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Abstract: In this article, we develop regression models with cross-classified responses. Conditional inde-

pendence structures can be explored/exploited through the selective inclusion/exclusion of terms in a certain

functional ANOVAdecomposition, and the estimation is done nonparametrically via the penalized likelihood

method. A cohort of computational and data analytical tools are presented, which include cross-validation for

smoothing parameter selection, Kullback–Leibler projection for model selection, and Bayesian confidence

intervals for odds ratios. Random effects are introduced to model possible correlations such as those found

in longitudinal and clustered data. Empirical performances of the methods are explored in simulation studies

of limited scales, and a real data example is presented using some eyetracking data from linguistic studies.

The techniques are implemented in a suite of R functions, whose usage is briefly described in the appendix.
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Résumé: Dans cet article, nous développons des modèles de régression avec variables réponses provenant

de classifications croisées. Les structures d’indépendance conditionnelle peuvent être explorées/exploitées

grâce à l’inclusion/exclusion de termes dans une décomposition de type anova fonctionnelle et l’estimation

se fait de façon non paramétrique en utilisant la méthode de vraisemblance pénalisée. Un ensemble d’outils

informatiques et d’analyse de données sont présentés et incluent la validation croisée pour la sélection du

paramètre de lissage, la projection de Kullback-Leibler pour la sélection de modèles et les intervalles de

crédibilité bayésiens pour les rapports de cotes. Des effets aléatoires sont inclus dans le modèle pour prendre

en compte les possibles corrélations telles que celles trouvées dans les données longitudinales et en grappes.

Des études de simulations limitées montrent les performances empiriques de ces méthodes. Un vrai jeu de

données sur l’oculométrie dans des études linguistiques est aussi traité. Ces techniques sont implantées dans

un ensemble de fonctions R et nous en présentons brièvement l’utilisation en annexe. La revue canadienne
de statistique 39: 591–609; 2011 © 2011 Société statistique du Canada

1. INTRODUCTION

To motivate the models under development, consider some eyetracking experiments in linguistic

studies, in which participants in front of computer monitors listen to instructions such as “click on

the purple bottle,” and their eye fixation on the “target” (i.e., purple bottle), on some “colour com-

petitor” (e.g., purple pencil), on some “object competitor” (e.g., yellow bottle), or on something

else is monitored during the trial on a fine time grid. The purpose of such studies is to explore how

linguistic variables may affect the ease with which the listeners can select a visually available

referred-to item; more details can be found in Section 7. Our task in this article is to develop
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modeling tools that can be used to estimate the probabilities of the eye fixation on items of the

four different categories, as functions of time. For the ultimate goal of the linguists, the response

is the eye fixation profile along time and the covariates are qualitative linguistic variables. For the

quantitative estimation of the eye fixation profile under fixed linguistic conditions, the task we

are concerned with here, the response is the eye fixation category and the covariate is time.

If one reduces the number of categories to two, say by combining categories, the estimation can

be performed via logistic regression with time as the covariate (or x), so the tools to be developed

generalize logistic regression. The response (or y) in the aforementioned eyetracking data appears

as univariate with four categories, but may also be taken as bivariate of a pair of binary variables

of colour (purple or not) and object (bottle or not); our general treatment allows for multivariate

y with marginals not necessarily binary. The eyetracking data are longitudinal, so observations

are generally correlated at least within each trial if not also within the same human participant

in different trials, and random effects will be incorporated into the setting to accommodate such

correlation.

Write Y = ∏K
k=1 Yk, where Yk = {1, . . . , Nk} are discrete, and consider regression problem

with response y ∈ Y and covariate x ∈ X , where X is a generic domain. We shall employ the

logistic conditional density transform

f (y|x) = eη(x,y)∫
Y eη(x,y)

, (1)

where the integral over Y is summation, and estimate the conditional density f (y|x) via η(x, y);

one may decompose

η(x, y) = η∅ + ηx(x) + ηy(y) + ηxy(x, y), (2)

where the identifiability of ηx(x), ηy(y), ηxy(x, y) depends on appropriate side conditions, and to

ensure a one-to-one transform in (1), one may set η∅ + ηx = 0. Observing (xi, yi), i = 1, . . . , n,

one may estimate η(x, y) = ηy(y) + ηxy(x, y) via the penalized minus log likelihood

−1

n

n∑
i=1

{
η(xi, yi) − log

∫
Y

eη(xi,y)

}
+ λ

2
J(η), (3)

where J(η) is a roughness penalty and the smoothing parameter λ controls the tradeoff between

the goodness-of-fit and the smoothness of the estimate; this is a special case of penalized likeli-

hood conditional density estimation of Gu (1995), with Y discrete. The response y is generally

multivariate and so is the covariate x, so ηy and ηxy can be further decomposed similar to (2);

conditional independence structures among the components of y = (y〈1〉, . . . , y〈K〉) can be ex-

plored/exploited via selective term elimination in such functional ANOVA decompositions, with

details to be filled in later. ForK = 1 andN1 = 2, this reduces to the standard penalized likelihood

logistic regression; see, for example, Gu (2002,sect. 6.7.3). Other special cases of the formulation

include regression with multinomial responses (K = 1, N1 > 2) treated in Lin (1998) and regres-

sion with multivariate Bernoulli responses (N1 = · · · = NK = 2) treated in Gao et al. (2001).

As a special case of an even more general formulation, some existing results can be inherited,

such as the asymptotic convergence and the numerical computation, but the many data analytical

tools to be discussed in this article were not available in Gu (1995). Some of these tools, such

as the Kullback–Leibler projection for model selection, will be adapted from later developments

in other settings, and some of these tools, such as the Bayesian confidence intervals for log odds

ratios and random effects for correlated data, are designed only for a discrete Y .
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When the covariate x is absent, the data are to be aggregated into contingency tables, for

which log-linear models are among standard analytical tools. From this perspective, the mod-

els under development effectively add a nonparametric “x-axis” to the log-linear models that

“disaggregates” contingency tables.

The rest of the article is organized as follows. Some details of the model structure involving

functional ANOVA decompositions are spelled out in Section 2. In Section 3, pertinent technical

details concerning penalized likelihood estimation is reviewed. Model selection and inferential

tools are discussed in Section 4, and mixed-effect models for correlated data are introduced in

Section 5. Simulations of limited scales are conducted in Section 6, and an analysis of some

eyetracking data is presented in Section 7. Section 8 collects a few remarks. To facilitate the

practical application of the tools being developed in this article, a suite of R functions have been

developed, whose usage is briefly described in an appendix.

2. CONDITIONAL DENSITY MODELS

We now fill in some details concerning functional ANOVA decomposition and log-linear models,

which are largely repackaged from materials in the literature. See, for example, Gu (2002,sect.

1.3).

2.1. Functional ANOVA Decomposition
Consider a bivariate function η(x) = η(x〈1〉, x〈2〉) on a domainX = X1 × X2; subscripts in brack-

ets are used in this article to denote coordinates of a point on a multi-dimensional domain while

ordinary subscripts are reserved for multiple points. One may decompose the function through a

functional ANOVA decomposition

η(x〈1〉, x〈2〉) = (I − A1 + A1)(I − A2 + A2)η

= A1A2η + (I − A1)A2η + A1(I − A2)η + (I − A1)(I − A2)η

= η∅ + η1(x〈1〉) + η2(x〈2〉) + η12(x〈1〉, x〈2〉), (4)

where I is the identity operator, A1 and A2 are averaging operators acting on arguments x〈1〉
and x〈2〉, respectively, that satisfy A11 = 1 and A21 = 1, with the main effects η1, η2 and the

interaction η12 satisfying side conditions A1η1 = A1η12 = 0 and A2η2 = A2η12 = 0; examples

of averaging operators include Aη = ∫ b

a
η(x)dx/(b − a), Aη = η(x0), and Aη = ∑m

i=1 η(xi)/m.

