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We present a method for examining the relative influence of famil-
ial, genetic, and environmental covariate information in flexible
nonparametric risk models. Our goal is investigating the relative
importance of these three sources of information as they are
associated with a particular outcome. To that end, we developed
a method for incorporating arbitrary pedigree information in a
smoothing spline ANOVA (SS-ANOVA) model. By expressing pedi-
gree data as a positive semidefinite kernel matrix, the SS-ANOVA
model is able to estimate a log-odds ratio as a multicomponent
function of several variables: one or more functional components
representing information from environmental covariates and/or
genetic marker data and another representing pedigree relation-
ships. We report a case study on models for retinal pigmentary
abnormalities in the Beaver Dam Eye Study. Our model verifies
known facts about the epidemiology of this eye lesion—found
in eyes with early age-related macular degeneration—and shows
significantly increased predictive ability in models that include all
three of the genetic, environmental, and familial data sources.
The case study also shows that models that contain only two
of these data sources, that is, pedigree-environmental covariates,
or pedigree-genetic markers, or environmental covariates-genetic
markers, have comparable predictive ability, but less than the
model with all three. This result is consistent with the notions that
genetic marker data encode—at least in part—pedigree data, and
that familial correlations encode shared environment data as well.

SS-ANOVA | retinal pigmentary abnormalities | RKHS | pedigrees

S moothing spline ANOVA (SS-ANOVA) models (1–4) have
a successful history modeling ocular traits. In particular, an

SS-ANOVA model of retinal pigmentary abnormalities,∗ defined
by the presence of retinal depigmentation and increased retinal
pigmentation (5, 6), was able to show a nonlinear protective effect
of high total serum cholesterol for a cohort of subjects in the
Beaver Dam Eye Study (BDES) (2). However, multiple studies
have reported that risk variants at two loci, near the CFH and
ARMS2 genes, show strong association with the development of
age-related macular degeneration (AMD) (7–18), a leading cause
of blindness and visual disability (19). Because retinal pigmentary
abnormalities are an early sign of age-related macular degenera-
tion, a leading cause of blindness and visual disability in its late
stages (19), we want to make use of genotype data for these two
genes to extend the SS-ANOVA model for pigmentary abnormal-
ities risk. For example, by extending the SS-ANOVA model of Lin
et al. (2) with SNP rs10490924 in the ARMS2 gene region, we were
able to see that the protective effect of total serum cholesterol
disappears in older subjects that have the risk variant of this SNP.
The supporting information (SI) Appendix replicates the model of
Lin et al. (2) and shows the extended model, including the SNP
data. Smoothing spline logistic regression models are able to tease
out these types of complex nonlinear relationships that would not
be detected by more traditional parametric models—linear, or of
prespecified form.

Beyond genetic and environmental effects, we want to extend
the SS-ANOVA model for pigmentary abnormalities with famil-
ial data. For instance, pedigrees (see Representing Pedigree Data
as Kernels) have been ascertained for a large number of subjects
of the BDES. In this article we present a general method that is
able to incorporate arbitrary relationships encoded as a graph,
e.g., pedigree data, into SS-ANOVA models. This method allows
one to examine the importance of relationships between subjects
relative to other model terms in a predictive model.

We estimate SS-ANOVA models of the log-odds of pigmentary
abnormality risk of the form

f (ti) = µ + g1(ti) + g2(ti) + h(z(ti)),

where g1 is a term that includes only genetic marker data (e.g.,
SNPs), g2 is a term containing only environmental covariate data,
and h is a smooth function over a space that encodes relationships
between subjects. In this relationship space, each subject ti may be
thought of as being represented by a “pseudo-attribute” z(ti). In
the remainder of the article we will refer to model terms g1 and
g2 as S (for SNP) and C (for covariates), respectively, and term h
as P (for pedigrees); so, a model containing all three components
will be referred to as S+C+P.

