
Predictive Markers for AD in a Multi-Modality Framework: An1

Analysis of MCI Progression in the ADNI Population2

Chris Hinrichs
a,b ∗†

Vikas Singh
b,a

Guofan Xu
c,d

Sterling C. Johnson
c,d

and the Alzheimers Disease Neuroimaging Initiative
‡3

Abstract4

Alzheimer’s Disease (AD) and other neurodegenerative diseases affect over 20 million people world-5

wide, and this number is projected to significantly increase in the coming decades. Proposed imaging-6

based markers have shown steadily improving levels of sensitivity/specificity in classifying individual7

subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques,8

using brain images as input, as means of deriving such AD-related markers. A common characteristic9

of this line of research is a focus on either (1) using a single imaging modality for classification, or (2)10

incorporating several modalities, but reporting separate results for each. One strategy to improve on the11

success of these methods is to leverage all available imaging modalities together in a single automated12

learning framework. The rationale is that some subjects may show signs of pathology in one modality but13

not in another – by combining all available images a clearer view of the progression of disease pathology14

will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the15

inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework.16

The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity)17

matrices while simultaneously training a classifier. In classification experiments MKL outperformed an18

SVM trained on all available features by 3% – 4%. We are especially interested in whether such markers19

are capable of identifying early signs of the disease. To address this question, we have examined whether20

our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI)21

to AD. Our experiments reveal that this measure shows significant group differences between MCI sub-22

jects who progressed to AD, and those who remained stable for 3 years. These differences were most23

significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM24

and an individual’s conversion from MCI to AD.25

1 Introduction26

A significant body of existing literature (Johnson et al., 2006; Whitwell et al., 2007; Reiman et al., 1996; Canu27

et al., 2010; Thompson and Apostolova, 2007) suggests that pathological manifestations of Alzheimer’s disease28

begin many years before the patient becomes symptomatic – which is typically when cognitive tests can be29

used to make a diagnosis (Albert et al., 2001). Unfortunately, by this time significant neurodegeneration has30

already occurred. In an effort to identify AD-related changes early, a promising direction of ongoing research31

is focused on exploiting advanced imaging-based techniques to characterize prominent neurodegenerative32

patterns during the prodromal stages of the disease, when only mild symptoms of the disease are evident. A33

set of recent papers (Davatzikos et al., 2008a,b; Fan et al., 2008b; Vemuri et al., 2008) including work from our34
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group (Hinrichs et al., 2009a,b) have demonstrated that this is indeed feasible by leveraging and extending35

state-of-the-art methods from Statistical Machine Learning and Computer Vision. Good discrimination (in36

identifying whether an image corresponds to a control or AD subject) has been obtained on classification37

tasks making use of MR or FDG-PET images (i.e., one type of image data) (Davatzikos et al., 2008a,b; Fan38

et al., 2008b; Vemuri et al., 2008; Hinrichs et al., 2009a). A natural question then is whether we can exploit39

data from multiple modalities and biological measures (if available) in conjunction to (1) obtain improved40

accuracy, and (2) identify more subtle class differences (e.g., sub-groups within MCI). This paper considers41

exactly this problem – i.e., methods for systematic combination of multiple imaging modalities and clinical42

data for classification (i.e., class prediction) at the level of individual subjects.43

Recently, we have seen evidence that various aspects of AD-related neurodegeneration such as structural44

atrophy (Jack Jr. et al., 2005; deToledo-Morrell et al., 2004; Thompson et al., 2001), decreased blood45

perfusion (Ramı́rez et al., 2009), and decreased glucose metabolism (Hoffman et al., 2000; Matsuda, 2001;46

Minoshima et al., 1994) can be identified (in structural and functional images) in Mild Cognitive Impaired47

(MCI) and AD subjects, as well as at-risk individuals (Small et al., 2000; Querbes et al., 2009; Davatzikos48

et al., 2009). A number of groups have made significant progress by adapting well-known machine learning49

tools to the problem – this includes Support Vector Machines (SVMs), logistic regression, boosting, and50

other classification mechanisms. In the usual classification setting, a number of image acquisitions (training51

examples) are provided for which the subjects’ clinical diagnosis is as certain as diagnostically possible.52

The objective is to choose a discriminating function which optimizes a statistical measure of the likelihood53

of correctly labeling ‘future’ examples. Such measures may be based on certain brain regions, (e.g., the54

hippocampus or posterior cingulate cortex) for example. The function’s output can then be used as a targeted55

disease marker in individuals that are not part of the training cohort. In the remainder of this section,56

we briefly review several interesting AD classification-focused research efforts, and lay the groundwork for57

introducing our contributions (i.e., truly multi-modal analysis).58

The machine learning, or classification approach has been used to provide markers for various neurological59

disorders including Alzheimer’s disease (Davatzikos et al., 2008b; Klöppel et al., 2008; Vemuri et al., 2008;60

Duchesne et al., 2008; Arimura et al., 2008; Soriano-Mas et al., 2007; Shen et al., 2003; Demirci et al., 2008).61

These efforts have primarily utilized brain images, though some have also used other available biological62

measures. In (Fan et al., 2008b,a; Davatzikos et al., 2008a,b), the authors implemented a classification /63

pattern recognition technique using structural (sMR) images provided by the Baltimore Longitudinal Study64

of Aging (BLSA) dataset (Shock et al., 1984). The proposed methodology was to first segment the images65

into different tissue types, and then perform a non-linear warp to a common template space to allow voxel-66

wise comparisons. Next, voxels were selected to serve as “features” (using statistical measures of (clinical)67

group differences), used to train a linear Support Vector Machine (SVM) (Bishop, 2006). The reported68

accuracy was quite encouraging. The authors of (Klöppel et al., 2008) also used linear SVMs to classify AD69

subjects from controls using whole-brain MR images. An additional focus of their research was to separate70

AD cases from Frontal Temporal Lobar Degeneration (FTLD). The authors reported high accuracy (> 90%)71

on confirmed AD patients, and less where post-mortem diagnosis was unavailable. In related work, Vemuri72

et. al. (Vemuri et al., 2008) demonstrated a slightly different method of applying linear SVMs on another73

dataset obtaining 88− 90% classification accuracy. More recently, the methods in (Fan et al., 2008a; Misra74

et al., 2008; Hinrichs et al., 2009a) have been applied to the Alzheimer’s Disease Neuroimaging Initiative75

(ADNI) dataset, (http://www.loni.ucla.edu/ADNI/Data/) (Mueller et al., 2005) consisting of a large set of76

Magnetic Resonance (MR) and (18-fluorodeoxyglucose Positron Emission Tomography) FDG-PET images,77

giving accuracy measures similar to those reported in (Fan et al., 2008b,a; Davatzikos et al., 2008a,b). In78

(Hinrichs et al., 2009a), we proposed a combination of �1 sparsity and spatial smoothness bias, implemented79

via augmentation of the linear program used in training. The spatial bias lead to an increase in accuracy, and80

made the resulting images more interpretable. Steady increases in the levels of accuracy on this problem,81

i.e., separating AD subjects from controls, have lead some researchers in the field to move towards the more82

challenging problem of making similar classifications on MCI subjects, with the expectation of extending83

such methods for identifying signs of the disease in its earlier stages. We provide a brief review of some84

preliminary efforts in this direction next.85

Several recent studies (Schroeter et al., 2009; deToledo-Morrell et al., 2004; Dickerson et al., 2001; Hua86

et al., 2008) have shown that certain markers are significantly associated with conversion from MCI to87

AD. In (deToledo-Morrell et al., 2004; Dickerson et al., 2001), the authors show that traced volumes of88
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the hippocampus and entorhinal cortex show significant group-level differences between converting and non-89

converting MCI subjects. We note that these studies show (in a post-hoc manner) that certain brain regions90

are correlated with AD histopathology; what we seek to do instead is to evaluate such markers in terms of91

their ability to classify novel examples. In (Hua et al., 2008) a large number of ADNI subjects were tracked92

longitudinally using Tensor-Based Morphometry (TBM). The authors compared conversion from MCI to AD93

over 1 year with atrophy in various regions, but a discussion of the predictive accuracy results was relatively94

limited (i.e., included p-values of 0.02 between converters and non-converters). In (Davatzikos et al., 2009),95

the authors applied statistical techniques to both ADNI and BLSA subjects (Shock et al., 1984). A classifier96

was trained using ADNI subjects, and applied to MCI and control subjects (in the BLSA cohort) to provide a97

