at 0,. It is easy to show that if K is positive semidefinite,
then y = 0, is equivalent to K'e = 0,, where ¢ is the p by one vector whose elements are all ones,
and this constraint can be added to the above optimization problems. This constrained minimization
problem can be recast as a convex cone programming problem and there are efficient algorithms



developed in the convex optimization community for solving this type of problems. Notice that
under the Ke = 0, constraint the objective function can be further simplified a little since if K is
positive semidefinite, then Ke = 0y, is equivalent to £ - K = 0. Once the matrix K is obtained, the
dimension of the subspace of the repositioned points is p = rank(K). Alternatively, the constraint
Ke = 0, may be omitted and K centered later. This will be discussed further below. We can use
the spectral decomposition, i.e., K = I DT" where I' is p by IV consisting of p rows of eigenvectors
of K, and D is the p by p diagonal matrix of non-zero eigenvalues {),}, to get the principal
coordinates Y = D/2T with columns of Y to be Y;’s.

One thing that we need to be careful about is that the neighbor set €2 should not be too small.
Otherwise the objective function may diverge to —oo. The necessary and sufficient condition to
avoid this situation is that the edges in €2 construct a connected graph for all data points.

Now, it is easy to see that (7) differs from the formulation (2) only in the choice of kernel
regularization function J(K). In (7), J(K) = trace(K) = I - K, while in 2) J(K) = —2(NI —
E) - K. 1t is worth pointing out that they are both linear thus convex in K.

2.3 General Convex Cone Problem

Problems (6) and (7) can all be solved globally (since they are convex in K) and efficiently using
modern convex cone programming techniques. We describe here the general convex cone program-
ming problem. This problem, which is central to modern optimization research, involves some
unknowns that are vectors in Euclidean space and others that are symmetric matrices. These un-
knowns are required to satisfy certain equality constraints and are also required to belong to cones
of a certain type. The cones have the common feature that they all admit a self-concordant barrier
function, which allows them to be solved by interior-point methods that are efficient in both theory
and practice [10].

To describe the cone programming problem, we define some notation. Let RP be Euclidean
p-space, and let P, be the nonnegative orthant in R?, that is, the set of vectors in R” whose com-
ponents are all nonnegative. We let ), be the second-order cone of dimension g, which is the set of
vectors = (z(1),...,2(¢q)) € RY that satisfy the condition z(1) > [>7, x(i)?])"/2. We define
S5 to be the cone of symmetric positive semidefinite s X s matrices of real numbers. Inner products
between two vectors are defined in the usual way and we use the dot notation for consistency with
the matrix inner product notation.

The general convex cone problem is then:

Ns Ng
Xmin g Cj-Xj—i—g G Ti+g-z (8)
§iTi 2 4 ‘
J=1 =1

Ng Nq
s.t.ZArj-Xj—i—Zari'afi—kgr-z:br, Y,
j=1 i=1

Xj S SS]. Vj; T; € qu Vi z € Pp.

Here, C}, A,; are real symmetric matrices (not necessarily positive semidefinite) of dimension s;,
¢, ari € R%, g, g, € RP, b, € RY.

The solution of a general convex cone problem can be obtained numerically using publicly
available software such as SDPT3 [11] and DSDPS5 [12].



2.4 Regularized Kernel Embedding Formulation for /; Loss

To convert the problem of equation (7) into a convex cone programming problem, without loss of
generality, we let {2 contain m distinct (4, j) pairs, which we index withr = 1,2, ..., m. Let N x N
matrices I and E be defined as before. Define e,, ;- to be vector of length 2m consisting of all zeros
except for the rth element being 1 and (m + r)th element being —1. If we denote the rth element
of Qas (i(r),j(r)), and with some abuse of the notation let i = i(r), j = j(r) and w € Py, with
w(r) = w(r +m) = w;) ey, T =1,...,m, we can formulate the problem of equation (2) as
follows:

minKtO’uzo w-u— 2)\(]\7[ - E) - K (9)
S.t.dij — Bij - K+ em,yr U = 0, VY.,
K e SN, u € Poy,.

