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This thesis is devoted to the study of graphs with binary nodes and when

there are covariate effects on both the nodes, edges and cliques level. The models

proposed deal with data with multiple 0-1 coded outcomes and there are known

predictor variables having profound influence not only on the nodes, but also on

the edges and cliques.

Firstly, in Chapter 1 we consider the multivariate Bernoulli distribution as a

model to estimate the structure of the binary graphs. This distribution is discussed

in the framework of the exponential family, and its statistical properties regard-

ing independence of the nodes are demonstrated. Importantly the multivariate

Bernoulli logistic model is developed under generalized linear model theory by

utilizing the canonical link function in order to include covariate information on

the nodes, edges and cliques. Furthermore, the model is extended to the frame-

work of smoothing spline ANOVA to enable estimation of non-linear effects of the

predictor variables on the graph.

What’s more, the multivariate Bernoulli LASSO model is discussed in Chapter 2

to incorporate the variable selection techniques in the inference of graph structure.

The accelerated block coordinate relaxation optimization approach is applied

to the problem with the ability to handle very large scale real-world data. The

tuning of the smoothing parameters in the model is studied and various different

vii



viii

approaches are compared. Both numerical and real-world examples are examined

to demonstrate the power and efficiency of the model and the algorithm.

Further, the multivariate Bernoulli logistic model is extended to the paradigm

of mixed-effects model in Chapter 3. The model is more flexible to handle more

complex variance-covariance structure. However, as the likelihood function in-

volves non-analytical integral, the Laplacian approximation approach is applied.

The model is implemented to analyze real-world problem.

Finally, Chapter 4 introduces two R packages MVB and oem. MVB is designed for

the various multivariate Bernoulli models introduced in this thesis and all the

numerical examples are implemented in this package. On the other hand, oem

is developed to implement a new algorithm to optimize penalized least squares

problems.

Grace Wahba
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Chapter 1

Multivariate Bernoulli Distribution

and Logistic Models

1.1 Introduction

Undirected graphical models have been proved to be useful in a variety of

applications in statistical machine learning. Statisticians and computer scientists

devoted resources to studies in graphs with nodes representing both continuous

and discrete variables. Such models consider a graph G = (V, E), whose nodes set

V represents K random variables Y1, Y2, . . . , YK connected or disconnected defined

by the undirected edges set E. This formulation allows pairwise relationships

among the nodes to be described in terms of edges, which in statistics are defined

as correlations. The graph structure can thus be determined under the indepen-

dence assumptions on the random variables. Specifically, variables Yi and Yj are

conditionally independent given all other variables if the associated nodes are not
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linked by an edge. Two important types of graphical models are the Gaussian

model, where the K variables are assumed to follow a joint multivariate Gaussian

distribution, and the discrete Markovian model, which captures the relationships

between categorical variables.

However, the assumption that only the pairwise correlations among the vari-

ables are considered may not be sufficient. When the joint distribution of the nodes

is multivariate Gaussian, the graph structure can be directly inferred from the

inverse of the covariance matrix of the random variables and in recent years, a large

body of literature has emerged in this area for high dimensional data. Researchers

mainly focus on different sparse structure of the graphs or, in other words, the

covariance matrix for high-dimensional observations. For example, Meinshausen

and Buhlmann (2006) proposes a consistent approach based on LASSO from Tib-

shirani (1996) to model the sparsity of the graph. Due to the fact that the Gaussian

distribution can be uniquely determined by the means and covariance matrix, it is

valid to consider only the pairwise correlations, but this may not be true for some

other distributions. The multivariate Bernoulli distribution discussed in Whittaker

(1990), which will be studied in Section 1.3, has a probability density function

involving terms representing third and higher order moments of the random vari-

ables, which are also referred to as clique effects. To alleviate the complexity of

the graph, the so-called Ising model borrowed from physics gained popularity in

the machine learning literature. Wainwright and Jordan (2008) introduces several

important discrete graphical models including the Ising model and Banerjee et al.

(2008) discusses a framework to infer sparse graph structure with both Gaussian

and binary variables. In this chapter, higher than second order interactions among
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a group of binary random variables are studied in detail.

What’s more, in some real applications, people are not only interested in the

graph structure but also want to include predictor variables that potentially have

influence on the nodes in the graph. Gao et al. (2001) considers a multivariate

Bernoulli model which uses a smoothing spline ANOVA model to replace the linear

predictor (McCullagh and Nelder (1989)) for main effects on the nodes, but set

the second and higher order interactions between the nodes as constants. Higher

order outcomes with hierarchical structure assumptions on the graph involving

predictor variables are studied in Ding et al. (2011).

This chapter aims at building a unified framework of a generalized linear

model for the multivariate Bernoulli distribution which includes both higher

order interactions among the nodes and covariate information. The remainder is

organized as follows. Section 1.2 starts from the simplest multivariate Bernoulli

distribution, the so-called bivariate Bernoulli distribution, where there are only

two nodes in the graph. The mathematical formulation and statistical properties

of the multivariate Bernoulli distribution are addressed in Section 1.3. Section

1.4 serves to get a better understanding of the differences and similarities of the

multivariate Bernoulli distribution with the Ising and the multivariate Gaussian

models. Section 1.5 extends the model to include covariate information on the

nodes, edges and cliques, and discusses parameter estimation, optimization and

associated problems in the resulting multivariate Bernoulli logistic model.
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1.2 Bivariate Bernoulli Distribution

To start from the simplest case, we extend the widely used univariate Bernoulli

distribution to two dimensions in this section and the more complicated multi-

variate Bernoulli distribution is explored in Section 1.3. The Bernoulli random

variable Y , is one with binary outcomes chosen from {0, 1} and its probability

density function is

fY (y) = py(1 − p)1−y.

Next, consider the bivariate Bernoulli random vector (Y1, Y2), which takes

values from (0, 0), (0, 1), (1, 0) and (1, 1) in the Cartesian product space {0, 1}2 =

{0, 1} × {0, 1}. Denote pij = P (Y1 = i, Y2 = j), i, j = 0, 1, then its probability

density function can be written as

P (Y = y) = p(y1, y2)

= py1y2
11 py1(1−y2)

10 p(1−y1)y2
01 p(1−y1)(1−y2)

00 (1.1)

= exp
�

log(p00) + y1 log
�

p10
p00

�

+ y2 log
�

p01
p00

�

+ y1y2 log
�

p11p00
p10p01

��

,

where the side condition p00 + p10 + p01 + p11 = 1 holds to ensure it is a valid

probability density function.

To simplify the notation, define the natural parameters f ’s from general param-
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eters as follows:

f 1 = log
�

p10
p00

�

, (1.2)

f 2 = log
�

p01
p00

�

, (1.3)

f 12 = log
�

p11p00
p10p01

�

, (1.4)

and it is not hard to verify the inverse of the above formula

p00 = 1
1 + exp(f 1) + exp(f 2) + exp(f 1 + f 2 + f 12) , (1.5)

p10 = exp(f 1)
1 + exp(f 1) + exp(f 2) + exp(f 1 + f 2 + f 12) , (1.6)

p01 = exp(f 2)
1 + exp(f 1) + exp(f 2) + exp(f 1 + f 2 + f 12) , (1.7)

p11 = exp(f 1 + f 2 + f 12)
1 + exp(f 1) + exp(f 2) + exp(f 1 + f 2 + f 12) . (1.8)

Figure 1.1 illustrates the effects we consider in a bivariate Bernoulli graph. There

are two nodes in the graph each with binary 0-1 code. The main effects f 1 and f 2

come with the nodes and the interaction f 12 represents the inter-connectivity of

the two nodes.

Here the original density function (1.1) can be viewed as a member of the

exponential family, and represented in a log-linear formulation as:

P (Y = y) = exp
�
log(p00) + y1f

1 + y2f
2 + y1y2f

12
�

. (1.9)

Consider the marginal and conditional distribution of Y1 in the random vector
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Figure 1.1: The graph example of the bivariate Bernoulli graph.

(Y1, Y2), we have

Proposition 1.1. The marginal distribution of Y1 in a bivariate Bernoulli vector (Y1, Y2)

following density function (1.1) is univariate Bernoulli with density

P (Y1 = y1) = (p10 + p11)y1(p00 + p01)(1−y1). (1.10)

What’s more, the conditional distribution of Y1 given Y2 is also univariate Bernoulli with

density

P (Y1 = y1|Y2 = y2) =
�

p(1, y2)
p(1, y2) + p(0, y2)

�y1 �
p(0, y2)

p(1, y2) + p(0, y2)

�1−y1

. (1.11)

The proposition implies that the bivariate Bernoulli distribution is similar to

the bivariate Gaussian distribution, in that both the marginal and conditional dis-

tributions are still Bernoulli distributed. On the other hand, it is also important to
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know under what conditions the two random variables Y1 and Y2 are independent.

Lemma 1.2. The components of the bivariate Bernoulli random vector (Y1, Y2) are inde-

pendent if and only if f 12 in (1.9) and defined in (1.4) is zero.

Lemma 1.2 is a special case for Theorem 1.4 in Section 1.3, and the proof is

attached in Appendix. It is not hard to see from the log-linear formulation (1.9)

that when f 12 = 0, the probability density function of the bivariate Bernoulli is

separable in y1 and y2 so the lemma holds. In addition, a simple calculation of

covariance between Y1 and Y2 gives

cov(Y1, Y2) = E[Y1 − (p11 + p10)][Y2 − (p11 + p01)]

= p11p00 − p01p10, (1.12)

and using (1.4), the disappearance of f 12 indicates that the correlation between

Y1 and Y2 is null. When dealing with the multivariate Gaussian distribution, the

uncorrelated random variables are independent as well and Section 1.3 below

shows uncorrelatedness and independence is also equivalent for the multivariate

Bernoulli distribution.

The importance of Lemma 1.2 was explored in Whittaker (1990) where it was

referred to as proposition 2.4.1. The importance of f 12 (denoted as u-terms) is

discussed and called cross-product ratio between Y1 and Y2. The same quantity is

actually log odds described for the univariate case in McCullagh and Nelder (1989)

and for the multivariate case in Ma (2010).
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1.3 Formulation and Statistical Properties

Probability Density Function

As discussed in Section 1.2, the two dimensional Bernoulli distribution pos-

sesses good properties analogous to the Gaussian distribution. This section is to

extend it to high dimensions and construct the so-called multivariate Bernoulli

distribution.

Let Y = (Y1, Y2, . . . , YK) be a K-dimensional random vector of possibly corre-

lated Bernoulli random variables (binary outcomes) and let y = (y1, . . . , yK) be

a realization of Y . The most general form p(y1, . . . , yK) of the joint probability

density is

P (Y1 = y1, Y2 = y2, . . . , YK = yK) = p(y1, y2, . . . , yK)

= p(0, 0, . . . , 0)[
�K

j=1(1−yj)]

p(1, 0, . . . , 0)[y1
�K

j=2(1−yj)]

p(0, 1, . . . , 0)[(1−y1)y2
�K

j=3(1−yj)]

. . . p(1, 1, . . . , 1)[
�K

j=1 yj ],

or in short

p(y) = p
[
�K

j=1(1−yj)]
0,0,...,0 p

[y1
�K

j=2(1−yj)]
1,0,...,0 p

[(1−y1)y2
�K

j=3(1−yj)]
0,1,...,0 . . . p

[
�K

j=1 yj ]
1,1,...,1 . (1.13)
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To simplify the notation, denote the quantity S to be

Sj1j2...jr =
�

1≤s≤r

f js +
�

1≤s<t≤r

f jsjt + · · · + f j1j2...jr , (1.14)

and in the bivariate Bernoulli case S12 = f 1 + f 2 + f 12. To eliminate the product in

the tedious exponent of (1.13), define the interaction function B

Bj1j2...jr(y) = yj1yj2 . . . yjr , (1.15)

so correspondingly in the bivariate Bernoulli distribution for the realization (y1, y2)

of random vector (Y1, Y2), the interaction function of order 2 is B12(y) = y1y2.

This is the only order two interaction for the bivariate case. In general, there are
�

K

2

�
= K(K−1)

2 different second interactions among the binary components of the

multivariate Bernoulli random vector of length K.