SPARE-AD disease marker. This procedure could successfully separate MCI and control subjects with high98

confidence (AUC of 0.885), and it was demonstrated that the MCI group had a larger increase in SPARE-AD99

scores longitudinally. However, the main focus in (Davatzikos et al., 2009) was not on predicting which MCI100

subjects would progress to AD, but rather on finding a marker for MCI itself. In (Querbes et al., 2009),101

cortical thickness measures were used on a large set of ADNI subjects to characterize disease progression in102

AD and MCI subjects. Freely available tools (FreeSurfer) were used to calculate cortical thickness values at103

points on the surface of each subject’s brain (after warping to MNI template space) and then the thickness104

measures were agglomerated into 22 Regions of Interest (ROI), which the authors used as features (i.e.,105

covariates) in a logistic regression framework. Using age as a covariate, a set of AD and control subjects106

were used to train a logistic regression classifier for each subject, yielding a Normalized Thickness Index107

(NTI). It was found that this NTI was able to give 85% accuracy in separating AD subjects vs. controls,108

and had 73% accuracy (0.76 AUC) in predicting which MCI subjects would progress to full AD within 3109

years. The latter objective is of special interest in the context of the techniques presented in this paper.110

A common trend in the studies mentioned above is their focus on using a single scanning modality and111

processing pipeline. For instance, in a recent study (Schroeter et al., 2009), the authors surveyed 62 original112

research papers in a meta-analysis aimed at identifying which brain regions might make the most useful113

markers of AD-related atrophy, in a variety of different scanning modalities. A fundamental assumption is114

that the studies use only one scanning modality and analysis method in isolation, rather than combining the115

several available modalities into a single disease marker. However, each scanning modality and processing116

method can reveal information about different aspects of the underlying pathology. For instance, structural117

MR images may reveal patterns of gray matter atrophy, while FDG-PET images may reveal reduced glucose118

metabolism (Ishii et al., 2005), PIB imaging highlights the level of amyloid burden in brain tissue (Klunk119

et al., 2004), and SPECT imaging can allow an examination of cerebral blood flow (Ramı́rez et al., 2009);120

similarly, Voxel-Based Morphometry (VBM) shows gray matter density at baseline, while Tensor-Based121

Morphometry (TBM) shows longitudinal patterns of change (Hua et al., 2008). Another important issue122

one must consider is that as new types of biologically relevant imaging modalities become available, (e.g.,123

new tracers for use in PET scanners, or new pulse sequences in MRI scanners), it is desirable for the124

diagnostic process to incorporate such advances seamlessly. Further, since AD pathology is known to be125

heterogeneous, (Thompson et al., 2001) it may be advantageous to include multiple scanning modalities in126

a single classification framework. Indeed, a wide variety of markers may be available, and it is desirable to127

make the best use of all such information in a predictive setting. The main difficulty is that as the number128

of available input features grows, many machine learning algorithms may lose their ability to generalize129

to unseen examples, due to the disparity between the sample size and the increased dimensionality. To130

address this problem, we propose to employ a recent development in the machine learning literature, called131

Multi-Kernel Learning (MKL), which is designed to deal with multiple data sources while controlling model132

complexity. We have evaluated this method’s performance on subjects from the ADNI data set, and report133

these results below. We have also applied the multi-modal classifier to MCI subjects, showing a promising134

ability to predict which subjects will convert from MCI to full AD in the ADNI sample.135

The principal contributions of this paper are: (1) We propose a new application of Multi-Kernel Learn-136

ing (MKL) to the task of classifying AD, MCI, and control subjects, which permits seamless incorporation137

of tens of imaging modalities, clinical measures, and cognitive status markers into a single predictive frame-138

work. The main ideas behind MKL are presented in Section 2.2; (2) We have conducted an extensive set139

of experiments using ADNI subjects, aimed at providing a rigorous evaluation of the method’s ability to140

predict disease progression under conditions designed to match a clinical setting. We present these results141

in Section 4; (3) We employ our method to produce a Multi-Modality Disease Marker (MMDM) for MCI142
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subjects, and present an analysis of its predictive value on rates of conversion from MCI to AD in Section143

4.3. A discussion of our results is given in Section 5. 1
144

2 Algorithm145

2.1 Support Vector Classification146

In the following section, we present a brief overview of Support Vector Machines, (Cortes and Vapnik,147

1995) illustrate the connection to Multi-Kernel Learning, and how this relates to the problem of disease148

classification from multiple modalities.149

Machine learning methods are designed to find a classifier (i.e., function) that correctly (or maximally)150

classifies a set of n training examples (i.e., where class labels are known), while simultaneously satisfying151

some other form of inductive bias which will allow the algorithm to generalize, i.e., correctly label future152

examples. Given a collection of points in a high dimensional space, SVM frameworks output a decision153

function separating classes (in a maximum margin sense) in that space; the ‘bias’ here is toward selecting154

functions with large margins. A linear decision boundary describes a separating hyper-plane – parameterized155

by a weight vector w, and an offset b. Classifying a new example x involves taking the inner product between156

x and w plus the offset b; the sign of this quantity indicates which side of the hyperplane x falls on (i.e., its157

predicted class). In order to find the classifier, SVMs try not only to assign correct labels to each training158

example by placing them on the correct side of the hyperplane, but also attempt to place them some distance159

away. The measure of this distance is controlled by �w�2, or �2-norm of w. Thus, by rewarding the algorithm160

for reducing the magnitude of w, classifiers that correctly label the data (and have the widest margin) are161

selected, see (Schoelkopf and Smola, 2002) for details. SVMs choose an optimal classifier by optimizing the162

following primal/dual problem, whose solution w gives the separating hyperplane:163

(primal)

min
w,ξ

�w�2

2
+ C

�

i

ξi (1)

s.t. yi

�
w

T xi + b
�
≥ 1− ξi ∀i

ξi ≥ 0 ∀i

(dual)

max
α

�

i

αi −

�

i,j

αiαjyiyj xT
i xj� �� �

kernel

(2)

s.t. 0 ≤ αi ≤ C ∀i
�

i

yiαi = 0 ∀i

164

In the primal problem (1), the slack variables ξ implement a soft margin objective. That is, for each165

example i that is not placed more than unit distance from the separating hyperplane, the slack variable166

ξi takes the value of the remaining distance from example i to the margin, which is then penalized in the167

objective. C is a constant parameter controlling the amount of emphasis on separating the data (if C168

is large,) vs. widening the margin (if C is small). Thus, the soft-margin objective allows for a trade-off169

between perfectly classifying every example, and widening the margin. The bias term b allows for separating170

hyperplanes (wT x + b) which do not pass through the origin. Class labels for each example are given as171

yi = ±1, so that yi(wT xi + b) will be positive iff w
T x + b gives xi the correct sign specified by yi.172

Note that the hyperplane parameters w can be given as a linear combination of examples. It is a special173

property of the SVM formulation that the dual variables 2 α are exactly the coefficients of such a linear174

combination, i.e., w =
�

i αiyixi. For typical settings of C, the support of α will be sparse, giving rise to175

the term “Support Vector Machine”.176

Note that in the dual problem (2), the examples only occur as inner products �xi, xj�. These inner177

products can be captured in a single n × n matrix called a Gram matrix or kernel matrix, K; see (Bishop,178

2006). In practice, K is specified by the user and expresses some notion of similarity between the examples –179

that is, the magnitude of a kernel function of two examples expresses an inner product between corresponding180

1
A preliminary conference version of this paper appeared as (Hinrichs et al., 2009b).

2
In linear and quadratic optimization, every primal problem has an associated dual problem; the optimal solution to one

can be used to recover the optimal solution to the other.
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points in an implicit Reproducing Kernel Hilbert Space H. The translation from the original data space to181

H is commonly denoted as φ(x); when the kernel function is modified, 3 the kernel space H and translation182

function φ(x) are correspondingly modified. The kernel function can also be calculated analytically – among183

those commonly used are Linear, Polynomial, and Gaussian kernels. Briefly, a linear kernel function is simply184

the inner product of two examples in the original data space; thus, unmodified SVMs use a linear kernel. A185

polynomial kernel function is one in which each inner product is squared (or cubed etc.). Such kernels allow186

for polynomial decision boundaries, rather than simple hyperplanes. Finally, Gaussian kernels are based on187

the Euclidean distance between examples, by the formula188

exp
�
−�xi − xj�

2σ

�

where σ is a bandwidth parameter and xi and xj may denote examples i and j. Gaussian kernel-based189