The solution to (9) might not be centered. To obtain sensible principal coordinates of the cor-
responding configuration using the spectral decomposition, we can center the solution kernel fol-
lowing a simple procedure. Define a to be the column with ith entry the average of the ith column
of K, c to be the scalar as the mean of all elements in K and e to be vector of suitable dimension
consisting of all 1’s. A kernel K can be centered simply by: K cprereq = K — ael —ea” +cE. An
alternative way to handle this centering step, as discussed before, is to directly impose the centering
condition F - K = 0, which is actually a linear constraint and can be directly incorporated into the
convex cone formulation (9). Then, we can also simplify the kernel regularization function from
—2(NI — E) - K to a reduced form —2(NT) - K. However in our experiment with the examples
here, the optimization problem without the E' - K = 0 constraint converges faster.

The Regularized Kernel Embedding formulation with square loss can also be easily obtained
after simple modification of the square formulation in the appendix of [9].

2.5 ‘Newbie’ Formulation

A very useful ‘newbie’ algorithm was developed in [9] to find the coordinates for new data points
(newbies) within the previously constructed configuration. The corresponding newbie problem is
essentially the minimization of the sum of losses involving the newbie only. We adopt the same
idea here for the manifold-unfolding problem except we restrict the summation even further to a
reasonable neighborhood of the newbie. The neighborhood construction problem will be discussed
in general in the following section. However the algorithm remains the same.

2.6 Choosing Neighbors

Choosing neighbors for each sampled data point is a very important/tricky step for almost all meth-
ods including ours that are in the spirit of ‘thinking globally while fitting locally’. However, it is
not discussed in detail in previous papers. A simple way, which is adopted by most algorithms, is
to choose k nearest neighbors for all data points. Then the neighbor-choosing problem degenerates
into a neighborhood-size-choosing problem. In exploratory studies, where the truth is not known,
the only thing one can do might be to start from a ‘suitable’ neighborhood size based some prior
knowledge or intuition, and then vary the size to see how the results change. As we discussed previ-
ously, the neighborhood size has to be big enough so that the neighbor edges and all points consist



of a connected graph. On the other hand, if the neighborhood size is too big, we are respecting
more than just the local structure, and also, the computation cost usually goes up quickly. A good
choice of k£ and the sensitivity of the results to £ depend on the density and distribution of the sam-
pled points on the manifold. In previous papers, with dense enough samples for the examples, the
authors simply choose moderate neighborhood sizes. In this paper, we also adopt this approach in
the simulated examples.

Nonetheless, in some cases, fixing a neighborhood-size might not be a good approach to setup
a connected graph especially when the sampling is very uneven across the underlying manifold or
the manifold has very different curvature from place to place. For the formulation proposed in this
work, we have another, possibly more stable way to tackle this issue. We can impose a compactly
supported kernel around each data point to generate weights for all other points. Only those points
who get non-zero weights become candidates to be neighbors for a particular data point, and their
weights will be used to multiply the corresponding loss terms in (6) and (7). A threshold number
can also to set so that every point only keeps no more than that number of closest neighbors from all
candidates. A suitable bandwidth of the kernel can be selected based on the average closest-neighbor
distance. The intuition of this approach is to give higher confidence to the distances between closer
neighbors.

2.7 Parameter )\

The tuning parameter A controls a balance between the twin goals we want to achieve — as \ in-
creases, the average squared distance between points far apart is allowed to increase, thus enhanc-
ing “flattening”™, while as A\ decreases, the solution is driven towards more closely respecting the
observed local structure.

For an exploratory study, where the truth is not known, a sequence of \s within an appropriate
range (usually in log scale) will give different results. Then prior knowledge may help to choose a
good A. For example, if it is known that there is not much noise within the data and a low dimen-
sional embedding is preferred, one can gradually increase A to get rid of insignificant dimensions
until the sum of the losses exceed some limit.