Formally, this SS-ANOVA model is defined over the tensor
sum of multiple reproducing kernel Hilbert spaces: one or more
components representing information from environmental and/or
genetic covariates for each subject (corresponding to terms g1 and
g2 above) and another representing pedigree relationships. The
model is estimated as the solution of a penalized likelihood prob-
lem with an additive penalty including a term for each reproducing
kernel Hilbert space (RKHS) in the ANOVA decomposition, each
weighted by a coefficient. From this decomposition we can mea-
sure the relative importance of each model component (S, C, or
P). Our main tool in extending SS-ANOVA models with pedi-
gree data is the Regularized Kernel Estimation framework (20).
More complex models involving interactions between these three
sources of information are possible but beyond the scope of this
article.

In Smoothing-Spline ANOVA Models we discuss the semiparam-
etric risk models we use in this article; in Representing Pedigree
Data as Kernels we define pedigrees and introduce our method
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to include these data in SS-ANOVA risk models; we follow with
a case study on the Beaver Dam Eye Study and conclude with a
discussion.

Smoothing Spline ANOVA Models
Suppose we are given a dataset of environmental covariates and/or
genetic markers for each of n subjects, with measurements for each
subject represented as numeric vectors xi, along with measured
responses, e.g., presence of pigmentary abnormalities, yi ∈ {0, 1},
i = 1, . . . , n. The SS-ANOVA model estimates the log-odds
f (xi) = log p(xi)

1−p(xi)
, where p(xi) = Pr(yi = 1 | xi), by assuming that

f is a function in an RKHS of the form H = H0 ⊕ H1. H0 is a
finite dimensional space spanned by a set of functions {φ1, . . . , φm},
and H1 is an RKHS induced by a given kernel function k(·, ·)
with the property that 〈k(x, ·), g〉H1 = g(x) for g ∈ H1, and thus,
〈k(xi, ·), k(xj, ·)〉H1 = k(xi, xj). Therefore, f has a semiparametric
form given by

f (x) =
m∑

j=1

djφj(x) + g(x),

for some coefficients dj, where the functions φj have a paramet-
ric, e.g., linear, form and g ∈ H1. H1 is further decomposed by
assuming it is the direct sum of multiple RKHSs, so g ∈ H1 is
defined as

g(x) =
∑

α

gα(xα) +
∑
α<β

gαβ(xα, xβ) + · · ·

where {gα} and {gαβ} satisfy side conditions that generalize the stan-
dard ANOVA side conditions. Functions gα encode “main effects,”
gαβ encode “second-order interactions,” and so on. An RKHS
Hα is associated with each component in this sum, along with
its corresponding kernel function kα. In this case, we can define a
reproducing kernel function for H1 as k(·, ·) = ∑

α θαkα(·, ·) +∑
αβ θαβkαβ(·, ·) + · · · , where the coefficients θ are tunable

hyperparameters that weigh the relative importance of each term
in the decomposition.

The SS-ANOVA estimate of f given data (xi, yi), i = 1, . . . , n,
is given by the solution of a penalized likelihood problem of the
form:

min
f∈H

Iλ(f ) = 1
n

n∑
i=1

l(yi, f (xi)) + Jλ,θ(f ), [1]

where l(yi, f (xi)) = −yif (xi) + log(1 + ef (xi)) is the negative log
likelihood of yi given f (xi) and

Jλ,θ(f ) = λ

⎡
⎣∑

α

θ−1
α ‖Pαf‖2

Hα
+

∑
αβ

θ−1
αβ ‖Pαβf‖2

Hαβ
+ · · ·

⎤
⎦ , [2]

with Pαf the projection of f into RKHS Hα and λ a non-negative
regularization parameter. The penalty Jλ,α(f ) is a seminorm in
RKHS H and penalizes the complexity of f using the norm of the
RKHS H1 to avoid overfitting f to the training data.