The averaging operators on different axes are independent of each other, and (4) has a one-way

ANOVA on X built-in, η(x) = η∅ + ηx(x), with Aηx = A1A2ηx = 0 for ηx = η1 + η2 + η12.

ForX1 × X2 discrete, η(x〈1〉, x〈2〉) is amatrix of “treatmentmeans”µij in the standardANOVA

model notation, with (4) in the form of

µij = µ·· + (µi· − µ··) + (µ·j − µ··) + (µij − µi· − µ·j + µ··) = µ + αi + βj + (αβ)ij,

where µi· = ∑
j cjµij for

∑
j cj = 1, µ·j = ∑

i diµij for
∑

i di = 1, and µ·· = ∑
i,j cjdiµij .

Note that the marginal domains X1 and X2 are generic so can be product domains them-

selves, and (2) is simply (4) in slightly different notation. Similar constructions in more than two

dimensions can be done recursively, or directly via
∏

k(I − Ak + Ak)η.

2.2. Log-Linear Models
A standard log-linear model for an N1 × · · · × NK table is a surrogate Poisson regression model

on Y = ∏K
k=1 Yk for Yk = {1, . . . , Nk}, which is equivalent to density estimation on Y (see

Lindsey, 1997, chap. 3). For a one-to-one logistic density transformf (y) = eη(y)/
∫
Y eη(y), one sets

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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η∅ = 0 in a one-wayANOVAdecompositionη(y) = η∅ + ηy(y) of the log density, and conditional

independence structures among the marginals of y = (y〈1〉, . . . , y〈K〉) can be characterized via the
selective elimination of interaction terms in an ANOVA decomposition of η(y) = ηy(y).

For an example, considerK = 3 with y = (y〈1〉, y〈2〉, y〈3〉). An ANOVA decomposition yields

ηy(y) = η1(y〈1〉) + η2(y〈2〉) + η3(y〈3〉) + η12(y〈1〉, y〈2〉)

+ η13(y〈1〉, y〈3〉) + η23(y〈2〉, y〈3〉) + η123(y〈1〉, y〈2〉, y〈3〉). (5)

Setting η23 + η123 = 0, one has f (y〈1〉, y〈2〉, y〈3〉) ∝ exp{η1 + η2 + η3 + η12 + η13}, so

f (y〈2〉, y〈3〉|y〈1〉) = f (y〈2〉|y〈1〉)f (y〈3〉|y〈1〉), or y〈2〉⊥y〈3〉|y〈1〉. Setting all the interaction terms to

0, an additive model ηy = η1 + η2 + η3 implies the mutual independence of the marginals.

2.3. Log-Linear Regression Models
Adding an x-axis, of interest are models for f (y|x) = eη(x,y)/

∫
Y eη(x,y), where η(x, y) = ηy(y) +

ηxy(x, y).Again takingK = 3 for an example,ηy(y) can still be decomposed as in (5), andηxy(x, y)

can be decomposed in a parallel manner, with x added to the argument lists and to the subscripts

of each term in (5). Setting η23 + η123 + ηx23 + ηx123 = 0 implies y〈2〉⊥y〈3〉|(x, y〈1〉), and the

conditional independence of the y marginals given x can be obtained by setting all interactions

involving more than one y marginals to 0.

Association between the marginals of contingency tables are often characterized via the odds

ratios. Consider K = 2 with y = (y〈1〉, y〈2〉). The log conditional density is given by

η(x, y) = ηy + ηxy = η1 + η2 + η12 + ηx1 + ηx2 + ηx12,

and the log odds ratio depends only on η12 + ηx12,

log
f (y〈1〉, y〈2〉|x)f (y′

〈1〉, y
′
〈2〉|x)

f (y〈1〉, y′
〈2〉|x)f (y′

〈1〉, y〈2〉|x) = η12(y〈1〉, y〈2〉) + ηx12(x, y〈1〉, y〈2〉)

+ η12(y
′
〈1〉, y

′
〈2〉) + ηx12(x, y′

〈1〉, y
′
〈2〉) − η12(y〈1〉, y′

〈2〉)

− ηx12(x, y〈1〉, y′
〈2〉) − η12(y

′
〈1〉, y〈2〉) − ηx12(x, y′

〈1〉, y〈2〉).

(6)

Whenηx12 = 0, the odds ratio is independent ofx, with themodel sitting in between the “saturated”

model and the independence model y〈1〉⊥y〈2〉|x (with η12 + ηx12 = 0); the models developed in

Gao et al. (2001) effectively set ηx12 = 0, not allowing the “saturated” model.

Note that x can also be multidimensional, in which case ηxy can be further decomposed,

allowing for further model choices.

3. PENALIZED LIKELIHOOD ESTIMATION

As noted earlier, the models being considered are special cases of the conditional density estima-

tion formulated in Gu (1995), with Y discrete, and we will review the basics of the approach in

this section; it is assumed that at least part of x is continuous, for otherwise the models would be

parametric. Settings with continuous Y needs alternative treatment due to the cost of numerical

integration, which will be studied elsewhere.

3.1. Reproducing Kernel Hilbert Spaces
The minimization of (3) is implicitly conducted in a Hilbert spaceH ⊆ {η : J(η) < ∞} in which
J(η) is a square semi norm with a finite dimensional null space NJ = {η : J(η) = 0}. A Hilbert

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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space has ametric and a geometry that facilitate analysis and computation, and a finite dimensional

NJ prevents interpolation. Function evaluations appear in (3), so for (3) to be continuous in η,

one also needs the evaluation functional [u]η = η(u) to be continuous in η ∈ H, ∀u ∈ U , where
u = (x, y) ∈ U = X × Y .

A Hilbert space in which evaluation functional is continuous is a reproducing kernel Hilbert

space with a reproducing kernel R(·, ·), a non-negative definite bivariate function on U such that

R(u, ·) = R(·, u) ∈ H, ∀u ∈ U , and 〈R(u, ·), η(·)〉 = η(u) (the reproducing property), ∀η ∈ H,

where 〈·, ·〉 is the inner product in H. A reproducing kernel Hilbert space can be generated from

its reproducing kernel R, for which any non-negative definite function qualifies, as the “column

space” span{R(u, ·), u ∈ U}. A general theory can be found in Aronszajn (1950).

In the setting of (3), onemaywrite 〈·, ·〉 = J(·, ·) + J̃(·, ·), where J(·, ·) is the semi inner prod-

uct associated with J(η) and J̃(·, ·) is an inner product inNJ . One has a tensor-sum decomposition

H = NJ ⊕ HJ , with J(η) being a square full norm inHJ . For computation, one needs a basis of

NJ and the reproducing kernel RJ inHJ satisfying J(RJ (u, ·), η(·)) = η(u), ∀η ∈ HJ , ∀u ∈ U .
The discussion above applies to a generic domain U , not necessarily a product domain, and

in fact reproducing kernel Hilbert spaces on product domains are typically constructed via tensor

products of spaces on their marginal domains, as illustrated in the examples below.

3.2. Examples of Marginal and Tensor-Product Spaces
The examples are extracted from Gu (2002,chap. 2), where further details can be found.