The log-linear formulation of the multivariate Bernoulli distribution induced

from (1.13) is

l(y, f) = − log[p(y)]

= −




K�

r=1




�

1≤j1<j2<...<jr≤K

f j1j2...jrBj1j2...jr(y)


 − b(f)


 , (1.16)

where f = (f 1, f2, . . . , f 12...K)T is the vector of the natural parameters for the

multivariate Bernoulli distribution, and the normalizing factor b(f), or sometimes

referred to as partition function in Computer Sciences literature, is defined as

b(f) = log
K�

r=1



1 +



�

1≤j1<j2<...<jr≤K

exp[Sj1j2...jr ]






 . (1.17)



10

As a member of the exponential distribution family, the multivariate Bernoulli

distribution has the fundamental ‘link’ between the natural and general parameters.

Lemma 1.3. (Parameters Transformation) For the multivariate Bernoulli model, the general

parameters and natural parameters have the following relationship.

exp(f j1j2...jr) =

�
p(even # zeros among j1, j2 . . . , jr components and other components are all zero)

�
p(odd # zeros among j1, j2 . . . , jr components and other components are all zero) ,

where # refers to the number of zeros among the superscript yj1 . . . yjr of f . In addition,

exp(Sj1j2...jr) = p(j1, j2 . . . , jr positions are one, others are zero)
p(0, 0, . . . , 0) (1.18)

and conversely the general parameters can be represented by the natural parameters

p(j1, j2 . . . , jr positions are one, others are zero) = exp(Sj1j2...jr)
exp (b(f)) (1.19)

Based on the log-linear formulation (1.16) and the fact that the multivariate

Bernoulli distribution is a member of the exponential family, the interactions

functions Bj1j2...jr(y) for all combinations j1j2 . . . jr define the sufficient statistics.

In addition, the log-partition function b(f) as in (1.17) is useful to determine the

expectation and variance of the sufficient statistics to be addressed in later sections.

Figure 1.2 displays a graph with three binary nodes. There are three main

effects f 1, f 2 and f 3 born with the nodes and the second order interactions f 12,
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Figure 1.2: The graph example of the trivariate Bernoulli distribution.

f 13 and f 23 representing the connectivity of the nodes. Modern graph theory are

particularly interested in these interactions such as Ising model (Ising, 1925) to be

compared in the later sections. Moreover, the third order interaction f 123 as the

rectangle in Figure 1.2 studying the effect of all three nodes is also of interest in

this thesis. When there are more nodes in the graph, higher order interactions can

come into play in model (1.16).
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Independence, Marginal and Conditional Distributions

One of the most important statistical properties for the multivariate Gaussian

distribution is the equivalence of independence and uncorrelatedness. As a nat-

ural multivariate extension of the univariate Bernoulli distribution, it is of great

interest to explore independence among components of the multivariate Bernoulli

distribution and it is the topic for this section.

The independence of components of a random vector is determined by separa-

bility of coordinates in its probability density function but it is hard to get directly

from (1.13). However, based on the relationship between the natural parameters

and the outcome in the log-linear formulation (1.16), the independence theorem

of the distribution can be derived as follows with proof deferred to Appendix.

Theorem 1.4. (Independence of Bernoulli outcomes) For the multivariate Bernoulli dis-

tribution, the random vector Y = (Y1, . . . , YK) is independent element-wise if and only

if

f j1j2...jr = 0, ∀ 1 ≤ j1 < j2 < . . . < jr ≤ K, r ≥ 2. (1.20)

In addition, the condition in equation (1.20) can be equivalently written as

Sj1j2...jr =
r�

k=1
f jk , ∀ r ≥ 2 (1.21)

The importance of the theorem is to link the independence of components of

a random vector following the multivariate Bernoulli distribution to the natural

parameters. Notice that to ensure all the single random variable to be independent
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of all the others is a strong assertion and in graphical models, researchers are more

interested in the independence of two groups of nodes, so we have the following

theorem

Theorem 1.5. (Independence of Groups) For random vector Y = (Y1, . . . , YK) following

the multivariate Bernoulli distribution, without loss of generality, suppose two blocks

of nodes Y � = (Y1, Y2, . . . , Yr), Y �� = (Yr+1, Yr+2, . . . , Ys) with 1 ≤ r < s ≤ K, and

denote index set τ1 = {1, 2, . . . , r} and τ2 = {r + 1, r + 2, . . . , s}. Then Y � and Y �� are

independent if and only if

f τ = 0, ∀ τ ∩ τ1 �= ∅ and τ ∩ τ2 �= ∅ (1.22)

The proof of Theorem 1.5 is also deferred to Appendix. The theorem delivers

the message that the two groups of binary nodes in a graph are independent if

all the natural parameters f ’s corresponding to the index sets that include indices

from both groups disappear. In other words, the two groups of nodes can be

perfectly separated without any edges or cliques linking them.

Furthermore, analogous to the multivariate Gaussian distribution, researchers

are interested in statistical distributions of marginal and conditional distributions

for the multivariate Bernoulli distribution. Likewise, the multivariate Bernoulli

distribution maintains the good property that both the marginal and conditional

distributions are still multivariate Bernoulli as stated in the following proposition.

Proposition 1.6. The marginal distribution of the random vector (Y1, . . . , YK) which

follows multivariate Bernoulli distribution with density function (1.13) to any order is
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still a multivariate Bernoulli with density

P (Y1 = y1, Y2 = y2, . . . , Yr = yr) =
�

yr+1

. . .
�

yK

p(y1, . . . , yK) (1.23)

for some r < K.

What’s more, the conditional distribution of (Y1, Y2, . . . , Yr) given the rest is also

multivariate Bernoulli with density

P (Y1 = y1 . . . , Yr = yr|Yr+1 = yr+1, . . . , YK = yK) = p(y1, . . . , yK)
p(yr+1, . . . , yK) . (1.24)

Moment Generating Functions

The moment generating function for the multivariate Bernoulli distribution is

useful when dealing with moments and proof of Theorem 1.4.

ψ(µ1, µ2, . . . , µK) = E [exp (µ1Y1 + µ2Y2 + · · · + µKYK)]

= p00...0e
0 + p10...0e

µ1 + · · · + p11...1e
µ1+µ2+···+µK

=
K�

r=1

�

j1≤j2≤...≤jr

exp[Sj1j2...jr ]
exp[b(f)] exp

�
r�

k=1
µjk

�

. (1.25)

Hence, from the formula the moment generating function is solely determined by

the S functions, which are the transformation of the natural parameters f ’s.

Gradient and Hessian

As a member of the exponential family, the gradient and Hessian (Fisher in-

formation) are closely related to the mean and covariance of the random vector
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(Y1, Y2, . . . , YK). Therefore, they are important in statistics but also crucial for model

inference when the proper optimization problem is established. To examine the

formulation of gradient and Hessian for the logarithm probability density function

of the multivariate Bernoulli distribution (1.13), let us define some notations.

Denote T to be the set of all possible superscripts of the f ’s including the null

superscript with f ∅ = 0, so it has 2K elements. In other words, T is the power set

of indices {1, 2, . . . , K}. Let | · | be the cardinality of a set then |T | = 2K . We can

define the relation subset ⊂ for τ1, τ2 ∈ T as follows.

Definition 1.7. For any two superscripts τ1 = {j1, j2, . . . , jr} such that τ1 ∈ T and

τ2 = {k1, k2, . . . , ks} with τ2 ∈ T and r ≤ s, we say that τ1 ⊆ τ2 if for any j ∈ τ1, there

is a k ∈ τ2 such that j = k.

Based on the definition, the S’s in (1.14) can be reformulated as

Sτ =
�

τ0⊆τ

f τ0 , (1.26)

specifically, S∅ = 0. Consider the gradient of the log-linear form (1.16) with respect

to the f ’s, for any τ ∈ T ,

∂l(y, f)
∂f τ

= −Bτ (y) + ∂b(f)
∂f τ

= −Bτ (y) +
�

τ0⊇τ exp[Sτ0 ]
b(f) . (1.27)

The derivation of the first partial derivative of b in equation (1.17) with respect
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to f τ in (1.27) is

∂b(f)
∂f τ

= 1
exp[b(f)] ·

∂ exp[b(f)]
∂f τ

= 1
exp[b(f)] ·

∂
�

τ0∈T exp[Sτ0 ]
∂f τ

=
�

τ0⊇τ exp[Sτ0 ]
exp[b(f)] (1.28)

= E[Bτ (Y )],

and the result can also be derived from the moment generating function (1.25) by

taking derivatives with respect to the µ’s.

A simple example of (1.27) in the bivariate Bernoulli distribution (1.9) is

∂l(y, f)
∂f 1 = −y1 + exp(f 1) + exp(S12)

b(f) ,

Further, the general formula for the second order derivative of (1.16) with

respect to any two natural parameters f τ1 and f τ2 is

∂2l(y, f)
∂f τ1∂f τ2

= ∂2b(f)
∂f τ1∂f τ2

= ∂

∂f τ1

��
τ0⊇τ2 exp[Sτ0 ]
exp[b(f)]

�

=
�

τ0⊇τ1, τ0⊇τ2 exp[Sτ0 ] exp[b(f)] −
�

τ0⊇τ1 exp[Sτ0 ] �
τ0⊇τ2 exp[Sτ0 ]

exp[2b(f)]
= cov (Bτ1(Y ), Bτ2(Y )) . (1.29)
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In the bivariate Bernoulli distribution,

∂2l(y, f)
∂f 1∂f 2 = exp[S12] exp[b(f)] − (exp[f 1] + exp[S12])(exp[f 2] + exp[S12])

exp[2b(f)]

1.4 The Ising and the Multivariate Gaussian Models

As mentioned in Section 1.1, the Ising and the multivariate Gaussian distribu-

tions are two main tools to study undirected graphical models, and this section is

to compare the multivariate Bernoulli model introduced in Section 1.3 with these

two popular models.

The Ising Model

The Ising model, which originated from Ising (1925), becomes popular when

the graph structure is of interest with nodes taking binary values. The log-linear

density of the random vector (Y1, . . . , YK) is

log[f(Y1, . . . , YK)] =
K�

j=1
θj,jYj +

�

1≤j<j�≤K

θj,j�YjYj� − log[Z(Θ)], (1.30)

where Θ = (θj,j�)K×K is a symmetric matrix specifying the network structure, but it

is not necessarily positive semi-definite. The log-partition function Z(Θ) is defined

as

Z(Θ) =
�

Yj∈{0,1},1≤j≤K

exp



K�

j=1
θj,jYj +

�

1≤j<j�≤K

θj,j�YjYj�



 , (1.31)
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and notice that it is not related to Yj due to the summation over all possible values

of Yj for j = 1, 2, . . . , K.

It is not hard to see that the multivariate Bernoulli is an extension of the Ising

model, which assumes all Sτ = 0 for any τ such that |τ | > 2 and θj,j� = Sjj� . In other

words, in the Ising model, only pairwise interactions are considered. Ravikumar

et al. (2010) pointed out that higher order interactions, which are referred to

as clique effects in this chapter, can be converted to pairwise ones through the

introduction of additional variables and thus retain the Markovian structure of

the network defined in Wainwright and Jordan (2008).

The Multivariate Gaussian Model

When continuous nodes are considered in a graphical model, the multivari-

ate Gaussian distribution is important since, similar to the Ising model, it only

considers interactions up to order two. The log-linear formulation is

log[f(Y1, . . . , YK)] =
�

−
1
2(Y − µ)T Σ(Y − µ)

�
− log[Z(Σ)], (1.32)

where Z(Σ) is the normalizing factor which only depends on the covariance matrix

Σ of the nodes in the graph.

Comparison of Different Graphical Models

The multivariate Bernoulli (1.16), Ising (1.30) and the multivariate Gaussian

(1.32) are three different kinds of graphical models and they share many similarities

1. All of them are members of the exponential family.
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2. Uncorrelatedness and independence are equivalent.

3. Conditional and marginal distributions maintain the same structure.

However, some differences do exist. the multivariate Bernoulli and the Ising

models both serve as tools to model graph with binary nodes, and are certainly

different from the multivariate Gaussian model which formulates continuous

variables. In addition, the multivariate Bernoulli specifies clique effects among

nodes whereas the Ising model simplifies to deal with only pairwise interactions

and the multivariate Gaussian distribution essentially is uniquely determined

by its mean and covariance structure, which is also based on first and second

order moments. Table 1.1 illustrates the number of parameters needed to uniquely

determine the distribution for these models as the number of nodes K in the graph

increases.

