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ABSTRACT
Motivation: High-density DNA microarray measures the
activities of several thousand genes simultaneously and
the gene expression profiles have been used for the
cancer classification recently. This new approach promises
to give better therapeutic measurements to cancer patients
by diagnosing cancer types with improved accuracy. The
Support Vector Machine (SVM) is one of the classification
methods successfully applied to the cancer diagnosis
problems. However, its optimal extension to more than two
classes was not obvious, which might impose limitations in
its application to multiple tumor types. We briefly introduce
the Multicategory SVM, which is a recently proposed
extension of the binary SVM, and apply it to multiclass
cancer diagnosis problems.
Results: Its applicability is demonstrated on the leukemia
data (Golub et al., 1999) and the small round blue cell
tumors of childhood data (Khan et al., 2001). Comparable
classification accuracy shown in the applications and its
flexibility render the MSVM a viable alternative to other
classification methods.
Supplementary Information: http://www.stat.ohio-state.
edu/∼yklee/msvm.html
Contact: yklee@stat.ohio-state.edu

INTRODUCTION
The advent of DNA microarray technology shifted the
scale of genomics research and several thousand genes
can be studied in a single experiment, nowadays. DNA
microarray measures the relative amount of mRNA in
isolated cells or biopsied tissues from patients. Since
transcriptional changes accurately reflect the status of
disease including cancers (DeRisi et al., 1996; Zhang et
al., 1997; Perou et al., 1999) gene expression profiles can
be used to classify different types of cancers. Currently,
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cancer diagnosis highly depends on a variety of histologi-
cal observations, including immunohistochemical assays,
which detect cancer biomarker molecules. However, these
assays have limitations due to morphological similarity
and lack of available biomarkers of cancers. Accurate
diagnosis promotes the efficacy of a proper treatment of
cancers. Under the premise of gene expression patterns as
fingerprints at the molecular level, systematic methods to
classify tumor types using gene expression data have been
studied (Golub et al., 1999; Khan et al., 2001).

Most training data sets (a set of pairs of a gene expres-
sion profile and the tumor type that it falls into) have a
fairly small sample size compared to the number of genes
investigated. This data structure creates an unprecedented
challenge to some classification methodologies. The
Support Vector Machine (SVM) was one of the methods
successfully applied to the cancer diagnosis problem in
the previous studies (Mukherjee et al., 1999; Furey et al.,
2000). In principle, the SVM can be applied to very high-
dimensional data without altering its formulation. Such
capacity is well suited to the microarray data structure.
Since the SVM was mainly developed for two-class prob-
lems, multiclass problems have been tackled indirectly
by solving a series of binary problems. Using the SVMs
in the one-versus-rest fashion is very common, but it has
potential drawbacks when classes overlap considerably.
Combining the binary SVMs for all pairs of classes is
another popular approach. The DAG SVM algorithm is
one of this kind with fast testing time (Platt et al., 2000).
The pairwise approach often exhibits large variability
since each binary classifier is estimated from a small
subset of the training data and it allows only a simple
cost structure when different misclassification costs are
concerned. As a generic approach to multiclass problems,
we consider treating all the classes simultaneously.
Although several extensions to the multiclass case have
been proposed (Vapnik, 1998; Bredensteiner and Bennett,
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1999), its optimal extension was not obvious in relation
to the theoretically best classification rule. In order to
overcome possible limitations, the MSVM, an optimal
extension of the binary SVM, was proposed recently (Lee
et al., 2001). We apply the MSVM to two gene expression
data sets to demonstrate its effectiveness for the diagnosis
of multiple cancer types. Also, we discuss how to assess
the prediction strength of the MSVM, and mention other
issues often arising in microarray data analysis; the effect
of data preprocessing, gene selection, and dimension
reduction.