On X = [0, 1], one may set J(η) = ∫ 1
0 (η

′′(x))2dx and J̃(η, η) = (
∫ 1
0 f (x)dx)2 +

(
∫ 1
0 f ′(x)dx)2. The reproducing kernel in HJ = {f : J(f ) < ∞,

∫ 1
0 f (x)dx = ∫ 1

0 f ′(x)dx = 0}
is given by RJ (x1, x2) = k2(x1)k2(x2) − k4(|x1 − x2|), where kν = Bν/ν! are scaled Bernoulli

polynomials. Combining with NJ = {1} ⊕ {k1(x)}, where k1(x) = x − 0.5, one has a one-

way ANOVA decomposition η = η∅ + ηx, with ηx ∈ {k1(x)} ⊕ HJ satisfying the side condi-

tion
∫ 1
0 ηx(x)dx = 0. The construction provides building blocks for tensor-product spaces, to

be discussed below, for which one writes H = H00 ⊕ H01 ⊕ H1 with reproducing kernels

R00(x1, x2) = 1, R01(x1, x2) = k1(x1)k1(x2), and R1(x1, x2) = k2(x1)k2(x2) − k4(|x1 − x2|).
On Y = {1, . . . , N}, one may set J(η) = ∑N

y=1(η(y) − η̄)2 for y nominal, where η̄ =∑N
y=1 η(y)/N, or set J(η) = ∑N−1

y=1 (η(y + 1) − η(y))2 for y ordinal; in both cases, NJ = {1}
contains the constant functions (i.e., length-N vectors) and one may simply set J̃(η, η) = η̄2.

This defines a one-way ANOVA decomposition η = η∅ + ηy ∈ H0 ⊕ H1 with η̄y = 0. The re-

producing kernels can be written as N × N matrices, with R0(y1, y2) = 1 (i.e., the matrix 11T )

and R1(y1, y2) given by (I − 11T /N)+ = I − 11T /N for y nominal or by B+ = (CT C)+ for y

ordinal, where (·)+ denotes the Moore–Penrose inverse and

C =




−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

...
...

. . .
. . .

...
...

0 . . . 0 . . . −1 1


 .

Note that there is no distinction between nominal or ordinal for N = 2.

OnU = X × Y , onemay construct tensor-product spaces frommarginal constructions. Given

reproducing kernels R(x)(x1, x2) of H(x) on X and R(y)(y1, y2) of H(y) on Y , the non-negative

definite function R(u1, u2) = R(x)(x1, x2)R
(y)(y1, y2) on U , where u1 = (x1, y1), u2 = (x2, y2),

generates the tensor-product spaceH(x) ⊗ H(y). From the aboveH(x)
00 ⊕ H(x)

01 ⊕ H(x)
1 constructed

on X = [0, 1] andH(y)
0 ⊕ H(y)

1 constructed on Y = {1, . . . , N}, one has 6 tensor-product spaces

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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Hµ.ν = H(x)
µ ⊗ H(y)

ν , µ = 00, 01, 1, ν = 0, 1, with reproducing kernels Rµ.ν = R(x)
µ R

(y)
ν . An

ANOVA decomposition is built in with η∅ ∈ H00,0, ηx ∈ H01,0 ⊕ H1,0, ηy ∈ H00,1, and ηxy ∈
H01,1 ⊕ H1,1; only ηy and ηxy are needed here. H1,1 is infinite-dimensional so has to be part

of the penalized space HJ , but H00,1 and H01,1 are both (N − 1)-dimensional (remember that

η̄y = 0) and can be left inNJ . In the software tools to be illustrated in the appendix, we chose to

set HJ = H1,1 and NJ = H00,1 ⊕ H01,1 for N = 2, and set HJ = H00,1 ⊕ H01,1 ⊕ H1,1 with

an empty NJ for N > 2; in the latter case,

RJ = θ00,1R00,1 + θ01,1R01,1 + θ1,1R1,1, (7)

where θµ,ν are a set of extra smoothing parameters adjusting the relative weights of the roughness

of different components.

Similar constructions on higher dimensional domains can be done recursively. For an ex-

ample, consider y = (y〈1〉, y〈2〉), N1 = 2, N2 = 3, and x ∈ [0, 1]. In the place of the above

H(y)
1 one has H(y)

0,1 ⊕ H(y)
1,0 ⊕ H(y)

1,1, where H(y)
µ,ν = H(y〈1〉)

µ ⊗ H(y〈2〉)
ν , µ, ν = 0, 1, and taking

tensor-products with H(x)
00 ⊕ H(x)

01 ⊕ H(x)
1 yields 9 spaces. In obvious notation, one has ηy ∈

H00,0,1 ⊕ H00,1,0 ⊕ H00,1,1 and ηxy ∈ H01,0,1 ⊕ H01,1,0 ⊕ H01,1,1 ⊕ H1,0,1 ⊕ H1,1,0 ⊕ H1,1,1,

and the “saturated” model can be fitted with HJ = H00,0,1 ⊕ H00,1,1 ⊕ H01,0,1 ⊕ H01,1,1 ⊕
H1,0,1 ⊕ H1,1,0 ⊕ H1,1,1 andNJ = H00,1,0 ⊕ H01,1,0; note that both subspaces ofNJ are finite-

dimensional and none of those ofHJ are. To eliminate certain ANOVA terms from the model, the

corresponding subspaces can be taken out ofHJ orNJ ; a model with ηx12 = 0 can be fitted using

HJ = H00,0,1 ⊕ H00,1,1 ⊕ H01,0,1 ⊕ H1,0,1 ⊕ H1,1,0 andNJ = H00,1,0 ⊕ H01,1,0, withH01,1,1

andH1,1,1 taken out of HJ .

3.3. Asymptotic Convergence and Approximate Solutions
Fixing x, the estimation precision of eη(x,y)/

∫
Y eη(x,y) by eη̂(x,y)/

∫
Y eη̂(x,y) can be assessed via the

symmetrized Kullback–Leibler discrepancy SKL(η, η̂|x) = µη(η − η̂|x) − µη̂(η̂ − η|x), where
µg(h|x) = ∫

Y h(x, y)eg(x,y)/
∫
Y eg(x,y). A proxy of SKL(η, η̂|x) is given by the square error

v(η − η̂|x) = µη((η − η̂)2|x) − µ2
η(η − η̂|x),

and the normed distance

V (η − η̂) =
∫
X

v(η − η̂|x)f (x) (8)

makes an adequate performance measure in the setting, where f (x) is the limiting density of xi.

Under regularity conditions, the minimizer η̂ of (3) inH ⊆ {η : J(η) < ∞} has a convergence
rate V (η − η̂) = Op(λ

p + n−1λ−1/r), where r > 1 characterizes the growth rate of the eigenval-

ues of J(η) with respect to V (η) and p ∈ [1, 2] depending on how smooth the true η is; for the

examples in Section 3.2, r = 4, and p = 2 when d4η/dx4 is square integrable on X = [0, 1].

For practical applications, one may calculate the minimizer η̂∗ of (3) in a space H∗ = NJ ⊕
span{RJ (vj, ·), j = 1, . . . , q}, where {vj} is a random subset of the observations {ui = (xi, yi)}.
Under conditions, V (η − η̂∗) = Op(λ

p + n−1λ−1/r) as qλ2/r → ∞, so η̂∗ is as good as η̂ for

q sufficiently large. The optimal rate is achieved at λ � n−r/(rp+1), so it is sufficient to have

q � n2/(rp+1)+ε, ∀ε > 0. In the software implementation, we set ε = 0, r = 4, and p = 2, and use

q = 10n2/9, which was shown to be adequate through numerical simulations in similar settings.

Due to the random selection of {vj}, η̂∗ is not unique unless q = n; larger q would bring more

“stability” but the computation time is of the order O(nq2).

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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Further details concerning the asymptotic analysis can be found in Gu (1995), Gu & Qiu

(1993), and Gu & Wang (2003).