However, if this manifold-learning task is just a part of bigger problem, e.g., clustering or clas-
sification, where we know the truth for training data, it will be natural to tune A\ simultaneously with
other possible tuning parameters, using standard tuning techniques like cross validation.

3 Unfolding Simulated Examples

3.1 Procrustes Measures

For the simulated data, the truth is known. A reasonable measure of the distance/similarity between
two kernel matrices is needed to characterize the goodness of fit for different estimates. In some
related literature, it is called Procrustes measure.

A suitable measure proposed in [13] is based on the the positional differences after matching
two gram matrix under translation, rotation and reflection. Suppose A and B are two centered gram
matrices, then the measure is calculated as follows:

G(A, B) = trace(A) + trace(B) — 2trace( A2 BAY?)1/2, (10)



The normalized version of this measure is simply:
vo(A, B) = G(A, B)/(trace(A)trace(B))"/2. (11)

Alternatively, if we care only about the pairwise distance information, we can introduce another
measure (as defined in [9]):

. . 1. .
va(A, B) = |dija — dijl/ 5 (dija+ dijp), (12)
i<j i<j

where a?ij A and Jij p are pairwise distance between object ¢ and j, induced by A and B respectively.

3.2 Unfolding the Swiss Roll with a Window Punched Out

The first simulated example is a Swiss roll manifold with a rectangular window punched out close
to the center. This example was used in Donoho and Grimes (2003) to show how a non-convex
feature (the punched-out window) can cause some previous methods like ISOMAP [1] and LLE [2]
to fail.

The following results are obtained on a random sample of 770 points, each point with 6 neigh-
bors. There is no noise in this example. Figure 1 gives the scatter plot of original data points sampled
on the manifold (except within the punched-out window). Figure 2 is the true parameterization, and
its “rolled-up” version gives Figure 1. Figure 3 is the solution to our formulation with (9), with the
tuning parameter A = 7e — 7. In Figure 4, the eigensequence of the corresponding solution kernel
is plotted in descending order on a log scale. We can clearly see the fact that the first two eigen-
values stand out significantly in magnitude compared with the rest of the eigenvalues, indicating a
2D embedding. (The last eigenvalue in Figure 4 is the computer version of the zero eigenvalue that
goes with the constant function.) The principal coordinates in Figure 3 are constructed using these
two significant eigenvalues and corresponding eigenvectors.

3.3 Unfolding the Noisy Wisconsin Roll

This example is specially designed to show the robustness of our method, especially compared with
the method proposed recently in [S], which has a basic idea very similar to ours. We consider
two types of noise, which are imposed on the pairwise distances between neighbors after the all
neighbors are selected. In this example, the data points are sampled on a “Wisconsin roll’, which is
a Swiss roll except there is a window in the shape of letter ‘W’ punched out (thus no points can be
sampled with in it) which can be seen clearly if the roll is flatten out.

To impose the first type of noise, twenty percent of the selected pairwise distances are multiplied
by a uniform random number over the interval from 0.85 to 1.15. The second type of noise is
introduced to all chosen d;;s (between chosen neighbors) by binning them into 15 equal sized bins
over the interval from the minimum to the maximum among these d;;s. The value of each d;; is
then replaced by the center of the bin that it belongs to. It is an analog of the scenario where only
ranks are provided as the distance/dissimilarity measure.

A random sample of 861 points was used for this example with the neighborhood size set to be
k = 6. In both noisy situations, our method successfully (with A in a proper range) converges to a
global optimum with only two significant dimensions. See eigensequence plots Figure 7 and Figure



15

Figure 1: Swiss Roll: Scatter plot of original data points.
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Figure 2: Swiss Roll: True parameterization. Rolled up version gives Figure 1.
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Figure 3: Swiss Roll Unrolled: Regularized Kernel Embedding using (9), A = 7e — 7, first two
principal coordinates.
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9. The Procrustes measure shows our solution is very close to the truth (See Table 1), although the
recovered embeddings shown in Figure 6 and Figure 8 are distorted a little bit from the truth (see
Figure 5) due to the imposed noise.