Graph dimension multivariate Bernoulli Ising multivariate Gaussian
1 1 1 2
2 3 3 5
3 7 6 9

· · · · · · · · · · · ·

K 2K − 1 K(K+1)
2 K + K(K+1)

2

Table 1.1: The number of parameters in the multivariate Bernoulli, the Ising and
the multivariate Gaussian models.
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1.5 Multivariate Bernoulli Logistic Models

Generalized Linear Model

As discussed in Section 1.3, the multivariate Bernoulli distribution is a member

of the exponential family and as a result, the generalized linear model theory in

McCullagh and Nelder (1989) applies. The natural parameters (f ’s) in Lemma 1.3

can be formulated as a linear predictor in McCullagh and Nelder (1989) such that

for any τ ∈ T with T being the power set of {1, 2, . . . , K}

f τ (x) = cτ

0 + cτ

1x1 + · · · + cτ

p
xp, (1.33)

where the vector cτ = (cτ

0, . . . , cτ

p
) for τ ∈ T is the coefficient vector to be estimated

and x = (x1, x2, . . . , xp) is the observed covariate. Here p is the number of variables

and there are 2K − 1 coefficient vectors to be estimated so in total (p + 1) × (2K − 1)

unknown parameters including the constants. (1.33) is built on the canonical link

where natural parameters are directly modeled as linear predictors, but other links

are possible and valid as well.

When there are n samples observed from a real data set with outcomes denoted

as y(i) = (y1(i), . . . , yK(i)) and predictor variables x(i) = (x1(i), . . . , xp(i)), the neg-

ative log likelihood for the generalized linear model of the multivariate Bernoulli

distribution is

l(y, f(x)) =
n�

i=1

�

−
�

τ∈T
f τ (x(i))Bτ (y(i)) + b(f(x))

�

, (1.34)
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where, similar to (1.17) the log partition function b is

b(f(x)) = log
�

1 +
�

τ∈T
exp[Sτ (x(i))]

�

.

When dealing with the univariate Bernoulli distribution using formula (1.34),

the resulting generalized linear model corresponding to the multivariate Bernoulli

model is the same for logistic regression. Thus the model is referred to as the

multivariate Bernoulli logistic model in this chapter.

Gradient and Hessian

To optimize the negative log likelihood function (1.33) with respect to the co-

efficient vector cτ , the efficient and popular iterative re-weighted least squares

algorithm mentioned in McCullagh and Nelder (1989) can be implemented. Never-

theless, the gradient vector and Hessian matrix (Fisher Information) with respect

to the coefficients cτ are still required.

Consider any τ ∈ T , the first derivative with respect to cτ

j
in the negative log

likelihood (1.34) of the multivariate Bernoulli logistic model, according to (1.27)

and ignoring index i, is

∂l(y, f)
∂cτ

j

= ∂l(y, f)
∂f τ

∂f τ

∂cτ
j

=
n�

i=1

�

−Bτ (y) +
�

τ0⊇τ exp[Sτ0(x)]
exp[b(f(x))]

�

xj (1.35)
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Further, the second derivative for any two coefficients cτ1
j and cτ2

k
is

∂2l(y, f)
∂cτ1

j ∂cτ2
k

= ∂

∂cτ1
j

�
∂l(y, f)

∂f τ2

∂f τ2

∂cτ2
k

�

= ∂f τ1

∂cτ1
j

∂2l(y, f)
∂f τ1∂f τ2

∂f τ2

∂cτ2
k

=
n�

i=1

∂2l(y, f)
∂f τ1∂f τ2

xjxk

=
�

τ0⊇τ1, τ0⊇τ2 exp[Sτ0(x)]
exp[b(f(x))] xjxk −

�
τ0⊇τ1 exp[Sτ0(x)] �

τ0⊇τ2 exp[Sτ0(x)]
exp[2b(f(x))] xjxk (1.36)

Parameters Estimation and Optimization

With gradient (1.35) and Hessian (1.36) at hand, the minimization of the neg-

ative log likelihood (1.34) with respect to the coefficients cτ can be solved with

Newton-Raphson or the Fisher’s scoring algorithm (iterative re-weighted least

squares) when the Hessian is replaced by the Fisher information matrix. Therefore,

in every iteration, the new step for current estimate ĉ(s) is computed as

�c = −

�
∂2l(y, f)
∂cτ1

j ∂cτ2
k

�����
c=ĉ(s)

�−1

·

�
∂l(y, f)

∂cτ
j

�����
c=ĉ(s)

�

. (1.37)

The process continues until the convergence criterion is met, which is declared

when the absolute value of the coefficients change is less than tolerance or the

maximum iteration number is reached.
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Smoothing Spline ANOVA Model

The smoothing spline model gained popularity in non-linear statistical inference

since it was proposed in Craven and Wahba (1978) for univariate predictor variables.

More importantly, multiple smoothing spline models for generalized linear models

enable researchers to study complex real world data sets with increasingly powerful

computers as described in Wahba et al. (1995).

As a member of the exponential family, the multivariate Bernoulli distribution

can be formulated under smoothing spline ANOVA framework. Gao et al. (2001)

considers the smoothing spline ANOVA multivariate Bernoulli model but the inter-

actions are restricted to be constant. However, in general, the natural parameters

or linear predictors f ’s can be relaxed to reside in a reproducing kernel Hilbert

space. That is to say, for the observed predictor vector x, we have

f τ (x) = ητ (x), with ητ
∈ H

τ , τ ∈ T , (1.38)

where Hτ is a reproducing kernel Hilbert space and the superscript τ allows a

more flexible model such that the natural parameters can come from different

reproducing kernel Hilbert spaces. Further, Hτ can be formulated to have several

components to handle multivariate predictor variables, that is Hτ = ⊕
p

β=0H
τ

β
and

details can be found in Gu (2002).

As a result, the ητ is estimated from the variational problem

Iλ(x, y) = 1
n

n�

i=1
l(y(i), η(x(i))) + λJ(η), (1.39)
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where η is the vector form of ητ ’s. The penalty is seen to be

λJ(η) = λ
�

τ∈T
θ−1

τ
||P τ

1 ητ
||

2, (1.40)

with λ and θτ being the smoothing parameters. This is an over-parameterization

adopted in Gu (2002), as what really matters are the ratios λ/θτ . The functional P τ

1

projects function ητ in Hτ onto the smoothing subspace Hτ

1 .

By the argument of smoothing spline ANOVA model in Gu (2002), the mini-

mizer ητ has the expression as in Wahba (1990),

ητ (x) =
m�

ν=1
dτ

ν
φτ

ν
(x) +

n�

i=1
cτ

i
Rτ (xi, x), (1.41)

where {φτ

ν
}m

ν=1 is a basis of Hτ

0 = Hτ � Hτ

1 , the null space corresponding to the

projection functional P τ

1 . Rτ (·, ·) is the reproducing kernel for Hτ

1 .

The variational problem (1.39) utilizing the smoothing spline ANOVA frame-

work can be solved by iterative re-weighted least squares (1.37) due to the linear

formulation (1.41).
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Chapter 2

Multivariate Bernoulli with LASSO

2.1 Introduction

In this chapter, the LASSO variable selection technique implemented for the

multivariate Bernoulli logistic model is discussed. As Moore Law realized in

modern computing power, variable selection becomes one of the hot topics in

modern statistical inferences. It is crucial to select only the significant variables to

determine the structure of the graph for better model identification and prediction

accuracy especially when large amount of data and millions of candidate predictors

are available for analysis.

There are various approaches proposed to deal with univariate binary out-

come problems. Logistics regression in McCullagh and Nelder (1989) built on

the framework of generalized linear model and Support Vector Machines (SVM)

proposed in Cortes and Vapnik (1995) are two of the most popular methods. Here

the logistic regression models the probability of outcome 1 by fitting a maximum
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likelihood to the data assuming the data follows a Bernoulli or binomial distribu-

tion. Thus, the prediction for new observed samples are the probability between 0

and 1 and as a result, referred to as soft classification approach in Wahba (2002).

When facing the need of fitting non-linear trend of the covariates, regression spline

model such as the Multivariate Adaptive Regression Splines (MARS) (Friedman,

1991) and the smoothing spline ANOVA model (Xiang and Wahba, 1994) as an

extension of the ridge regression is widely adopted. On the other hand, the SVM

and other kernel-based methods are discussed in detail in Cristianini and Shawe-

Taylor (2000). The SVM is based on margin maximization between two distinct

classes so the predicted outcome of a new sample is the estimated label (either

positive or negative) and defined as a hard classification approach in Wahba (2002).

Furthermore, the tree-based approaches such as CART (Breiman et al., 1984) and

GUIDE (Loh, 2012) are proved to be both intuitive and accurate in prediction.

The basic idea is to find the most significant predictor variables in each step and

dichotomize at a level in order to minimize the prediction error or other equivalent

losses. There are also other popular and very efficient classification approaches

in machine learning literature as well as well-developed softwares for real world

data analysis. For recent survey of machine learning approaches, refer to Bishop

(2007) and Hastic et al. (2009), and free softwares like Weka (Witten et al., 2011)

and SHOGUN (Sonnenburg et al., 2010).

The pioneering paper Tibshirani (1996) introduce the LASSO approach to

linear models based on Gaussian distribution. Various properties of the method

are demonstrated such as model selection consistency discussed in Zhao and

Yu (2006), and extensions to different frameworks studied in Meinshausen and
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Buhlmann (2006), Zhao and Yu (2007), Park and Casella (2008) etc. Park and

Hastie (2007) develops an algorithm based on ideas from LARS (Efron et al., 2004)

to extend LASSO to generalized linear models. In addition, the LASSO model

applied to penalized logistic regressions are also widely explored such as in Shi

et al. (2008) where the LASSO-patternsearch algorithm was introduced and is

capable of handling large number of unknowns provided that it is known that at

most a modest number are non-zeros. Recently, Shi et al. (2012) has extended the

algorithm in Shi et al. (2008) to the scale of multi-millions of unknowns. Coordinate

descent (Friedman et al., 2010) is also proven to be fast in solving large p small n

problems.

The goal of this chapter is to build the multivariate Bernoulli LASSO model to

do variable selection in the multivariate Bernoulli logistic model. The remainder of

the chapter is organized as follows. Section 2.2 starts from the general formulation

of the multivariate Bernoulli LASSO model where the target function is introduced.

Section 2.3 develops the algorithm to solve the optimal solution of the problem,

which is based on the Accelerated Block-Coordinate Relaxation with theories

discussed in Wright (2011). Furthermore, the choice of the tuning parameter is

studied in Section 2.4 where the generalized approximate cross-validation (GACV)

designed for non-Gaussian observations adopted from Xiang and Wahba (1994) is

applied to the multivariate Bernoulli LASSO model. Finally, Section 2.5 is devoted

to both simulation examples and real data set to demonstrate the performance of

the multivariate Bernoulli LASSO model.
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2.2 Model Formulation

The LASSO approach can be extended to the multivariate Bernoulli logistic

model in Section 1.5 since it is a special case of the generalized linear model. What

we have to do is to apply the l1 penalty to the coefficients in (1.33), and the resulting

target function is

Lλ(x, y) = 1
n

n�

i=1
l(y(i), f(x(i))) +

�

τ∈T
λτ

p�

j=1
|cτ

j
|, (2.1)

where y(i) and x(i) indicates the ith observed outcome and covariate.

To simplify the notation, let λ be the multi-dimensional tuning parameter

λ = (λ1, λ2, . . . , λ12...K). We also denote the l1 norm of the coefficients to be ||c||1 =

(||c1||1, ||c2||1, . . . , ||c12...K ||1), where ||cτ ||1 = �p

j=1 |cτ

j
|. As a result, the vectorized

form of (2.1) is

Iλ(c) = 1
n

n�

i=1
l(Y (i), f(X(i))) + λ||c||1. (2.2)

In real applications especially when the graph is large with many nodes, we

often restrict our attention to main effects and low level interactions due to com-

putation and interpretation difficulty. In this case, all the f functions beyond the

pre-determined maximum order of interactions will be set to zero. The number of

coefficients to be estimated will be significantly reduced, but the higher order S

functions still need to be evaluated in full.