3.4. Computation
Write ξj = RJ (vj, ·) and NJ = {φν}mν=1. A function in H∗ has an expression

η(u) =
q∑

j=1

cjξj(u) +
m∑

ν=1

dνφν(u) = ξT c + φT d, (9)

where ξ and φ are vectors of functions and c and d are vectors of coefficients. Fixing smoothing

parameters, η̂∗ can be calculated by minimizing

−1

n
1T (Rc + Sd) + 1

n

n∑
i=1

log

∫
Y

exp{ξT
i c + φT

i d} + λ

2
cT Qc (10)

with respect to c and d, where R is n × q with the (i, j)th entry ξj(ui), S is n × m with the (i, ν)th

entry φν(ui), Q is q × q with the (j, k)th entry RJ (vj, vk) = J(ξj, ξk), ξi is q × 1 with the jth

entry ξj(xi, y), and φi is m × 1 with the νth entry φν(xi, y).

Substituting the empirical distribution for f (x), one may write µg(h) = (1/n)
∑n

i=1 µg(h|xi)

and Vg(h, h′) = (1/n)
∑n

i=1 vg(h, h′|xi), where

vg(h, h′|x) = µg(hh′|x) − µg(h|x)µg(h
′|x).

From an iterate η̃ = ξT c̃ + φT d̃, the Newton updating equation for the minimization of (10) is

given by (
Vξ,ξ + λQ Vξ,φ

Vφ,ξ Vφ,φ

) (
c − c̃

d − d̃

)
=

(
RT 1/n − µξ − λQc̃

ST 1/n − µφ

)
(11)

where µξ = µη̃(ξ), µφ = µη̃(φ), Vξ,ξ = Vη̃(ξ, ξ
T ), Vξ,φ = Vη̃(ξ, φ

T ), Vφ,φ = Vη̃(φ, φT ), Vξ,η =
Vη̃(ξ, η̃), and Vφ,η = Vη̃(φ, η̃).

4. MODEL SELECTION AND INFERENCE

We now present tools for model selection and inference, which are essential for practical data

analysis using the models being developed.

4.1. Cross-Validation
With varying smoothing parameters, the minimizer of (3) defines a family of estimates, from

which one needs to pick one that performs well. For the purpose, one may use as performance

measure the aggregated Kullback–Leibler discrepancy

KL(η, η̂) =
∫
X

f (x)


µη(η − η̂|x) − log

∫
Y

eη(x,y) + log

∫
Y

eη̂(x,y)


 , (12)

which is a proxy of V (η − η̂) in (8); KL(η, η̂) and V (η − η̂) are equivalent measures and the

different choices in different contexts are dictated by technical convenience.
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Write η̂ as ηλ to spell out its dependence on the smoothing parameters λ in (3) and θ’s hidden

in J(η). Dropping terms from (12) that do not involve ηλ, one has the relative Kullback–Leibler

discrepancy

RKL(η, ηλ) =
∫
X

f (x) log

∫
Y

eηλ(x,y) −
∫
X

f (x)µη(ηλ|x). (13)

The first term of (13) only involves ηλ and can be estimated by n−1
∑n

i=1 log
∫
Y eηλ(xi,y), but the

second term involves both η and ηλ and has to be estimated by the cross-validated sample mean

n−1
∑n

i=1 η
[i]
λ (xi, yi), where η

[i]
λ minimizes a delete-one version of the quadratic approximation

of (3) at η̃ = ηλ,

− 1

n − 1

∑
j �=i

η(xj, yj) + µη̃(η) + 1

2
Vη̃(η − η̃, η − η̃) + λ

2
J(η),

for µg(h) and Vg(h, h′) as in Section 3.4. Such RKL estimate yields the cross-validation score,

−1

n

n∑
i=1


ηλ(xi, yi) − log

∫
Y

eηλ(xi,y)


 + α

trace(P⊥
1 R̃H−1R̃T P⊥

1 )

n(n − 1)
, (14)

whereH is the matrix on the left-hand side of (11) for η̃ = ηλ, R̃ = (R, S), P⊥
1 = I − 11T /n, and

α = 1; the derivation parallels that in Gu (2002,sect. 6.3) for density estimation, where a fudge

factor α = 1.4 was shown to deliver more robust performances in empirical studies.

For the minimization of (14) as a function of smoothing parameters, the λ in (3) and the θ’s in

the likes of (7), onemay use quasi-Newtonmethods with numerical derivatives.When the number

of θ’s is large, which is the case for models containing many ANOVA terms, the process could

be prohibitively time-consuming. Using Algorithm 3.2 in Gu &Wahba (1991), one may perform

two steps of fixed-θ λ-selection to obtain good starting values, which could leave the subsequent

quasi-Newton iteration to pick up only the “last 20%” performance with extra effort many times

over the initial one. It is often a good practice to skip the quasi-Newton iteration.

4.2. Kullback–Leibler Projection
Lacking a sampling distribution in settings with infinite-dimensional nulls, the classical testing

approach is of little help for the assessment of practically negligible ANOVA terms. A geometric

approach was developed in Gu (2004), in which for the “testing” of the null H0 : η ∈ H0 versus

Ha : η ∈ H0 ⊕ H1, say, one calculates an estimate η̂ ∈ H0 ⊕ H1, obtains its Kullback–Leibler

projection η̃ ∈ H0 byminimizingKL(η̂, η) over η ∈ H0, then checks the “entropy decomposition”

KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc), where ηc is a degenerate fit such as a constant regression

function or an uniform density. When KL(η̂, η̃) is only a small portion of KL(η̂, ηc), say no more

than 2–3%, one loses little by cutting out H1.

In the current context, one may use the empirical version of (12),

KL(η̂, η) = µη̂(η̂ − η) − 1

n

n∑
i=1


log

∫
Y

eη̂(xi,y) − log

∫
Y

eη(xi,y)


 . (15)

Taking derivative of KL(η̂, η̃ + αh) with respect to α, where η̃minimizes KL(η̂, η) for η ∈ H0 and

h ∈ H0, and setting α = 0, one can verify that µη̂(h) = µη̃(h). It then follows that KL(η̂, ηc) =
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KL(η̂, η̃) + KL(η̃, ηc) for ηc ∈ H0. In the software implementation, ηc is taken as an additive

model involving only y variables, that is, flat on the x-axis with y variables mutually independent.

4.3. Bayesian Confidence Intervals for Log Odds Ratios
Penalized least squares regression with quadratic penalties is equivalent to Bayesian estimation

with Gaussian process priors (Wahba, 1978), based on which Bayesian confidence intervals were

derived (Wahba, 1983). The utility can be extended to penalized likelihood regression using

the quadratic approximation of the penalized likelihood functional at its minimizer (Gu, 1992).

Modifications of the arguments for estimation in a finite-dimensional space H∗ can be found in

Kim & Gu (2004) and Du & Gu (2006), which we adopt here.

Write η = ξT c + φT d = ψT a as in (9), where (ξT , φT ) = ψT and (cT , dT ) = aT , and refer η

and a interchangeably. The quadratic approximation of (3) at η̃ = ηλ is seen to be

1

2n
(a − ã)T (nH)(a − ã) + C,

where H is as in (14), η̃ = ψT ã, and C is a constant; (3) is the posterior likelihood of the data

divided by n, so the posterior of a is approximately normal with mean ã and covariance H+/n,

whereH+ is theMoore–Penrose inverse ofH . The posterior of η(u) is thus approximately normal

with mean η̃(u) = ψT (u)ã and variance ψT (u)H+ψ(u)/n. This however is of little practical use

as the conditional density f (y|x) involves a normalizing constant that varies with x.

