
Statistics 860 Lecture 8

The next slide gives a thin plate spline demo. The
’true function’ is Franke’s principal test function, an
old, popular example for testing two dimensional smooth-
ing methods. This lecture will discuss the thin plate
spline, and other isotropic methods for smoothing in
two and sometimes more dimensions. Later we will
discuss methods that are not isotropic (SS-ANOVA).
c©G. Wahba 2016
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Thin plate splines: one version of splines on Ed. Let
d = 2,m = 2,

< u, v >∗
=
∫∫∞
−∞ ux1x1vx1x1 + 2ux1x2vx1x2 + ux2x2vx2x2dx1dx2.

< u, u >∗= 0 for u(x1, x2) = 1, x1 and x2. (Planar
functions)

< u, u >∗=
∫ ∫

u2
x1x1

+ 2u2
x1x2

+ u2
x2x2

dx1dx2

d = 2, general m

< u, v >∗

=
∫∫ m∑

ν=0

(
m
ν

)(
∂mu

∂xν1∂x
m−ν
2

)(
∂mv

∂xν1∂x
m−ν
2

)
dx1dx2.
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‖ u ‖2∗ =
∫∫ (

∂mu

∂xm1

)2

+

(
m
1

) ∂mu

∂xm−1
1 ∂x1

2

2

+ ...+

(
∂mu

∂xm2

)2

dx1dx2.



Null space: M =

(
d+m− 1

d

)
polynomials of total

degree m− 1 or less.

For d = 2,m = 3, then M =

(
d+m− 1

d

)
=(

4
2

)
= 6.

The null space is spanned by {φ(x1, x2)}
= {1, x1, x2, x

2
1, x

2
2, x1x2}.

The form for general d,m is

< u, v >∗=
∑

α1+···+αd=m

m!

α1! · · ·αd!

∫ ∞
−∞
· · ·

∫ ∞
−∞

(
∂mu

∂x
α1
1 · · · ∂x

αd
d

)(
∂mv

∂x
α1
1 · · · ∂x

αd
d

)∏
j

dxj.

Need 2m− d > 0.
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Find f = f(x1, ..., xd) ∈ H to minimize

1

n

n∑
i=1

(Lif − yi)2 + λJdm(f)

where Jdm(f) =< f, f >∗.
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Define Em(s, t) = E(‖s− t‖) = Edm(s, t).

E(τ) = θm,d|τ |2m−d ln |τ | 2m− d is even
= θm,d|τ |2m−d otherwise

where

θm,d = (−1)d/2+1+m

22m−1πd/2(m−1)!(m−d/2)!
2m− d is even

θm,d = Γ(d/2−m)
22mπd/2(m−1)!

otherwise
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Generalized Divided Differences in Ed (GDD)

Let {φν(s)}Mν=1 span theM =

(
d+m− 1

d

)
poly-

nomials of total degree less than m in Ed.

For example d=2, m=3.

φ1(x1, x2) = 1, φ2(x1, x2) = x1,
φ3(x1, x2) = x2, φ4(x1, x2) = x2

1,
φ5(x1, x2) = x2

2, φ6(x1, x2) = x1x2.

{
t1, ..., tn
α1, ..., αn

}
, ti ∈ Ed, αi real numbers, are called a

GDD if {t1, ..., tn} is a unisolvent set and∑n
j=1αjφν(tj) = 0, ν = 1, ...,M . Unisolvent means:

Least squares regression on {φν} is unique.
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Theorem Meinguet (1978)

Let
{

t1, ..., tn
α1, ..., αn

}
be a GDD, let

{
s1, ..., sK
β1, ..., βK

}
be a

GDD, let Et(s) = Edm(‖t− s‖), then

<
n∑

j=1

αjEtj ,
K∑
k=1

βkEsk >∗=
∑
j,k

αjβkE
d
m(‖tj−sk‖).

“reproducing like property”.
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End result will be

Let t(1), ..., t(n) ∈ Ed where t(i) = (x1(i), ..., xd(i))

and suppose the matrix Tn×M with iνth entry φν(t(i))

is of rank M . ({t(i)} is a unisolvet set). Let X be an
appropriate Hilbert space of real-valued functions on
Ed for which Jdm(f) < ∞. Then the solution to the
problem: find f ∈ X to minimize

1

n

n∑
i=1

(Lif − yi)2 + λJdm(f)

is unique, and ....
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and has a representation

fλ(t) =
M∑
ν=1

dνφν(t) +
n∑
i=1

ciEt(i)(t)

where d = (d1, ..., dM)′ and c = (c1, ..., cn)′ satisfy

(K + nλI)c+ Td = y

T ′c = 0

{Kij} = Edm(t(i), t(j)).