By the representer theorem of Kimeldorf and Wahba (21), the
minimizer of the problem in Eq. 1 has a finite representation of
the form

f (·) =
m∑

j=1

djφj(·) +
n∑

i=1

cik(xi, ·),

in which case ‖P1f‖2
H1

= cT Kc for matrix K with Kij = k(xi, xj).
Thus, for a given value of the regularization parameter λ the
minimizer fλ can be estimated by solving the following convex
nonlinear optimization problem:

min
c∈Rn ,d∈Rm

n∑
i=1

−yif (xi) + log(1 + ef (xi)) + nλcT Kc, [3]

where f = [f (x1) . . . f (xn)]T = Td + Kc with Tij = φj(xi). This
model requires that hyperparameters, λ, the coefficients θ of the
ANOVA decomposition, and any other hyperparameter in kernel
functions kα be chosen. In this article, we will use the generalized
approximate cross-validation (GACV) method, an approximation
to the leave-one-out approximation of the comparative Kullback–
Leibler distance between the estimate fλ and the unknown “true”
log-odds f (3).

In models that have genetic, environmental, and familial com-
ponents, the ANOVA decomposition can be used to measure
the relative importance of each function component with suit-
ably chosen kernel functions kα. For genetic and environmental
components, standard kernel functions can be used to define the
corresponding RKHS. However, pedigree data are not repre-
sented as feature vectors for which standard kernel functions can
be used. However, the optimization problem in Eq. 3 is specified
completely by the model matrix T and kernel matrix K . In the
next section, we show how to build kernel matrices that encode
familial relationships which can then be included in the estimation
problem.

Representing Pedigree Data as Kernels
A pedigree is an acyclic graph representing a set of genealogi-
cal relationships, where each node corresponds to a member of
the family, and arcs indicate parental relationships. Thus, each
node has two incoming arcs, one for its father and one for its
mother (except founder nodes that have no incoming arcs) and
an outgoing arc for each offspring. We show an example pedigree
in the SI Appendix. We can define a pedigree dissimilarity mea-
sure between subjects by using the Malécot kinship coefficient φ
(22). For individuals i and j in the pedigree this is defined as the
probability that a randomly selected pair of alleles, one from each
individual, are identical by descent (IBD), that is, they are derived
from a common ancestor. For example, the probability of a parent–
offspring pair sharing an IBD allele is 1/4: there is a 50% chance
that randomly choosing one of the two offspring alleles yields that
inherited from the specific parent, and there is a 50% chance that
choosing one of the two parental alleles at random yields the allele
inherited by the offspring.

Definition 1 (Pedigree Dissimilarity): The pedigree dissimilarity
between individuals i and j is defined as dij = − log2(2φij), where
φ is Malécot’s kinship coefficient.

In studies such as the BDES, not all family members are subjects
of the study; therefore, the graphs we will use to represent pedi-
grees in our models only include nodes for study subjects rather
than the entire pedigree. Furthermore, in our study we want to
include exposure to hormone replacement therapy in our pig-
mentary abnormality risk model, so our relationship graphs will
only include female subjects. The SI Appendix shows an exam-
ple of a relationship graph. The main thrust of our methodology
is how to incorporate these relationship graphs—derived from
pedigrees and weighted by a pedigree dissimilarity that captures
genetic relationship—into predictive risk models. In particular,
we want to use nonparametric predictive models that incorporate
other data, both genetic and environmental, under the restriction
that only a subset of pedigree members are fully observed in both
covariates and outcomes. We saw in the previous section that we
can do this by defining a kernel matrix K that encodes pedigree
relationships between the subjects of interest.

The requirement for a valid kernel matrix to be used in the
penalized likelihood estimation problem of Eq. 3 is that the matrix
be positive semidefinite: for any vector α ∈ R

n, αT Kα ≥ 0, denoted
as K � 0. A property of positive semidefinite matrice is that they
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can be interpreted as the matrix of inner products between certain
functions in an RKHS: the kernel matrix K in Eq. 3 is the matrix of
inner products of the evaluation representers k(x, ·) of the given
data points in H1. Finally, since K � 0 contains the inner products
of these representers, we can define a distance metric over these
objects as d2

ij = Kii + Kjj − 2Kij. We make use of this connection
between distances and inner products in the Regularized Kernel
Estimation framework to define a kernel based on the pedigree
dissimilarity of Definition 1.