In this section, we aim at solving a general problem which involves a convex loss
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function and an l1 penalty applied to the unknown variables so that at the optimum,

only a small set of variables are nonzero provided the tuning parameters λ is not

too small. The specialized algorithm is designed to use gradient information for

the smooth term l(y, f) to form an estimate of the correct zero set, which is the set

of components of {cτ

j
} that are zero at the minimizer of (2.1). Some iterations of the

algorithm also attempt Newton-like enhancement to the search directly, computed

using the projection of Hessian of l(y, f) onto the set of nonzero components of

{cτ

j
}. This approach is similar to the two-metric gradient projection approach for

bound-constraint minimization, but avoids duplication of variables and allows

certain other resources saving in the implementation.

As the negative log-likelihood of the multivariate Bernoulli LASSO model,

the loss function Iλ in (2.2) is convex, so c is optimal for (2.1) if and only if the

following condition holds:

� I(c) + λT v = 0, (2.3)

where I(c) is the negative log-likelihood for the multivariate Bernoulli logistic

model (1.5), and for some vector v = (v1, v2, . . . , v12...K) in the sub-differential of

||c||1 (denoted by ∂||c||1). In other words,

vτ

j
=






−1 if cτ

j
< 0

∈ [−1, 1] if cτ

j
= 0

1 if cτ

j
> 0

(2.4)
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A measure of near-optimality is given as follows:

δ(c) = min
v∈||c||1

|| � I(c) + λT v||, (2.5)

and δ(c) = 0 if and only if c is optimal.

2.3 The Accelerated Block-Coordinate Relaxation

The Accelerated Block-Coordinate Relaxation algorithm studied in Wright

(2011) is adopted to solve the optimization problem (2.2) in this section. We also

discuss an outline of some enhancements applied to the algorithm to improve the

efficiency.

The basic (first-order) step at iteration k is obtained by forming a simple model

of the objective by expanding around current iterate ck as follows:

dk = arg min
d

�I(ck)T d + 1
2αkdT d + λT

||ck + d||1, (2.6)

where αk is a positive scalar (whose value is discussed below) and dk is the proposed

step, which is a matrix instead of vector, which is the case for univariate logistic

regression studied in Shi et al. (2008). The subproblem (2.6) is separable in the

components of d and therefore trivial to solve in closed form in O(|T |p) operations.

The solution dk can be examined to obtain an estimate of the zero set:

Zk = {j = 1, 2, . . . , |T |p | (zk + dk)j = 0}. (2.7)
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The definition of the ”nonzero set” Nk, or referred to as active set in some

literature, is the complement of the zero set estimate, that is:

Nk = {1, 2, . . . , |T |p} \ Zk. (2.8)

If the step dk computed from (2.6) does not yield a decrease in the objective

function Iλ, then αk is increased and re-solve (2.6) to obtain a new dk. This process

can be repeated as needed. It can be shown that, provided ck does not satisfy an

optimality condition, the dk obtained from (2.6) will yield Iλ(ck + dk) < Iλ(ck) for

αk sufficiently large.

The step is enhanced by computing the restriction of the Hessian �2I(ck) to

the set Nk (denoted by �2
NkNk

I(ck)) and then computing a Newton-like step in the

Nk components as follows:

(�2
NkNk

I(ck) + δkI)pk

Nk
= − �Nk

I(ck) − λT ωNk
, (2.9)

where δk is a small damping parameter that goes to zero as ck approaches the

solution, and ωNk
captures the gradient of the term ||c||1 at the nonzero components

of ck +dk. Specifically, ωNk
coincides with ∂||ck +dk||1 on the components i ∈ Nk. If

δk were set to zero, pk

Nk
would be the (exact) Newton step for the subspace defined

by Nk; the use of a damping parameter ensures that the step is well defined even

when the partial Hessian �2
NkNk

I(ck) is singular or nearly singular, as happens

with our problems. In practice, choose:

δk = min(δ(ck), mean diagonal of �
2
NkNk

I(zk)), (2.10)
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where δ(c) is defined in (2.5).

Because of the special form of I(c), the Hessian is not expensive to compute

once the gradient is known. However, it is dense in general, so considerable saving

can be made by evaluating and factoring this matrix on only a reduced subset of

the variables, as in the scheme described above.

If the partial Newton step calculated above fails to produce a decrease in the

objective function Iλ, a shortened step is evaluated with its length reduced by a

factor γk, to the point where ck

j
+ γkpk

j
has the same sign as ck

j
for all j ∈ Nk. If this

modified step also fails to decrease the objective Iλ, the first-order step calculated

from (2.6) is taken if it decreases Iλ. Otherwise, the parameter αk is increased,

leaving ck unchanged, and proceed to the next iteration.

The algorithm is summarized as follows:

Algorithm

given initial point z0, initial damping α0 > 0, constant tol > 0 and η ∈ (0, 1);

for k = 0, 1, 2, . . .

if δ(ck) < tol

stop with approximate solution ck;

endif

Evaluate efτ and eb

Solve (2.6) for dk; (% first-order step)

Evaluate Zk and Nk

Compute pk

Nk
from (2.9); (% reduced Newton step)

Set c+
Nk

= ck

Nk
+ pk

Nk
and c+

Zk

if Iλ(c+) < min(Iλ(ck + dk), Iλ(ck)) (% Newton step successful)
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ck+1 ←− c+

else

Choose γk as the largest positive number such that

(ck + γkpk)j > 0 for all j with ck

j
�= 0; (% damp the Newton step)

Set c+
Nk

= ck

Nk
+ γkpk

Nk
and c+

Zk
= 0;

if Iλ(c+) < min(Iλ(ck + dk), Iλ(ck)) (% damped Newton step successful)

ck+1 ←− c+;

else if Iλ(ck + dk) < Iλ(ck) (% first-order step successful; use it if Newton steps

fail)

ck+1 ←− ck + dk;

else (% unable to find a successful step)

ck+1 = ck;

endif

endif

(% increase or decrease α depending on success of first-order step)

if Iλ(ck + dk) < Iλ(ck)

αk+1 ←− ηαk; (% first-order step decreased Tλ, so decrease α)

else

αk+1 ←− αk/η;

endif

endfor

Some enhancements to this basic approach can lead to in significant improve-

ments to the execution time. Note first that evaluation of the full gradient �I(ck),

which is needed to compute the first-order step in (2.6) can be quite expensive.
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Since in most cases the vast majority of components of ck are zero, and will remain

so after the next step is taken, this can be economized by selecting just a subset

of components of �I(ck) to evaluate at each step, and allowing just these of the

first-order step d to be nonzero. Specifically, for some chosen constant σ ∈ (0, 1],

we select σ × |T |p components from the index set {1, 2, . . . , |T |p} at random (using

a different random selection at each iteration), and define the working set Wk to

be the union of this set with the set of indices j for which ck

j
�= 0. Then just the

components of �I(ck) for the indices j ∈ Wk are evaluated and (2.6) can be solved

subject to the constraint that dj = 0 for j /∈ Wk.

Since δ(ck) cannot be calculated without knowing the full gradient �I(ck), a

modified version of this quantity is defined by taking the norm in (2.2) over the

vector defined by Wk, and use this version to compute the damping parameter

δk. The convergence criterion is modified by forcing the full gradient vector to be

computed on the next iteration k + 1 when the threshold condition δ(ck) < tol is

satisfied. If this condition is satisfied again at iteration k + 1, success is declared.

A further enhancement is that the second-order step is computed only when

the number of components in Nk is small enough to make computation and factor-

ization of the reduced Hessian economical. In the experiments reported here, only

the first order step is computed if the number of components in Nk exceeds 500.

2.4 Tune the Parameters

So far, all smoothing parameters λ are considered fixed. However, the choice

of the tuning parameters in equation (2.2) is crucial since in general the larger the
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λ’s, the smaller the number of patterns picked up by the algorithm.

The GACV (generalized approximate cross-validation) is used to approxi-

mately minimize the comparative Kullback-Leibler (CKL) distance, see Lin et al.

(2000). Gao et al. (2001) extends it to the multivariate Bernoulli smoothing spline

ANOVA model and Shi et al. (2008) derives a version for l1 penalized logistic re-

gression. Similarly, this section is devoted to derive a version of GACV for the

multivariate Bernoulli distribution to be combined with LASSO penalty.

In the optimization problem (2.1), the natural parameter f matrix and aug-

mented response matrix can be written into vectors

�fλ(X) = (f 1
λ
(X(1)), f2

λ
(X(1)), . . . , f 12...K

λ
(X(n)))T , (2.11)

�B(Y ) = (B(Y (1)), B(Y (2)), . . . , B(Y (n))), (2.12)

where �fλ is indexed by λ since it is the optimal linear predictor corresponding to

the tuning parameter vector λ.

Therefore, the optimization problem (2.2) can be reformulated in a vectorized

form as

Iλ(Y, f) = 1
n

�
− �B(Y )T �f + b(�f)

�
+

�

τ∈T
λ||c||1. (2.13)

This formula is very similar to the equation in Shi et al. (2008), except that the

Hessian matrix is block diagonal instead of strictly diagonal due to correlation

among binary outcomes (nodes).

The matrix form of the linear predictor in (1.33) in vectorized form (2.11) and
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(2.12) is

�f = Dβ,

then the expanded design matrix and the vectorized unknown coefficients are

D =





X(1) �0 . . . �0
�0 X(1) . . . �0
... ... ... ...

�0 �0 . . . X(1)

X(2) �0 . . . �0
... ... ... ...

�0 �0 . . . X(n)





,

β =
�
c1, c2, . . . , c12...K

�T

,

where the matrix D is of dimension n(2K −1)×p(2K −1) and the length of unknown

vector β is p(2K − 1).

Similarly, the mean of the augmented response for the ith observation can be

formulated as

�µ(i) = (µ1(Y (i)), µ2(Y (i)), . . . , µ1...K(Y (i))) (2.14)

= E[B(Y (i))|X(i), f ], (2.15)

which is the gradient of the partition function in (1.17) for the multivariate Bernoulli
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logistic model. This leads to the augmented CKL distance

CKL(λ) = 1
n

n�

i=1

�
−�µ(i)�fλ(X(i)) + b(fλ(X(i))

�
. (2.16)

To obtain the leave-one-out Lemma for the multivariate Bernoulli LASSO

model, denote �fλ,� to be the minimizer of the optimization problem (2.13) with

tuning parameter λ and small perturbation � added to Y , and �f [−i]
λ

is the optimizer

for the target function tuned by λ with the ith observation deleted.

The GACV tuning method discussed in Xiang and Wahba (1994) for binary

responses is a faster version of GCV in Craven and Wahba (1978). The method

involves an approximation to �fλ − �f�,λ using Taylor’s theorem. The influence matrix

H (Wahba, 1990), (Xiang and Wahba, 1994) is used as a medium for this purpose

�fλ − �f�,λ = H�,

where �f�,λ is the estimated f when a small perturbation � is added to the outcome

Y .

The leave-one-out Lemma (Craven and Wahba, 1978) for the multivariate

Bernoulli LASSO model is stated as follows

Lemma 2.1. (Leave-one-out) For fixed sample i, and augmented response �Y , let hλ[i, �Y ]

be the minimizer of

�
− �B(Y )T �f + b(�f)

�
− l(Y (i), f(X(i))) + λ||c||1.

Then hλ[i, �µ[−i]
λ

(i)] = f [−i]
λ

. Here �µ[−i]
λ

(i) = E[B(Y )|X(i), f [−i]
λ

].
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The detailed proof can be found in Ma (2010).

The Hessian matrix for the augmented outcome sample i is

Wi(fλ) = ∂2 − l(Y (i), f(X(i)))
∂f(X(i))∂f(X(i))T

= Var(B(Y )|fλ(X(i))), (2.17)

in which the formula can be derived from (1.36).

The covariance matrix for the combined response is:

W (fλ) = diag(W1(fλ), . . . , Wn(fλ)). (2.18)

The above matrix is of dimension n(2K −1)×n(2K −1) and block diagonal with

block size (2K − 1) × (2K − 1). The difference between LASSO and the smoothing

spline ANOVA for the multivariate Bernoulli model in Gao et al. (2001) is that the

Hessian matrix of the target function (2.1) is the same as the Hessian of negative

log-likelihood excluding the neighborhoods of any zero coefficients, whereas in

smoothing spline ANOVA model the penalty is quadratic so the kernel matrix

needs to be taken into consideration (Wahba, 1990), (Ding et al., 2011).