METHODS
Binary SVM
The binary SVM paradigm has a nice geometrical inter-
pretation of discriminating one class from the other by
a separating hyperplane with maximum margin (Vapnik,
1998). Now, it is commonly known that the SVM can be
cast as a regularization problem (Wahba, 1998). In clas-
sification problems, we are given a training data set that
consists of n samples, (xi , yi ) for i = 1, . . . , n. xi ∈ Rd

represents the input vector and yi denotes the class la-
bel. In the binary SVM setting, yi is either 1 or -1, and
the methodology seeks a function f (x) = h(x) + b with
h ∈ HK , a reproducing kernel Hilbert space (RKHS) and
b, a constant minimizing

1

n

n∑
i=1

(1 − yi f (xi ))+ + λ‖h‖2
HK

(1)

where (x)+ = max(x, 0). ‖h‖2
HK

denotes the square
norm of the function h defined in the RKHS with
the reproducing kernel function K (·, ·), measuring the
complexity or smoothness of h (Wahba, 1990). λ is a
tuning parameter which balances the data fit and the
complexity of f (x). The classification rule induced by
f (x) is φ(x) = sign[ f (x)]. The zero level curve of
f (x) yields the classification boundary of the rule φ(x).
Lin (2002) showed that the solution f (x) approximates
directly the majority class label sign(p1(x) − 1/2), when
flexible kernel functions are used. Here p1(x) = P(Y =
1|X = x) with (X, Y ) denoting a random sample from
the underlying distribution P(x, y). Thereby, the SVM
efficiently implements the Bayes rule that predicts the
most likely class at x if p1(x) is known. However,
because of this particular mechanism, using SVMs to
solve multiclass problems in the one-vs-rest fashion may
fail under some circumstances.

Multicategory SVM
For the multiclass problem, assume the class label yi ∈
{1, . . . , k} without loss of generality. k is the number
of classes. We briefly review the MSVM (Lee et al.,

2001, 2002). Each class label is coded as a k-dimensional
vector with 1 in the j th coordinate and − 1

k−1 elsewhere
if it falls into class j . We define a k-tuple of separating
functions f (x) = ( f1(x), . . . , fk(x)) with the sum-to-
zero constraint,

∑k
j=1 f j (x) = 0 for any x ∈ Rd . Note

that the constraint holds implicitly for coded class labels
yi . Analogous to the binary case, we consider f (x) ∈∏k

j=1({1} + HK ), the product space of k RKHS’s. Thus,
each component f j (x) can be expressed as h j (x) + b j
with h j ∈ HK . Define Q as the k by k matrix with 0
on the diagonal, and 1 elsewhere. It represents the cost
matrix when all the misclassification costs are equal. Let
L be a function which maps a class label yi to the j th row
of the matrix Q if yi indicates class j . The MSVM finds
f (x) ∈ ∏k

1({1} + HK ), with the sum-to-zero constraint,
minimizing

1

n

n∑
i=1

L( yi ) · ( f (xi ) − yi )+ + 1

2
λ

k∑
j=1

‖h j‖2
HK

(2)

where ( f (xi ) − yi )+ ≡ [( f1(xi ) − yi1)+, . . . , ( fk(xi ) −
yik)+] and the · operation indicates the Euclidean
inner product. The classification rule induced by
( f1(x), . . . , fk(x)) is φ(x) = arg max j f j (x). We
can verify that the binary SVM formulation (1) is a spe-
cial case of (2) when k = 2. This formulation generalizing
the binary SVM paradigm carries over the efficiency of
implementing the Bayes rule in the same fashion as the
binary case. To establish this, we identify the asymptotic
target function of (2), which is the minimizer of its limit
data fit functional, E[L(Y ) · ( f (X) − Y )+].

LEMMA 1. (Lee et al., 2001) The minimizer of E[L(Y )·
( f (X)−Y )+] under the sum-to-zero constraint is f (x) =
( f1(x), . . . , fk(x)) with

f j (x) =
{

1 if j = arg max�=1,...,k p�(x)

− 1
k−1 otherwise

(3)

where p�(x) = P(Y = �|X = x) for � = 1, . . . , k.

So, for flexible RKHS and appropriately chosen λ, the so-
lution f (x) to (2) is expected to be close to the most prob-
able class code, bypassing the estimation of probabilities
p j (x). In addition, its extension to accommodate unequal
misclassification costs is straightforward by replacing the
cost matrix Q by a general cost matrix and redefining L(·)
accordingly.