Thus Edm(s, t) “acts like” it is an RK even though it is
not. (Edm(s, s) = 0, for example).

Remark: T of rankM and T ′c = 0⇒
{
t(1), ..., t(n)
c1, ..., cn

}
is a GDD.

10



Original results on thin plate splines are due to Duchon
and Menguet (see references in the book) - the argu-
ment here will be different although will use their re-
sults.

Conditionally Positive Definite Functions: C. Mic-
chelli (1986) in Constructive Approximation 2: 11-22
(in pdf1/micchelli.interpolation.86.pdf)

Let s, t ∈ Ed. K(s, t) is said to be ‘conditionally posi-

tive definite of orderm’ if for any GDD
{
t(1), ..., t(n)
c1, ..., cn

}
,

∑
i,j=1

cicjK(t(i), t(j)) > 0
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Micchelli characterized the class of conditionally posi-
tive definite functions. Edm is conditionally p.d. of order
m.

If

f =
M∑
ν=1

dνφν(t) +
n∑
i=1

ciEt(i)(t)

with T ′c = 0,

then Jdm(f) = c′Kc with Kij = Edm(‖t(i)− t(j)‖).
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So consider

(K + nλI)c+ Td = y

T ′c = 0 (∗)

If T = (Q1 : Q2)

(
R
0

)

then
{
t(1), ..., t(n)
qj1, ..., qjn

}
where qj = (qj1, ..., qjn)′ is

a column of Q2, is a GDD because T ′qj = 0.

Recall: c = Q2[Q′2(K+nλI)Q2]−1Q′2y is the solu-
tion to (∗). Also K is not positive definite (only condi-
tionally positive definite). Q′2KQ2 is positive definite.
So same software can be used here as if you have a
strictly positive definite RK!

D. Bates, M. Lindstrom, G. Wahba, and B. Yandell. GCVPACK-
Routines for generalized cross validation. Commun. Statist.
Simul. Comput., 16:263–297, 1987.
[bates.lindstrom.wahba.yandell.86.pdf]
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G. Wahba and J. Wendelberger. Some new mathematical meth-

ods for variational objective analysis using splines and cross-

validation. Monthly Weather Review, 108:1122–1145, 1980.

[wahba.wendelberger.pdf]



Claim Q′2KQ2 is positive definite.

Proof: Let q be the lth column ofQ2,
{
t(1), ..., t(n)
qj1, ..., qjn

}
is a GDD because qli satisfies T ′ql = 0. Therefore∑n−M
k=1 rkqk is a GDD for any r = (r1, ..., rn−M)′.

So r′Q′2KQ2r > 0 since K is a positive definite on
GDD’s.

So we can write Q′2KQ2 = UDU ′ as before with
dν ≥ 0 and I −A(λ) = Q2U [diag( nλ

nλ+dν
)]U ′Q′2 as

before. ♦
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Radial Basis Functions (rbf):
Recently popular in machine learning. For this class
we define an rbf as a basis function Kt(·) obtained
from any symmetric positive definite function K(s, t)

on Ed×Ed of the form K(s, t) = r(‖ s− t ‖) where
‖ s− t ‖ is Euclidean distance.

Sometimes this definition is taken to include condi-
tionally positive definite functions in which case Ed

will be included. Also functions of the form K(s, t) =

r(‖B(s−t)‖) where B is some invertible d×dmatrix
are sometimes included.
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K(s, t) =
∫
· · ·

∫
eiω·(s−t)H(ω)

d∏
ν=1

dων

with H(ω) ≥ 0, where ω = (ω1, ..., ωd), is always
positive symmetric definite if it exists.

n∑
j,k=1

ajakK(t(j), t(k))

=
∫
· · ·

∫ n∑
j,k=1

ajake
[iω·t(j)−iω·t(k)]H(ω)

d∏
ν=1

dων

=
∫
· · ·

∫ n∑
j=1

aje
iω·t(j)

n∑
k=1

ake
−iω·t(k) ·H(ω)

d∏
ν=1

dων

=
∫
· · ·

∫ ∣∣∣∣∣∣
n∑
j

aje
iω·t(j)

∣∣∣∣∣∣
2

H(ω)
d∏

ν=1

dων

≥0
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Consider for u ∈ Ed,

g(u) =
∫
· · ·

∫
eiω·uH(ω)

d∏
ν=1

dων

Let H(ω) = h(‖ω‖), change ω to polar coordinates.