The Regularized Kernel Estimation (RKE) framework was
introduced by Lu et al. (20) as a robust method for estimating
dissimilarity measures between objects from noisy, incomplete,
inconsistent, and repetitious dissimilarity data. The RKE frame-
work is useful in settings where object classification or clustering is
desired but objects do not easily admit description by fixed-length
feature vectors, but instead, there is access to a source of noisy and
incomplete dissimilarity information between objects. It estimates
a symmetric positive semidefinite kernel matrix K which induces
a real squared distance admitting of an inner product as described
above.

Assume dissimilarity information is given for a subset Ω of the(n
2

)
possible pairs occurring in a training set of n objects, with

the dissimilarity between objects i and j denoted as dij ∈ Ω.
RKE estimates an n-by-n symmetric positive semidefinite kernel
matrix K of size n such that the fitted squared distance between
objects induced by K , d̂2

ij = Kii + Kjj − 2Kij, is as close as possi-
ble to the square of the observed dissimilarities dij ∈Ω. Formally,
RKE solves the following optimization problem with semidefinite
constraints:

min
K�0

∑
dij∈Ω

wij
∣∣d2

ij − d̂2
ij

∣∣ + λrketrace(K). [4]

The parameter λrke ≥ 0 is a regularization parameter that trades
off fit of the dissimilarity data, as given by absolute deviation, and a
penalty, trace(K), on the complexity of K . The trace may be seen
as a proxy for the rank of K ; therefore, RKE is regularized by
penalizing high dimensionality of the space spanned by K . RKE
requires that Ω satisfies a connectivity constraint: the undirected
graph consisting of objects as nodes and edges between them, such
that an edge between nodes i and j is included if dij ∈ Ω, is con-
nected. Additionally, optional weights wij may be associated with
each dij ∈Ω. A method for choosing the regularization parameter
λrke is required, but, by treating λrke as a hyperparameter to the
kernel matrix of the SS-ANOVA problem we can tune by using
the GACV criterion.

The fact that RKE operates on inconsistent dissimilarity data,
rather than distances, is significant in this context. The pedigree
dissimilarity of Definition 1 is not a distance since it does not satisfy
the triangle inequality for general pedigrees. We show an example
where this is the case in SI Appendix.

The solution to the RKE problem is a symmetric positive
semidefinite matrix K from which an embedding Z ∈ R

n×r in
r-dimensional Euclidean space is obtained by decomposing K as
K = ZZT with Z = ΓrΛ

1/2
r , where the n × r matrix Γr and the

r × r diagonal matrix Λr contain the r leading eigenvalues and
eigenvectors of K , respectively. We refer to the ith row of Z as the
vector of “pseudo”-attributes z(i) for subject i. We show an exam-
ple embedding from RKE in SI Appendix. A method for choosing
r is required and we discuss one in Materials and Methods. We may
consider the embedding resulting from RKE as providing a set of
“pseudo”-attributes z(i) for each subject in this pedigree space and
a smooth predictive function may be estimated in this space. In
principle, we should impose a rotational invariance when defining
this smooth function since only distance information was used to
create the embedding, e.g., by using a Matérn family kernel (see
SI Appendix).

Case Study: Beaver Dam Eye Study
The Beaver Dam Eye Study (BDES) is an ongoing population-
based study of age-related ocular disorders. Subjects at baseline,
examined between 1988 and 1990, were a group of 4,926 people
aged 43-86 years who lived in Beaver Dam, WI. A description of
the population and details of the study at baseline may be found in
Klein et al. (23). Although we will only use data from this baseline
study for our experiments, 5-, 10-, and 15-year follow-up data were
also obtained (24–26). Familial relationships of participants were
ascertained and pedigrees constructed (27) for the subset of sub-
jects who had at least one relative in the cohort. Genotype data for
specific SNPs was subsequently generated for those participants
included in the pedigree data.