The problem of finding constrained functions
( f1(x), . . . , fk(x)) minimizing (2) is then transformed
into that of finding finite-dimensional coefficients instead,
with the aid of a variant of the representer theorem.
It was shown that to find ( f1(x), . . . , fk(x)) with the
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sum-to-zero constraint, minimizing (2) is equivalent to
find ( f1(x), . . . , fk(x)) of the form

f j (x) = b j +
n∑

i=1

ci j K (xi , x) for j = 1, . . . , k (4)

with the sum-to-zero constraint only at xi for i =
1, . . . , n, minimizing (2). Omitting intermediate steps and
introducing nonnegative Lagrange multipliers α j ∈ Rn ,
we get the following dual problem:

min
α j

1

2

k∑
j=1

(α j − ᾱ)t K (α j − ᾱ) + nλ

k∑
j=1

αt
j y· j (5)

subject to 0 ≤ α j ≤ L j for j = 1, . . . , k (6)

(α j − ᾱ)t e = 0 for j = 1, . . . , k (7)

where L j ∈ Rn is the j th column of the n by k
matrix with the i th row L( yi ), and similarly y· j denotes
the j th column of the n by k matrix with the i th row
yi . ᾱ is the average of α j ’s, and e denotes the vector
of ones of length n. With some abuse of notation, the
n by n matrix K ≡ (K (xi , x�)). Once we solve the
quadratic programming (QP) problem, the coefficients
c· j = (c1 j , . . . , cnj )

t = − 1
nλ

(α j − ᾱ). b j can be found
from any of the examples with unbounded αi j satisfying
(6) strictly by the Karush–Kuhn–Tucker complementarity
conditions. (αi1, . . . , αik) = 0 implies (ci1, . . . , cik) = 0,
so removing such example (xi , yi ) would not affect the
solution at all. Like the binary SVM, we call examples
with ci = (ci1, . . . , cik) �= 0, support vectors in the
multicategory case. The MSVM retains the sparsity of the
solution in the same way as the binary SVM.

Comparison and tuning
MSVMs would be more effective than the common one-
vs-rest SVMs for overlapping classes (Lee et al., 2002).
However, there could be a tradeoff between accuracy and
speed. The MSVM needs solving a QP problem with
(k − 1)n variables once, while the one-vs-rest approach
amounts to solving k QP problems with n variables and the
pairwise approach leads to k(k−1)/2 QP problems of size
less than n. A QP algorithm typically requires computing
time at least in some polynomial order of its problem size.
So, solving smaller binary problems several times may
be computationally cheaper than solving a big multiclass
problem once. As an empirical study, Hsu and Lin (2002)
compared several methods to solve multiclass problems
using SVMs in terms of their performance and computing
time. Although our method was not included in the study,
the comparisons are still relevant because some multiclass
extensions in the study share the same computational
complexity. It was reported that considering all the classes

at once tends to be slower than solving a series of binary
problems, however, the former needed fewer support
vectors. The two different approaches showed pretty
comparable accuracy with nonlinear kernels, while using
the linear kernel resulted in the worst accuracy to the
one-versus-rest approach. In real timescale, the computing
time differences are in the order of some seconds for
small problems like the applications in consideration, thus
practically negligible. All the computations in this paper
were done via MATLAB 6.1 with an interface to PATH
3.0 (Ferris and Munson, 1999).

As with other regularization methods, the efficiency of
our method depends on the tuning parameter(s), λ (and
other parameter in the kernel function). 5-fold or 10-
fold cross validation based on misclassification counts is
often used. Alternatively, an approximate leaving-out-one
cross validation (LOOCV) function, called generalized
approximate cross validation (GACV) has been derived
for the MSVM (Lee et al., 2002). In practice, one can
choose the minimizer of GACV as appropriate tuning
parameters without really doing LOOCV, which might
be computationally prohibitive for large samples. For
cancer diagnosis problems using gene expression patterns,
LOOCV is still feasible since most of available data sets
so far, are of small sample size.