Denote the number of nonzero elements in β to be s and D∗ is the sub-matrix

of D with columns corresponding to the nonzero elements in β. By first-order

Taylor expansion, the H matrix is approximately

H = D
∗T U−1

D
∗

= D
∗T

�
D

∗W (D∗)T
�−1

D
∗. (2.19)
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In ordinary leave-out-one cross validation,

CV (λ) = 1
n

n�

i=1

�
−B(Y (i))T fλ(X(i)) + b(fλ(X(i)) + B(Y (i))T

�
fλ(X(i)) − f [−i]

λ
(X(i))

��

= OBS(λ) + 1
n

n�

i=1
B(Y (i))T

�
fλ(X(i)) − f [−i]

λ
(X(i))

�

≈ OBS(λ) + tr(H)
n

�
n

i=1
�B(Y )( �B(Y ) − �µ)

tr [I − (W 1/2HW 1/2)] , (2.20)

where�· denotes the vector form of a general matrix as in equations (2.11) and

(2.12). f [−i]
λ

is the estimate of the f function when the ith observation is deleted

from the dataset, the so-called leave-one out estimate. It is not hard to verify that

tr(W 1/2HW 1/2) = s, the simplified GACV score can thus be derived

GACV (λ) = OBS(λ) + tr(H)
n

�
n

i=1
�B(Y )( �B(Y ) − �µ)
n − s

. (2.21)

Similarly, the BGACV score (Shi et al., 2008) for the multivariate Bernoulli

LASSO model, which is a BIC like version (Schwarz, 1978) of GACV can be defined

accordingly.

BGACV (λ) = OBS(λ) + tr(H) log n

2n

�
n

i=1
�B(Y )( �B(Y ) − �µ)
n − s

. (2.22)

What’s more, some other popular tuning scores can be derived with the help of

Stein’s unbiased risk estimate (SURE) discussed in Efron et al. (2004). The detailed

derivation of the AIC and BIC especially the degrees of freedom in the generalized

linear LASSO models can be found in Ma (2010).
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AIC(λ) = OBS(λ) + 1
n

s, (2.23)

BIC(λ) = OBS(λ) + log(n)
2n

s. (2.24)

Nonetheless, the calculation of the GACV or BGACV involves evaluating the

inverse of a large matrix (D∗W (D∗)T )−1, which renders the method infeasible

when dealing with large scale problems. To alleviate the difficulty, Lin et al. (2000)

proposes the randomized GACV to avoid inverting the matrix.

The idea is that in formula (2.21), the only quantity we need to calculate related

to the inverted matrix is tr(H). This can be done via a “black box” method on

perturbed data Y + �, where the components of � come from random normal

distribution with zero mean and sufficiently small variance. The case for the

outcomes following Gaussian distribution has been studied extensively and shown

to be as good as the exact calculation for large n in Girard (1998). The randomized

trace method essentially is based on the fact that for a square matrix A of dimension

n × n, and �, the zero mean random n-vector with independent components with

variance σ2
�
, then

1
σ2

�

E�T A� = tr(A).

In practice, σ2
�

is replaced by the estimate 1
n

�
n

i=1 �2
i
. Following the argument

in Xiang and Wahba (1996), the approximation is

�fY +�

λ
− �fY

λ
≈ H�,
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where �fY +�

λ
represents the estimate of vectorized f for perturbed outcome Y +� and

tuning parameter λ. This suggests that 1
σ2

�
�T (�fY +�

λ
− �fY

λ
) provide a good estimate

to tr(H).

As a result, following the argument in Lin et al. (2000), the randomized GACV

for the multivariate Bernoulli LASSO model is

ranGACV (λ) = OBS(λ) + 1
n

�B(Y )
T

( �B(Y ) − �µ)

×

�
�T (�fY +�

λ
− �fY

λ
)
�

/
�
�T � − �T W (�fY +�

λ
− �fY

λ
)
�

.

Notice here the length of vectorized Y is longer than the random vector �

since there are some augmented interaction terms in the outcome. In this case, for

example, the corresponding �̂ for B12(Y ) can be calculated as

�̂ = (Y1 + �1)(Y2 + �2) − Y1Y2.

To reduce the variance in calculating ranGACV due to randomness of �, we

draw R replicates �1, . . . , �R and simply take the average

ranGACV (λ) = OBS(λ) + 1
n

�B(Y )
T

( �B(Y ) − �µ)

×
1
R

R�

r=1

�
�T

r
(�fY +�r

λ
− �fY

λ
)
�

/
�
�T

r
�r − �T

r
W (�fY +�r

λ
− �fY

λ
)
�

.(2.25)

Without detailed specification, the tuning in this thesis for GACV and BGACV

are implemented as ranGACV and ranBGACV with 20 replicates.

The optimal multiple dimensional tuning parameter λ is guaranteed only

when we iterate all the possible points on the grid. However, in real applica-
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tion, the derivative-free Nelder-Mead algorithm (down-hill simplex) proposed in

Nelder and Mead (1965) is more suitable due to time constraint. All the numerical

examples in this thesis are implemented under Nelder-Mead approach.

2.5 Numerical Examples

This section is designed to use simulation examples and real data application

to illustrate the efficiency and application of the multivariate Bernoulli LASSO

model.

Simulation 1

Firstly, we start from the simplest case of the multivariate Bernoulli graph, the

bivariate Bernoulli, where only two binary nodes are involved as shown in Figure

1.1. The graph also includes 5 covariate independently distributed as standard

normal, represented by X1, . . . , X5. The true models for the f ’s functions are

f 1 = 0.5 + 2X1,

f 2 = 0.5 − 2X2,

f 12 = 1.5X5,

therefore the model has 5 nonzero patterns out of 3 × 6 = 18 candidates.

The simulations involve 100 independent data sets with each having 500 sam-

ples. The data sets are fitted by the multivariate Bernoulli LASSO model but tuned

with the four different criteria discussed in Section 2.4.
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Tuning selected true (total 5)
AIC 10.04(3.435) 4.77(0.694)
BIC 5.89(1.626) 4.76(0.818)

GACV 5.08(0.367) 4.99(0.100)
BGACV 5.16(0.896) 4.97(0.171)

Table 2.1: The results for the simulation 1, where the averages of the selected and
true patterns out of 100 replicates are illustrated with standard deviations shown
in parentheses.

The results are shown in Table 2.1. The first column reports the number

of patterns the four methods selected with the standard deviation in these 100

replicates displayed in parentheses. Here AIC as expected selects larger models

and large variance of model sizes than its corresponding B-type tuning, BIC. BIC,

on the contrary favors smaller models on average but maintains similar level of

accuracy in terms of picking up the true patterns. On the other hand, the final

models selected by GACV and BGACV are even smaller than BIC with small size

variations. At the same time, these two are capable of capturing all the true nonzero

coefficients most of the time (4.99 and 4.97 out of 5, the perfect score).

Simulation 2

Secondly, we try a larger graph with more nodes. Consider the graph structure

in Figure 1.2 so there are three binary nodes in the graph. Similarly, 5 independent

standard normal distributed covariate are associated with some edge effects but
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no clique effect f 123. The true model is

f 1 = 0.5 + 2X1,

f 2 = 0.5 − 2X2,

f 3 = 0.5 + 2X3,

f 12 = 1.5X4,

f 23 = −1.5X5,

f 13 = 0,

f 123 = 0,

hence, there are 8 true nonzero coefficients out of 6 × 7 = 42 candidates. Figure 2.1

displays the true model in a graph.

Tuning selected true (total 8)
AIC 11.56(4.977) 7.40(1.563)
BIC 8.13(2.616) 7.35(1.690)

GACV 8.22(3.080) 7.76(1.006)
BGACV 7.79(1.140) 7.68(1.053)

Table 2.2: The results for the simulation 2, where the averages of the selected and
true patterns out of 100 replicates are illustrated with standard deviations shown
in parentheses.

We still fit the multivariate Bernoulli LASSO model to the 100 independently

generated data sets and consider up to third order interactions among the outcomes.

The results as before are shown in Table 2.2 for all four different tuning approaches.

AIC still selects the models with largest sizes with large variations. BIC results to

smaller models with low standard deviation but sacrifices slightly in terms of true
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Figure 2.1: The graph for the simulation example 2.

patterns captured. GACV favors larger models than BIC on average but beats all

others in picking up the true nonzero coefficients. BGACV successfully maintains

the smallest models while kept most of the true patterns in the final models.

Simulation 3

The simulations 1 and 2 are simple graphs with nonzero edges, which is

consistent with the Ising model compared in Section 1.4. The example examined

in this simulation involves clique effect in a 3-node graph, the 3rd order interaction.
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The setting is the same as in simulations 1 and 2 but the true model is

f 1 = 0.5 + 2X1,

f 2 = 0.5 − 2X2,

f 3 = 0.5 + 2X3,

f 12 = 0,

f 23 = 0,

f 13 = 0,

f 123 = 2X5,

as shown in Figure 2.2. Essentially, the graph only has three nodes but no edges

connecting them. On the other hand, there is a clique f 123 effect with covariate X5

having positive influence.

Tuning selected true (total 7)
AIC 11.82(5.997) 6.51(1.227)
BIC 7.18(3.000) 6.35(1.473)

GACV 7.08(1.061) 6.82(0.796)
BGACV 6.93(1.148) 6.68(0.909)

Table 2.3: The results for the simulation 3, where the averages of the selected and
true patterns out of 100 replicates are illustrated with standard deviations shown
in parentheses.

This is a hard graph to learn since the only mutual influence among the nodes

comes from a weak third order interaction. Nevertheless, the model can success-

fully capture the true patterns especially GACV and BGACV. They get more than

6.5 true coefficients out of 7 on average with small standard deviation and also
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Figure 2.2: The graph for the simulation example 3.

maintain a small model sizes. In other words, they achieve high accuracy without

sacrificing the specificity. On the other hand, AIC with the larger model sizes in

general, get more nonzero coefficients than BIC, which has small final models, but

both AIC and BIC suffer from large variation of performance which implies that

they are not stable when the graph is hard to learn.
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Simulation 4

Finally, we consider a more complicated graph when there are five nodes. The

graph structure is shown in Figure 2.3 and the true model is

f 1 = 0.5,

f 2 = 0.5,

f 3 = −0.5,

f 4 = −0.5,

f 5 = 0.5,

f 12 = −3X1,

f 14 = 2X3,

f 24 = 3X2,

f 34 = −2X4,

f 123 = 2X5,

and all the other f ’s are null.

The goal of this simulation is to examine the performance of the model to

graph with both second order and third order interactions. The structure of the

graph is fairly complex in the sense that the nodes Y1, Y2 and Y4 with nonzero

mutual edges including covariate effects. X4 has negative influence on pair Y3 and

Y5, but the clique (Y1, Y2, Y3) is dependent on X5 so f 123 is nonzero. This graph

cannot be analyzed using the Ising model mentioned in Section 1.4 since there are

nontrivial third order clique effect.
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Figure 2.3: The graph for the simulation example 4.

The result of this simulation is illustrated in Table 2.4. The model is capable of

capturing the nonzero coefficients on average since all four tuning criteria can pick

up at least 9.60 of 10 true patterns with small standard deviation. As before BIC,

GACV and BGACV keep the model sizes small and at the same time with at least

9.90 of 10.

To sum up from the simulation examples, BIC, GACV and BGACV are capable

of maintaining the model sizes small and capturing the true patterns in the final

model as illustrated from Table 2.1, 2.2, 2.3 and 2.4. On the other hand, AIC is

capable of capturing the true patterns in the true model but it favors larger models
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Tuning selected true (total 10)
AIC 14.28(4.582) 9.87(0.737)
BIC 11.34(1.380) 10.0(0)

GACV 12.44(3.057) 9.98(0.145)
BGACV 12.06(2.809) 9.87(0.737)

Table 2.4: The results for the simulation 4, where the averages of the selected and
true patterns out of 100 replicates are illustrated with standard deviations shown
in parentheses.

and as a result introducing more variation and false positive to the final model.