SVMs can be thought of as training a Gaussian mixture model as the pattern classifier. If a modified kernel190

function is used, corresponding to a non-linear transformation of the data, then the learned classifier is a191

linear function (i.e., hyperplane) in the kernel space H. Such a function typically maps back to a non-linear192

decision function in the original data space. A thorough treatment is given in (Bishop, 2006).193

2.2 Multi-Kernel Pattern Classification194

An extension of this idea is to combine many such functions of the data (i.e., multiple kernels, each pertaining195

to one modality for example, or to different parameterizations of the kernel function, or to different sets of196

selected features), to create a single kernel matrix from which a better classifier can be learnt. Multi-kernel197

learning (MKL) (Lanckriet et al., 2004; Sonnenburg et al., 2006; Rakotomamonjy et al., 2008; Gehler and198

Nowozin, 2009; Mukherjee et al., 2010) formalizes this idea. This is achieved by adding a set of optimization199

variables called subkernel weights which are coefficients in a linear combination of kernels. The subkernel200

weights are chosen so that the resulting linear combination of kernel matrices (another kernel matrix) yields201

the best margin and separation on the training set, with additional regularization to reduce the chances of202

overfitting the data due to the increase in the degrees of freedom of the model.203

min
wk,ξ,β,b

�
�

k

�wk�2

β

�2

+ C
N�

i

ξi + �βk�
2
2 (3)

s.t. yi

�
�

k

wk
T φk(xi) + b

�
≥ 1− ξi ∀i

Here, βk is the subkernel weight of the k-th kernel, and wk is the set of weights for the k-th feature space,204

while ξi is a slack variable as described above. Regularization of the subkernel weights is accomplished by205

penalizing the squared 2-norm of β in the objective. Thus, in addition to minimizing the magnitude of each206

set of weights, the MKL algorithm also tries to minimize the magnitude of the subkernel weight vector. Thus207

as βk grows larger, the corresponding wk is penalized less, and therefore tends to have a larger contribution208

to the final classifier. The combined classifier is defined as f(x) =
�

k wk
T φk(x) + b. Thus, the implicit209

kernel function is equal to
�

k βkφk(xi)T φk(xj). In the context of our application, it is helpful to think210

of the various kernel matrices as being derived from different sources of data (e.g., different modalities),211

different choice of kernel function or parameters, (e.g., bandwidth parameter in a Gaussian kernel function,)212

or a different set of features. Their assigned weights can then be interpreted as their relative influence in213

learning a good classifier (i.e., discriminative ability). Because there is a natural mechanism to control the214

greater complexity resulting from the increased dimensionality of multi-modality data, we believe that MKL215

is a preferable option rather than simply ‘concatenating’ all features together and using a regular SVM. Our216

proposed method then, is to calculate various kernel matrices from each available input modality – including217

brain images, cognitive scores and other characteristics, such as CSF assays or APOE genotype, and use218

MKL to train a optimal combined kernel and classifier.219

3
Any such modification must preserve the positive-definite property of the original kernel function.
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Note that in the term �βk�
2
2 the subkernel weights are penalized according to the Euclidean, or 2-norm. 4

220

A recent focus in MKL research has been to generalize this formulation to include other norms (Kloft et al.,221

2010), having different effects on the sparsity of the resulting vector of subkernel weights. For instance, the222

1-norm is a sparsity inducing norm, while the 2-norm is not; norms between 1 and 2 allow a trade-off of223

emphasis between sparse and non-sparse solutions. When combining multiple imaging modalities for AD224

classification, it is preferable not to encourage sparsity, as the algorithm will be very likely to completely225

ignore some modalities.226

3 Experimental Setup227

3.1 Data228

Data used in the evaluations of our algorithm were taken from the Alzheimer’s Disease Neuroimaging Initia-229

tive (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute230

on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and231

Drug Administration (FDA), private pharmaceutical companies and non-profit organizations, as a $60 mil-232

lion, 5-year public-private partnership. The primary goal of ADNI has been to test whether serial magnetic233

resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and234

neuropsychological assessment can be combined to measure the progression of mild cognitive impairment235

(MCI) and early Alzheimers disease (AD). Determination of sensitive and specific markers of very early AD236

progression is intended to aid researchers and clinicians to develop new treatments and monitor their effec-237

tiveness, as well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is238

Michael W. Weiner, M.D., VA Medical Center and University of California San Francisco. ADNI is the result239

of efforts of many co-investigators from a broad range of academic institutions and private corporations, and240

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to241

recruit 800 adults, ages 55 to 90, to participate in the research approximately 200 cognitively normal older242

individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people with243

early AD to be followed for 2 years.244

Our data consisted of ADNI subjects for whom both MR and FDG-PET scans roughly 24 months apart245

were available (as of October 2009). For quality control purposes, several (16) subjects were removed due246

to motion artifacts (MR), reconstruction artifacts (FDG-PET) or other problems visible to an expert. All247

such evaluations were made before any classification experiments were conducted, so as not to unfairly bias248

the experimental results. Finally, we had data for 233 subjects (48 AD, 66 healthy controls, and 119 MCI249

subjects). Demographic data are shown in Table 1.250

3.2 Preliminary Image-processing251

In order to apply SVM and MKL methods to imaging data, it is necessary to extract features which are252

common to all subjects. Using standard voxel-based morphometry methods, as described below, we warped253

the scans into a common template space, and used voxel intensities as features. That is, after extracting254

foreground voxels, (i.e., those corresponding to brain tissue,) each subject can then be treated as a vector255

of fixed length.256

T1-weighted MR images. Cross-sectional image processing of the baseline T1-weighted images was257

first performed using Voxel-Based Morphometry (VBM) toolbox in Statistical Parametric Mapping software258

(SPM, http://www.fil.ion.ucl.ac.uk/spm). The ADNI study provides repeated acquisitions of the MR scans,259

which we utilized by first performing an affine warp between duplicates, and then averaging them in order260

to boost the signal/noise ratio. We then segmented the original anatomical MR images into gray matter261

(GM), white matter (WM), and cerebrospinal fluid (CSF) segments. Then by using the “DARTEL Tools”262

facility in SPM5, a study-cohort customized template was calculated based on all subjects’ baseline MR263

images with the registration results as well as all relevant flow fields (representing the transformations). All264

individual MR scans were subsequently warped to this new template. Modulated GM and WM segments265

were produced in the DARTEL template space, using both the original scans (Ashburner, 2007). Finally,266

the normalized maps were smoothed using an 8 mm isotropic Gaussian kernel to optimize signal to noise and267

4
In general, the p-norm of a space X is given as �(x)�p =

`P
i |xi|p

´p
, for x ∈ X .
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facilitate comparison across participants. Analysis of gray matter volume employed an absolute threshold268

masking of 0.1 to minimize the inclusion of the white matter in analysis. Longitudinal MR image processing269

of baseline and 24-Month MR scans was performed with a tensor-based morphometry (TBM) approach in270

SPM5. We first co-registered the baseline and follow-up scans with rigid body affine transformation, and271

applied bias correction and intensity normalization to make both images comparable. Pre-processing TBM272

procedures are described in detail in a previous article (Kipps et al., 2005). Briefly, a deformation field was273

used to warp the corrected late image to match the early one within subject (Ashburner and Friston, 2000).274

The amount of volume change was quantified by taking the determinant of the gradient of deformation at a275

single-voxel level (i.e., Jacobian determinant). Each subject’s Jacobian determinant map was normalized to276

the cohort-specific DARTEL template and smoothed using a 12 mm isotropic Gaussian kernel.277

FDG-PET images. All FDG-PET images were first co-registered to each individual’s baseline MR-T1278

images and subsequently warped to the cohort-specific DARTEL template (see above). A mask of the Pons279

was manually drawn in the DARTEL template as the reference region. All of the normalized FDG-PET280

images were scaled to each individual’s Pons average FDG uptake value and smoothed with a 12 mm isotropic281