Assessment of prediction strength
This section concerns how to measure strength or confi-
dence of a class prediction made by SVMs. In many appli-
cations such as medical diagnosis, making a wrong predic-
tion could be more serious than reserving a call. A weakly
diagnosed example would require further specialized in-
vestigation for a more informative call. So, we wish to re-
ject weak predictions with a reasonable strength measure.
For classification methods that provide an estimate of the
conditional probability of each class at x, the probability
estimate itself can serve as a strength measure. The mech-
anism of the SVM to extract the necessary information for
the minimum error rate is very simple and efficient, how-
ever inevitably limited in restoring the probability from the
estimated class code. Yet, there have been a couple of ap-
proaches to address this issue for SVMs in the context of
microarray applications (Mukherjee et al., 1999; Yeo and
Poggio, 2001). Although other elaborate methods to map
SVM outputs to probabilities have been proposed by Vap-
nik (1998) and Platt (1999) in general settings, it would be
still difficult to restore accurate probability estimates from
SVM outputs without heavily relying on a prior assump-
tion, if data are quite separable or flexible kernel functions
are used. Our motivation is to attach a confidence state-
ment to each prediction, which may not be a precise prob-
ability estimate but reflects relative accuracy of the predic-
tion, so that it can be useful in detecting borderline cases.
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Multicategory case. Mukherjee et al. (1999) suggested a
confidence measure for an SVM class prediction in the bi-
nary case, based on the idea that the bigger the margin | f |,
the stronger the prediction. A simple variant of this treat-
ment is devised for the multiclass case. An MSVM output
( f1(x), . . . , fk(x)) close to a class code indicates a strong
prediction away from the classification boundary. The
multiclass loss function in (2), g( y, f ) ≡ L( y) · ( f − y)+
sensibly measures the proximity between an MSVM
decision vector and a coded class, reflecting how strong
their association is in the classification context. For the
time being, a class label and its vector valued class code
will be used interchangeably as an input argument of the
loss g and other occasions without causing much confu-
sion. Suppose that the probability of a correct prediction
given f (x) = ( f1, . . . , fk) at x, P(Y = arg max j f j | f )

depends on f only through the loss, g(arg max j f j , f ) for
the predicted class. The smaller the loss, the stronger the
prediction. Then the strength of the MSVM prediction,
P(Y = arg max j f j | f ) can be inferred from the training
data by cross validation. For example, leaving out the i th
example (xi , yi ), we get the MSVM decision vector f (xi )

based on the remaining samples, and the corresponding
pair of the loss, g(arg max j f j (xi ), f (xi )) and the indi-
cator of a correct decision I (yi = arg max j f j (xi )).
Then, P(Y = arg max j f j | f ), as a function of
g(arg max j f j , f ) can be estimated using the pairs
of the loss and the indicator from the training data.
If we further assume the symmetry of k classes,
that is, P(Y = 1) = · · · = P(Y = k) and
P( f |Y = y) = P(π( f )|Y = π(y)) for any per-
mutation operator π of {1, . . . , k}, it follows that P(Y =
arg max j f j | f ) = P(Y = π(arg max j f j )|π( f )). Conse-
quently, under these symmetry and invariance assumption
with respect to k classes, we can pool the pairs of the
loss and the indicator for all the classes, and estimate
the invariant prediction strength function in terms of the
loss, regardless of the predicted class. In almost separable
classification problems, we might see the loss values for
correct classifications only, impeding the estimation of the
prediction strength. One may use heuristics of predicting
a class only when its projected loss is less than, say, the
95th percentile of the empirical loss distribution. This
cautious measure will be exercised in the application
following this section.

RESULTS AND DISCUSSION
Leukemia data
We revisited the leukemia data set as a three-class
problem. Golub et al. (1999) suggested gene expression
monitoring for the classification of two leukemias, ALL
(acute lymphoblastic leukemia) and AML (acute myeloid
leukemia). These two cancer types were identified based