Given y1, . . . , yp ∈ Y , for any x ∈ X , one may consider contrasts of the form

κ(x) = β1η(u1) + · · · + βpη(up),

where uj = (x, yj) and β1 + · · · + βp = 0; the log odds ratios of f (y|x) can be expressed as such
contrasts with the normalizing constant cancelling out. The posterior of κ(x) is seen to have a

mean κ̃(x) = ψ̃
T
(x)ã and a variance s2(x) = ψ̃

T
(x)H+ψ̃(x)/n, where ψ̃(x) = β1ψ(u1) + · · · +

βpψ(up). Bayesian confidence intervals of κ(x) are given by κ̃(x) ± z1−α/2 s(x).

5. MIXED-EFFECT MODELS FOR CORRELATED DATA

When the responses are correlated, one may model the correlation via random effects, yielding

mixed-effect models. Mixed-effect models for non-Gaussian regression with parametric fixed-

effects were studied in, for example, Zeger & Karim (1991), Breslow & Clayton (1993), and

McCulloch (1997), and those with nonparametric fixed-effects by Lin & Zhang (1999), Karcher

& Wang (2001), and Gu & Ma (2005).

We now introduce mixed-effect models for cross-classified responses. To our knowledge,

this is the first attempt on random effects for multivariate responses, which include the case of

multinomial responses with K = 1 and N1 > 2.

5.1. Random Effects
For regression with univariate responses, a mixed-effect model is of the form ζ = η(x) + zT b,
where ζ is the modeling parameter such as the logit for logistic regression, η(x) is the fixed-effect,

and zT b is the random effect with b ∼ N(0, B). The covariance matrix B of b is often structured

but with unknown parameters; see Section 5.2 below.

In the current setting, one may replace (1) by

f (y|x) = eηy+ηxy+zT by∫
Y eηy+ηxy+zT by

, (16)
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where η(x, y) = ηy + ηxy is spelled out explicitly and by ∼ N(0, B) varies with y. Note that∫
Y η(x, y) = 0, and we shall specify the correlations among by to ensure

∫
Y zT by = 0.

For K = 1 and Y = {1, . . . , N}, write b̃ = (bT
1 , . . . , bT

N )
T . We shall specify

b̃ ∼ N(0, c(IN − 1N1T
N/N) ⊗ B), (17)

where⊗ denotes the Kronecker product of matrices and c is a constant. ForK > 1, we consider an

additive model by = by〈1〉 + · · · + by〈K〉 , with independent components by〈k〉 specified as above;

the structure ofB should remain the same for all the components by〈k〉 but the unknown parameters

may differ. For K = 1 and N1 = 2, this reduces to the mixed-effect logistic regression model of

Gu & Ma (2005).

5.2. Examples
The formulation through (16) and (17) propagates a random effect zT b for univariate responses

to cross-classified responses, and we shall review a couple of examples of commonly used zT b.
First consider a longitudinal study involving p subjects, where yi is taken from subject si with

covariate xi. Observations from different subjects are independent, while observations from the

same subject are naturally correlated. The intra-subject correlation may be modeled by zT
i b = bsi ,

where b ∼ N(0, σ2
s I) and zi is the si-th unit vector. The p × p matrix B = σ2

s I involves only one

tunable parameter. The random effects bs can be interpreted as the subject effects.

Now consider observations from p clusters, such as in multi-centre studies, where yi is taken

from cluster ci with covariate xi. Observations from different clusters are independent, while

observations from the same cluster may be correlated to various degrees. The intra-cluster corre-

lation may be modeled by zT
i b = bci , where b ∼ N(0, B) withB = diag(σ2

1 , . . . , σ
2
p) and zi is the

ci-th unit vector. The p × pmatrix B involves p tunable parameters on the diagonal. The random

effects bc are not quite interpretable in the setting.

5.3. Modeling With Random Effects
Note that b1 + · · · + bN = 0 given (17), so one only needs the first (N − 1) by’s. Rewriting

b̃ = (bT
1 , . . . , bT

N−1)
T , the minus log likelihood of random effect is seen to be proportional to

b̃T
b̃ for

 = c−1(IN−1 + 1N−11T
N−1) ⊗ B−1, (18)

where (IN−1 + 1N−11N−1) = (IN−1 − 1N−11N−1/N)−1. For K > 1, one may concatenate all

the independent components of by in b̃ with  block-diagonal with blocks of the form (18). The

estimation can then be performed via the minimization of the penalized joint likelihood of (η, b̃),

−1

n

n∑
i=1


η(xi, yi) + zT

i byi − log

∫
Y

eη(xi,y)+zT
i
by


 + 1

2n
b̃T

b̃ + λ

2
J(η). (19)

The computation follows straightforward adaptation of Section 3.4 and the cross-validation

of Section 4.1 can be used to select the tuning parameters consisting of the smoothing parameters

in λJ(η) and the correlation parameters in b̃T
b̃. The Kullback–Leibler projection of Section 4.2

can be computed with the random effect zT by treated as an offset, and the Bayesian confidence

intervals of Section 4.3 for odds ratios remain available following straightforward adaptation.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2011 NONPARAMETRIC REGRESSION 601

6. SIMULATION STUDIES

We conduct simulation studies of limited scales to explore various aspects of the modeling tools

being developed. For the test function onY = {0, 1} × {0, 1} andX = [0, 1], we start with p1(x),

p2(x), and p3(x) given by

log
p1(x)

1 − p1(x)
= 400x5(1 − x)3 − 1, (20)

log
p2(x)

1 − p2(x)
= 500x7(1 − x)3 + 250x2(1 − x)10 − 1, (21)

log
p3(x)

1 − p3(x)
= 50x2(1 − x)4. (22)

A setting with y〈1〉⊥y〈2〉|x would have

(f (0, 0), f (0, 1), f (1, 0), f (1, 1)) = (q1q2, q1p2, p1q2, p1p2),

where qk = 1 − pk, but we modify it by

(f (0, 0), f (0, 1), f (1, 0), f (1, 1)) ∝ (q1q2p3, q1p2q3, p1q2q3, p1p2p3);

note thatp1(x) andp2(x) are no longer themarginal probabilitiesP(y〈1〉 = 1|x) andP(y〈2〉 = 1|x)
after the modification, but the log odds ratio is given by

log
f (0, 0|x)f (1, 1|x)
f (1, 0|x)f (0, 1|x) = 2 log

p3(x)

1 − p3(x)
= 100x2(1 − x)4.

Samples of size n = 200 were generated, for xi ∼ U(0, 1), with and without random effects. For

samples with random effects, zT bi = b1(si, y〈1〉) + b2(si, y〈2〉), where si ∈ {1, . . . , 20}, 10 each,

b1(s, 1) = −b1(s, 0) ∼ N(0, 0.52), and b2(s, 1) = −b2(s, 0) ∼ N(0, 0.52). Models of the form

η(x, y) = η1(y〈1〉) + η2(y〈2〉) + η12(y〈1〉, y〈2〉) + ηx1(x, y〈1〉) + ηx2(x, y〈2〉) + ηx12(x, y〈1〉, y〈2〉)

were fitted to the data.