Our goal in this case study is to use genetic and pedigree data
to extend the work of Lin et al. (2) that studies the association
between retinal pigmentary abnormalities and a number of envi-
ronmental covariates. We estimated SS-ANOVA models of the
form

f (t) = µ + dSNP1,1 · I(X1 = 12) + dSNP1,2 · I(X1 = 22)
+ dSNP2,1 · I(X2 = 12) + dSNP2,2 · I(X2 = 22)
+ f1(sysbp) + f2(chol) + f12(sysbp, chol)
+ dage · age + dbmi · bmi + dhorm · I1(horm)
+ dhist · I2(hist) + dsmoke · I3(smoke) + h(z(t)). [5]

The terms in the first two lines encode the effect of the two
genetic markers (SNPs), the next few terms encode the effect of
the environmental covariates listed in Table 1, and the term h(z(t))
encodes familial effects and is estimated by the methods presented
above. We denote these model components, respectively, as P (for
pedigree), S (for SNP), and C (for covariates). Our goal was to
compare different models containing different combinations of
these components. For example, P-only refers to a model con-
taining only a pedigree component; S+C, to a model containing
components for genetic markers and environmental covariates;
C-only was the original SS-ANOVA model for pigmentary abnor-
malities (2); and P+S+C refers to a model containing components
for all three data sources.

We used area under the receiver operating characteristic (ROC)
curve (28, referred to as AUC) estimated by using 10-fold cross-
validation to compare predictive performance of models with
various component combinations. Fig. 1 summarizes our resultsby
plotting the mean AUC of each model. For pedigree models, Fig.
1 shows the best AUC of either using RKE to define the pedi-
gree kernel or an alternative method described in Materials and
Methods. We include full results in SI Appendix. We can observe
large variation in the AUC reported for most model/method com-
binations over the cross-validation folds, but some features are
apparent: for example, the model with highest overall mean AUC
is the S+C+P model. We carried out pairwise t tests on a few
model comparisons and report P values from estimates where
variance is calculated from the differences in AUC between the
pair of models being compared over the 10 cross-validation folds.

Table 1. Environmental covariates for BDES pigmentary
abnormality risk SS-ANOVA model

Code Units Description

horm yes/no Current usage of hormone replacement therapy
hist yes/no History of heavy drinking
bmi kg/m2 Body mass index
age years Age at baseline
sysbp mmHg Systolic blood pressure
chol mg/dL Total serum cholesterol
smoke yes/no History of smoking
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Fig. 1. AUC comparison of models. Model labels are explained in the text.
Error bars are one standard deviation from the mean. Yellow bars indicate
models containing pedigree data. Full AUC scores are given in SI Appendix,
Table S1.

Although there was high variability in AUC over the 10 cross-
validation folds for most individual models, in general, there was
much less variation in the difference in AUC between the pairs
of models we compare below across the 10 cross-validation folds.
The next few paragraphs summarize and discuss the results from
these tests.

For pedigree-less models, the S+C model containing both
markers and covariates had better AUC than either the S-only
or C-only models (P values, 0.00250 and 0.065, respectively). This
means that combining genetic markers and environmental covari-
ates yields a better model than either data source by itself, a result
consistent with the known epidemiology of pigmentary abnormal-
ities, where risk is associated with both the genetic markers and
environmental covariates included in this model.

The model with the highest overall mean AUC was the S+C+P
model, with statistically significant differences at the 90% level
for all except the S+P (P value, 0.108) model. This is the main
result of our article: a full model containing genetic marker data
along with environmental covariates and pedigree data is the best
performing model for predictive purposes over models that only
contain a subset of these data sources.

Models with only two data sources, i.e., S+C, S+P, and C+P,
performed statistically similarly. That is, there were no statis-
tically significant differences in the predictive performance of
these models, although the C+P model performed slightly bet-
ter. This finding is consistent with the notions that SNP data—at
least in part—encode pedigree data and that familial correlations
encode shared environment data as well. We can see the former
since SNP and pedigree data each add, relatively speaking, about
the same amount of information when combined with covariate
data; neither is strongly more informative than the other in the
present context. In contrast, we can see the latter since combin-
ing SNP and pedigree data is as informative as combining SNP
and covariate data. In summary, models that contain only two
of these data sources, that is, pedigree-environmental covariates,
or pedigree-genetic markers, or environmental covariates-genetic
markers, have comparable predictive ability, while less than the
model with all three.

