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Abstra
tWe des
ribe a robust method to unfold a low-dimensional manifold embedded in high-dimensional Eu
lidean spa
e based on only pairwise distan
e information (possibly noisy) fromthe sampled data on the manifold. Our method is derived as one spe
ial extension of the re
entlydeveloped framework 
alled Kernel Regularization, whi
h is originally designed to extra
t in-formation in the form of a positive de�nite kernel matrix from possibly 
rude, noisy, in
om-plete, in
onsistent dissimilarity information between pairs of obje
ts. The spe
ial formulationis transformed into an optimization problem that 
an be solved globally and ef�
iently usingmodern 
onvex 
one programming te
hniques. The geometri
 interpretation of our method willbe dis
ussed.
1 Introdu
tionThe dimensionality redu
tion problem appears in many resear
h �elds, where s
ientists try to 
on-du
t exploratory analysis or visualization of multivariate data. One spe
ial s
enario happens often,when the goal is to �nd a meaningful/expe
ted low-dimensional stru
ture behind high-dimensionalobservations, or more pre
isely, to re
over a low-dimensional parameterization of high-dimensionaldata assuming the data all lie on a low-dimensional manifold. In several re
ent papers [1, 2, 3, 4, 5℄,a large family of algorithms has been proposed to solve this parti
ular type of dimensionality redu
-tion problem (hereinafter, manifold-unfolding problem), in the spirit of re
onstru
ting the manifoldstru
ture globally, but respe
ting only lo
al information from the observed data. It is also wellknown [5, 6, 7, 8℄ that the solution to the manifold-unfolding problem is 
losely related to �ndinga symmetri
 positive de�nite kernel (hereinafter �kernel�). Re
all that an N × N kernel obtainedfrom data relating N obje
ts may be used to assign Eu
lidean 
oordinates to the N obje
ts in some
p < N Eu
lidean spa
e.In a re
ent work [9℄, a novel framework 
alled Kernel Regularization is proposed to extra
tinformation in the form of a kernel matrix from possibly 
rude, noisy, in
omplete, in
onsistentdissimilarity or distan
e-like information between pairs of obje
ts, while 
ontrolling a 
ertain 
om-plexity measure of the kernel. A spe
ial formulation of the framework was applied to 
on�gure a setof proteins globally in a Eu
lidean spa
e based on pairwise dissimilarity information only (see [9℄).The 
on�guration (in the form of a kernel) obtained 
an then be used by any 
lustering or 
lassi�-
ation algorithm for further inferen
e if visualization is not the only purpose. Kernel regularization
an be used repla
e of the roles of two traditional te
hniques, multidimensional s
aling (MDS) and
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prin
ipal 
omponent analysis (PCA), in a uni�ed fashion using the spe
ial formulation in [9℄. How-ever, the manifold-unfolding problem is different from the problem targeted in [9℄, where globalinformation needs to be preserved.In this paper, we des
ribe a kernel approa
h to solve the manifold-unfolding problem usinganother variation/formulation of the kernel regularization framework. We adopt the same essentialidea as in [1, 2, 3, 4, 5℄ whi
h is, loosely speaking, to respe
t lo
al information while �atteningthe global stru
ture. Nevertheless, our method is more �exible than the others in terms of theassumptions on the data. All previous methods assume (at least impli
itly) that there is no noiseasso
iated with the observed data, while our method allows the existen
e of noise. One s
enarioof the noisy-version manifold-unfolding problem is when the observed s
attered data points 
anfall off the `true' underlying manifold. More pre
isely, one 
an assume the dire
t distan
e betweenobserved data points and the target manifold follows a 
ompa
tly supported distribution with zeromean and relatively small varian
e 
ompared to the global spread of the original manifold . Anotherpossible sour
e of noise is measurement error for either point 
oordinates or pairwise distan
es. Arelated issue here is that to the extent that the desired solution to the manifold-unfolding problemis translation and rotation invariant, a reasonable method should depend only on pairwise distan
einformation. The pro
edures in algorithms proposed in [2, 3, 4℄ use more than pairwise distan
es (atleast, pro
edure-wise), while implementation of our method, like the algorithms in [1, 5℄, needs onlypairwise distan
es. It is also worth mentioning that, when the distan
e/dissimilarity information isa
tually noisy, it might also be non-Eu
lidean (e.g., the triangle inequality 
an be violated). Then,in that 
ase, the algorithm in [5℄ will try to solve an infeasible optimization problem. Nonetheless,our method 
an naturally handle this noisy situation. Moreover, our algorithm is insensitive to thenon-
onvex 
ase investigated in [4℄, whi
h 
auses the algorithms proposed in [1, 2℄ to fail. So ourmethod is robust for the manifold-unfolding problem in the sense that it 
an handle both noisy andnon-
onvex data.This paper is organized as follows. In Se
tion 2, we review the Kernel Regularization frame-work before proposing a new formulation of it in order to solve the (noisy) manifold-unfoldingproblem. We also dis
uss the geometri
 interpretation of different formulations. In Se
tion 3, weshow some simulation results from implementing our method. Finally, we 
on
lude in Se
tion 4with a summary and dis
ussion of future work.
2 Regularized Kernel Embedding2.1 Framework of Kernel RegularizationIn the same spirit of all regularization methods, the Kernel Regularization method is designed toestimate a target, in our 
ase, a kernel, from observed information, while 
ontrolling a 
ertain 
om-plexity measure of the resulting estimate to prevent over�tting. The most general framework 
an beexpressed as the following optimization problem:

min
K∈Sn

L(data, K) + λJ(K), (1)where SN is the 
onvex 
one of all real nonnegative de�nite matri
es of dimensionN and L is somereasonable loss fun
tion on K. J is a kernel penalty (regularizing) fun
tional, and λ is a tuning
3



parameter balan
ing �t to the data and the penalty on K. The 
hoi
e of L obviously depends onthe fun
tional/distributional relationship (given or from model assumptions) between the observeddata and target kernel, whi
h is usually straightforward after the underlying problem is 
lear. On theother hand, a reasonable J 
an only be found after one understands/de�nes the 
omplexity of theestimated kernel properly for a parti
ular problem. Moreover, 
omputational 
onvenien
e should be
onsidered when 
hoosing L and J . In most 
ases, we want use L and J whi
h makes the resultingoptimization problem 
onvex.The Kernel Regularization framework proposed in [9℄ is motivated by the need to extra
t usefulinformation from various kinds of dissimilarity information. Given a set of N obje
ts, suppose wehave obtained a measure of dissimilarity, dij , for 
ertain obje
t pairs (i, j). So the dissimilaritymeasure be
omes the proxy to 
onstru
t the loss fun
tion for the target kernel. Also, tra
e is 
hosento be the kernel regularizing fun
tion J in order to promote dimension redu
tion in this 
ase. Onespe
ial formulation of Kernel Regularization framework in this s
enario is the following:
min

K∈SN

∑

(i,j)∈Ω

wij |dij − Bij · K| + λ tra
e(K), (2)
where Ω is the set of pairs for whi
h we utilize dissimilarity information and the wijs are weightsthat may, if desired, be asso
iated with parti
ular (i, j) pairs. The natural indu
ed dissimilarity,whi
h is a real squared distan
e admitting of an inner produ
t, is d̂ij = K(i, i) + K(j, j) −
2K(i, j) = Bij ·K, where K(i, j) is the (i, j) entry of K and Bij is a symmetri
 matrix of dimen-sion N with all elements 0 ex
ept Bij(i, i) = Bij(j, j) = 1, Bij(i, j) = Bij(j, i) = −1. The inner(dot) produ
t of two matri
es of the same dimensions is de�ned as: A ·B =

∑

i,j A(i, j) ·B(i, j) ≡tra
e(ATB).There are essentially no restri
tions on the set of pairs other than requiring that the graph of theobje
ts with pairs 
onne
ted by edges be 
onne
ted. A pair may have repeated observations, whi
hjust yield an additional term in (1) for ea
h separate observation. If the pair set indu
es a 
onne
tedgraph, then the minimizer of (1) will have no lo
al minima.2.2 Deriving the Regularized Kernel Embedding FormulationDenote the observed squared distan
e between xi and xj by dij . Let (i, j) ∈ Ω if xj is one of the
k-nearest neighbors of xi, a