6.1. Effectiveness of Cross-Validation
To assess the performance of f̂ (y|x) as an estimate of f (y|x), one may use the Kullback–Leibler

discrepancy

KL(f, f̂ λ) = 1

n

n∑
i=1

∫
Y

log

{
f (y|xi)

f̂ λ(y|xi)

}
f (y|xi),

where the dependence of f̂ λ(y|x) on the tuning parameters is made explicit, with the subscript

λ representing the λ in (3) or (19), the θ’s hidden in J(η), and also the  in (19) for mixed-

effect models. The conditional density f (y|x) may be given by (1), for which we denote L(λ) =
KL(f, f̂ λ), or may be given by (16), for which we write Lw(λ) = KL(f, f̂ λ); for fixed-effect fits

via (3), L(λ) = Lw(λ) as zT b = zT b̂ = 0. While L(λ) is of more practical interest, only Lw(λ) is

“chaseable” via cross-validation.

For both the fixed-effect (without random effects) and mixed-effect (with random effects)

simulations, one hundred replicateswere generated, and tuning parameterswere selected using the

cross-validation score of (14)withα = 1, 1.4.Lw(λv)was evaluated for each of the cross-validated
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fits, where λv denotes the cross-validation choices of the tuning parameters. Also calculated for

each of the replicates were the “optimal” fits minimizing Lw(λ), with the resulting minimum

value written as Lw(λo). The left and centre frames of Figure 1 plots Lw(λv) versus Lw(λo) in the

fixed-effect and mixed-effect simulations, respectively, for α = 1 (solid) and α = 1.4 (faded); the

relative efficacy Lw(λo)/Lw(λv) is shown in the right frame in box-plots. The results suggest that

the fudge factor α = 1.4 hurts the performance of cross-validation in the setting by an appreciable

margin, especially with mixed-effect models; in fact, it was outperformed by α = 1 64-to-36 in

the fixed-effect simulation and 100-to-0 in the mixed-effect simulation.

The cross-validation of (14) appears highly effective, but the findings concerning the fudge

factor α = 1.4 contrast empirical findings in numerous parallel settings, where it at least does no

harm. Undersmoothing however occurs much less often with multiple smoothing parameters, a

given in the current setting, thus stable performances of cross-validation may still be expected

without a fudge factor.

Throughout the rest of the article, we will be using α = 1 in cross-validation.

6.2. Fixed-Effect Fits Versus Mixed-Effect Fits
The results shown in Figure 1 were obtained with q = n in (9) to eliminate any effect due to

the choice of {vj}. For a quick check on the adequacy of the default q = 10n2/9, we selected

one random subset {vj} ⊂ {(xi, yi)} of size q = 10(200)2/9 ≈ 33 for each of the replicates and

recalculated the cross-validated fits. The Lw(λv) of the q = 33 fits are plotted against that of the

q = 200 fits in the left frame of Figure 2, with their ratio shown in boxplots in the left half of the

right frame. The same-data fits with different {vj} were mostly “duplicates” of each other. The

one hundred q = 200 fits took a total of 4853 CPU seconds to compute on a laptop with Core2

duo 2.6GHz and 4 Gb RAM running Linux Mint 9 and R 2.12.1, while the q = 33 fits took 383

CPU seconds.

We now compare fixed-effect fits and mixed-effect fits to the same data using the one hundred

independent samples in the fixed-effect simulation and the one hundred correlated samples in

the mixed-effect simulation. For each of the two hundreds replicates, a pair of cross-validated

fits were calculated via (3) and (19) using the same {vj} of size q = 33. The respective L(λv) of

the fits are plotted in the centre frame of Figure 2, with those of independent samples in solid

circles and those of correlated samples in faded; the ratio of L(λv) for fixed-effect fits over that

for mixed-effect fits is shown in the right half of the right frame. For the independent samples,

the mixed-effect model is correct though with unnecessary complications, and the two sets of fits

largely share the same performance. The correlated samples paint a different picture, however,

Figure 1: Performance of cross-validation. Left: fixed-effect simulation, for α = 1 (solid) and α = 1.4
(faded). Centre: mixed-effect simulation, for α = 1 (solid) and α = 1.4 (faded). Right: relative efficacy, for
α = 1 (solid) and α = 1.4 (faded). [Color figure can be seen in the online version of this article, available at

http://wileyonlinelibrary.com/journal/cjs]
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Figure 2: Some comparisons concerning Lw(λv) and L(λv). Left: Lw(λv) of q = 200 fits versus that of
q = 33 fits, with fixed-effect simulation in solid and mixed-effect simulation in faded. Centre: fixed-effect
fits versus mixed-effect fits to same data, with independent samples in solid circles and correlated samples
in faded. Right: Lw(λv) of q = 33 fits over that of q = 200 fits on the left; L(λv) of fixed-effect fits over that
of mixed-effect fits on the right. [Color figure can be seen in the online version of this article, available at

http://wileyonlinelibrary.com/journal/cjs]

with greater discrepancies in the respective performances of the two sets of fits but the overall

preference a tossup. Intuitively, the mixed-effect fits should do better on correlated samples, but

the added model components zT b and the extra tuning parameters in  make the task harder plus

one has no direct handle on L(λ) in the estimation process. Still, one would expect some benefits

in using the mixed-effect models for correlated data, but perhaps in the presence of stronger

correlation.

To look further into the comparison of fixed-effect fits and mixed-effect fits to correlated data,

we repeated the experiments using four more sets of samples, each consisting of one hundred

replicates. The sample size remained at n = 200, but to make correlation stronger, we took

si ∈ {1, . . . , 10}, 20 each, and b1(s, 1) ∼ N(0, 1), b2(s, 1) ∼ N(0, 1). One set of samples were

generated using the same test function used earlier, with the resulting L(λv) plotted in the left

frame of Figure 3 in solid circles; for the second test function we use the same p1(x) and p2(x) but

a constant p3(x) = 2/3, with results shown in the same frame in faded circles. Using the function

of (20) for both p1(x) and p2(x) and that of (22) for p3(x) yields the third test function, and

changing out p3(x) to 2/3 in the third yields the fourth; the centre frame of Figure 3 demonstrates

the results from the third (solid) and the fourth (faded) sets of samples. The ratio of L(λv) of

fixed-effect fits over that of mixed-effect fits is shown in boxplots in the right frame of Figure 3

Figure 3: Comparison of fixed-effect and mixed-effect fits to correlated data. Left: p1(x) as in (20), p2(x)
as in (21), p3(x) as in (22) (solid) or p3(x) = 2/3 (faded). Centre: p1(x) and p2(x) both as in (20), p3(x)
as in (22) (solid) or p3(x) = 2/3 (faded). Right: L(λv) of fixed-effect fits over that of mixed-effect fits, for
the four sets of samples in order. [Color figure can be seen in the online version of this article, available at

http://wileyonlinelibrary.com/journal/cjs]
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for the four sets of samples. The results do seem to favour the mixed-effect fits overall, though

the absolute values of L(λv) are not all that different. As can be seen in the left and centre frames

of Figure 3, the mixed-effect fits tend to do better in “easier” cases with smaller L(λv) but do not

fare as well in the “hard” cases; this is confirmed by plots, not shown here, of the ratio in the right

frame versus the absolute L(λv) in the left and centre frames.