The ROC curves for models using only two data sources (Fig. 2)
show an interesting trend. We can see that in the high-sensitivity
portion of the curve (false-positive rate between 0 and 0.2), the
S+C model, which does not contain any pedigree data, dominated

Fig. 2. ROC curves for models with two or all three data sources. The legend
includes AUC values of each model in parentheses.

the other two models. However, we see that the pedigree models
dominated the S+C model on the other extreme portion of the
curve (true positive rate higher than 0.8). The ROC curve for the
S+C+P model dominates these three curves throughout ROC
space.

Another observation we can make is that the P-only model had
greater AUC than the S-only model but without a statistically sig-
nificant difference (P value, 0.207). However, combining the two
terms improves predictive performance significantly, indicating
that the genetic influence on pigmentary abnormality risk is not
properly modeled by either data source alone.

We conclude this case study by looking at diagnostics of the
resulting models to illustrate the effect of including pedigree data
in the pigmentary abnormalities risk model. Cosine diagnostics
(4, 29) are an illustrative way of displaying the relative weight
of model terms in the SS-ANOVA decomposition. We used the π
diagnostic to compare the S+C+P and S+C models (SI Appendix,
Table S2). We saw that in the pedigree-less S+C model, the envi-
ronmental covariates (C) have 0.66 decomposition weight. How-
ever, in the full S+C+P model, 0.53 of the decomposition weight
is in the pedigree term, while the relative weight of the other two
terms are essentially unchanged: for example, the SNP terms (S)
have 0.17/(0.17+0.26) = 0.39 of the weights of the S and C terms
in the S+C+P model and 0.34 of the weight in the S+C model.
The fact that the C term in the full-data S+C+P model has more
weight than the S term may explain why the C+P model slightly
outperforms the S+P model.

Considering that the full S+C+P model had the best predic-
tion performance and that the pedigree term had a large relative
weight in the model, we may conclude that incorporating familial
relationship data in an SS-ANOVA model as described by our
methodology not only improves the predictive performance of
existing models of pigmentary abnormality risk, but also partly
describes how these three sources of data relate in a predictive
model. Refining this statistical methodology to further understand
the interaction of these data sources would be of both technical
and scientific interest.

Discussion
Throughout our experiments and simulations we have used
genetic marker data in a very simple manner by including single
markers for each gene in an additive model. A more realistic model
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should include multiple markers per gene and would include inter-
action terms between these markers. Although we have data on
two additional markers for each of the two genes included in our
case study (CFH and ARMS2) for a total of six markers (three
per gene), we chose to use the additive model on only two mark-
ers since, for this cohort, this model showed the same predictive
ability as models including all six markers with interaction terms.
Furthermore, due to some missing entries in the genetic marker
data, including multiple markers reduced the sample size.

Along the same lines, we currently use a very simple inheritance
model to define pedigree dissimilarity. Including, for example,
dissimilarities between unrelated subjects should prove advanta-
geous. A simple example would be including a spousal relationship
when defining dissimilarity because this would be capturing some
shared environmental factors. Extensions to this methodology
that include more complex marker models and multiple or more
complex dissimilarity measures are fertile ground for future work.

Other methods for including graph-based data in predictive
models have been proposed recently, especially in the Machine
Learning community. They range from semi-supervised meth-
ods that regularize a predictive model by applying smoothness
penalties over the graph (30), to discriminative graphical models
(31), and methods closer to ours that define kernels from graph
relationships (32).

There are issues in the risk-modeling setting with general pedi-
grees, where relationship graphs encode relationships between
subsets of a study cohort that are usually not explicitly addressed
in the general graph-based setting. Most important is the assump-
tion that, although graph structure has some influence in the
risk model, it is not necessarily an overwhelming influence. Thus,
a model that produces relative weights between components of
the model, one being graph relationships, is required. That is
the motivation for using the SS-ANOVA framework in this arti-
cle. Although graph regularization methods have a parameter
that controls the influence of the graph structure in the predic-
tive model, it is not directly comparable to the influence of other
model components, e.g., genetic data or environmental covari-
ates. However, graphical model techniques define a probabilistic
model over the graph to define the predictive model. This gives
the graph relationships too much influence over the predictive
model in the sense that it imposes conditional independence prop-
erties over subjects determined by the relationship graph that
might not be valid for the other data sources, e.g., environmental
covariates.