Real Data Analysis

Here the US Census Bureau data (US Census Bureau, 2007) is used to examine

the performance of the multivariate Bernoulli LASSO model in real-world applica-

tions. The data is based on several statistics of counties level spreading all the US

states. After removing counties with missing observations, the total samples in

the analysis is 2573. Table 2.5 summarizes the outcomes of interest and some of

their descriptive statistics. The nodes in the trivariate Bernoulli graph are coded 1

if the observed value is greater than the national median and 0 otherwise.

Interestingly, the county with the lowest population changes in the analysis

is Bernard from Louisiana (Orleans, LA ranks second lowest), which suffered

significantly from Hurricane Katrina in 2005. Up to now, the county is still below

half of its population before the hurricane.

On the other hand, we want to include some covariate in the model to see

whether these predictors have association effects on the outcomes. The predictor

variables are listed in Table 2.6. All the predictor variables are normalized to have
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Name Minimum Maximum Median
Poverty Rate 3.1 34.8 13.0

Unemployment Rate 1.5 15.3 4.7
Population Change Rate −76.9 66.7 2.6

Table 2.5: The outcomes (nodes in graph) to be analyzed for the US census Bureau
data, all the values are in percentage.

mean 0 and variance 1 to put into the multivariate Bernoulli LASSO model tuned

by all the four criteria discussed in Section 2.4.
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Figure 2.4: The graph structure fitted for the US Census Bureau data.

The list of coefficients estimated under the tuning criteria mentioned in Section

2.4 are shown in Tables B.1, B.2, B.3 and B.4. To better understand the graph

fitted by the model, Figure 2.4 displays the result modeled by the multivariate

Bernoulli LASSO and tuned by BGACV. The selected variables are noted near the

corresponding nodes or edges, and the signs (+ or −) in the parentheses indicate
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the direction of the influence of the covariate.

Interestingly, Supplemental Security Income Recipients (SSI) plays a very impor-

tant role in the graph, which is a United States government program that provides

stipends to low-income people who are either aged (65 or older), blind, or dis-

abled. The edge connecting poverty and unemployment is significantly affected

by supplemental security income recipients that the higher rate of recipients, the

higher correlation between poverty rate and unemployment rate. On the nodes

level, the poverty rate is related to high school education people, supplemental

security income recipients and personal income. This indicates that the higher

education level (more people with high school diploma) or the better the personal

income, the lower the poverty level. The high percentage of supplemental security

income recipients in the county is also an indicator of more low-income residents

in the area, resulting in higher poverty rate. In addition, the high school education

level and bachelor degree recipients number negatively affect the unemployment

level or in other words, the education level can decrease the unemployment rate

of the population. Moreover, the the more Democratic supporters in the county,

the lower the employment rate. Finally, the population change is more likely due

to death rate and government expenditure of the region. There are also edges

and clique effect in the graph but the predictor variables are not very strong, the

estimated coefficients for BGACV are listed in Table B.4.

The analysis of the results tuned by other criteria is deferred to Appendix.
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Chapter 3

Multivariate Bernoulli Mixed-Effects

Models

3.1 Introduction

This Chapter considers the extension of the generalized linear mixed-effects

models (GLMMs) in Pinheiro and Chao (2006) for grouped data with single level

to the multivariate Bernoulli logistic model discussed in Section 1.5. The mixed

effects models provide powerful and useful tools for analyzing data with repeated

measurements, which often arise in different real applications such as economics

and clinical trials. When a number of subjects are repeated observed under varying

conditions, the simple linear or generalized linear models fail to explain the under-

lying process of the so-called repeated-measured data. The mixed effects models

assume that there are both fixed and random effects in the model but the responses

are independent conditioning on the random effects. This allows the model to
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handle unbalanced repeated-measured data with flexible variance-covariance

structure.

Let us consider the simplest case, the linear mixed effects model (LME). Sup-

pose the observations come from M groups and the ith group contains ni of them.

The linear mixed effects model formulation thus can be written as

y(i) = X(i)β + Z(i)bi + �i, for i = 1, . . . , M, (3.1)

where y(i) is the response vector of length ni for group i. X(i) and Z(i) are design

matrices for fixed effects β of length p and random effect bi of length q, respectively.

The error vector �i follow an independent Gaussian distribution N(0, σ2
�
Ini), and

Ini is the identity matrix of dimension ni × ni. Importantly, the random effect bi

assumed to distribute as N(0, Ψ), makes the key difference here since without bi,

the equation (3.1) is equivalent to a linear regression model.

The linear mixed-effects model (3.1) can be solved via maximum likelihood

estimate since bi is an additive term with Gaussian distribution. y(i) still follows

a Gaussian distribution although the global structure is no longer independent.

However, in real applications especially in longitudinal studies, nonlinear trend of

response with respect to the covariate is crucial to prediction accuracy. The more

general nonlinear mixed-effects models (NLMMs) has the form

y(i) = h(Φ(i)) + �i for i = 1, . . . , M, (3.2)

where h is the known nonlinear function. Some of the widely used nonlinear

functions h are listed in the appendix of Pinheiro and Bates (2000). Φ(i) is the
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parameter vector defined as

Φ(i) = X(i)β + Z(i)bi, for i = 1, . . . , M,

where X(i), Z(i), β and bi are the same as in (3.1). The biggest challenge to solve

the NLMMs (3.2) is that the likelihood function involves an integral of bi’s and

in general no analytical solution. There are several ways to deal with this and

two most popular ones are through Monte Carlo Markov Chains and quadrature

approach. In this thesis, we mainly focus on the quadrature method studied

in Pinheiro and Bates (1995) for nonlinear mixed-effects models. Similarly, the

generalized linear mixed-effects models also involves a non-analytical integral

needed to be approximated and we defer this to later sections since it is more

relevant to the multivariate Bernoulli mixed-effects models. There are already

many well-developed softwares available to solve the nonlinear or generalized

linear mixed-effects models. Notably the lme4 (Bates et al., 2012) based on S4 class

of R (R Development Core Team, 2005).

This Chapter is organized as follows. A brief review of the generalized lin-

ear mixed effects model is presented in Section 3.2, where the notation and the

likelihood estimation in the context of the multivariate Bernoulli distribution are

introduced. However, as the target function involves integrals without explicit

form, we devoted the Section 3.3 to discussion of the Laplacian approximation to

the marginal log-likelihood function, which is one of the efficient ways to solve

this kind of problems.
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3.2 Model Formulation

In this thesis, we only consider single-level generalized linear mixed-effects

models for the multivariate Bernoulli logistic model, and the multi-level model

analysis can be found in Pinheiro and Chao (2006). As mentioned in Section 3.1,

the data the model is particularly designed for often involves several groups of

observations, so we denote the response matrix to be y(i), which has dimension ni×

K for a given group i in the multivariate Bernoulli environment. Conditioning on

the random effects bi, the rows of y(i) are distributed as independent multivariate

Bernoulli distribution like in the multivariate Bernoulli logistic model discussed in

Section 1.5. Notice the change of notation here, the matrix y(i) stands for observed

outcomes from a group of subjects, for instance, people from a same pedigree

(family). Specifically, y(i, j) refers to the jth sample in group i.

Given bi, the conditional density of y(i) is

p(y(i)|bi) =
ni�

j=1
exp









K�

r=1

�

1≤j1≤···≤jr≤K

f j1...jr(i)Bj1...jr(y(i, j))


 − b(f(i))



 .(3.3)

In addition, the natural parameter f ’s in the multivariate Bernoulli logistic

model (1.34) especially the linear predictor (1.33) is further modified to have the

form

f τ (i) = X(i)βτ + Z(i)bτ

i
, (3.4)

where X(i) and Z(i) are the design matrix of fixed effects and mixed effects for

group i, respectively. βτ = (cτ

0, . . . , cτ

p
) is the coefficients vector for the fixed effects,



58

which is similar to the coefficients vectors {cτ

j
} in (1.33). Moreover, the random

effects bτ

i
are indexed by τ for flexibility and it is further assumed that bτ has the

distribution N(0, Ψτ ), where Ψτ ’s for different τ are not necessarily equal. For

instance, in the bivariate Bernoulli distribution, there are only three random effects

vectors b1
i
, b2

i
and b12

i
. They are independent with different distributions denoted as

N(0, Ψ1), N(0, Ψ2) and N(0, Ψ12). It then follows that the joint density of (y(i), bi)

is given by

p(y(i), bi) = p(y(i)|bi)
�

τ∈T

1
(2π)q/2|Ψτ |1/2 exp

�
−(bτ

i
)T (Ψτ )−1bτ

i
/2

�
, (3.5)

where q is the number of random effects (length of bi).

As with any mixed-effects models, the random effects are non-observable

quantities, likelihood estimation must rely on the marginal density of y(i), which is

obtained by integrating the joint likelihood function with respect to bi. Specifically,

the target function for the multivariate Bernoulli mixed model is

p(y(i)|β) =
� ∞

−∞
p(y(i)|bi)

�

τ∈T

1
(2π)q/2|Ψτ |1/2 exp

�
−(bτ

i
)T (Ψτ )−1bτ

i
/2

� �

τ∈T
dbτ

i
. (3.6)

However, similar to NLMMs, for GLMMs integral (3.6) does not have a closed

form expression and approximations are required for computationally feasible

estimation. This thesis extends the Laplacian approximation methods to NLMMs

and GLMMs to the multivariate Bernoulli Mixed-effects models as discussed in

the next section.
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3.3 Laplacian Approximation

Laplacian approximations are frequently used in Bayesian inference to estimate

marginal posterior densities and predictive distributions. The use of the Laplacian

approximation for single-level nonlinear mixed effects models was described by

Pinheiro and Bates (1995). The technique can also be used for approximating

the log-likelihood function in GLMMs studied in Pinheiro and Chao (2006) and

this paper extends it to the multivariate Bernoulli logistic model as stated in the

following. The marginal likelihood can be expressed as

p(y(i)|β) =
�

p(y(i), bi|β)dbi

= (2π)− q|T |
2

�

τ∈T
|Ψτ

|
−1/2

�
exp[g(β, Ψ, y(i), bi)]

�

τ∈T
dbτ

i
, (3.7)

g(β, Ψ, y(i), bi) =
ni�

j=1




K�

r=1

�

1≤j1≤···≤jr≤K

f j1...jrBj1...jr(y(i, j)) − b(f)




−
�

τ∈T
(bτ

i
)T (Ψτ )−1bτ

i
/2.

The idea behind the Laplacian and to some extent the Gaussian Hermitian ap-

proximation, is to approximate g(β, Ψ, y(i), bi) by a second-order Taylor expansion

around the value of bi that maximizes g(·, bi). Note that

∂g(β, Ψ, y(i), bi)
∂bτ

i

= Z(i)T [Bτ (y(i)) −
∂b(f)
∂f τ

] − (Ψτ )−1bτ

i
, (3.8)

∂2g(β, Ψ, y(i), bi)
∂(bτ

i )2 = −[Z(i)T
∂2b(f)
∂(f τ )2 Z(i) + (Ψτ )−1]. (3.9)

The first and second derivatives of b(f) in the previous formula can be induced

from (1.28) and (1.29). It follows from (3.9) that ∂2g(β, Ψ, y(i), bτ

i
)/∂(bτ

i
)2 is negative-
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definite and, as a result, g(·, bτ

i
) is strictly concave function of bτ

i
. Therefore, there

exists a unique b̂τ
i corresponding to ∂g(·, bτ

i
)/∂bτ

i
|
bτ

i =b̂τ
i

= 0. Equation (3.8) provides

a recursive formula to determine b̂τ
i

(b̂τ
i )(k+1) = Ψτ Z(i)

�

Bτ (y(i)) −
∂b(f)
∂f τ

�

(3.10)

where the iterations start at (b̂τ
i )(0).