6.3. Performances of Estimates
One case each were selected from the fixed-effect and random-effect simulations of Section

6.1 for further study, with q = 33, that delivered the median performances of Lw(λv) = 0.037,

Figure 4: Some fits with median performances. Left: a fixed-effect fit. Right: a mixed-effect fit. Top
rows: estimated f (1, 1|x)/f (1, 0|x), f (1, 1|x)/f (0, 1|x), and f (1, 1|x)/f (0, 0|x) (solid) with 95% Bayesian
confidence intervals (faded); true functions (dotted) and data (circles) are superimposed. Fits by the wrong
models are also superimposed in dashed lines. Bottom: KL(f (x), f̂ (x)) = ∫

Y log{f (y|x)/f̂ (y|x)}f (y|x)
as a function of x. [Color figure can be seen in the online version of this article, available at

http://wileyonlinelibrary.com/journal/cjs]
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0.109, respectively. The left frames of Figure 4 are from the fixed-effect fit, where the esti-

mated f (1, 1|x)/f (1, 0|x), f (1, 1|x)/f (0, 1|x), f (1, 1|x)/f (0, 0|x) (solid) and the respective 95%
Bayesian confidence intervals (faded) are plotted in the top three frames, with the true functions

superimposed (dotted); the data are also superimposed, with (xi, 1, 1) marked on the top and

(xi, 1, 0), (xi, 0, 1), or (xi, 0, 0) marked on the bottom in their respective frames. The bottom

frame depicts KL(f (x), f̂ (x)) = ∫
Y log{f (y|x)/f̂ (y|x)}f (y|x) as a function of x, with the rug

showing the locations of xi. The right frames are parallel results from the mixed-effect fit but

evaluated with the random-effect zT b set to zero; note that KL(f (x), f̂ (x)) in the bottom right

frame does not average to Lw(λv) = 0.109 but to L(λv), which was 0.036. As nonparametric fits

based on samples of size n = 200, the estimation precision appears reasonable, and the Bayesian

confidence intervals seem to have the adequate width though not necessarily the nominal cover-

age; some of the miscues, such as the rise of f (1, 1|x)/f (1.0|x) towards x = 1 in the fixed-effect

fit (see the top left frame of Figure 4), are apparently responding to patterns in the data. The

estimation precision is certainly not uniform on the X domain.

For comparison, the fits using the “wrong” models are also superimposed in the top three

rows of Figure 4 in dashed lines, which are the unnecessary mixed-effect model fit in the left

frames and the incorrect fixed-effect model fit in the right frames. The fits are almost visually

indistinguishable.

For the mixed-effect fit in Figure 4, cross-validation selected (0.195, 0.251) as the variances of

b1(s, 1) and b2(s, 1) used in  of (19). The sample variances of the generated b1(s, 1) and b2(s, 1)

were (0.164, 0.170), and the sample variances of the fitted b̂1(s, 1) and b̂2(s, 1)were (0.051, 0.080).

Cross-validation is designed to minimize the Kullback–Leibler discrepancy Lw(λ) and  in (19)

only forms part of the tuning parameters but not part of the model parameters to be estimated, so

the cross-validation choice of  should not be taken as estimate.

7. ANALYSIS OF EYETRACKING DATA

We now analyze some eyetracking data collected by Dr. Anouschka Foltz during her dissertation

research at The Ohio State University. The data we use is a subset consisting of 288 trials of

human participants’ eye movements monitored on a time grid (−867)(17)(1428) ms. In each run

of the experiments, the participant in front of a computer monitor listened to three consecutive

instructions, and we are looking at the time segment associated with the second instruction. For

the selected subset, the first instruction given to the participant was something like “click on the

YELLOW pencil” with emphasis on the adjective, and the second instruction was something

like “click on the PURPLE bottle” with neither the adjective nor the noun being repeated. Upon

hearing the emphasized adjective “PURPLE” but before the noun “bottle,” one usually expects a

noun repetition (“pencil”) and starts to look for purple pencil on themonitor, and of interest is how

long it takes for the participant to recover from the trap to focus on the target, the purple bottle.

The participants’ eye fixation on the target (purple bottle), the colour competitor (purple pencil),

and the object competitor (yellow bottle) were recorded as binary indicators every 17 ms; the time

0 is the noun onset of the second instruction, that is, between the adjective (purple) and the noun

(bottle). The common linguistic condition in the 288 trials was the accented (i.e., emphasized)

adjectives and the change in both the adjective and the noun. The particular word choice in the

discussion above (i.e., “yellow pencil” followed by “purple bottle”) was taken from one of the

six instruction lists used in the trials. The six lists were actually carefully designed using Latin

squares to balance out certain linguistic characteristics, but further details are not needed for our

task at hand. There were 48 human participants involved in 6 trials each, for a total of 288 trials.

The raw data were reformatted into 288 × 136 = 39168 observations of time (x), matching colour

indicator (y〈1〉, eye fixation on target or colour competitor), matching object indicator (y〈2〉, eye
fixation on target or object competitor), and subject identification (s).
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Figure 5: Fitted probabilities along time. Left: f (1, 1|x) (solid) versus f (1, 0|x) (faded). Right:
f (1, 1|x)/f (1, 0|x) along with 95% Bayesian confidence intervals. [Color figure can be seen in the online

version of this article, available at http://wileyonlinelibrary.com/journal/cjs]

Amodel of the form (16) was fitted to the data, with ηy = η1(y〈1〉) + η2(y〈2〉) + η12(y〈1〉, y〈2〉),
ηxy = ηx1(x, y〈1〉) + ηx2(x, y〈2〉) + ηx12(x, y〈1〉, y〈2〉), and zT by = b1(s, y〈1〉) + b2(s, y〈2〉), where
b1(s, 1) = −b1(s, 0) ∼ N(0, σ2

1 ) and b2(s, 1) = −b2(s, 0) ∼ N(0, σ2
2 ) are independent. Since x is

on a regular grid here, we took the first 136 observations as the vj’s discussed in Section 3.3 instead

of a random subset, though this could not ensure “even coverage” on the “y-axis.” Cross-validation

selected (σ2
1 , σ

2
2 ) = (0.163, 0.195) along with the smoothing parameters in λJ(η). The sample

variances of the fitted b1(s, 1) and b2(s, 1) are 0.0791 and 0.1076, respectively. Setting the random

effects by to 0, the estimated f (y|x) = eη(x,y)/
∫
Y eη(x,y) for y = (1, 1) (target) and y = (1, 0)

(colour competitor) are plotted in the left frame of Figure 5, and the ratio f (1, 1|x)/f (1, 0|x) =
exp{η(x, 1, 1) − η(x, 1, 0)} is plotted in the right frame along with 95% Bayesian confidence

intervals; the transition time at which the target overtook the colour competitor was around

310 ms.

Of further interest is how such profile along time changes with experimental conditions,

for which fits also need to be calculated for other subsets of the data. Different experimental

conditions could be noun repetition (e.g., “purple pencil” following “yellow pencil”), adjective

repetition (e.g.,“yellow bottle” following “yellow pencil”), and/or numerous accent patterns on

the adjectives and the nouns.

Projecting the fit η̂ into a model space of structure η(x, y) = η1(y〈1〉) + η2(y〈2〉) +
ηx1(x, y〈1〉) + ηx2(x, y〈2〉), one has KL(η̂, η̃)/KL(η̂, ηc) = 36.7%, so y〈1〉 and y〈2〉 are not in-

dependent given x. Projecting η̂ into a space of structure η(x, y) = η1(y〈1〉) + η2(y〈2〉) +
η12(y〈1〉, y〈2〉) + ηx1(x, y〈1〉) + ηx2(x, y〈2〉), one has KL(η̂, η̃)/KL(η̂, ηc) = 3.2%, so the depen-

dence on x of the log odds ratio log{f (0, 0|x)f (1, 1|x)/f (1, 0|x)f (0, 1|x)} appears rather weak.
The association between y〈1〉 and y〈2〉 however is not of primary interest in the current application.

8. SUMMARY AND DISCUSSION

In this article, we have presented a cohort of modeling tools for nonparametric regression with

cross-classified responses. The general model formulation includes many settings in the literature

as special cases, and allows one to study the associations among marginals of contingency tables

as functions of covariates. The techniques are implemented in a suite of R functions, and are

demonstrated through the analysis of some eyetracking data found in linguistic studies.