Materials and Methods
The model in Eq. 5 included genotype data for the Y402H region of the
complement factor H (CFH) gene and for SNP rs10490924 in the LOC387715
(ARMS2) gene. A variable for each SNP is coded according to the sub-
ject genotype for that SNP as (11,12,22). For identifiability, the 11 level

of each SNP is modeled by the intercept µ, while an indicator variable is
included for each of the other two levels. This results in each level (other
than the 11 level) having its own model coefficient. Functions f1 and f2 are
cubic splines, while f12 uses the tensor product construction (4). The remain-
ing covariates are modeled as linear terms with Ij as indicator functions. All
continuous variables were scaled to lie in the interval [0, 1].

The cohort used were female subjects of the BDES baseline study for which
we had full data for genetic markers, environmental covariates, and pedi-
grees. The cohort was further restricted to those from pedigrees containing
two or more subjects within the cohort (n = 684). This resulted in 175 pedi-
grees in the dataset, with sizes ranging from 2 to 103 subjects. More than
a third of the subjects were in pedigrees with 8 or more observations. We
chose to only include female subjects in this study to make our model a direct
extension of that in Lin et al. (2), which used only female subjects in their
cohort and included exposure to hormone replacement therapy as a covari-
ate. The cross-validation folds used to measure AUC were created such that
for every subject in each test fold, at least one other member of their pedi-
gree was included in the labeled training set. Pedigree kernels were built on
all members of the study cohort with hyperparameters chosen independently
for each fold by using GACV on the labeled training set. Cosine diagnostics
are defined on the vector of fitted “pseudo”-gaussian responses f̂ for the
entire cohort. The π diagnostic decomposes the norm of f̂ according to the
additive terms of the SS-ANOVA decomposition assigning a relative weight
to each term in the model.

The penalized likelihood problem of Eq. 3 was solved by the quasi-Newton
method implemented in the gss R package (33) using the function gssanova0
with slight modifications to address some numerical instabilities. The RKE
semidefinite problem of Eq. 4 was solved by using the CSDP library (34) with
input dissimilarities given by Definition 1. A number of additional edges
between unrelated individuals encoding the “infinite” dissimilarity were
added randomly to the graph. The dissimilarity encoded by these edges was
arbitrarily chosen to be the sum of all dissimilarities in the entire cohort,
whereas the number of additional edges was chosen such that each subject
had an edge to at least 25 other subjects in the cohort (including all members
of the same pedigree). The kernel matrix obtained from RKE was then trun-
cated to those leading eigenvalues that account for 90% of the matrix trace
to create a “pseudo”-attribute embedding. A third-order Matérn kernel was
then built over the points in the resulting embedding (see SI Appendix). Pedi-
gree dissimilarities were derived from kinship coefficients calculated using the
kinship R package (35).

We also tested an alternative to RKE where the pedigree dissimilarity is
treated as a distance and a kernel, e.g., a Matérn kernel, is defined directly
over it. However, since the pedigree dissimilarity does not satisfy the defin-
itions of a distance, the resulting kernel might not be positive semidefinite.
In our implementation, we computed the projection under Frobenius norm
of the resulting kernel matrix to the cone of positive semidefinite matrices,
by setting the negative eigenvalues of the matrix to zero. Since solving the
RKE problem is computationally expensive, this is an attractive alternative
due to its computational efficiency. However, the RKE problem gives a sound
and principled way of generating a kernel encoding relationships, while this
alternative method is ad hoc. Although this efficient alternative might per-
form well in some cases, we expect the RKE method to be more robust and
work better in the general case. Thus, gains in efficiency must be weighted
against possible losses in the general applicability of this alternative method.
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