ording to this observed squared distan
e.We formulate the problem as �nding a new positioning of the N points inRp so that(i) the repositioning respe
ts lo
al distan
e;(ii) the repositioned points lie in a subspa
e ofRp with as low a dimension as possible.Denote the points after repositioning as yi, i = 1, ..., N . That is, the positioning moves theoriginal point xi to yi, i = 1, ..., N . These N points are still in Rp, but we hope they lie in alow dimensional subspa
e in Rp. Denote the distan
e between yi and yj in Rp by rij . Noti
e thatthe positioning that satis�es these two 
onditions is not unique. In fa
t, for any positioning thatsatis�es (i) and (ii), rotating the 
oordinate system or shifting the points by a 
ommon ve
tor resultsin a different positioning that also satis�es (i) and (ii). To take 
are of the shifting problem, werequire that the repositioned points are 
entered at 0p, the origin of the 
oordinate system. That is,
ȳ ≡ 1

n

∑N
i=1 yi = 0p. As will be seen later, we shall take 
are of the rotation problem by formulating4



the problem in terms of the reprodu
ing kernel matrix generated by the repositioned points, insteadof the repositioned points themselves. The reprodu
ing kernel matrix K is the N by N matrix withthe element K(i, j) = (yi, yj), where (·, ·) is the Eu
lidean inner produ
t inRp. Noti
e this matrixis invariant under rotation of the points yi.Condition (i) requires that
r2
ij ≈ dij , ∀(i, j) ∈ Ω. (3)Now noti
e that among all possible positioning that satis�es 
ondition (i), the positioning thatmeets 
ondition (ii) is one in whi
h the distan
e between pairs of the repositioned points in Rpare maximized. This is most easily seen in the broken sti
k example 
oming up later, but it is alsoeasy to see in general. Therefore we try to maximize ∑N

i=1

∑N
j=1 r2

ij subje
t to (3). To balan
ethe �delity to lo
al distan
es and the maximization of distan
e between all pairs, we use a penaltyapproa
h and try to minimize:
∑

(i,j)∈Ω

(dij − r2
ij)

2 − λ
N

∑

i=1

N
∑

j=1

r2
ij , (4)

where λ > 0 is a tuning parameter. Alternatively, we 
an try to minimize
∑

(i,j)∈Ω

|dij − r2
ij | − λ

N
∑

i=1

N
∑

j=1

r2
ij , (5)

Adopting the matrix inner produ
t de�nition de�ned in Se
tion (2.1)
N

∑

i=1

N
∑

j=1

r2
ij =

N
∑

i=1

N
∑

j=1

K(i, i) + K(j, j) − 2K(i, j)

= 2NI · K − 2
n

∑

i=1

n
∑

j=1

K(i, j)

= 2NI · K − 2E · K = 2(NI − E) · K,where I is theN -dimensional identity matrix andE is the N byN matrix with all elements being 1.Plugging r2
ij = K(i, i) + K(j, j) − 2K(i, j) into (4) or (5), the problem be
omes: �nd K positivesemide�nite to minimize

∑

(i,j)∈Ω

(dij − K(i, i) − K(j, j) + 2K(i, j))2 − 2λ(NI − E) · K, (6)
or

∑

(i,j)∈Ω

|dij − K(i, i) − K(j, j) + 2K(i, j)| − 2λ(NI − E) · K. (7)
We 
an also add weights wij into the �rst summation. There is an additional 
onstraint neededto guarantee that the points are 
entered at 0p. It is easy to show that if K is positive semide�nite,then ȳ = 0p is equivalent to Ke = 0p, where e is the p by one ve
tor whose elements are all ones,and this 
onstraint 
an be added to the above optimization problems. This 
onstrained minimizationproblem 
an be re
ast as a 
onvex 
one programming problem and there are ef�
ient algorithms5