on their origins, lymphoid (lymph or lymphatic tissue
related) and myeloid (bone marrow related), respectively.
ALL could be further divided into B-cell and T-cell ALLs.
The ‘weighted voting scheme’, a variant of quadratic
discriminant analysis was applied to the data set as a
two-class (ALL/AML) problem in the original paper. The
number of genes in the study is 7129. The data set consists
of 38 examples in the training set and 34 examples in the
test set. For the parsimony and the accuracy of prediction,
we considered selecting relevant genes (variables) first.
Typically, standardization of the variables precedes vari-
able selection. Although standardization of each variable
across samples is common practice, standardization of
each sample (array) across genes is often adopted in
gene expression analysis. Additional preprocessing steps
were taken in Dudoit et al. (2002) before standardization:
(i) thresholding (floor of 100 and ceiling of 16000),
(ii) filtering (exclusion of genes with max / min ≤ 5
and max − min ≤ 500 across the samples), (iii) base 10
logarithmic transformation. This filtering resulted in 3571
genes. To see the effect of preprocessing and standard-
ization, we tried either (A) standardizing each gene, or
(B) preprocessing the data first as above, and standard-
izing each array. Selecting important variables out of
7129 would be a formidable task if we require learning
classifiers with all the possible subsets of the variables. To
circumvent the difficulty, simple prescreening measures
were used to pick out relevant variables in the previous
applications. We used the ratio of between classes sum of
squares to within class sum of squares for each gene, and
picked genes with the largest ratios (Dudoit et al., 2002).
For gene �, xi� denotes the expression level from patient
i , and the ratio is defined as

BSS(�)

W SS(�)
=

∑n
i=1

∑k
j=1 I (yi = j)(x̄ ( j)

·� − x̄·�)2∑n
i=1

∑k
j=1 I (yi = j)(xi� − x̄ ( j)

·� )2
(8)

where n is the training sample size, I (·) is the indicator
function, x̄ ( j)

·� indicates the average expression level of
gene � for class j , and x̄·� is the overall mean expression
levels of gene � in the training set. Figure 1 depicts
the expression levels of 40 most important genes in the
training set. The heat map illustrates that the selected
40 genes are very informative in discriminating the three
classes. The supplementary information website contains
the list of top 20 genes. Those genes encode functional
proteins responsible for transcription factor, development,
metabolism and structure. Since B-cell and T-cell ALL
(ALLB/ALLT) arise from the same origin, we expected
that these classes show similar trend in gene expression.
However, surprisingly, the inspection of 20 top ranked
genes revealed that gene expression patterns in ALLB
are much closer to those in AML than ALLT. Figure 2
illustrates four different patterns of those genes. More than
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Fig. 1. The heat map shows the expression levels of 40 most
important genes for the training samples standardized according
to (B). Each row corresponds to a sample, which is grouped into
the three classes, and the columns represent genes. The 40 genes are
clustered and rearranged in a way the similarity within each class
and the dissimilarity between classes are easily recognized.

ten genes showed patterns similar to (i), which possibly
implies that ALLB might be closer to AML than ALLT.
Whereas, only a few genes matched with the patterns
in (ii), (iii) and (iv). This explains essentially why the
predictive genes for ALL/AML differentiation in Golub
et al. (1999) do not overlap any of the top 20 genes.

We applied the MSVM to the data with two different
kernel functions, and tuning methods. The Gaussian ker-

nel exp(−‖x1−x2‖2

2σ 2 ) and the linear kernel xt
1x2 were the

choice of K (x1, x2). We compared two tuning methods;
LOOCV, and GACV. Table 1 summarizes the classifica-
tion results. The first column is the number of genes, with
indication of the applied preprocessing procedure (A) or
(B). For each kernel function in the second column, a grid
search was made for λ in the linear case, and (λ, σ ) jointly
in the Gaussian case for tuning. Typically, GACV gives a
unique minimizer, which is a part of the LOOCV multiple
minima. The misclassification counts out of 34 test sam-
ples are in the last two columns. When there were multiple
equally good tuning parameters, the average performance
was reported. None of the tuning methods gave a dom-
inantly better result than the other. Comparable or even
smaller test error rate was achieved using only 40 genes
when we preprocessed the data according to (B). Not di-
rectly comparable to the test errors (0 to 5) for ALL/AML

ALLB ALLT AML

–1

0

1

2

3

(i) gene 1
ALLB ALLT AML

–1
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2
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(ii) gene 3

ALLB ALLT AML

–1

0

1

2

3

(iii) gene 12
ALLB ALLT AML

–1
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1

2

3

(iv) gene 19

Fig. 2. The box plots show four different gene expression patterns
from the top 20 genes, each numbered as its rank. A possible
grouping of the genes depending on the patterns is (i) genes 1, 2,
4, 5, 6, 7, 8, 9, 10, 11, 14, 16 and 17, (ii) genes 3 and 18, (iii) genes
12, 13 and 15, and (iv) genes 19. Genes 20, not included in the
grouping, showed a slightly different pattern than the others. Only
one gene from each group is shown. The details of the genes are
found in the table of supplementary information.