Table 1: Procrustes Measure between Result and Truth
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Figure 5: Wisconsin Roll: True parameterization. Observations come from rolled up version after
adding noise.

On the contrary, the algorithm in [5] fails to converge because it tries to solve an infeasible
primal problem for which the dual is unbounded. For the solvers we used, DSDP5 reported “ DSDP:
Dual Unbounded, Primal Infeasible” and SDPT3 reported “Stop: primal problem is suspected of
being infeasible”. These results are expected, because when a certain level of noise is directly
imposed on the distance information, it is very likely that no Euclidean metric can fit the noisy
distance data (for instance if the triangle inequality is violated somewhere). Then problem set-up in
[5] is infeasible in the sense that no solution can satisfy all the constraints simultaneously.

3.4 Unfolding a Broken Stick

In this section we describe a toy example for the purpose of highlighting the difference between our
method and the method proposed in [5]. The primary difference between the two methods is that
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Figure 6: Wisconsin Roll with first type of noise, unrolled. Regularized Kernel Embedding using
(9), A = 0.002, first two principal coordinates.
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Figure 8: Wisconsin Roll with second type of noise, unrolled. Regularized Kernel Embedding using
(9), A = 0.0025, first two principal coordinates.
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for the method in [5] local distances are enforced rigidly while here we relax that requirement. We
want to show that this relaxation can be very important for manifold-unfolding problems even in the
cases without noise.

The data points are randomly sampled on two branches of a ‘broken stick’ (see Figure 10). One
branch is from the origin to the point (1,1) and the other is from (1, 1) to (2,0). We force the
sample to include the point (1, 1).

The manifold unfolding goal here is to flatten out the stick. If any of the pairs for which distance
is selected to fit, has one member from the left branch and the other member from the right branch
(for example, see the black line in Figure 10), then the method in [5] will not be able to flatten the
stick. For our method, a small A will not flatten the stick either, but a sufficiently large A\ will. The
result from employing the method in [5] with k& = 5 is almost visually indistinguishable from the
plot in Fig 10. With £ = 5 and A too small (A = le — 5) , our method also fails to flatten the
stick but recovers the original broken stick. Two outstanding eigenvalues are obtained as can be
seen in the upper left corner of Figure 11. However, with \ sufficiently large (A = 0.3) we see
only one outstanding eigenvalue, and so we obtain the one dimensional flattened stick on the lower
right corner of Figure 11. As expected, within our regularized kernel embedding framework, the
smoothness/dimensionality is controlled by the smoothing/tuning parameter \.

4 Discussion and Future Work

In this paper, we developed a robust manifold learning method as a variation of the RKE framework
proposed in [9]. It is worth mentioning that, if we choose to impose the centering constraint £- K =
0 (although we can do without this) in problems (6) and (7), the kernel regularization function
for manifold unfolding becomes J(K) = —2(NI — E) - K = —2NI - K = —2Ntrace(K).
Interestingly, in [9], the kernel regularization function we use to promote dimension reduction is
trace instead of the negative trace (with a constant multiplier) here. So, different signs in front of
trace actually both promote dimension reduction but in different scenarios.

More interesting problems come up when there are multiple source of information that are
believed to share the same underlying low-dimensional structure. Our method can be naturally
extended to that case. Also, it is often unrealistic to assume the given distance information is
actually Euclidean. Then, a non-metric variation of our method, i.e., only rank information among
all distances will be used, can be very useful. Last but not the least, we will explore the weighting
scheme as we discussed in section (2.6) to select neighbors in order to achieve higher stability and
robustness.
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