The integral in (3.7) then can be approximated by Laplacian method

�
exp[g(β, Ψ, y(i), bi)]

�

τ∈T
dbτ

i
≈

(2π) q|T |
2 exp[g(β, Ψ, y(i), b̂i)]�

|∂2g(β, Ψ, y(i), bτ
i )/∂(b̂i)∂(b̂i)T |

Given the assumption that the bτ

i
are mutually independent, the Laplacian approx-

imation to the single-level GLMM negative log-likelihood corresponding to group

i is then given by

lLap(β, Ψτ
|y(i)) =

�

τ∈T
[log |Ψτ

| + log
�����
∂2g(β, Ψ, y(i), bτ

i
)

∂(bτ
i )2

����� − 2g(β, Ψτ , y(i), b̂τ
i )]

The objective negative log-likelihood to be

lLap(β, Ψτ
|y) =

M�

i=1
lLap(β, Ψτ

|y(i)) (3.11)

where M is the number of groups.
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3.4 Analysis of Census Bureau Data

As discussed and examined in Section 2.5, several outcomes listed in Table 2.5

for the US Census Bureau Data (US Census Bureau, 2007) are interconnected and

are affected by other predictor variables in Table 2.6. Although the multivariate

Bernoulli LASSO model is capable of capturing both the significant variables and

the graph structure as demonstrated in the simulations of Section 2.5, it fails to

consider the special structure of the dataset especially for the US Census Bureau

Data.

As mentioned before, the data set includes observational quantities from over

2000 counties in all 50 states of US, but it is also paramount to consider the mutual

influences among the counties. The independence of the counties within the same

state is challenged by the fact that the counties share the same government fiscal

policy of state level and without doubt correlated more than out-of-state counties.

Therefore, we consider a random intercept on the state level for all the f functions

in the model.

Outcome Variance
Poverty Rate 0.076

Unemployment Rate 0.076
Population Change Rate 0.083
Poverty * Unemployment 0.074

Poverty * Pop Change 0.086
Unemployment * Pop Change 0.088

p value 0.186
Table 3.1: Estimated variance of random effects for both node and edge effects in
US census Bureau data.

The multivariate Bernoulli mixed-effects model is applied to the data with the
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same outcomes and covariate as in Section 2.5. Since there is very weak third order

clique effect in the graph, we restrict our attention only on node and edge effects.

This is plausible due to difficulty of interpreting random effect on clique levels.

Table 3.1 illustrate the estimated variance of the random effects on the nodes

and the edges. The variation is small in general, which indicates there are not much

difference between the counties from different states. This can also be seen from

the p value 0.186 shown in the table. The p value is calculated via the likelihood

ratio test and based on χ2 test with degrees of freedom 6.
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Chapter 4

R Packages

4.1 Introduction

The statistical models for data analysis are important since without rigorous

theory, there is no guarantee the results will have power and efficiency in real

applications. Nevertheless, it is also paramount to build reliable software to fit

general use of the statistical models and this chapter is designed for two R packages

(R Development Core Team, 2005) for two different models.

This chapter is organized with two sections. Section 4.2 introduces the devel-

opment of MVB, which stands for the multivariate Bernoulli. The package includes

the necessary functions to implement the models introduced in Chapters 1, 2 and

3. In addition, Section 4.3 is devoted to numerical examples of another optimiza-

tion technique called orthogonalizing expectation maximization (OEM) algorithm.

The approach is designed for fitting regularized linear regression by utilizing the

popular EM technique proposed by Dempster et al. (1977). The results are built on



64

Xiong et al. (2011).

4.2 Multivariate Bernoulli Fitting

The R package MVB, is short for Multivariate Bernoulli. It is developed to im-

plement the functionality studied in this thesis. To speed up the calculation, the

main process of the algorithm is written in objective-oriented C++ with the help

of powerful R package Rcpp (Eddelbuettel and Francois, 2011). In addition, as

the algorithms involve significant linear algebra calculations, several routines of

RcppArmadillo (Armadillo Project, 2012), (Sanderson, 2010) are linked to carry out

matrix manipulations.

Table 4.1 displayed the functions in the packages and their descriptions.

Name Description
unifit Fit generalized linear model (Gaussian and binomial)
unilps Fit generalized linear LASSO model using LASSO pattern search
mvbfit Fit multivariate Bernoulli model
mvblps Fit multivariate Benroulli LASSO model
stepfit Fit step-wise (forward or backward) multivariate Benroulli model
mvbme Fit multivariate Bernoulli mixed effects model
plot Plot solution path for lps object

Table 4.1: Functions in package MVB.

The documentation for the functions are also available in the package with

detailed functionality and arguments. The package is published on CRAN (http:

//cran.r-project.org).

http://cran.r-project.org
http://cran.r-project.org
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4.3 Orthogonalizing EM

Introduction

Recently, non-convex penalized regression problem such as smoothly clipped

absolute deviation (SCAD) penalty proposed in Fan and Li (2001) and minimax

concave penalty (MCP) discussed in Zhang (2010) gains popularity in statistical

machine learning. However, these penalized regression problems have multiple

local optima, as a result, finding a local solution to achieve the so-called oracle

property is an open problem. An iterative algorithm is proposed, called the or-

thogonalizing EM (OEM) algorithm, to fill this gap. The development of the

algorithm draws direct impetus from a missing-data problem arising in design of

experiments with an orthogonal complete matrix. In each iteration, the algorithm

imputes the missing data based on the current estimates of the parameters and

updates a closed-form solution associated with the complete data. By introducing

a procedure called active orthogonization, the algorithm is broadly applicable to

problems with arbitrary regression matrices. In addition to the SCAD and MCP,

the proposed algorithm works for other penalties such as LASSO and nonnega-

tive garrote. Convergence and convergence rate of the algorithm are examined in

Xiong et al. (2011). For various penalties, an OEM sequence converges to a point

having grouping coherence for fully aliased regression matrices. For computing

the ordinary least squares estimator with a singular regression matrix, an OEM

sequence converges to the Moore-Penrose generalized inverse-based least squares

estimator.

This section is organized into two subsections. First, Subsection Model Formu-
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lation formulates the penalized least squares problem and discusses the procedure

for OEM algorithm. Then Subsection Numerical Examples illustrates the group

coherence property of the algorithm with several simulation examples and com-

pare the efficiency of OEM and coordinates descent studied in Friedman et al.

(2010) and Breheny and Huang (2011) under different scenarios.

Model Formulation

Consider the linear model,

Y = Xβ + �, (4.1)

where Y is the response vector of length n and X is the design matrix of size

n × p. β = (β1, . . . , βp)� is the vector of regression coefficients and the distribution

of the error term is � ∼ N(0, σ�In). The general form for a penalized least square

problem is to solve a minimization problem involving sum of squares and penalty

of regression coefficients,

min
β



||Y − Xβ||
2 + 2

p�

j=1
Pλ(|βj|)



 , (4.2)

where Pλ is penalty function tuned by λ.

The choice of the Pλ function is important in statistical machine learning and

there are several different ones proposed and already proved to be efficient and

powerful. For instance, when Pλ(|βj|) = λ|βj|, it is the LASSO penalty discussed
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in Chapter 2. Moreover, the SCAD penalty has the form

P �
λ
(θ) = λI(θ ≤ λ) + (aλ − θ)+(θ > λ)/(a − 1), for θ > 0, (4.3)

here a > 2, λ > 0 are the tuning parameters, and I is the indicator function.

In statistical design theory, orthogonalization is important and in most experi-

ments a desired property. Details can be referred to statistical experiments design

textbooks such as Box and Draper (2007) and Wu and Hamada (2009). Therefore,

the OEM is motivated by orthogonalizing the design matrix X in (4.2) and as a

result, the problem has a trivial explicit solution. The orthogonalization process

involves imputing more observations, in other words, the original design matrix

X is a sub-matrix of an m × p complete orthogonal matrix

Xc = (XT ∆T )T , (4.4)

where δ is the (m − n) × p missing matrix. At the same time, the response vector is

also needed to be imputed to

Yc = (Y T Y T

∆ )T , (4.5)

where Y∆ is defined corresponding to ∆. If Y∆ is observable, then the ordinary

least squares estimator of β based on the complete data (Yc, Xc) has a closed form

solution. In light of this fact, Healy and Westmacott (1956) developed an iterative

procedure to compute ordinary least squares estimator βOLS . The OEM algorithm

follows the same paradigm but solving the penalized least squares problem (4.2)
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instead. The idea called active orthogonalization is to expand the design matrix

into an orthogonal matrix and thus obtains the explicit solution of the problem.

Define

A = ∆T ∆. (4.6)

Let (d1, . . . , dp) be the diagonal elements of XT

c
Xc. The OEM algorithm to solve (4.2)

proceeds as follows. Denote β(0) as the initial estimate of β, then for k = 1, 2, . . .,

impute Y∆ as Y∆ = ∆β(k), and solve

β(k+1) = argmin
β



||Yc − Xcβ||
2 + 2

p�

j=1
Pλ(|βj|)



 , (4.7)

until {β(k)} converges. Letting

u = (u1, . . . , up)T = XT Y + Aβ(k),

equation (4.7) can be rewritten as

β(k+1) = argmin
β




p�

j=1
(djβ

2
j

− 2ujβj) + 2
p�

j=1
Pλ(|βj|)



 , (4.8)

which is separable in components of β.

Generally, the design matrix X used in (4.2) is standardized to have mean 0

and variance 1 with dj ≥ 1 for all j. Various penalized least squares can be solved

by this iterative procedure and Xiong et al. (2011) lists explicit solutions for several

popular penalties including the LASSO (Tibshirani, 1996), the nonnegative garrote
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(Breiman, 1995), the elastic-net (Zou and Hastie, 2005) and the MCP (Zhang, 2010).

These penalties are implemented in the R package oem.

Numerical Examples

In this subsection, we illustrate the algorithm using simulation examples, to

assess both statistical properties and computational efficiency of OEM. As a general

optimization approach, OEM can be employed to both penalized and unpenalized

least squares problems and we show its application to SCAD and generalized

inverse by comparing it with several existing R packages.

Group Coherence

The optimization problem for LASSO is convex but not strictly when there are

predictor variables perfectly correlated. The coordinate descent (CD) algorithm

and LARS utilize a marginal approach so only one of the group of correlated

variables will be included in the final solution path whereas all the others will

be estimated as zero for any tuning parameter λ. However, the OEM algorithm

examines all the predictor variables in every iteration, and consequently will give

equal weights to all the components in the perfectly correlated group of predictor

variables. Therefore, the OEM exhibits a different solution path from CD on the

same data set although both algorithms land on local minimum of the target

function.

Consider a data set with 4 predictor variables in which case the variables X1

and X2 are generated from independent standard normal distributions. In addition,

the degenerated design matrix is formulated by X3 = −X1 and X4 = −X2. In other
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words, the predictors consist two pairs of perfectly negative correlated random

variables. The true linear relationship between the response and the predictors is

Y = X3 + 2X4 (4.9)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

negative Log Lambda

C
oe

ffi
ci

en
t

0 1 2 3 4 5

−0
.4

0.
0

0.
2

0.
4

negative Log Lambda

C
oe

ffi
ci

en
ts

Figure 4.1: Solution paths of LASSO fitted by CD (from package glmnet) in the
upper panel and OEM for the lower panel.

Figure 4.1 displays the solution paths for this data set using LASSO fitted from
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R packages glmnet and oem on the same set of tuning parameters λ. Notice here

the package lars gives the exactly same solution path as glmnet. A close scrutiny

of the solutions reveals that OEM estimates the perfectly negative correlated pairs

to have exactly the opposite signs but CD only has X1 and X2 in the model and

fixes X3 and X4 to be zero for any λ. This effect is due to the fact that in every

iteration, both CD and LARS will find the predictor with the largest improvement

on the target function and if more than one coordinates can give a better residual

sum of squares, only the one with the smallest index will enter the model. On the

other hand, OEM considers all the predictors in every iteration so the ones with

same contribution to the target will receive equal steps. One remark to the group

coherence is that this property is automatically maintained for group LASSO when

the perfectly correlated variables reside in the same group since they are penalized

by l2 or so-called ridge penalty instead of l1. Nevertheless, group LASSO still

suffers this not strictly convex problem when the correlated predictors appear in

different groups where the penalty is still of l1 structure.

This group coherence property of OEM over CD is also true for non-convex

penalties such as SCAD, with the solution paths shown in figure 4.2

Computational Efficiency

As mentioned in this paper, OEM is suitable for various penalized least squares

problem. The R package glmnet implemented in Fortran is the fastest in fitting

LASSO and is superior in most scenarios to our package oem, which is written in

C++ . In this section, we compare computational efficiency of OEM and the package

ncvreg developer in C on SCAD penalty.
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Figure 4.2: Solution paths of SCAD fitted by CD (from package ncvreg) in the
upper panel and OEM for the lower panel.