H(ω1, ..., ωd) = H(‖ω‖,0, ...,0) = h(‖ω‖).

Let g(u) = r(‖u‖) where

r(t) = 2
d−2

2 Γ(
d

2
)
∫ ∞

0

Jd−2
2

(ωt)h(ω)

(ωt)
d−2

2

dω,

where Jν(x) is the Bessel function of first kind of ν-th
order. Any r(t) of this form gives rise to a family of
rbf’s via

Kt(s) = r(‖t− s‖).

(Skorohod and Yadrenko 1973, Th. Prob. Applic.)
*skorokhod.yadrenko.1973.pdf
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Popular approximation in machine learning:

Given yi, ti, i = 1, ..., n, t(i) ∈ Ed;
Choose K s.p.d. on Ed

The Gaussian rbf is popular: r(τ) = e
−‖τ‖

2

2σ2 .
σ2 must be chosen.
Choose “centers”, u1, ..., uK ∈ Ed “somehow”; usu-
ally the observation points, or a subset of the obser-
vation points if the data set is large.

Find f(·) =
∑K
k=1 ckKuk(·) =

∑K
k=1 ckr(‖uk − ·‖)

to minimize

1

n

n∑
i=1

(f(ti)− yi)2 + λc′Jc

where Jjk = r(‖uj − uk‖), j, k = 1, · · · ,K.
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Some members of the Matern class of radial basis
functions (rbf’s). r(τ)is the rbf, τ = ‖s− t‖.

r(τ)
1

α
e−ατ m = 0

1

α3
e−ατ [1 + ατ ] m = 1

1

α5
e−ατ [3 + 3ατ + α2τ2] m = 2

1

α7
e−ατ [15 + 15ατ + 6α2τ2 + α3τ3] m = 3

· · · · · ·
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Matern class of covariances are Fourier transforms of
an especially simple form: Km,d,α(s, t) =∫ ∞
∞
· · ·

∫ ∞
∞

ei(s−t)·ω(‖ω‖2+α2)−
d+2m+1

2 dω1 · · · dωd.

Furthermore, it can be shown that ‖f‖2K =∫ ∞
∞
· · ·

∫ ∞
∞

(‖ω‖2+α2)
d+2m+1

2 |f̃(ω1, · · · , ωd)|dω1 · · · dωd

where d is dimension, f̃ is the Fourier transform of f ,
and m is related to the number of derivatives that are
bounded linear functionals.
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The next three slides are courtesy John Carew, see
Carew, Dalal, Wahba and Fain, Estimating Arterial
Wall Shear Stress(2003), tr1088.pdf
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Figure 9: Fluid velocity and wall shear stress estimates in a straight glass tube
phantom with a circular cross-section. The raw velocity measurements are in A. The
nonparametric fit with ν = 4 and λ = 300 is in B. The fitted velocity function appears
parabolic, which is predicted by physical principles. In D are the WSS estimates and
95% Bayesian confidence intervals. The diagram in C shows how the measurements
are ordered in D. Starting at the point with the largest value along the x-axis the
order of the WSS estimates increase counter clockwise, indexed by the angle.
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Figure 11: Fluid velocity and wall shear stress estimates in a straight glass tube
phantom with non-convex cross section. The nonparametric fit uses ν = 4 and
λ = 150. The shear stress estimates are ordered as described in Figure 9C. The WSS
is nearly constant except for the region near the indentation where the shear stress
increases. The increased shear can be seen through the more closely-spaced contour
lines on the velocity image near the center of the indentation. The horizontal line
shows the expected value of WSS calculated for a vessel with a circular cross-section.
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Figure 13: Velocity and WSS in a human carotid bifurcation phantom. The green
line segment that bisects the internal carotid artery in A indicates the orientation of
the imaging plane. The fitted velocity function with ν = 4 and λ = 100 is in B. The
velocity and rate of change of velocity is much higher along the anterior wall of the
vessel than along the posterior wall. The effect of this flow regime is seen in the WSS
estimates in C. The point estimates are ordered as in Figure 9 and the intervals are
95% Bayesian confidence intervals.
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