developed in the 
onvex optimization 
ommunity for solving this type of problems. Noti
e thatunder the Ke = 0p 
onstraint the obje
tive fun
tion 
an be further simpli�ed a little sin
e if K ispositive semide�nite, then Ke = 0p is equivalent to E ·K = 0. On
e the matrix K is obtained, thedimension of the subspa
e of the repositioned points is p = rank(K). Alternatively, the 
onstraint
Ke = 0p may be omitted and K 
entered later. This will be dis
ussed further below. We 
an usethe spe
tral de
omposition, i.e., K = Γ′DΓ where Γ is p by N 
onsisting of p rows of eigenve
torsof K, and D is the p by p diagonal matrix of non-zero eigenvalues {λν}, to get the prin
ipal
oordinates Y = D1/2Γ with 
olumns of Y to be yi's.One thing that we need to be 
areful about is that the neighbor set Ω should not be too small.Otherwise the obje
tive fun
tion may diverge to −∞. The ne
essary and suf�
ient 
ondition toavoid this situation is that the edges in Ω 
onstru
t a 
onne
ted graph for all data points.Now, it is easy to see that (7) differs from the formulation (2) only in the 
hoi
e of kernelregularization fun
tion J(K). In (7), J(K) = trace(K) = I · K, while in (2) J(K) = −2(NI −
E) · K. It is worth pointing out that they are both linear thus 
onvex in K.2.3 General Convex Cone ProblemProblems (6) and (7) 
an all be solved globally (sin
e they are 
onvex in K) and ef�
iently usingmodern 
onvex 
one programming te
hniques. We des
ribe here the general 
onvex 
one program-ming problem. This problem, whi
h is 
entral to modern optimization resear
h, involves someunknowns that are ve
tors in Eu
lidean spa
e and others that are symmetri
 matri
es. These un-knowns are required to satisfy 
ertain equality 
onstraints and are also required to belong to 
onesof a 
ertain type. The 
ones have the 
ommon feature that they all admit a self-
on
ordant barrierfun
tion, whi
h allows them to be solved by interior-point methods that are ef�
ient in both theoryand pra
ti
e [10℄.To des
ribe the 
one programming problem, we de�ne some notation. Let Rp be Eu
lidean
p-spa
e, and let Pp be the nonnegative orthant in Rp, that is, the set of ve
tors in Rp whose 
om-ponents are all nonnegative. We let Qq be the se
ond-order 
one of dimension q, whi
h is the set ofve
tors x =

(

x(1), . . . , x(q)
)

∈ Rq that satisfy the 
ondition x(1) ≥ [
∑q

i=2 x(i)2]1/2. We de�ne
Ss to be the 
one of symmetri
 positive semide�nite s× s matri
es of real numbers. Inner produ
tsbetween two ve
tors are de�ned in the usual way and we use the dot notation for 
onsisten
y withthe matrix inner produ
t notation.The general 
onvex 
one problem is then:

min
Xj ,xi,z

ns
∑

j=1

Cj · Xj +

nq
∑

i=1

ci · xi + g · z (8)
s.t. ns

∑

j=1

Arj · Xj +

nq
∑

i=1

ari · xi + gr · z = br, ∀r

Xj ∈ Ssj
∀j ; xi ∈ Qqi

∀i; z ∈ Pp.Here, Cj , Arj are real symmetri
 matri
es (not ne
essarily positive semide�nite) of dimension sj ,
ci, ari ∈ Rqi , g, gr ∈ Rp, br ∈ R1.The solution of a general 
onvex 
one problem 
an be obtained numeri
ally using publi
lyavailable software su
h as SDPT3 [11℄ and DSDP5 [12℄.6



2.4 Regularized Kernel Embedding Formulation for l1 LossTo 
onvert the problem of equation (7) into a 
onvex 
one programming problem, without loss ofgenerality, we letΩ 
ontainm distin
t (i, j) pairs, whi
h we index with r = 1, 2, . . . , m. LetN×Nmatri
es I and E be de�ned as before. De�ne em,r to be ve
tor of length 2m 
onsisting of all zerosex
ept for the rth element being 1 and (m + r)th element being −1. If we denote the rth elementof Ω as (

i(r), j(r)
), and with some abuse of the notation let i = i(r), j = j(r) and w ∈ P2m with

w(r) = w(r + m) = wi(r),j(r), r = 1, . . . , m, we 
an formulate the problem of equation (2) asfollows:
minK�0,u≥0 w · u − 2λ(NI − E) · K (9)s.t.dij − Bij · K + em,r · u = 0, ∀r,