To our knowledge, the only existing approach to accommodating an “x-axis” in the analy-

sis of cross-classified responses is through surrogate log-linear models (see Venables & Ripley,

2002, chap. 7), but the method works naturally only with discrete x variables. For continuous x’s,

the specification/justification of parametric models poses a real challenge, due mainly to the less

intuitive meaning of η(x, y), which yields the conditional probability f (y|x) = eη(x,y)/
∫
Y eη(x,y)
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only after the normalization. The nonparametric treatment in this setting is thus less of an “ex-

tending parametric model” flavour but more for its own practical convenience. Also, mixed-effect

models for correlated data in this setting do not seem to exist in current literature, parametric or

nonparametric.

For the simulations of Section 6 and the eyetracking data of Section 7, one has a univariate

x and only three θ’s hidden in J(η) associated with ηx1, ηx2, and ηx12, so the quasi-Newton

optimization of (14) is still feasible. For multivariate x one could have many more θ’s, in which

case the quasi-Newton iteration will have to be skipped. On the same note, the simulations of

Section 6.1 quickly become infeasible as the number of θ’s increases.

Traditionally, eyetracking data are often aggregated over coarser time intervals then analyzed

using ANOVA models for repeated measures; see, for example, Ito & Speer (2008). The loss

of information in data aggregation was recognized by Barr (2008), who suggested the use of

parametric logistic regression in the setting. The modeling tools developed here provide yet

another approach to the analysis of eyetracking data, one that is flexible and preserves the fine-

scale dynamics in the experiments.
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APPENDIX
In this appendix, we illustrate the user-interface of some open-source R code that implements the

techniques presented in this article, using the eyetracking data of Section 7. The code is in the

ssllrm suite of the gss package by the first author, as of version 1.1-7.

R resources are archived at http://cran.r-project.org, where the source code of
base R and that of over 2000 add-on packages can be found along with installation instructions.

Assuming that base R and the gss package have been installed, the following line load the gss
package and the eyetrack data frame at the R prompt,

library(gss); data(eyetrack)

where eyetrack consists of components time, colour, object, id, and cnt; dupli-
cated data points are merged and the multiplicity counts are recorded in cnt, and there are 13891
distinctive records.

To fit the model as discussed in Section 7, one uses

fit <- ssllrm(˜time*colour*object, ˜colour+object, data=eyetrack,
weight=cnt, id.basis=1:136, random=˜1|id)

where the first model formula specifies model terms and the second lists response variables

which are necessarily factors; terms not involving response variables are removed internally. The

weight entry is only necessary for data with multiplicities. The id.basis specifies the vj’s

that determine the basis functions ξj as in (9); a random subset will be used if id.basis is

unspecified. The random entry specifies a univariate random effect zT b that will be propagated

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



608 GU AND MA Vol. 39, No. 4

into a multivariate one following the lines of Section 5.1. If one would like to skip the quasi-

Newton iteration for the optimization of (14), simply add an entry skip.iter=TRUE. A run of

the fit on a laptop, with Core2 duo 2.6 GHz and 4 Gb RAM running Linux Mint 9 and R 2.12.1,

took 5647 CPU seconds, and a run with skip.iter=TRUE took 4959 CPU seconds.

To evaluate the fit at time points in tt, use

predict(fit, data.frame(time=tt))

which returns a matrix of f (y|x) with the columns adding up to one; the columns are or-

dered according to fit$qd.pt, which is (colour,object)=(0,0), (0,1), (1,0), and
(1,1) here. To calculate log{f (1, 1|x)/f (1, 0|x)} = η(x, 1, 1) − η(x, 1.0) along with standard

errors as discussed in Section 4.3, use

predict(fit, data.frame(time=tt), odds=c(0,0,-1,1), se=TRUE)

which return a list with components fit and se.fit.
The six terms of the fit η1, η2, η12, ηx1, ηx2, and ηx12 are coded as "colour",

"object", "colour:object", "time:colour", "time:object", and

"time:colour:object". Toproject thefit into a spaceof structureη = η1 + η2 + ηx1 + ηx2,

use

project(fit, include=c("colour","object","time:colour",
"time:colour"))

which returns a list with components ratio KL(η̂, η̃)/KL(η̂, ηc) and kl KL(η̂, η̃).

BIBLIOGRAPHY
Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society,

68, 337–404.

Barr, D. J. (2008). Analyzing ‘visual world’ eyetracking data using multilevel logistic regression. Journal
of Memory and Language, 59, 457–474.

Breslow, N. E. & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal
of the American Statistical Association, 88, 9–25.

Du, P. & Gu, C. (2006). Penalized likelihood hazard estimation: Efficient approximation and Bayesian

confidence intervals. Statistics & Probability Letters, 76, 244–254.
Gao, F.,Wahba, G., Klein, R., &Klein, B. E. (2001). Smoothing splineANOVA formultivariate bernoulli ob-

servations, with application to ophthalmology data (with discussion). Journal of the American Statistical
Association, 96, 127–160.

Gu, C. (1992). Penalized likelihood regression: A Bayesian analysis. Statistica Sinica, 2, 255–264.
Gu, C. (1995). Smoothing spline density estimation: Conditional distribution. Statistica Sinica, 5, 709–726.
Gu, C. (2002). Smoothing Spline ANOVA Models, Springer-Verlag, New York.

Gu, C. (2004). Model diagnostics for smoothing spline ANOVAmodels. Canadian Journal of Statistics, 32,
347–358.

Gu, C. & Ma, P. (2005). Generalized nonparametric mixed-effect models: Computation and smoothing

parameter selection. Journal of Computational and Graphical Statistics, 14, 485–504.
Gu, C. & Qiu, C. (1993). Smoothing spline density estimation: Theory. Annals of Statistics, 21, 217–234.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2011 NONPARAMETRIC REGRESSION 609

Gu, C. & Wahba, G. (1991). Minimizing GCV/GML scores with multiple smoothing parameters via the

Newton method. SIAM Journal on Scientific Computing, 12, 383–398.
Gu, C. & Wang, J. (2003). Penalized likelihood density estimation: Direct cross-validation and scalable

approximation. Statistica Sinica, 13, 811–826.
Ito, K. & Speer, S. R. (2008). Anticipatory effects of intonation: Eye movements during instructed visual

search. Journal of Memory and Language, 58, 541–573.
Karcher, P. &Wang, Y. (2001). Generalized nonparametric mixed effects models. Journal of Computational

and Graphical Statistics, 10, 641–655.
Kim, Y.-J. & Gu, C. (2004). Smoothing spline Gaussian regression: More scalable computation via efficient

approximation. Journal of the Royal Statistical Society: Series B, 66, 337–356.
Lin, X. (1998). Smoothing Spline Analysis of Variance for Polychotomous Response Data. Ph. D. thesis,

University of Wisconsin—Madison.

Lin, X. & Zhang, D. (1999). Inference in generalized additive mixed models by using smoothing splines.

Journal of the Royal Statistical Society: Series B, 61, 381–400.
Lindsey, J. K. (1997). Applying Generalized Linear Models, Springer-Verlag, New York.

McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models. Journal of
the American Statistical Association, 92, 162–170.

Venables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics With S-PLUS, 4th ed., Springer, New

York.

Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in

regression. Journal of the Royal Statistical Society: Series B, 40, 364–372.
Wahba, G. (1983). Bayesian “confidence intervals” for the cross-validated smoothing spline. Journal of the

Royal Statistical Society: Series B, 45, 133–150.
Zeger, S. L. & Karim, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling

approach. Journal of the American Statistical Association, 86, 79–86.

Received 10 February 2011
Accepted 12 June 2011

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique


