
Statistics 840 Lecture 21 c©G. Wahba 2011

Recap, more on tuning for prediction and variable selection.

1. Regularization Class of Statistical Methods, cost functionals,
penalty functionals.

2. Ridge Regression, Penalized Least Squares, Relation to Bayes
methods.

3. Geometry and inner products based on positive definite
functions

4. Reproducing Kernel Hilbert Spaces, Bounded linear functionals
and the Riesz representation theorem.

5. First and Second variational problems, the (Kimeldorf-wahba)
representer theorem.

6. Univariate cubic and higher order splines, thin plate splines,
splines on the sphere, Smoothing Spline ANOVA(SS-ANOVA)
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7. Choosing the smoothing parameter, the leaving-out-one lemma.

8. Unbiassed Risk, GML, GCV, GACV, AIC, BGACV, BIC.
Degrees of freedom for signal. train-tune-test, 10-fold cross
valication

9. The degrees of freedom for signal, the randomized trace
method.

10. Radial basis functions, Gaussian, Matern

11. Properties of GCV. Convergence rates for smoothing splines
tuned by GCV

12. Data from exponential families, Bernoulli, Poisson. The
Comparative Kullback-Distance criteria for tuning, as a
generalization of least squares.

13. Bayesian ”Confidence Intervals”.

14. Standard and Non Standard Support Vector Machines (SVM’s)
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SVM’s and penalized likelihood for Bernoulli data compared.
Optimal classification.

15. The Multicategory SVM

16. The LASSO, the LASSO-Patternsearch Algorithm, Variable
and pattern selection. GACV and BGACV for Bernoulli
responses.

17. Early stopping as a regularization method.

18. Regularized Kernel Estimation (RKE), Regularized
Manifolding Unfolding (RMU)

19. Using difference data (pedigrees) with Spline ANOVA models
using RKE
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Degrees of Freedom for Signal

Recall that the degrees of freedom for penalized likelihood
estimation for Gaussian data with a quadratic norm penalty
functional generalizes the ordinary parametric notion of degrees of
freedom.

Parametric least squares regression:

yn×p = Xβ + ε

where ε ∼ N(0, σ2I) and X is of full column rank. Find β to

min‖y −Xβ‖2, β̂ = X(XT X)−1XT y.

4 November 21, 2011



ŷ, the predicted y is given by

ŷ = Xβ̂ = Ay

where
A = X(XT X)−1XT .

A (the ”influence matrix”) is an orthogonal projectiom onto the p

dimensional columm space of X with trace p. Notice that

dŷ

dy
= aii,

the iith entry of A.
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Nonparametric Regression

Let yi = f(xi) + εi, i = 1, · · · , n or, more compactly,

y = f + ε

where f ∈ HK , an RKHS with RK K, and some domain X . Find
f ∈ HK , to

min‖y − f‖2 + λ‖f‖2
HK

.

Letting fλ be the minimizer, then ŷ ≡ fλ depends linearly on y and
has the property that

fλ = A(λ)y.

A(λ) is known as the influence matrix, note that

dŷi

dyi
= aii,

the iith entry of A. A(λ) is a smoother matrix, that is, it is
symmetric non-negative definite with all its eigenvalues in [0, 1].
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Trace A(λ) was called the Equivalent Degrees of Freedom for signal
in wahba.ci.83.pdf p 139, (1983). by analogy with regression.
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Methods for Choosing λ

The unbiased risk estimate (UBR). Need to know σ2, the variance
of the Gaussian noise. Choose λ to min

U(λ) = ‖(I −A(λ))y‖2 + 2σ2tr(A(λ)).

The expected value of U(λ) is, up to a constant, an unbiased
estimate of ‖fλ − f‖2.

The generalized cross validation estimate (GCV). Do not need to
know σ2. Signal to noise ratio needs to satisfy some conditions.
Choose λ to min

V (λ) =
‖(I −A(λ))y‖2

[tr(I −A(λ))]2

drived from a leaving-out-one argument. Optimality properties
have been discussed and some references are in lect7.
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Here’s a very rough intuitive argument why it works. Suppose that
1
n trA(λ) is small. Noting that the power series expansion of
(1− ρ)−2 for small ρ is (1 + 2ρ + ...) gives, for ρ = 1

n traceA(λ)
sufficiently small

n2V (λ) ≈ (‖((I −A(λ))y‖2(1 +
2
n

tr(A(λ) + ...

and so

n2V (λ) ≈ ‖(I −A(λ)y‖2 + 2
(

1
n
‖(I −A(λ))y‖2

)
tr(A(λ).

(See Charles Stein Ann. Stat 1981, Ker-Chau Li, Ann. Stat 1985)
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Linear or Non Linear Estimates

Early Stopping via the Conjugate Gradient Algorithm, other
nonlinear estimates, for example, yi =

∫
G(xi, t, g(t))dt + εi, where

it is desired to estimate g. For notational convenience, let fλ ≡ ŷ

be the estimate of f , however it is obtained. Here f is the ’true’
prediction, fi =

∫
G(xi, t, g(t))dt. The relationship between tuning

for g and tuning for f in the linear case is discussed in
wahba.parzen09.pdf and references cited there. A simulation of a
meteorological data fitting problem where the fit to a
time-dependent vector of observations has to approximately solve a
partial differential equation is given in
gong.wahba.johnson.tribbia.mwr.pdf.
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Efron efron.covariance.04.pdf, Stein (1981), Mallows (1973)
result in the following:

E‖f − fλ‖2 = E‖y − fλ‖2 − nσ2 + 2
n∑

i=1

cov(fλ,i, yi).

Under some mild conditions on the nonlinearity of the estimate,
Stein’s Lemma (or, more precisely one of Stein’s lemmas) says:

Stein’s Lemma: Let A(λ, y) = {∂fλ,i

∂yj
}. Then

n∑
i=1

cov(fλ,i, yi) = σ2EtrA(λ, y).

If the estimate is linear in y then A(λ, y) does not depend on y.
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This leads to the remarkable result

E‖f − fλ‖2 = E‖y − fλ‖2 + 2σ2EtrA(λ, y)− nσ2,

that is, the expected value of the difference between the true f and
the fitted fλ is, up to a constant, 2σ2 times expected value of the
degrees of freedom even if the estimate is (mildly) nonlinear in the
data!
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The Randomized Trace Estimate

The randomized trace method may be used to estimate the
expected value of the degrees of freedom for signal when ŷ depends
linearly or (mildly) nonlinearly on the data. Let ξ be an iid random
vector with mean zero and component variances σ2

ξ . Let fz
λ be the

estimate with data z. Then, if fλ depends linearly on the data,

E
1
σ2

ξ

ξT (fy+ξ
λ − fy

λ) =
1
σ2

ξ

EξT A(λ)ξ = trA(λ)

Note that even if ŷ depends (mildly) nonlinearly on y, the left hand
side above could be considered a divided difference approximation
to

∑n
i=1

∂fλ,i

∂yi
which is exactly what you want for d̂f , according to

Stein’s Lemma.
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The randomized trace estimate was proposed by Hutchinson and
Girard independently in 1979, Girard later proved theorems about
its properties in Ann. Statist. Note that the same ξ should be used
as λ varies. If fλ depends linearly on y, then the result does not
depend on σ2

ξ . If the relationship is not linear, then the value of σ2
ξ

can make a difference. It can be shown, given that the variance of
the components of ξ are the same, that centered Bernoulli random
components for ξ are more efficient, than a Gaussian ξ.
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Tuning for Exponential Families:

The general form of the probability density for exponential families
with no nuisance parameter is of the form negative log likelihood
= −yf + b(f) where f is the so-called canonical link. ∂b(f)

∂f is the

mean and ∂2b(f)
∂2f is the variance of the distribution for exponential

families. See McCullough and Nelder’s (1989) book. A popular
criteria for tuning members of the exponential family is the
Comparative Kullback- Liebler (CKL) distance of the estimate
from the true distribution.
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The Kullback-Liebler distance is not a real distance, and is not
even symmetric, but it is defined for most tuning purposes as

KL(F̂ , F ) = EF log
(F, y)
(F̂ , y)

where F̂ and F are the two densities to be compared and the
expectation is taken with respect to F . The CKL is the KL with
terms not dependent on λ deleted, and is

n∑
i=1

−Eyif(xi) + b(f(xi)).

The residual sum of squares for the Gaussian distribution N(0, I) is
an example of the CKL.
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The two most common cases are the Bernoulli distribution, where
f is the log odds ratio and b(f) = log(1 + ef ), and the Poisson
distribution, where f = logΛ and b(f) = ef . Λ is mean of the
Poisson distribution. The Poisson distribution has an exact
unbiased risk estimate for f , wong.bickelvol.loss.pdf, with the
CKL criteria, but it involves solving an optimization problem
solved n times. Readily computable approximations can be found
in yuan.poisson.pdf.
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For the Bernoulli distribution, it is known that no unbiased risk
estimate is possible. The Generalized Approximate Cross
Validation (GACV) estimate xiang.wahba.sinica.pdf. is an
approximte unbiased risk estimate for the CKL for the Bernoilli
distributon. Letting OBS(λ) be the observed (sample) CKL

OBS(λ)
n∑

i=1

−yifλ(xi) + b(fλ(xi).

the GACV becomes

GACV (λ) = OBS(λ) +
∑n

i=1 yi(yi − pλ(xi))
tr(I −W 1/2HW 1/2)

trH

where pλ is the fitted mean, W is the diagonal matrix with diagonal
entries the fitted variances and H is the inverse hessian of the
optimization problem and plays the role of the influence matrix.
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Tuning the LASSO with Gaussian Data.

Let yi = x(i)T β + εi, i = 1, ..., n, where ε is N(0, σ2I) and β is a p

dimensional vector of possible coefficients, and x(i) is the ith design
vector. The LASSO finds β to min

‖y −Xβ‖2 + λ

p∑
j=1

|βj |

The LASSO penalty, also known as the `1 penalty is known to give
a sparse solution, that is, depending on λ, the larger the λ the
fewer non-zero βs will appear in the solution.
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Zou, Hastie and Tibshirani zou.hastie.tibshirani.lasso09.pdf
show that in Gaussian LASSO setting, the appropriate choice of
degrees of freedom for signal is the number of non-zero basis
functions, leading to the unbiased risk-type estimate for λ as the
minimizer of

ULASSO(λ) = ‖y −Xβ̂‖2 + 2σ2d̂f

where d̂f is the number of non zero βs. See
zou.hastie.tibshirani.lasso09.pdf for details. If d̂f

n is small
and σ2 is unknown, then GCV can be used.
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Tuning the LASSO with Bernoulli Data

The LASSO with Bernoulli data can be tuned with the GACV, see
shi.wahba.wright.lee.08.pdf, tr1166.pdf. The GACV
becomes

GACV (λ) = OBS(λ) +
∑n

i=1 yi(yi − pλ(xi))
n−Nβ0

trH

where Nβ0 is the number of non-zero coefficients in the model.
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Tuning the LASSO: Prediction vs Variable Selection.

All of the tuning methods so far have been based on a prediction
criteria, either the residual sum of squares or the CKL. When the
LASSO is used, typically it is believed that the model is sparse,
that is, if a tentative model is given as f(x) =

∑p
j=1 cjBj(x), for

large p and some basis functions Bj , and some c, the number of true
non-zero c’s is believed to be small. The difference between tuning
for prediction and tuning for sparsity can be seen by comparing the
tuning criteria AIC and BIC in their simplest forms: (see
Wikipedia and references there) AIC = −2loglikelihood + 2k and
BIC = −2loglikelihood + klogn, where k is the number of terms in
the model, according to the descriptions given in Wikipedia.
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For the present argument, think of k as the degrees of freedom.
Then AIC is essentially a UBR method, while BIC was proposed as
a variable selection method. To get from AIC to BIC you just
replace 2k by klogn. BIC (“Bayesian Information Criteria”) was
proposed by Schwartz by assuming that p < n and that all of the p

coefficients were a priori equally likely to appear. For logn > 2 BIC
will give a model that is no larger than, and generally smaller than
AIC. For tuning the LASSO with Bernoulli data, GACV was
replaced by BGACV, by the replacement suggested above.
However, simulation experience has shown that when p >> n,
BGACV is not strong enough to return a small model when one is
warranted. See shi.wahba.wright.lee.08.pdf, tr1166.pdf.
When the true model is small, prediction criteria will tend to give
models that include the true model but are bigger. Open questions
remain as to appropriate tuning for variable selection.
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Finally, Tuning the Support Vector Machine

Often the SVM is applied to very large data sets, then the luxury
of dividing the observational data set into train, tune and test
subsets can be carried out. Ten fold cross validation is also
popular. Regarding internal tuning, a GACV based method for the
SVM can be found in tr1039.pdf, a similar method was earlier
given by Thorsten Joachims, called the ξ/α method.

Have a Happy Thanksgiving!
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