K ∈ SN , u ∈ P2m.The solution to (9) might not be 
entered. To obtain sensible prin
ipal 
oordinates of the 
or-responding 
on�guration using the spe
tral de
omposition, we 
an 
enter the solution kernel fol-lowing a simple pro
edure. De�ne a to be the 
olumn with ith entry the average of the ith 
olumnof K, c to be the s
alar as the mean of all elements in K and e to be ve
tor of suitable dimension
onsisting of all 1's. A kernel K 
an be 
entered simply by: Kcentered = K −aeT − eaT + cE. Analternative way to handle this 
entering step, as dis
ussed before, is to dire
tly impose the 
entering
ondition E · K = 0, whi
h is a
tually a linear 
onstraint and 
an be dire
tly in
orporated into the
onvex 
one formulation (9). Then, we 
an also simplify the kernel regularization fun
tion from
−2(NI − E) · K to a redu
ed form −2(NI) · K. However in our experiment with the exampleshere, the optimization problem without the E · K = 0 
onstraint 
onverges faster.The Regularized Kernel Embedding formulation with square loss 
an also be easily obtainedafter simple modi�
ation of the square formulation in the appendix of [9℄.2.5 `Newbie' FormulationA very useful `newbie' algorithm was developed in [9℄ to �nd the 
oordinates for new data points(newbies) within the previously 
onstru
ted 
on�guration. The 
orresponding newbie problem isessentially the minimization of the sum of losses involving the newbie only. We adopt the sameidea here for the manifold-unfolding problem ex
ept we restri
t the summation even further to areasonable neighborhood of the newbie. The neighborhood 
onstru
tion problem will be dis
ussedin general in the following se
tion. However the algorithm remains the same.2.6 Choosing NeighborsChoosing neighbors for ea
h sampled data point is a very important/tri
ky step for almost all meth-ods in
luding ours that are in the spirit of `thinking globally while �tting lo
ally'. However, it isnot dis
ussed in detail in previous papers. A simple way, whi
h is adopted by most algorithms, isto 
hoose k nearest neighbors for all data points. Then the neighbor-
hoosing problem degeneratesinto a neighborhood-size-
hoosing problem. In exploratory studies, where the truth is not known,the only thing one 
an do might be to start from a `suitable' neighborhood size based some priorknowledge or intuition, and then vary the size to see how the results 
hange. As we dis
ussed previ-ously, the neighborhood size has to be big enough so that the neighbor edges and all points 
onsist
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of a 
onne
ted graph. On the other hand, if the neighborhood size is too big, we are respe
tingmore than just the lo
al stru
ture, and also, the 
omputation 
ost usually goes up qui
kly. A good
hoi
e of k and the sensitivity of the results to k depend on the density and distribution of the sam-pled points on the manifold. In previous papers, with dense enough samples for the examples, theauthors simply 
hoose moderate neighborhood sizes. In this paper, we also adopt this approa
h inthe simulated examples.Nonetheless, in some 
ases, �xing a neighborhood-size might not be a good approa
h to setupa 
onne
ted graph espe
ially when the sampling is very uneven a
ross the underlying manifold orthe manifold has very different 
urvature from pla
e to pla
e. For the formulation proposed in thiswork, we have another, possibly more stable way to ta
kle this issue. We 
an impose a 
ompa
tlysupported kernel around ea
h data point to generate weights for all other points. Only those pointswho get non-zero weights be
ome 
andidates to be neighbors for a parti
ular data point, and theirweights will be used to multiply the 
orresponding loss terms in (6) and (7). A threshold number
an also to set so that every point only keeps no more than that number of 
losest neighbors from all
andidates. A suitable bandwidth of the kernel 
an be sele
ted based on the average 
losest-neighbordistan
e. The intuition of this approa
h is to give higher 
on�den
e to the distan
es between 
loserneighbors.2.7 Parameter λThe tuning parameter λ 
ontrols a balan
e between the twin goals we want to a
hieve � as λ in-
reases, the average squared distan
e between points far apart is allowed to in
rease, thus enhan
-ing ��attening�, while as λ de
reases, the solution is driven towards more 
losely respe
ting theobserved lo
al stru
ture.For an exploratory study, where the truth is not known, a sequen
e of λs within an appropriaterange (usually in log s
ale) will give different results. Then prior knowledge may help to 
hoose agood λ. For example, if it is known that there is not mu
h noise within the data and a low dimen-sional embedding is preferred, one 
an gradually in
rease λ to get rid of insigni�
ant dimensionsuntil the sum of the losses ex
eed some limit.However, if this manifold-learning task is just a part of bigger problem, e.g., 
lustering or 
las-si�
ation, where we know the truth for training data, it will be natural to tune λ simultaneously withother possible tuning parameters, using standard tuning te
hniques like 
ross validation.
3 Unfolding Simulated Examples3.1 Pro
rustes MeasuresFor the simulated data, the truth is known. A reasonable measure of the distan
e/similarity betweentwo kernel matri
es is needed to 
hara
terize the goodness of �t for different estimates. In somerelated literature, it is 
alled Pro
rustes measure.A suitable measure proposed in [13℄ is based on the the positional differen
es after mat
hingtwo gram matrix under translation, rotation and re�e
tion. Suppose A and B are two 
entered grammatri
es, then the measure is 
al
ulated as follows:

G(A, B) = trace(A) + trace(B) − 2trace(A1/2BA1/2)1/2. (10)
8



The normalized version of this measure is simply:
γp(A, B) = G(A, B)/(trace(A)trace(B))1/2. (11)Alternatively, if we 
are only about the pairwise distan
e information, we 
an introdu
e anothermeasure (as de�ned in [9℄):

γd(A, B) =
∑

i<j

|d̂ijA − d̂ijB|/
∑

i<j

1

2
(d̂ijA + d̂ijB), (12)

where d̂ijA and d̂ijB are pairwise distan
e between obje
t i and j, indu
ed by A and B respe
tively.3.2 Unfolding the Swiss Roll with a Window Pun
hed OutThe �rst simulated example is a Swiss roll manifold with a re
tangular window pun
hed out 
loseto the 
enter. This example was used in Donoho and Grimes (2003) to show how a non-
onvexfeature (the pun
hed-out window) 
an 
ause some previous methods like ISOMAP [1℄ and LLE [2℄to fail.The following results are obtained on a random sample of 770 points, ea
h point with 6 neigh-bors. There is no noise in this example. Figure 1 gives the s
atter plot of original data points sampledon the manifold (ex
ept within the pun
hed-out window). Figure 2 is the true parameterization, andits �rolled-up� version gives Figure 1. Figure 3 is the solution to our formulation with (9), with thetuning parameter λ = 7e − 7. In Figure 4, the eigensequen
e of the 
orresponding solution kernelis plotted in des
ending order on a log s
ale. We 
an 
learly see the fa
t that the �rst two eigen-values stand out signi�
antly in magnitude 
ompared with the rest of the eigenvalues, indi
ating a2D embedding. (The last eigenvalue in Figure 4 is the 
omputer version of the zero eigenvalue thatgoes with the 
onstant fun
tion.) The prin
ipal 
oordinates in Figure 3 are 
onstru
ted using thesetwo signi�
ant eigenvalues and 
orresponding eigenve
tors.3.3 Unfolding the Noisy Wis
onsin RollThis example is spe
ially designed to show the robustness of our method, espe
ially 
ompared withthe method proposed re
ently in [5℄, whi
h has a basi
 idea very similar to ours. We 
onsidertwo types of noise, whi
h are imposed on the pairwise distan
es between neighbors after the allneighbors are sele
ted. In this example, the data points are sampled on a `Wis
onsin roll', whi
h isa Swiss roll ex
ept there is a window in the shape of letter `W' pun
hed out (thus no points 
an besampled with in it) whi
h 
an be seen 
learly if the roll is �atten out.To impose the �rst type of noise, twenty per
ent of the sele
ted pairwise distan
es are multipliedby a uniform random number over the interval from 0.85 to 1.15. The se
ond type of noise isintrodu
ed to all 
hosen dijs (between 
hosen neighbors) by binning them into 15 equal sized binsover the interval from the minimum to the maximum among these dijs. The value of ea
h dij isthen repla
ed by the 
enter of the bin that it belongs to. It is an analog of the s
enario where onlyranks are provided as the distan
e/dissimilarity measure.A random sample of 861 points was used for this example with the neighborhood size set to be
k = 6. In both noisy situations, our method su

essfully (with λ in a proper range) 
onverges to aglobal optimum with only two signi�
ant dimensions. See eigensequen
e plots Figure 7 and Figure

9
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Figure 1: Swiss Roll: S
atter plot of original data points.
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Figure 2: Swiss Roll: True parameterization. Rolled up version gives Figure 1.
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Figure 3: Swiss Roll Unrolled: Regularized Kernel Embedding using (9), λ = 7e − 7, �rst twoprin
ipal 
oordinates.
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Figure 4: Swiss Roll: Eigensequen
e of the solution kernel, λ = 7e − 7. Note log s
ale.
11



9. The Pro
rustes measure shows our solution is very 
lose to the truth (See Table 1), although there
overed embeddings shown in Figure 6 and Figure 8 are distorted a little bit from the truth (seeFigure 5) due to the imposed noise.Table 1: Pro
rustes Measure between Result and Truth1st type of noise 
ase 2st type of noise 
ase
γp 0.0055 0.0030
γd 0.0154 0.0112
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Figure 5: Wis
onsin Roll: True parameterization. Observations 
ome from rolled up version afteradding noise.On the 
ontrary, the algorithm in [5℄ fails to 
onverge be
ause it tries to solve an infeasibleprimal problem for whi
h the dual is unbounded. For the solvers we used, DSDP5 reported � DSDP:Dual Unbounded, Primal Infeasible� and SDPT3 reported �Stop: primal problem is suspe
ted ofbeing infeasible�. These results are expe
ted, be
ause when a 
ertain level of noise is dire
tlyimposed on the distan
e information, it is very likely that no Eu
lidean metri
 
an �t the noisydistan
e data (for instan
e if the triangle inequality is violated somewhere). Then problem set-up in[5℄ is infeasible in the sense that no solution 
an satisfy all the 
onstraints simultaneously.3.4 Unfolding a Broken Sti
kIn this se
tion we des
ribe a toy example for the purpose of highlighting the differen
e between ourmethod and the method proposed in [5℄. The primary differen
e between the two methods is that
12
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Figure 6: Wis
onsin Roll with �rst type of noise, unrolled. Regularized Kernel Embedding using(9), λ = 0.002, �rst two prin
ipal 
oordinates.
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Figure 7: Wis
onsin Roll: Eigensequen
e of the solution kernel, �rst type of noise, λ = 0.002.
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Figure 8: Wis
onsin Roll with se
ond type of noise, unrolled. Regularized Kernel Embedding using(9), λ = 0.0025, �rst two prin
ipal 
oordinates.
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Figure 9: Wis
onsin Roll: Eigensequen
e of the solution kernel, se
ond type of noise, λ = 0.0025.
14



for the method in [5℄ lo
al distan
es are enfor
ed rigidly while here we relax that requirement. Wewant to show that this relaxation 
an be very important for manifold-unfolding problems even in the
ases without noise.The data points are randomly sampled on two bran
hes of a `broken sti
k' (see Figure 10). Onebran
h is from the origin to the point (1, 1) and the other is from (1, 1) to (2, 0). We for
e thesample to in
lude the point (1, 1).The manifold unfolding goal here is to �atten out the sti
k. If any of the pairs for whi
h distan
eis sele
ted to �t, has one member from the left bran
h and the other member from the right bran
h(for example, see the bla
k line in Figure 10), then the method in [5℄ will not be able to �atten thesti
k. For our method, a small λ will not �atten the sti
k either, but a suf�
iently large λ will. Theresult from employing the method in [5℄ with k = 5 is almost visually indistinguishable from theplot in Fig 10. With k = 5 and λ too small (λ = 1e − 5) , our method also fails to �atten thesti
k but re
overs the original broken sti
k. Two outstanding eigenvalues are obtained as 
an beseen in the upper left 
orner of Figure 11. However, with λ suf�
iently large (λ = 0.3) we seeonly one outstanding eigenvalue, and so we obtain the one dimensional �attened sti
k on the lowerright 
orner of Figure 11. As expe
ted, within our regularized kernel embedding framework, thesmoothness/dimensionality is 
ontrolled by the smoothing/tuning parameter λ.
4 Dis
ussion and Future WorkIn this paper, we developed a robust manifold learning method as a variation of the RKE frameworkproposed in [9℄. It is worth mentioning that, if we 
hoose to impose the 
entering 
onstraintE ·K =
0 (although we 
an do without this) in problems (6) and (7), the kernel regularization fun
tionfor manifold unfolding be
omes J(K) = −2(NI − E) · K = −2NI · K = −2N tra
e(K).Interestingly, in [9℄, the kernel regularization fun
tion we use to promote dimension redu
tion istra
e instead of the negative tra
e (with a 
onstant multiplier) here. So, different signs in front oftra
e a
tually both promote dimension redu
tion but in different s
enarios.More interesting problems 
ome up when there are multiple sour
e of information that arebelieved to share the same underlying low-dimensional stru
ture. Our method 
an be naturallyextended to that 
ase. Also, it is often unrealisti
 to assume the given distan
e information isa
tually Eu
lidean. Then, a non-metri
 variation of our method, i.e., only rank information amongall distan
es will be used, 
an be very useful. Last but not the least, we will explore the weightings
heme as we dis
ussed in se
tion (2.6) to sele
t neighbors in order to a
hieve higher stability androbustness.
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Figure 11: Broken Sti
k: Effe
t of λ on the Regularized Kernel Embedding using (9). Small λ doesnot �atten the sti
k, but a larger λ does.
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