To begin with, we consider the cases when the sample size n is significantly

larger than the number of variables p. Three different covariance matrices struc-

tures were considered for the predictor variables. The first is the case where all

the variables are independently generated from standard normal distribution, the

second and third cases involve design matrix with correlations structure among
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the covariate

Cor(Xi, Xj) = ρ|i−j| for i, j = 1, . . . , p

We consider two special examples when ρ = 0.2, 0.8 in the following simulations.

On the other hand, the response is generated independent of the design matrix

therefore the true model is

Y = 0 (4.10)

To compare the performance of OEM and CD algorithms for SCAD penalty, the

data are generated 10 times and the average runtime in seconds are shown in table

4.2. Here the CD algorithm was carried out in ncvreg and OEM was implemented

by oem.

p n
OEM CD

ρ = 0 ρ = 0.2 ρ = 0.8 ρ = 0 ρ = 0.2 ρ = 0.8

20
400 0.0052 0.0059 0.0240 0.0451 0.0245 0.0209
1000 0.0061 0.0073 0.0262 0.0449 0.0516 0.0452
2000 0.0088 0.0099 0.0277 0.0826 0.0927 0.0844

50
1000 0.0189 0.0261 0.1803 0.1398 0.1437 0.1797
2500 0.0311 0.0380 0.1918 0.4483 0.4808 0.4613
5000 0.0609 0.0689 0.2291 0.833 0.9233 0.8912

100
2000 0.0946 0.1193 1.0037 0.8865 0.8612 0.9964
5000 0.1689 0.2085 1.1002 2.2004 2.4043 2.691
10000 0.4551 0.5342 1.2832 4.8513 5.6488 7.7149

Table 4.2: Average runtime in seconds comparison between OEM and CD for SCAD
when n is larger than p.

From the table, it is not hard to see that OEM has advantages when the sample
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size is significantly larger than the number of variables especially for independent

design. On the other hands, both algorithms require more fitting time when the

correlations among the covariate increase but OEM still keeps the lead.

What’s more, with recent improvement of techniques in genetic studies, there

are more and more data sets with large p small n. We also compared these two

aforementioned algorithms in this scenario as illustrated in table 4.3. It turns out

that the coordinate descent algorithm is faster and the computational gap gets

wider when the ratio of p/n increases.

p n
OEM CD

ρ = 0 ρ = 0.2 ρ = 0.8 ρ = 0 ρ = 0.2 ρ = 0.8

200
100 0.8425 0.9703 1.2412 0.1430 0.1584 0.1505
200 6.2634 6.784 8.4708 0.4800 0.4728 0.462
400 3.0315 3.2366 6.7653 0.8429 0.8311 1.0044

500
250 4.7629 5.1432 7.0855 1.3622 1.421 1.1643
500 51.338 51.941 57.536 4.4924 4.4082 3.4217
1000 31.070 32.631 54.069 10.175 9.0097 9.8956

1000
500 7.8277 8.6695 23.833 8.5252 8.1363 7.2247
1000 741.54 978.13 1063.7 64.216 67.935 45.511
2000 658.19 676.82 739.18 152.80 129.01 100.25

1200
100 14.313 12.049 14.722 0.9061 0.8197 0.9102
150 20.443 15.972 18.676 1.8636 1.3811 1.3246
240 24.885 20.313 24.714 3.6128 2.7939 2.5308

Table 4.3: Average runtime in seconds comparison between OEM and CD for SCAD
for large p.

A close scrutiny of the two algorithms reveals that they take similar number of

iterations but the computation of OEM required a one time computation of matrix

multiplication XT X and the complexity of this process is O(np2), which dominates
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the algorithm especially when p is very large. This is the main drawback of the

OEM algorithm.

Generalized Inverse

OEM algorithm as a general optimization approach does not only apply to

penalized least squares problem but also suitable for solving ordinary least squares

problem. When the design matrix is of full rank, the QR decomposition is proved

to be efficient but we concentrate on finding the solution of generalized inverse

when the design matrix is degenerated. Moore-Penrose pseudo-inverse is widely

used as a best fit to system of linear equations when there is no unique solution and

when applied to this degenerated system, OEM converges to the Moore-Penrose

pseudo-inverse.

n p OEM pinv

50, 000

10 0.0433 0.0956
50 0.2439 0.4098
200 1.4156 4.9765
1000 5.4165 45.3270
5, 000 72.0630 442.3300

Table 4.4: Average runtime in seconds comparison among OEM and generalized
inverse for n > p.

In MATLAB, the function pinv is used for computing Moore-Penrose pseudo-

inverse. The approach is to solve the singular value decomposition of design

matrix X . The method is thus prohibitive when both dimensions p and n of X

is large. Tables 4.4 and 4.5 compare oem and ginv in solving MooreâĂŞPenrose

pseudo-inverse of degenerated linear systems. The data was generated with X
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following independent standard normal distribution but the response Y from

another standard normal distribution which is independent of X like in 4.10. A

new predictor variable calculated as the mean of all the other covariate is added to

degenerate the design matrix so that there is no unique solution to the ordinary

least square problem.

p n OEM pinv

50, 000

10 0.0482 0.1153
50 0.4203 0.4176
200 1.9159 5.2053
1000 8.4626 47.7653
5, 000 71.8477 440.6741

Table 4.5: Average runtime in seconds comparison among OEM and generalized
inverse for p > n.

Both OEM and pinv will converge to Moore-Penrose pseudo-inverse solution

and their solutions differ by less than the tolerance of the algorithms. From the

tables, it can be inferred that pinv is efficient when any dimension of the design

matrix not too large, which determines the complexity of singular value decompo-

sition. On the other hand, OEM is superior in any combinations of n and p since

the eigenvalue we need in the procedure of OEM only requires power method

applied to XT X or XXT so only the smaller of them will be computed. Thus, the

complexity of OEM is dependent also on the smaller of n and p but in a more

efficient way as illustrated in 4.4 and 4.5. Notice here the R function ginv can also

be applied to this problem but is significantly slower than pinv.
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Appendix A

Proofs

Proof. of Proposition 1.1

With the joint density function of the random vector (Y1, Y2), the marginal

distribution of Y1 can be derived

P (Y1 = 1) = P (Y1 = 1, Y2 = 0) + P (Y1 = 1, Y2 = 1)

= p10 + p11.

Similarly,

P (Y1 = 0) = p00 + p11.

Combining the side condition of the parameters p’s,

P (Y1 = 1) + P (Y1 = 0) = p00 + p01 + p10 + p11 = 1.
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This demonstrates that Y1 follows the univariate Bernoulli distribution and its

density function is (1.1).

Regarding the conditional distribution, notice that

P (Y1 = 0|Y2 = 0) = P (Y1 = 0, Y2 = 0)
P (Y2 = 0)

= p00
p00 + p10

,

and the same process can be repeated to get

P (Y1 = 1|Y2 = 0) = p10
p00 + p10

.

Hence, it is clear that with condition Y2 = 0, Y1 follows a univariate Bernoulli

distribution as well. The same scenario can be examined for the condition Y2 = 1.

Thus, the conditional distribution of Y1 given Y2 is given as (1.11).

Proof. of Lemma 1.2

Expand the log-linear formulation of the bivariate Bernoulli distribution (1.9)

into factors

P (Y1 = y1, Y2 = y2) = p00 exp(y1f
1) exp(y2f

2) exp(y1y2f
12). (A.1)

It is not hard to see that when f 12 = 0, the density function (A.1) is separable to

two components with only y1 and y2 in them. Therefore, the two random variables

corresponding to the formula are independent. Conversely, when Y1 and Y2 are

independent, their density function should be separable in terms of y1 and y2,

which implies y1y2f 12 = 0 for any possible values of y1 and y2. The assertion
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dictates that f 12 is zero.

Proof. of Lemma 1.3

Consider the log-linear formulation (1.16), the natural parameters f ’s are

combined with products of some components of y. Let us match terms in the

f j1...jrBj1...jr(y) from log-linear formulation (1.16) with the coefficient for the cor-

responding product yj1 . . . yjr terms in (1.13). The exponents of p’s in (1.13) can

be expanded to summations of different products Bτ (y) with τ ∈ T and all the

p’s with yj1 . . . yjr in the exponent have effect on f j1...jr so all the positions other

than j1, . . . jr must be zero. Furthermore, those p’s with positive yj1 . . . yjr in its

exponent appear in the numerator of exp[f j1...jr ] and the product is positive only if

there are even number of 0’s in the positions j1, . . . , jr. The same scenario applies

to the p’s with negative products in the exponents.

What’s more, notice that p00...0 = b(f) and

exp[Sj1...jr ] = exp[
�

1≤s≤r

f js +
�

1≤s<t≤r

f jsjt + · · · + f j1j2...jr ]

=
�

1≤s≤r

exp[f js ]
�

1≤s<t≤r

exp[f jsjt ] · · · exp[f j1j2...jr ] (A.2)

and apply the formula for exp[f j1...jr ] with cancellation of terms in the numerators

and the denominators. The resulting (1.18) can then be verified.

Finally, (1.19) is a trivial extension of (1.18) by exchanging the numerator and

the denominator.

Proof. of Theorem 1.4

Here, we take use of the moment generating function (1.25) but it is also

possible to directly work on the probability density function (1.13). The mgf can
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be rewritten as

ψ(µ1, . . . , µK) = 1
exp[b(f)]

K�

r=1

�

j1≤j2≤...≤jr

exp[Sj1j2...jr ]
r�

k=1
exp [µjk

] . (A.3)

It is not hard to see that this is a polynomial function of the unknown variables

exp(µk) for k = 1, . . . , K. The independence of the random variables Y1, Y2, . . . , YK

is equivalent to that (A.3) can be separated into components of µk or equivalently

exp(µk).

(⇒) If the random vector Y is independent, the moment generating function

should be separable and assume the formulation is

ψ(µ1, . . . , µK) = C
K�

k=1
(αk + βk exp[µk]), (A.4)

where αk and βk are functions of parameters S’s and C is a constant. If we ex-

pand (A.4) to polynomial function of exp[µk] and determine the corresponding

coefficients, (1.20) and (1.21) will be derived.

(⇐) Suppose (1.21) hold, then we have

exp[Sj1j2...jr ] =
r�

k=1
exp[f jk ],

and as a result, the moment generating function can be decomposed to product of
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components of exp[µk] like (A.4) with the following relations

C = 1
exp[b(f)]

αk = 1,

βk = exp[fk],

Proof. of Theorem 1.5

The idea of proving the group independence of multivariate Bernoulli vari-

ables are similar to Theorem 1.4. Instead of decomposing the moment generating

function to products of µk, we only have to separate them into groups with each

only involving the dependent random variables. That is to say, the moment gener-

ating function with two separately independent nodes in the multivariate Bernoulli

should have the form

ψ(µ1, . . . , µK) = (α0 + α1 exp[µ1] + · · · + αr exp[µr])

·(β0 + β1 exp[µr+1] + · · · + βs exp[µK ]).

Matching the corresponding coefficients of this separable moment generating

function and the natural parameters leads to the conclusion (1.22).
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Appendix B

US Census Bureau Results

Tables B.1, B.2, B.3 and B.4 display the results of US Census Bureau Data (US

Census Bureau, 2007). The index shows the corresponding predictor variables in

Table 2.6.

Similar to the discussion in Section 2.5, Supplemental Security Income Recipients

plays the biggest role in both poverty and unemployment rates of the counties. The

higher the supplemental security income recipient percentage in the area, the more

low-income residents in the region, resulting in more poor and people without

jobs.

Furthermore, it seems that the local politics have correlation with economic

indicators such as poverty and unemployment rates. For instance, in models tuned

by AIC, BIC and partially BGACV, the counties with more votes to Democratic

party have high unemployment rate. This is hard to explain since it might be the

case that the voters are disappointed with the current governing party (possibly

Republicans) and move to favor other party. It is also likely that the Democrat as
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the ruling party failed to promote employment. The covariate in the graph implies

only association or co-occurrence instead of causality.
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