Table 1. Classification results for the leukemia data

No. of genes Kernel Test errors
(preprocessing) function GACV LOOCV

50 Gaussian 4 6
(A) Linear 4 4

100 Gaussian 1 1
(A) Linear 2 2.25

40 Gaussian 1 0.8
(B) Linear 1 1

problem (Golub et al., 1999; Furey et al., 2000; Mukherjee
et al., 1999), the performance of the MSVM appears en-
couraging, given that multiclass problems are harder than
binary problems.

Small round blue cell tumors data
Khan et al. (2001) successfully diagnosed the small round
blue cell tumors (SRBCTs) of childhood into four classes;
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neuroblastoma (NB), rhabdomyosarcoma (RMS), non-
Hodgkin lymphoma (NHL) and the Ewing family of
tumors (EWS) using Artificial Neural Networks. The data
set contains 2308 genes out of 6567 after filtering for
a minimal level of expression. The training set consists
of 63 samples (NB: 12, RMS: 20, BL: 8, EWS: 23),
and the test set has 20 SRBCT samples (NB: 6, RMS:
5, BL: 3, EWS: 6) and five non-SRBCTs. Note that
Burkitt lymphoma (BL) is a subset of NHL. Yeo and
Poggio (2001) applied nearest neighbor, weighted voting
and linear SVM in one-vs-rest fashion to this data. In the
paper, perfect classification was possible in testing the
blind 20 samples as well as cross validating 63 training
samples, with five to 100 genes for each binary classifier.

For comparison, we applied the MSVM to the prob-
lem. We took logarithm base 10 of the expression levels
and standardized arrays before applying the classification
method. Most of the top 20 genes were consistently se-
lected from the top 96 genes in Khan et al. (2001). How-
ever, the list included four additional genes, which are
neurofibromin 2, Isg20, cold shock domain protein A, and
WASP, and their biological functions are poorly charac-
terized. Table 2 is a summary of the results. Although
the linear kernel could achieve similar performances, we
chose flexible Gaussian kernel which is particularly effec-
tive for multiclass problems. The second column presents
the tuning parameters λ and σ on log 2 scale chosen by
the GACV. Again, the minimizer of GACV turned out to
be a part of the LOOCV tuning error minima. The pro-
posed MSVMs were cross validated for the training set
with zero LOOCV error attained for 20, 60 and 100 genes.
The test results are given in the last column. Using the
top ranked 20, 60 and 100 genes, the MSVMs correctly
classified 20 test examples. With all the genes included,
one error occurred in LOOCV and the misclassified ex-
ample was identified as EWS-T13, which frequently oc-
curred as an LOOCV error (Khan et al., 2001; Yeo and
Poggio, 2001). The test error using all genes varied from 0
to 3 depending on tuning measures. The MSVM tuned by
GACV gave three test errors while LOOCV tuning gave
0 to three test errors. High dimensional data oftentimes
reside in a low dimensional subspace. In order to visual-
ize the data approximately in a much lower dimension, we
conducted the principal component analysis. Figure 3 dis-
plays the three principal components of the top 100 genes.
Notice that the principal coordinates of five non-SRBCTs
land on ‘no man’s land’, encircled by the samples from
the four known classes. The three principal components
contain total 66.5% variation of 100 genes in the training
set. They contribute 27.52, 23.12 and 15.89%, each and
the fourth component explains only 3.48% of variation.
With the three principal components (PCs) only, we ap-
plied the MSVM, and the corresponding classification re-
sult is in the last row of Table 2. Again, perfect classifica-

Table 2. LOOCV and Test errors for SRBCT data

No. of genes Tuning parameters No. of errors
log2 λ, log2 σ LOOCV Test

20 −22, 1.4 0 0
60 −23, 2.4 0 0
100 −23, 2.6 0 0
all −25, 4.8 1 0−3

3 PCs −19, 1.6 0 0

tion was achieved in cross validating and testing. Indeed,
we have checked that the quadratic discriminant analysis,
which could not be applied when the dimension of input
space exceeds the sample size, gives the same zero test
error once the data are represented by three PCs. Figure 4
shows the predicted decision vectors ( f1, f2, f3, f4) at the
test samples for the MSVM with the three PCs. For exam-
ple, the blue bars correspond to EWS samples, and their
ideal decision vector is (1, − 1

3 , − 1
3 , − 1

3 ). The estimated
decision vectors are pretty close to the ideal class code and
their maximum components are the first one, yielding cor-
rect classification. The plot confirms that all the 20 test ex-
amples from four classes are classified correctly. Note that
the test examples are rearranged in the order of EWS, BL,
NB, RMS, and non-SRBCT. The last five decision vectors
are for the five non-SRBCT samples. In clinical settings,
it is important to be able to reject classification whenever
samples in fact do not fall into the known classes. It is
shown that the MSVM outputs are specific enough to iden-
tify the five non-SRBCTs. The last panel depicts the loss
g, evaluated at each test sample for the MSVM prediction.
The dotted line indicates the threshold of rejecting a pre-
diction. It was set at 0.2171, which is a jackknife estimate
of the 95th percentile of the loss distribution from 63 cor-
rect predictions. The losses corresponding to the predic-
tions of five non-SRBCTs all exceed the threshold, while
three test samples out of 20 can not be classified confi-
dently by thresholding.

CONCLUSION
We demonstrated that the MSVM can classify cancer
types accurately based on gene expression profiles. For the
leukemia data, the MSVM resulted in 0 to 1 test error at
best when the profiles were appropriately preprocessed.
This accuracy is comparable to 1 to 3 median test errors
of other methods in a slightly different study design
(Dudoit et al., 2002). Additionally, inspecting the patterns
of highly relevant genes to the class separation revealed
that B-cell ALL might be closer to AML than T-cell
ALL. With various combinations of genes, the proposed
method yielded perfect or near perfect classification for
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Fig. 3. Three principal components of 100 gene expression levels
in the training set are plotted as circles. The squares are the
corresponding principal coordinates of the test samples including
non-SRBCTs. The tumor types are distinguished by colors. Three
principal components show a nice separation of the four tumor
types.

the small round blue cell tumors data. The strength
measure attached to each prediction turned out to be useful
in identifying five non-SRBCT samples. Because of its
classification accuracy and flexibility, the MSVM can be
very useful for medical diagnosis problems.

In the analysis, we screened predictive genes by a
marginal association between each gene and class distinc-
tion, and trained classifiers with the prescreened genes.
Such marginal criterion tends to yield a set of redundant
genes. It would be interesting to know how parsimonious
results would be obtained if we integrate gene selection
with learning. As a consequence, a reasonable number
of selected genes essential for the class distinction could
be printed or synthesized on customized mini-arrays for
cancer diagnosis.

The MSVM treats all the classes simultaneously. If
we restrict classifiers to simple ones, say, those yielding
linear boundaries only, and pooling some classes into
a hyperclass gives much simpler boundaries, then this
simultaneous approach may not be very efficient, let alone
its increased computational complexity. Nevertheless, the
difficulty is how to form such hyperclasses inductively
from the data. If classifiers are flexible enough to provide
arbitrary boundaries, then its advantages of aggregating
classes become murky. The effectiveness of the various
approaches to solve multiple tumor types problems
remains to be addressed as we collect more evidence.
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Fig. 4. The first four panels show the decision vectors
( f1, f2, f3, f4) at the test samples. The four classes are coded as
EWS in blue: (1, − 1

3 , − 1
3 , − 1

3 ), BL in purple: (− 1
3 , 1, − 1

3 , − 1
3 ),

NB in red: (− 1
3 , − 1

3 , 1, − 1
3 ), and RMS in green: (− 1

3 , − 1
3 , − 1

3 , 1).
The colors indicate the true class identities. The five non-SRBCTs
are plotted in cyan. The last panel depicts the loss for each decision
vector. The last 5 losses for the non-SRBCTs all exceed the thresh-
old (the dotted line) below which means a strong prediction.
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