Gaussian kernel.282

Other biological and neurological data. In addition to MR and FDG-PET images, other biological283

measures and cognitive status measures are provided by ADNI for some subjects. These include CSF assays284

for certain compounds thought to be involved in neurodegeneration, such as AB1-42, Total Tau, and P-tau285

181; NeuroPsychological Status Exam scores (NPSEs); and APOE genotype data. The complete list of286

biological measures, and their availability in the study population is shown in Tables 2 and 3.287

3.3 Experimental Methodology288

We performed two sets of classification experiments: (1) We first performed multi-modal classification ex-289

periments for separating AD and control subjects using baseline and longitudinal imaging data, (MR and290

FDG-PET), and other available cognitive / biological measures (CSF assays, NeuroPsychological Status291

Exams (NPSE), and APOE genotype). For comparison, we also present single-kernel experiments for each292

data modality (except APOE, since APOE genotype alone is not sufficient to diagnose AD), and on an SVM293

trained on the sum of all kernels, (or equivalently, the concatenation of all feature vectors). (2) Finally,294

we trained a classifier on the entire set of AD and control subjects and then applied it to the MCI popu-295

lation, giving a Multi-Modality Disease Marker (MMDM). We compared this marker with NPSEs taken at296

24 months, and examined its utility in predicting which MCI subjects would progress to AD, as opposed to297

remaining stable as MCI. Note that this is different from separating MCI subjects from AD/controls.298

Kernel matrices Kernel matrices used in our experiments were computed using a varying number299

of voxel-wise features, (i.e., intensity values at each voxel,) and kernel functions i.e., linear, quadratic and300

Gaussian, for each imaging modality. For each fold, voxels were ranked by t-statistic between AD and control301

training subjects. That is, each voxel’s intensity value can be thought of as a random variable, upon which302

we performed a t-test, and ranked the features by the resulting p-values. Separate kernels were computed303

using the top 250,000, 150,000, 100,000, 65,000, 25,000, 10,000, 5000 and 2000 features, respectively. These304

sets of features were chosen beforehand so as to give a reasonable coverage of the range of features available,305

while allowing the algorithm to choose a linear combination that leads to a discriminative kernel. In addition306

to performing an implicit feature selection step, this allows us to evaluate the MKL algorithm’s ability to307

integrate tens to hundreds of kernels, as in the case when many more modalities are available. For each set308

of features, we constructed linear, quadratic, and Gaussian kernels, using a bandwidth parameter of 2 times309

the number of features for the Gaussian kernel. The Gaussian kernel bandwidth parameter should be chosen310

to be within the same order of magnitude as the majority of pairwise distances. Thus, when voxel-wise311

intensity values fall in the range [0, 1], a common choice for the bandwidth parameter is a small number312

times the number of features. By this process, we obtained 24 separate kernel matrices for each imaging313

modality. For non-imaging modalities, i.e., CSF assays, NPSEs, and APOE genotype, all features were used,314

giving three kernels per modality. The biological measures used are shown in Table 2. Because only a subset315

of subjects had such measures available, we used zero values for those who did not. This means that kernel316

matrices had zero values where such data were missing, and therefore added nothing to the classification on317

those subjects. We chose a conservative approach to this problem, meaning that results can only improve if318

a statistical interpolation method were to be introduced. For computing the MMDM for MCI subjects, all319

AD and CN subjects were used both in feature selection and training.320
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Before training a classifier using the kernels constructed as described above, it is necessary to perform some321

normalization; consider that the vector w which defines the separating hyperplane is a linear combination322

of examples. If the average magnitude of examples as implicitly represented by one kernel is orders of323

magnitude larger than that of another kernel, then for the same subkernel weights, one kernel will have a far324

greater contribution to w. In order to ensure that this is not the case, we adopted a standard approach to325

kernel normalization. The first step is to divide each kernel by the largest entry, so that all entries are in the326

range [0, 1]. Second, we re-centered the points in each kernel space by subtracting row and column mean327

values, and then dividing by the trace. See Bakir et al. (2007) for details. As a consequence of normalizing328

the kernels, the C parameter which controls the regularization trade-off can be set to a small integer. We329

therefore set C = 10; no fine tuning or model selection was necessary.330

Recall that when longitudinal data are available, there is more than one way to perform spatial normal-331

ization of scans, and we treat them as different imaging modalities, because we expect different types of332

information to be revealed by each. From MR images, we have both baseline VBM, and TBM modalities;333

in FDG-PET we have baseline and 24 month scans, as well as the voxel-wise difference and ratio between334

scans at different time points. Kernels based on the longitudinal voxel-wise difference and ratio in FDG-PET335

images were found to have poor performance relative to the raw FDG-PET values (60% – 70% accuracy),336

and we did not make further use of them in our experiments.337

ROC curves We also computed Receiver Operator Characteristic curves (ROCs) for each set of ex-338

periments. Briefly, while a classification algorithm must output a ±1 group label, our algorithm can also339

output a ‘confidence’ level for each test subject which in this case is the signed output of the classifier . By340

ordering the confidence levels of the entire study population, and calculating a True Positive Rate (TPR or341

sensitivity) and False Positive Rate (FPR or 1 - specificity) for each level, an ROC curve qualitatively shows342

not only how many examples are misclassified, but provides a sense of how the classifier’s confidence relates343

to its correctness.344

Cross-validated classification For the first set of experiments, we performed AD vs. control classi-345

fication experiments using 30 realizations of 10-fold cross-validation. That is, in each realization the study346

population was randomly divided into ten separate groups, or folds. Each fold was used as a “test” set,347

while the remaining data was used as a “training” set. Therefore, the algorithm was evaluated on AD and348

control examples which were unseen during the training process, while permitting us to use the entire dataset349

effectively. Various accuracy measures, such as test-set accuracy (% of test examples properly labeled as AD350

or control,) sensitivity, (% of AD cases labeled as such) and specificity (% of controls labeled as such), and351

area under ROC curves were computed by averaging over all 30 realizations. Using this methodology, we first352

evaluated each kernel function on its own, in an SVM framework. We then evaluated each modality in an353

MKL framework, by combining different kernel functions, all derived from the same modality and features.354

Finally, we combined all imaging modalities into a multi-modality MKL classification framework. We did355

the same for cognitive scores and biological measures, allowing for a comparison between different types of356

subject data in terms of their ability to identify signs of AD.357

Comparison of subkernel weight vector regularization norms Another interesting area of investi-358

gation is on the effect of different MKL norm regularizers, especially with regard to sparsity of the resulting359

classifier. Sparsity is often advantageous in the presence of non-informative or error-prone kernels, however360

an overly sparse combination can discard useful information, leading to a sub-optimal classifier. Thus, it361

is important to understand this trade-off. Using the cross-validation setup described above, we compared362

different subkernel norm regularizers, (1, 1.25, 1.5, 1.75, and 2), using all available kernel types, as shown363

in Tables 2 and 3. In order to demonstrate MKL’s ability to combine fundamentally different sources of364

information, we also constructed additional kernels using subject age, APOE genotype, years of education,365

and geriatric depression scale as features. We expect that some of these additional kernels may or may not366

be as useful to the learning algorithm, so as to allow a meaningful assessment of the usefulness of applying367

sparsity in the kernel norm. For baseline comparison we trained an SVM on the sum of all kernels, which is368

equivalent to simply concatenating all feature vectors, by definition of the inner product of vectors.369

MMDMs Our next set of experiments were conducted to evaluate the ability of imaging-based markers370

to predict which subjects would convert from MCI to AD. In order to do this, we first trained an MKL371

classifier using all 114 AD and CN subjects, and then applied it to all 119 MCI subjects, giving an MMDM372

measure. This procedure was repeatedly performed using (a) imaging-based, (b) cognitive marker-based,373

and (c) biological measure-based kernels, so as to evaluate each type of data separately, and facilitated a374
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better comparison among them. We also differentiated between baseline and longitudinal data.375

To quantify the predictive value of the MMDMs, we separated the MCI subjects into three groups –376

those who had progressed to AD after three years, those who remained stable, and those who reverted to377

normal status – and calculated p-values of group differences using a t-test. We also computed ROC curves378

to quantitatively measure the degree of differentiation between the MCI groups as given by different types379

of biological measures. There are two ways to compute such ROCs: based on the differentiation between380

progressing and reverting MCI subjects, ignoring the stable MCI subjects; and based on the differentiation381

between progressing and non-progressing MCI subjects. In the former case, we treat stable MCI subjects382

as though their final status is not yet known, and thus the task is to predict whether a given subject will383

eventually revert, or progress. For our analysis, we calculated both kinds of ROC curves, and present results384

below.385

Implementation Our validation experiments and analysis framework were implemented in Matlab using386

an interface to the Shogun toolbox (Sonnenburg et al., 2006) (http://www.shogun-toolbox.org). The387

source code for this project and supplemental information will be made available at http://pages.cs.388

wisc.edu/~hinrichs/MKL_ADNI [upon publication].389

TABLE 1 Study population demographics

controls (mean) controls (s.d.) MCI (mean) MCI (s.d.) AD (mean) AD (s.d.)

Age at baseline 76.2 4.59 75.1 7.44 76.6 6.28
Gender(M/F) 40/26 – 79/40 – 25/23 –
APOE carriers 17 – 63 – 37 –

MMSE at Baseline 29.17 0.85 27.18 1.64 23.50 1.92
MMSE at 24 months 28.67 3.73 25.54 4.84 18.98 6.60

ADAS at baseline 9.94 4.27 17.26 6.13 28.27 9.80
Years of Education 16.15 3.02 15.73 2.82 14.60 3.17
Geriatric Depression 0.97 1.35 1.40 1.28 1.71 1.47

Table 1: Demographic and neuropsychological characteristics of the study population.

TABLE 2 Biological measures data used in kernel functions

Type Subjects available
Tau 130

Amyloid-Beta 142 130
P-Tau 181P 130

T-Tau 130
APOE Genotype 233

Table 2: Non-imaging biological measures used to construct kernels for experiments. Cerebro-Spinal Fluid
(CSF) assays and APOE genotype data were utilized.

4 Results and Analysis390

We present here the results of our experiments on the ADNI data described in Section 3, and an analysis of391

the MKL algorithm in the context of MCI progression.392

4.1 Separating AD subjects and Controls393

As a first step, we separately evaluated the kernels produced by each modality by comparing their perfor-394

mance at classifying AD vs. control subjects using an MKL norm of 2.0, so as not to discard any useful395
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TABLE 3 Cognitive markers used in kernel functions

Cognitive measure Subjects available
Rey auditory / verbal 1-5 scores 233

Rey auditory delayed recall scores 233
Category Fluency scores 233

Trail-making A & B 233
Digit-span scores 233

Boston Naming scores 233
ANART errors 233

Table 3: Non-imaging cognitive markers used to construct kernels for experiments.

information. Results of these experiments are shown in Figure 1. Note that the color scale is the same396

between all figures.397

Our first set of multi-kernel experiments also focused on whether the algorithm could learn to separate398

AD subjects from controls. Our experimental method was to use 10-fold cross-validation repeated 30 times,399

using kernel matrices computed as described in 3.3. Accuracy, sensitivity, and specificity results are shown400

in Table 4. In order to compare the efficacy of imaging-based disease markers with other biological measures,401

we performed experiments (1) using only image-derived data, (2) using other biological measures, (3) using402

only NPSEs, and finally using all available data modalities.403

Note that the accuracy achieved using imaging-based MMDMs is nearly as good as that achieved using404

NPSEs. We believe this is promising, because NPSEs should be expected to perform better than imaging405

modalities when AD-related cognitive decline is present, even if the NPSEs were not used in making the406

diagnosis. This is because AD is currently diagnosed according to the patient’s cognitive status, and while407

the NPSEs we utilized are not the same as those used in making a clinical diagnosis, they are nonetheless408

markers of detectable decline in cognition, and as such are not directly comparable to imaging-based markers.409

Rather, we include these experiments only to facilitate indirect comparison. Thus, for the imaging-based410

markers to be nearly as effective is quite promising.411

The areas under each ROC curve (another measure of classification performance) are provided in Table412

4. In terms of area under ROC curve, all modalities performed about as well as other accuracy measures413

would suggest. Again, we note that imaging modalities and cognitive scores performed very similarly under414

this measure.415

416

TABLE 4 Accuracy results of validation experiments using 2-norm MKL

Modalities used Accuracy Sensitivity Specificity Area under ROC

Imaging modalities 0.876 0.789 0.938 0.944
Biological measures 0.704 0.581 0.794 0.767

Cognitive scores 0.912 0.892 0.926 0.983

All modalities 0.924 0.867 0.966 0.977

Table 4: Comparison of 2-norm MKL with different types of input data modalities.

In order to compare the effect of subkernel weight norms, we repeated the above experiments using all417

kernels and modalities available and MKL norms in the range of (1, 1.25, 1.5, 1.75, 2). These results are418

shown in Table 5. Note that among the MKL norms, accuracy increases slightly with MKL norm up to the419

point where sparsity is no longer strongly encouraged (at about 1.5), suggesting that overly sparse MKL norm420

regularizers do indeed lose information. We also note that the SVM’s performance suffered significantly.421

When using a 1-norm, out of the 72 available kernels, only 4 had non-zero weights: one TBM Gaussian422

kernel using 10,000 features, two VBM kernels, (one linear with 10,000 features, one quadratic with 25,000),423
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FIGURE 1

(a)FDG-PET scans at baseline (b)VBM-processed MR baseline scans

(c) FDG-PET scans at 24 months (d)TBM-processed MR scans

Figure 1: Accuracies of single-kernel, single-modality methods. Color represents classification accuracy on
unseen test data, ranging from blue (lowest, 50% accuracy,) to red (highest, 100% accuracy). The modalities
used are, (a) FDG-PET scans at baseline, (b) VBM-processed MR baseline scans, (c) FDG-PET scans at
24 months, and (d) TBM-processed MR scans.

TABLE 5 Comparison of different MKL norms with the SVM trained on concatenated-features

MKL norm used Accuracy Sensitivity Specificity Area under ROC

1.0 0.914 0.867 0.949 0.977
1.25 0.916 0.865 0.954 0.980
1.5 0.921 0.874 0.956 0.982
1.75 0.923 0.872 0.961 0.982
2.0 0.922 0.870 0.959 0.981

SVM (concatenated features) 0.882 0.844 0.910 0.970

Table 5: Comparison of different MKL norms in the presence of uninformative kernels, and an SVM trained
on a concatenation of all features for comparison.

none from the baseline FDG-PET scans, and one linear kernel with 2,000 features. In contrast, the subkernel424

weights chosen when using an MKL norm of 2 were all non-zero, and are shown in Figure 2. This means425

that in the context of AD classification, different modalities (and different representations of information426
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from those modalities) contributed to in varying proportions to yield a discriminative classifier. It is perhaps427

interesting to note that most of the weight was placed on the VBM kernels, followed by the TBM and428

FDG-PET kernels.429

4.2 Classifier brain regions430

An important component of the evaluation of our method is an analysis of the brain regions selected by431

the algorithm. That is, if the algorithm is only given linear kernels from brain images, then the decision432

boundary itself can be interpreted as a set of voxel weights, using the formula wm = βm
�

i αiφm(xi) where433

φm(x) is the implicit (possibly non-linear) transform from the original data space to the kernel Hilbert434

space. An examination of these weights can reveal which brain regions were found to be most useful or435

discriminative (by the algorithm) in its predictions. Thus, the images of brain regions below are taken from436

the multi-modality classifier trained on all four imaging modalities used in our experiments, using only linear437

kernels . Note that from Figure 1, we can see that among the kernels derived from FDG-PET images, the438

most informative kernel used more than 65000 voxels, which implies that classification strategies can benefit439

from using whole-brain images rather than examining small, localized brain regions, or ROIs in FDG-PET440

imaging. The results are shown in Figures 3 – 6. Note that these weights were all calculated simultaneously441

in the MKL setting. These images can be interpreted as follows: image intensity in voxels showing a stronger442

red color contributes to a subject’s healthy (positive) diagnosis, while intensity in voxels showing a stronger443

blue color contributes to a subject’s diseased (negative) diagnosis, and intensity in yellow-, green- or cyan-444

colored voxels is essentially ignored. Note that these weights are purely relative, and thus have no applicable445

units. Each subject’s final score is thus the difference between the weighted average intensity in the red446

and orange regions and the blue and cyan regions. We interpret this as meaning that red-orange (positive447

weighted) regions are those in which image intensity is a prerequisite of healthy status. For blue-cyan448

(negative weighted) regions, the literal interpretation is that the algorithm found higher intensity among the449

AD group than in the controls.450

In some cases, we observe that negative weights are assigned in regions where higher image intensity451

is usually associated with positive status. There are several possible explanations for this, such as image452

normalization artifacts which artificially boost the intensity of these regions in some AD subjects. For453

instance in FDG-PET images, image intensity was normalized using a map of the Pons, and thus irregularities454

in this region could produce artificially inflated intensities in the rest of the image. Another possibility is455

brought up by (Davatzikos et al., 2009), which is that in MR images of gray matter, periventricular white456

matter may be mis-segmented as gray-matter, due to certain types of vascular pathology. A third possibility457

is that there is a small set of subjects whose characteristics is heterotypical of their group, and thus induce458

negative weights in regions which would otherwise have positive weights. Evidence of such a group was459

found in (Hinrichs et al., 2009a). In order to examine this possibility we found a set of subjects (5 subjects460

based on baseline FDG-PET scans, and 4 subjects based on baseline MR scans) who had unusually strong461

intensity in regions which had been assigned negative weights, and re-trained the MKL classifier without462

them. The resulting classifier was nearly free of such anomalous negative weights, which strongly suggests463

that these negative weights are entirely the result of the influence of a small group of outlier subjects, (9 out464

of 114). We have investigated this issue briefly in our previous work. (Hinrichs et al., 2009a) The weights465

assigned by this classifier can be seen in Figure 7. It is important to note that these subjects were removed466

for visualization purposes only, and were still used in computing accuracy and other performance estimates,467

and in the MCI analyses described below.468

In Fig. 3, we can see that heteromodal, frontal, parietal regions and temporal lobes are given negative469

weights. The posterior cingulate cortex, lateral parietal lobules (bilaterally) and pre-frontal midline struc-470

tures prerequisite of an indication of healthy status. The weights assigned to the FDG-PET scans taken at471

24 months show a similar pattern, and are shown in Figure 4.472

Among the MR-based kernels, the most informative kernels (as measured in a single-kernel setting,)473

used 5000 to 25000 voxels, implying that smaller regions, can be used to identify signs of AD-related gray474

matter atrophy. Thus, we expect to see a similar pattern in the multi-modality setting. Using the same475

interpretation of color as above, we can see that in the baseline GM density images, (VBM) hippocampal476

and parahippocampal regions are highlighted more clearly, consistent with the single-modality results which477

indicated that a small number of voxels are most informative in this modality. In the TBM-based images,478

we see that the hippocampal regions and parahippocampal gyri are highlighted, as well as middle temporal479
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lobar structures bilaterally, indicating that longitudinal atrophy is concentrated in these regions, which is480

again consistent with the single kernel results, (and prior literature), (Braak et al., 1999) in which the top481

25000 voxels produced the most informative classifier.482

FIGURE 2

(a)FDG-PET scans at baseline (b)VBM-processed MR baseline scans

(c) FDG-PET scans at 24 months (d)TBM-processed MR scans

Figure 2: Subkernel weights (β) chosen by the MKL algorithm with 2-norm regularization. Weights are
relative, and have no applicable units. The modalities used are, (a) FDG-PET scans at baseline, (b) VBM-
processed MR baseline scans, (c) FDG-PET scans at 24 months, and (d) TBM-processed MR scans.

483

484

485

486

487

488

4.3 Correlations and predictions on the MCI population489

For the second set of experiments, which involved MCI subjects, we trained a classifier on the entire AD490

and control population using MKL. This classifier was then applied to the MCI population, giving a Multi-491

Modality Disease Marker (MMDM). Using this methodology, only AD and control subjects were used to492

train the model, while MCI subjects were only used for evaluation, rather than other methodologies in which493
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FIGURE 3

Figure 3: Voxels used in the classifier for FDG-PET baseline images. Weights are relative, and have no
applicable units. Blue indicates negative weights, associated with AD, while green indicates zero or neutral
weight, while red indicates positively weighted regions associated with healthy status. Green bars in the
axial and saggital views correspond to coronal slices.

FIGURE 4

Figure 4: Voxels used in the classifier for FDG-PET images at 24 months. Weights are relative, and have no
applicable units. Blue indicates negative weights, associated with AD, while green indicates zero or neutral
weight, while red indicates positively weighted regions associated with healthy status. Green bars in the
axial and saggital views correspond to coronal slices.

MCI subjects are used for training purposes. (Hua et al., 2008, 2009; Davatzikos et al., 2009) This process494

was repeated for each modality separately, as well as in groups of modalities. That is, all imaging modalities495

were combined, as were all NPSEs and biological measures. The outputs for each subject are shown in Figure496

8. Subjects who remained stable are shown in blue; subjects who progressed to AD after 3 years or less497

are shown in red; subjects who reverted to normal cognitive status are shown in green. The four plots are498

divided between baseline (left) and longitudinal (right), and imaging-based (top) and NPSE-based (bottom)499

MMDMs. In each plot, a maximum accuracy cut-point is plotted as a solid black line. On the left we can500

see that neither of the baseline scans shows much differentiation between the groups, and the maximum501

accuracy separating line is essentially choosing the majority class. On the right, both the imaging-based and502

NPSE-based MMDMs provide better separation of the 2 groups. We also computed a set of MMDM scores503
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FIGURE 5

Figure 5: Voxels used in the classifier for TBM-processed MR images. Weights are relative, and have no
applicable units. Blue indicates negative weights, associated with AD, while green indicates zero or neutral
weight, while red indicates positively weighted regions associated with healthy status. Green bars in the
axial and saggital views correspond to coronal slices.

FIGURE 6

Figure 6: Voxels used in the classifier for VBM-processed (GM density) MR images. Weights are relative,
and have no applicable units. Blue indicates negative weights, associated with AD, while green indicates
zero or neutral weight, while red indicates positively weighted regions associated with healthy status. Green
bars in the axial and saggital views correspond to coronal slices.

based on CSF measures and APOE genetic markers, which did not show any ability to differentiate the 2504

groups. An encouraging sign is that none of the reverting subjects were given negative scores.505

In order to quantify these differences, we evaluated the degree of group-wise separation between progress-506

ing, reverting, and stable MCI subjects, under each of the available modalities, using a t-test. As shown507

in Table 6, the resulting p-values of the imaging-based MMDM (in separating progressing subjects from508

non-progressing) are several orders of magnitude lower than those based on NPSEs at 24 months, and two509

orders lower at baseline, suggesting that imaging modalities offer a better view of future disease progression510

than current cognitive status. We believe this is an interesting result of our analysis.511

Area under ROC curve results are shown in Table 7; the corresponding ROC curves are shown in Figure512

9. For ROCs showing separation between progressing and reverting subjects, the AUCs are very high, as513
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FIGURE 7

(a) (b)

(c) (d)

Figure 7: Voxel weights assigned by the MKL classifier when the outlier subjects were removed. (a) FDG-
PET baseline images; (b) FDG-PET images at 24 months; (c) VBM-processed baseline MR images; (d)
TBM-processed longitudinal MR scans.

we would expect. These curves are shown on the left in Figure 9. For comparison, we also computed514

ROC curves for single modalities, which are also shown in the figure. Of special relevance is the fact that the515

MMDM based on imaging data alone outperformed all others, both at baseline and at 24 months. The second516

comparison we made via ROC curves was between progressing subjects and all others. We accomplish this517

by using a different ground truth for computing the ROC curves. In this case, the task is to understand518

which of the MCI subjects will progress to AD in the near term (2-3 years), and which will remain stable or519

revert. These curves are shown on the right in Figure 9. In this case, the imaging-based MMDM, (shown520

in green) outperformed all others, most significantly at 24 months. The AUC for the image-based MMDM521

was 0.79, while that of the NPSE-based MMDM was 0.74. The highest leave-one-out accuracy achieved522

by the image-based MMDM was 0.723. For the NPSE the highest accuracy was 0.681 For the Biological523

measure-based MMDMs, it was not possible to achieve an accuracy greater than chance.524

525

TABLE 6 t-statistic p-values for comparisons between MMDMs of stable MCI subjects, progressing subjects,
and reverting subjects.

Modalities used Reverting vs. rest Progressing vs. rest

Biological measures (baseline) 0.65 0.58
Imaging Data (baseline) 1.31 ×10−3 1.78 ×10−6

Imaging Data (longitudinal) 5.69 ×10−4 3.29 ×10−7

NPSEs (baseline) 2.63 ×10−3 5.51 ×10−4

NPSEs (longitudinal) 2.44 ×10−4 2.19 ×10−6

Table 6: Significance of group-level differences in MMDM scores assigned to MCI subjects. There are 3
groups of MCI subjects - those who reverted to normal status, those who remained stable for 3 years, and
those who progressed to full AD in 3 years.

526
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FIGURE 8

(a) (b)

(c) (d)

Figure 8: MMDMs applied to the MCI population. Subjects which remained stable are shown in blue;
subjects which progressed to AD are shown in red; subjects which reverted to normal cognitive status are
shown in green. In each figure, a line giving maximal post-hoc accuracy is shown. Note that in some cases,
the best accuracy can be achieved by simply labeling all subjects as the majority class. In some cases,
MMDM scores were truncated to ±2 so as to preserve the relative scales. On the left (a,c) are shown
MMDMs based on information available at baseline. Note the homogeneity of the groups, leading to poor
separability. Imaging-based MMDMs are shown a the top (a), while MMDMs based on NPSEs are shown
below (c). On the right (b,d) are shown MMDMs based on all modalities available at 24 months. Note
the improved separability between the progressing (red) and stable (blue) MCI subjects. Note that the
imaging-based marker above (b) shows slightly greater separation of the 2 groups.

5 Discussion527

We have shown in our experiments that our approach can offer a flexible means of integrating multiple sources528

of data into a single automated classification framework. As more types of information about subjects become529

available, either through new scanning modalities or new processing methods, they can simply be added to530

this framework as additional kernel matrices in a seamless manner. For instance, rather than choose whether531

to use TBM or VBM in our experiments, we used both by delegating the task of choosing the better (i.e.,532

more discriminative) view of the data to our model.533

17



TABLE 7 Area Under ROC results for different classes of MMDMs in predicting MCI progression to AD.

Modalities used Progressing vs. Reverting Progressing vs. Rest

Biological measures (baseline) 0.4368 0.5292
Imaging Data (baseline) 0.9532 0.7378

Imaging Data (longitudinal) 0.9737 0.7911

NPSEs (baseline) 0.9298 0.6693
NPSEs (longitudinal) 0.9415 0.7385

All Modalities 0.9708 0.7667

Table 7: Area under ROC curves for predicting whether MCI subjects will progress to AD or not. In the
left column are AU ROCs for the task of separating only progressing subjects from reverting subjects, while
ignoring stable MCI subjects. On the right are AU ROCs for separating progressing subjects from all other
subjects.

The principal novelty of this work is to introduce a new machine learning algorithm, Multi-Kernel Learn-534

ing, to the application of discriminating different stages of AD using neuroimaging and other biological535

measures. Many existing works (Davatzikos et al., 2008a,b; Fan et al., 2008b,a; Vemuri et al., 2008; Duch-536

esne et al., 2008; Davatzikos et al., 2009; Querbes et al., 2009; Klöppel et al., 2008; Ramı́rez et al., 2009;537

Kohannim et al., 2010; Walhovd et al., 2010), use either general linear models based on summary statistics,538

or machine learning algorithms such as SVMs, logistic regression, or AdaBoost, with extensive pre- and539

post-processing of imaging data which adapts these methods to the particular application. Of the machine540

learning methods mentioned here, all three are discriminative max-margin learning algorithms. Logistic re-541

gression uses a sigmoid function to approximate the hinge-loss function, and must be optimized via iterative542

methods. AdaBoost implicitly finds a margin by iteratively increasing the importance of examples which543

are misclassified, much the same way that examples inside the margin become support vectors in the SVM544

framework. Our method shares some commonalities in the sense that pre-processing of brain scans is also545

required before a classifier can be trained. However, by incorporating MKL, we can extend this framework546

to allow seamless integration of multiple sources of data while controlling the complexity of the resulting547

classifier without the need for creating summary statistics, (which discard a large amount of information).548

We note that several studies have reported better raw performance at classifying AD and control subjects.549

There are several factors which can affect such results. First, there is the issue of the severity of the disease,550

and of the availability of gold-standard diagnosis. For instance, the authors of (Klöppel et al., 2008) reported551

that their accuracy suffered when autopsy data were not available due to the difficulty of diagnosing AD in552

vivo. The ADNI data set, on which our experiments were based, consists entirely of living subjects, having553

relatively mild AD. (See Table 1). Other studies have used ADNI subject data (Davatzikos et al., 2009;554

Querbes et al., 2009; Fan et al., 2008a), and while some have reported better performance than we have,555

issues such as image registration and warping, subject inclusion criteria (e.g., image quality), or choice of556

feature extraction / representation might have a greater effect on final outcomes. A recent study, Cuingnet557

et al. (2010), addressed exactly these issues, finding that when these issues are controlled, the accuracy558

results are closer to those reported in this study. (See Table 4.) For example, if a pre-processing method is559

found to be particularly useful for discriminative purposes, that method can be swapped with our current560

pre-processing methods, or incorporated as additional kernels. The more important comparison is between561

single modality and multi-modality methods, using the same data and pre-processing pipeline. In addition,562

our experiments comparing MKL with a concatenated-features SVM show that MKL has advantages in the563

presence of non-informative kernels.564

Single-modality results Our experiments in single-modality AD classification give an indication of the565

relative merits of various scanning modalities. We note first that in FDG-PET scans, the top performing ker-566

nels are those which make use of at least 65,000 voxels, indicating that a performance gain of five percentage567

points or more can be made from using the entire brain volume, rather than using smaller selected regions.568

5 That is, while most subjects can be identified by examining smaller regions, some subjects can only be569

identified by examination of whole-brain atrophy. This suggests that there is a small group of subjects having570

5
The authors of (Fan et al., 2008b) found similar results in FDG-PET images.
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FIGURE 9

(a) (b)

(c) (d)

Figure 9: ROC curves for multi-modality learning on disease progression of MCI subjects using various
disease markers. The ROC curves for separating progressing and reverting MCI subjects on the left (a,c).
The ROC curves for separating progressing MCI subjects from all others are shown on the right, (b,d). The
top row (a,b) shows the curves derived from information available at baseline, while those on the bottom
(c,d) were derived from scans and markers taken at both baseline and 24-months.

atypical disease progression (in the case of AD subjects) or that some control subjects may show early signs571

of disease. A somewhat surprising result is that longitudinal analysis of FDG-PET images did not have572

much discriminative power. Neither of the two methods we considered (voxel-wise temporal difference, and573

voxel-wise temporal ratio) had accuracy higher than about 65%. This is perhaps an indication that signs574

of atrophy in FDG-PET images accumulate slowly enough that changes over a 2-year period alone are not575

enough to distinguish AD with high accuracy.576

In the MR-based modalities, we can see that in baseline VBM images, the highest performing kernels are577

those that focus on small brain regions of a few thousand voxels, while in TBM images, the best performance578

is obtained from larger regions of about 25,000 voxels. We interpret this to mean that (in classifying AD579

and control subjects,) the most indicative signs of atrophy already present at baseline can be found in580

hippocampal and para-hippocampal regions (not shown), but the atrophy occurring at the stage of full AD581

(i.e., that which occurs in the two years following diagnosis), is more diffuse. This suggests that early signs582

of AD are more likely to be concentrated in smaller regions, such as the hippocampus, and other structures583
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known to be affected by AD.584

Secondly, we note that linear kernels performed as well as, or better than quadratic and polynomial585

kernels in all modalities examined, indicating that there are few quadratic or exponential effects which can586

be used for discriminative purposes. This can be interpreted that indications of pathology in each voxel587

contribute independently and cumulatively to the final diagnosis.588

Multi-modality results An interesting comparison which arose in our experiments was between the589

various imaging-based kernels individually, (see Figure 1), and the MKL experiments combining groups of590

modalities (see Table 4). MKL produces linear combinations of kernels, and therefore does not examine the591

interactions between them when evaluating new subjects. This means that the ideal situation is where the592

errors present in each kernel matrix are drawn randomly and independently. When combining modalities593

with strong similarities, it is therefore expected that some errors will cancel out, to the extent that those594

errors do not themselves arise from shared properties of both modalities. The rationale for combining595

modalities into groups for comparison is that while imaging modalities are expected to contain distinct (and596

useful) information about each subject, we expect that they will have some information in common. For597

instance, properties such as total inter-cranial volume or particular anatomical artifacts will be present in598

different scanning modalities, but not in other biological measures. Thus, we first examine MKL’s ability599

to integrate groups of similar measures and modalities, before examining its ability to combine dissimilar600

sources of information.601

First, we note that none of the individual kernels derived from imaging modalities achieved an accuracy602

greater than MKL when given the combination of imaging modalities. Moreover, when MKL was given the603

entire set of kernels from all available sources of information, it outperformed any of the groups of modalities,604

except for the NPSEs, where the differences were not significant. This is expected, because clinical diagnosis605

is already known, meaning that the disease has already reached a stage where cognitive status effects are606

measurable, in contrast to earlier stages, in which anatomical and physiological changes have begun to occur,607

but outward signs have not. Indeed, in the analysis of MCI progression (Tables 6 and 7), it is the imaging-608

based modalities which have the strongest performance. Finally, it is interesting that for the biological609

measures, such as CSF assays and APOE genotypes, while there is certainly some information contained in610

the kernels generated from these measures, by themselves they do not have nearly the discriminative power611

of either the imaging modalities, or the NPSEs. This may be due in part to the fact that these measures are612

not available for all subjects.613

In Table 7 it may be surprising that the MMDM trained on all available modalities underperformed the614

one trained only on longitudinal imaging modalities. This is likely due to the fact that the training task and615

evaluation task were closely related, but slightly different. Thus, the subkernel weights estimated to give the616

optimal performance on the training task (AD vs. controls), may have been slightly less than optimal on the617

related task, (MCI progression). Despite this, the disparity in performance is small, and the MMDM using618

all combined modalities still outperformed all other MMDMs. It is also interesting to note that while the619

NPSEs dominated in the AD vs. control task of Section 4.1, in this task, the longitudinal NPSEs are roughly620

at parity with the baseline imaging modalities. (See Tables 6 and 7.) This suggests that signs of impending621

progression from MCI to AD are present in the imaging modalities approximately two years ahead of clinical622

psychological measures.623

MKL-norm results In our experiments with varying MKL norm, we found that norms which encouraged624

sparsity performed slightly worse than those which do not, suggesting that information is being needlessly625

discarded. The results in Table 5 show that above about 1.5, sparsity makes less of a difference, but at 1626

or 1.25, sparsity is encouraged enough to affect MKL’s performance. In contrast, the concatenated-features627

SVM’s performance was significantly lower overall, as it has no mechanism for discarding non-informative628

kernels, especially when there are more kernels from many different sources. When given only kernels from629

a single modality, the SVM’s performance was closer to parity with MKL, however, this is expected, due to630

the relative ease of combining kernels from similar sources of information. Rather, it is when there is greater631

variety in the information content of the various kernels that MKL incrementally shows an advantage over632

the concatenated-features SVM. This demonstrates that regardless of the norm chosen, MKL has the ability633

to automatically detect and discard sets of features which do not contribute significantly to the optimal634

classifier. One could, in theory, manually select which features to include, and how to weight them, but this635

would essentially emulate the MKL process by hand using a regular SVM. With the proper construction of636

kernels, it is even conceivable that MKL could be used to automatically select ROIs.637
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Brain regions selected The classifier chosen by MKL consists of a set of kernel combination weights638

β, as well as a set of example combination weights α. These weights can be combined to give a single linear639

classifier based on voxel-wise features. The distribution of these voxel-weights chosen by the MKL algorithm640

therefore gives some insight into the relative importance of various brain regions, and we expect that a good641

classifier will place greater weight on regions known to be involved in AD.642

It is well known that the Posterior Cingulate Cortex is involved in memory retrieval and related self643

referential processes (Northoff and Bermpohl, 2004; Piefke et al., 2003; Shannon and Buckner, 2004). As part644

of the limbic system, it has reciprocal connections with other memory areas including the dorsomedial and645

dorsolateral prefrontal cortex, the posterior parahippocampal cortex, presubiculum, hippocampus, entorhinal646

cortex, and thalamus (Mesulam, 2000). Previous imaging studies suggest the PCC is affected in AD even647

before clinical symptoms appear, consistent with the very early memory symptoms in AD (Xu et al., 2009;648

Ries et al., 2006). Interestingly, the earliest cerebral hypometabolism finding in AD involves the PCC-649

precuneus rather than the hippocampus (Villain et al., 2008). Although the mechanism connecting cortical650

atrophy and hypometabolism in neurodegenerative disorders is not fully understood, intuitively, a positive651

relationship is expected. Both brain atrophy and cerebral hypometabolism reflect loss of neurons/synapses652

(Bobinski et al., 1999) and decrease in synaptic density/activity (Rocher et al., 2003). As mentioned in653

section 4.2, the brain regions selected by the MKL algorithm in FDG-PET images, as show in Figures 3 to654

4, include the PCC and precuneus, the lateral parietal lobules, hippocampal and medial temporal regions,655

and the pre-frontal midline.656

In MR longitudinal images (TBM, Figure 5), regions well-known to be atrophic in AD, such as the657

hippocampus, parahippocampal gyri, fusiform gyri and other middle temporal structures (Braak and Braak,658

1991) are well highlighted. Expansion, (or reduced contraction) is associated with healthy status, and thus659

these regions are given positive weights, shown in red. Conversely, expansion in ventricles, and in the CSF660

surrounding the hippocampus is shown in blue. Expansion in these regions is correlated with AD pathology,661

and so these regions are given negatieve weights. In the baseline gray matter density images, (VBM, Figure662

6) similar hippocampal and medial temporal regions are shown.663

MCI conversion The task of predicting conversion from MCI to full AD is known to be difficult,664

(Querbes et al., 2009; Davatzikos et al., 2009), and presents challenges beyond that of classifying AD and665

control subjects, or even that of classifying AD/control and MCI subjects. This difficulty arises largely from666

the “lag” between brain atrophy and cognitive decline. There are several interesting aspects of the MMDMs667

we have examined. First, we note that at baseline, neither NPSEs nor imaging modalities have a strong668

ability to detect which subjects will convert to AD. This may be a result of the ADNI selection criteria for669

MCI subjects – that is, MCI subjects are chosen so as to have very homogeneous cognitive characteristics at670

baseline, and so we expect that NPSEs will not be able to differentiate between progressing and stable MCI671

subjects very well. While the MMDM based on all combined imaging modalities does have a better AUC at672

baseline than the NPSEs, the improvement shown by the MMDM based on longitudinal imaging modalities673

suggests that a significant portion of the neurodegeneration responsible for the subjects’ conversion to AD674

takes place after MCI diagnosis. In addition, between baseline and 24 months, the imaging-based MMDM675

outperforms the NPSE-based MMDM by an even wider margin, as shown by the AUCs and p-values in676

Tables 6 and 7. This leads us to believe that while NPSEs can be a better marker for subjects who already677

are showing AD-related cognitive decline, the imaging modalities have slightly better predictive value for678

future decline. We expect that further progress can be made in adapting multi-kernel methods to work679

specifically with imaging data, allowing greater accuracy in identifying future patterns. Finally, we find it680

interesting that combining all imaging markers into a single MMDM offers a slight improvement over the681

best single imaging modality, which tends to be FDG-PET. This improvement is relatively stable over time,682

between baseline and 24 months.683

6 Conclusion684

In this paper we have presented a new application of recent developments from the machine learning literature685

to early detection of AD-related pathology. Using this measure of AD pathology, we constructed a predictive686

marker for MCI progression to AD. This method is fully multi-modal – that is, it incorporates all available687

sources of input relating to subjects, yielding a unified Multi-Modal Disease Marker (MMDM). Our results688

on the ADNI population indicate that this method has the potential to detect subtle changes in MCI subjects689
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which may provide clues as to whether a subject will convert to AD, or remain stable. In particular, we have690

shown that imaging modalities have better ability to predict such outcomes than baseline neuropsychological691

scores, which is consistent with the view that neurological changes detected in neuroimages can precede692

clinically detectable declines in cognitive status. Our ongoing work focuses on further developing this method693

– which will permit even higher accuracy and sensitivity, and allow predictions at the level of individual694

subjects to be made with high confidence.695
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