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ABSTRACT

Two-category support vector machines (SVMs) have become very popular in the machine learning community
for classification problems and have recently been shown to have good optimality properties for classification
purposes. Treating multicategory problems as a series of binary problems is common in the SVM paradigm.
However, this approach may fail under a variety of circumstances. The multicategory support vector machine
(MSVM), which extends the binary SVM to the multicategory case in a symmetric way, and has good theoretical
properties, has recently been proposed. The proposed MSVM in addition provides a unifying framework when
there are either equal or unequal misclassification costs, and when there is a possibly nonrepresentative training
set.

Illustrated herein is the potential of the MSVM as an efficient cloud detection and classification algorithm
for use in Earth Observing System models, which require knowledge of whether or not a radiance profile is
cloud free. If the profile is not cloud free, it is valuable to have information concerning the type of cloud, for
example, ice or water. The MSVM has been applied to simulated MODIS channel data to classify the radiance
profiles as coming from clear sky, water clouds, or ice clouds, and the results are promising. It can be seen in
simple examples, and application to Moderate Resolution Imaging Spectroradiometer (MODIS) observations,
that the method is an improvement over channel-by-channel partitioning. It is believed that the MSVM will be
a very useful tool for classification problems in atmospheric sciences.

1. Introduction

The Moderate Resolution Imaging Spectroradiometer
(MODIS) is a key instrument developed for the National
Aeronautics and Space Administration (NASA) Earth
Observing System (EOS) Terra and Aqua satellites. It
measures radiances at 36 wavelengths, including infra-
red and visible bands, with spatial resolution 250 m to
1 km. EOS models require knowledge of whether or not
a radiance profile is cloud free. If the profile is not cloud
free, it is valuable to have information concerning the
type of cloud. Cloud mask algorithms for MODIS,
which use a series of sequential tests on the radiances
or their associated brightness temperatures, may be
found in Strabala et al. (1994), Ackerman et al. (1998),
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and Platnick et al. (2003), where their description as
part of the MODIS Cloud Products Suites is described
(see also Heidinger et al. 2002). As readers of the Jour-
nal of Atmospheric and Oceanic Technology are no
doubt aware, the supervised machine learning literature
contains many possibilities for classification (e.g., neu-
ral nets). A relatively new classification procedure, the
support vector machine (SVM) (Vapnik 1998; Schol-
kopf et al. 1999; Wahba 1999; Cristianini and Shawe-
Taylor 2000; Scholkopf and Smola 2002; Lin et al.
2002), has become popular for various reasons, some
of which we will detail below. The original SVM meth-
od classified into one of two categories, and most of
the literature used various combinations of the two-cat-
egory method to handle the multicategory case. The
original SVM has been recently generalized to a truly
multicategory classification scheme that, moreover, han-
dles unequal misclassification costs and nonrepresen-
tative examples in a principled way (see Lee and Lee
2003; Lee et al. 2001; Lin et al. 2002; Lee 2002). It
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appears that this multicategory support vector machine
(MSVM) is well suited for classifying radiance profiles
simultaneously according to whether or not they are
cloudy, and, if cloudy, categorizing them as to type of
cloud. The purpose of this paper is to introduce this
MSVM to the meteorological literature and to describe
how it may be applied to MODIS profiles.

In section 2 we review the theory of optimal classi-
fication, and the relation of the (standard, two category)
SVM to it. In section 3 we describe the MSVM, and in
section 4 we apply it to simulated MODIS observations.
In section 5 the MSVM method is applied to actual
MODIS observations that have been classified (labeled)
by an expert, and the results are compared with the
MODIS algorithm on the same labeled dataset. A sum-
mary and conclusions are given in section 6.

2. Optimal classification, the Bayes rule, support
vector machines, and other margin-based
classifiers

Let x ∈ X be an attribute vector that is going to be
used in the future to classify. Here X is Euclidean m
space and x is an m vector of observations from m
MODIS channels. For expository purposes we first de-
scribe the two-class problem; later, the results for the
general k-class problem will be given. Suppose we knew
the probability densities gA(x), gB(x) for class A and
class B and let pA equal the probability that the next
observation (Y) is an A , and let pB 5 1 2 pA equal the
probability that the next observation is a B. Then

p g (x)A Ap (x) [ prob{Y 5 A | x} 5 .A p g (x) 1 p g (x)A A B B

Let CA equal the cost to falsely call a B an A and CB

equal the cost to falsely call an A a B. A (two category)
classifier f is a rule that assigns x to one of {A , B}.
The optimal (Bayes) classifier fOPT, which minimizes
the expected cost, is

 p (x) CA AA if . , 1 2 p (x) CA B
f (x) 5 (1)OPT

p (x) CA AB if , .
1 2 p (x) C A B

If CA /CB 5 1, and f is the log odds ratio f (x) 5
log[pA(x)/1 2 pA(x)], the optimal classifier is

1
f (x) . 0 equivalently, p (x) 2 . 0 → AA[ ]2

1
f (x) , 0 equivalently, p (x) 2 , 0 → B.A[ ]2

Given a training set {yi, x} , yi ∈ {A , B}, xi ∈ X,n
i51

where yi is the class label for the ith member of the set,
then f and hence p can, in principle, be estimated by
the method of penalized likelihood (see O’Sullivan et

al. 1986; Wahba 1990; Wahba et al. 1994, 1995; Wahba
2002), and the sign of f is used as the classifier. In
theory, with a large enough representative training set,
it is known under very general conditions that f esti-
mated this way does converge to the ‘‘true’’ f if the
penalty or smoothing parameter [l in Eq. (2) below] is
chosen well. In practice, however, there is not always
a large enough training set to estimate f well and, fur-
thermore, in regions of the domain X where the clas-
sification can be carried out with 100% accuracy, f 5
6`. Ideally, for purely classification purposes it would
be good to have a practical estimate targeted directly at
sign f. The SVM is known to do this when it uses a
sufficiently flexible kernel and is tuned well [see Lin
(2002); the result has been known since Lin (1999)],
which explains one of the reasons for the popularity of
the SVM.

A regularized, margin-based classifier is a classifier
f l that is obtained as the solution to the optimized prob-
lem: Find f of the form f (x) 5 b 1 h(x), where h ∈
HK, to minimize

n1
2I{y, f } 5 C [y f (x )] 1 l\h\ , (2)O i i Kn i51

where y 5 (y1, . . . , yn) and yi is coded as 11 if the ith
example is in A and 21 if it is in B. The kernel K 5
K(s, t), s, t ∈ X is some positive definite function; that
is, it is a covariance and HK is the reproducing kernel
Hilbert space (RKHS) associated with K. However, the
only facts about RKHS that are relevant here will be
given below: K can be any positive definite function
that must be chosen with the particular problem in mind,
although there are several general purpose ones that
work well in a variety of circumstances; C(t) can be
one of a variety of functions that satisfy some mild
conditions; and yi f (xi) is called the margin for the ith
example. If it is positive, then yi will be classified cor-
rectly by f (xi), and if it is negative, then it will be
classified incorrectly. Under general conditions (Ki-
meldorf and Wahba 1971), the minimizer of I{y, f}
with h in HK has a representation of the form

n

f (x) 5 b 1 c K(x , x) and (3)O i i
i51

2n

c K(x , ·) 5 c9K c, (4)O ni i( (i51
K

where Kn is the n 3 n matrix with i, jth entry K(xi, x j),
and b and the coefficient vector c 5 (c1, . . . , cn)9 are
found by substituting (3) into the first term in (2), and
(4) into the second and minimizing.

It can be shown, with the 6 coding for yi, and letting
t 5 yi f (xi), that setting C(t) 5 log(1 1 e2r) in (2) gives
the penalized log likelihood estimate. The SVM cor-
responds to C(t) 5 (1 2 t)1 where (t)1 5 t, t . 0,
and 0 otherwise. The ideal cost function for a margin-
based classifier might be C(t) 5 (2t)*, where (t)* 5
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FIG. 1. Comparison of (2t)
*

, (1 2 t)1 and log2(1 1 e2t).

1, t $ 0 and 0 otherwise, since 1/n [2yi f (xi)]* isnSi51

the fraction of misclassified examples in the training set
when f is the classifier [with the convention f (xi) 5 0
is a misclassification of yi]. However, this C(t) leads to
a nonconvex optimization problem. The SVM C(t) can
be seen to be the closest convex function to (2t)* with
derivative 21 at 0 (see Fig. 1). A good source of ref-
erences and further information regarding SVMs may
be found online at http://www.kernel-machines.org, and
further discussion on the comparison between penalized
likelihood, SVM, and some other regularized, margin-
based classifiers may be found in Wahba (2002).

3. Multiple categories, unequal costs, and
nonrepresentative examples

In this section we describe the general nonstandard
MSVM, as given in Lee (2002) and Lee et al. (2001,
2002).

We now consider the case of k categories, with the
costs of misclassification possibly different for different
mistakes. Let Cjr be the cost of classifying an object in
category j as an r, with Cjj 5 0. Then the Bayes rule
(which minimizes expected cost) is to choose the j for
which C,j p,(x) is minimized, where p,(x) is thekS,51

probability that an object in the population as a whole,
with attribute vector x, is in category ,.

We next allow the case that the training set is not
representative of the population as a whole. Let p j, j 5
1, . . . , k be the proportions of the different categories
in the population as a whole, and let be the propor-sp j

tions of the different categories in the training set. Let
(x) be the probability that an example in the trainingspj

set with attribute vector x is in category j. Let
sL 5 (p /p )C .jr j j jr (5)

It can be shown that the optimum (Bayes) classifier
chooses the j for which L,j (x) is minimized.k sS p,51 ,

In the MSVM of the papers noted at the start of this
section, the class label for the ith example is coded as
yi, a k-dimensional vector with 1 in the jth position if
example i is in category j and 2(1/k 2 1) otherwise.
Thus yi [ (yi1, . . . , yik) 5 [1, 2(1/k 2 1), . . . , 2(1/

k 2 1)] indicates that the ith example is in category 1.
We define a k-tuple of functions f(x) 5 [ f 1(x), . . . ,
f k(x)], with each f j 5 b j 1 h j with h j ∈ HK, and which
are required to satisfy the sum-to-zero constraint kS j51

f j(x) 5 0, for all x in X. Define cat( i) [ j if the ith
example is in category j. Then Lcat( i )r 5 Ljr. The MSVM
is defined as the vector of functions fl 5 ( , . . . , ),1 kf fl l

with each h j in HK, satisfying the sum-to-zero constraint,
which minimizes

n k k1 l
r j 2L [ f (x ) 2 y ] 1 \h \ . (6)O O Ocat(i)r i ir 1 HKn 2i51 r51 j51

It is not hard to show that the k 5 2 case reduces to
the two-category margin-based SVM that was just dis-
cussed under the assumption that L12 5 L21 5 1, L11 5
L22 5 0.

It is shown in Lee et al. (2001) and Lee (2002) that the
target for this general MSVM is f(x) 5 [ f 1(x), . . . , f k(x)]
with f j(x) 5 1 for the j that minimizes L,j (x) andk sS p,51 ,

2(1/k 2 1) otherwise. Thus the MSVM is directly esti-
mating the class label that implements the Bayes rule. A
simple demonstration will be given later.

The problem of finding constrained functions [ f 1(x),
. . . , f k(x)] minimizing (6) can be shown, as before, to be
equivalent to the problem of finding a set of finite di-
mensional coefficients. It was shown in Lee et al. (2001)
that to find fl with the sum-to-zero constraint, minimizing
(6) is equivalent to finding each [ f 1(x), . . . , f k(x)] of the
form

n

r rf (x) 5 b 1 c K(x , x) for r 5 1, . . . , k (7)O ,r ,
,51

with the sum-to-zero constraint only at xi for i 5 1,
. . . , n, minimizing (6).

To find fl, (7) is first substituted into (6). Then, by
introducing nonnegative Lagrange multipliers, a j ∈ Rn,
j 5 1, . . . , k, the following dual problem can be ob-
tained:

k k1
j j j9 jmin L 5 (a 2 a)9K (a 2 a) 1 l a y (8)O OnD

j 2na j51 j51

subject to
j j0 # a # L for j 5 1, . . . , k (9)

j(a 2 a)9e 5 0 for j 5 1, . . . , k (10)

where L j ∈ Rn is the jth column of the n by k matrix
with the ith row L(yi) [ (Lcat( i )1, . . . , Lcat( i )k), y j denotes
the j th column of the n by k matrix with the i th row
yi, and e is the n-dimensional column vector of all ones.
Once the quadratic programming (QP) problem is
solved, the coefficients can be determined from the re-
lation c j 5 (c1j, . . . , cnj)9 5 21/nl(a j 2 ), j 5 1,a
. . . , k. Note that if Kn is not strictly positive definite,
then c j is not uniquely defined. According to the Ka-
rush–Kuhn–Tucker complementarity conditions, the b j

can be found from any one of the components of a j

(call it ai j) that satisfies 0 , aij , Lcat( i ) j as
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FIG. 2. Probabilities and optimum f j’s for three-category SVM demonstration.

FIG. 3. (left to right) Optimum MSVM tuning, fivefold cross-validation tuning of the MSVM, GACV MSVM tuning, one-vs-many SVM.

n

jb 5 y 2 c K(x , x ). (11)Oi j , , ij
,51

If there is no such unbound aij, then b [ (b1, . . . , bk)9
is found as the solution to

n1
imin L(y )9(h 1 b 2 y ) (12)O i i 1nb i51

k

jsubject to b 5 0, (13)O
j51

where hi 5 (hi1, . . . , hik) 5 [ c,1K(xl, xi), . . . ,nS,51

c,kK(x,, xi)]. Details of the derivation may benS,51

found in Lee (2002) and Lee et al. (2001); see also
Mangasarian (1994).

Solving the QP problem of (8)–(10) can be done with
available optimization packages for moderate-sized
problems. The calculations in this paper were done via
MATLAB 6.1 with an interface to PATH 3.0, an opti-
mization package implemented by Ferris and Munson
(1999).

It is worth noting that if (ai1, . . . , aik) 5 (0, . . . , 0)
for the ith example, then (ci1, . . . , cik) 5 (0, . . . , 0),
so removing such an example (xi, yi) would not affect
the solution. In the two-category SVM, those data points
with a nonzero coefficient are called support vectors.
To carry over the notion of support vectors to the mul-
ticategory case, we define support vectors as examples
with c i 5 (ci1, . . . , cik) ± (0, . . . , 0) for i 5 1, . . . ,
n. Thus, the multicategory SVM retains the sparsity of
the solution in the same way as the binary SVM. For

proofs, and further details about the MSVM and its im-
plementation, refer to Lee et al. (2001, 2002).

As with other regularization methods, the efficiency
of the method depends on the ability to choose the tun-
ing parameters well. An approximate leaving-out-one
cross-validation function, called generalized approxi-
mate cross validation (GACV), has been derived for the
MSVM in Lee et al. (2002), analogous to the GACV
proposed by Wahba et al. (2000) in the binary case.
Alternatively, fivefold (or tenfold) cross validation may
be used. The GACV and fivefold cross validation be-
have similarly and have relative advantages and dis-
advantages, depending on the problem.

Figure 2 describes a simulated example to suggest
the result from Lee et al. (2002) that the target of the
MSVM is the class label (vector) implementing the
Bayes rule. In this example a representative training set
and equal misclassification costs are assumed.

In this example x 5 x ∈ [0, 1]. The leftmost panel
of Fig. 2 gives pj(x), j 5 1, 2, 3, which will be used to
generate data for this example. The other three panels
give the three optimum f j, superimposed on the pj. The
f j take on only the values 1 and 2½ [ 2[1/(R 2 1)].
For the experiment n 5 200 values of xi were chosen
according to a uniform distribution on the unit interval,
and the class label j 5 1, 2, or 3 is assigned to an
observation at xi with probability pj(xi). The Gaussian
kernel K(x, x9) 5 exp[2(1/2s 2)(x 2 x9)2] was used to
calculate the f j. The leftmost panel of Fig. 3 gives the
estimated f 1, f 2, f 3. For this example, l and s were
chosen with the knowledge of the ‘‘right’’ answer. It is
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strongly suggestive that the target functions are close
to the step functions as claimed. In the second-from-
left panel both l and s were chosen by fivefold cross
validation in the MSVM, and in the third panel they
were chosen by GACV. These two tuning methods gave
somewhat different estimates of l and s and also dif-
ferent from the first (ideal) panel, but the resulting clas-
sification rules are similar. In the rightmost panel in Fig.
3 the classification is carried out by a one-versus rest
method. This is the kind of example where the MSVM
will beat a one-versus-rest two-category SVM: category
2 would be missed since the probability of category 2
is less than the probability of not category 2 over a
region, even though it is the most likely category there.

The GACV and fivefold cross validation are used and
compared in Lee and Lee (2003). Only fivefold cross-
validation results will be given for the simulated MODIS
data and MODIS observations analyzed below.

4. MSVM cloud classification with radiance
profiles

a. Introduction

As noted in the introduction, MODIS is a key in-
strument of the EOS. (A description of the MODIS in-
strument may be found online at http://modis.gsfc.
nasa.gov/.) MODIS cloud mask algorithms using se-
quential thresholding tests on channel observations one
at a time are in Strabala et al. (1994), Ackerman et al.
(1998), and Platnick et al. (2003). In this section, we
illustrate the potential of the multicategory SVM as an
efficient cloud detection algorithm. We have applied the
MSVM to simulated MODIS-type channels data to clas-
sify the radiance profiles as clear, water clouds, or ice
clouds.

b. Data description

Satellite observations at 12 wavelengths (0.66, 0.86,
0.46, 0.55, 1.2, 1.6, 2.1, 6.6, 7.3, 8.6, 11, and 12 mm,
or MODIS channels 1, 2, 3, 4, 5, 6, 7, 27, 28, 29, 31,
and 32) were simulated using DISORT, driven by
STREAMER in Key and Schweiger (1998). Setting at-
mospheric conditions as simulation parameters, atmo-
spheric temperature and moisture profiles were selected
from the Improved Initialization Inversion (3I) algo-
rithm Thermodynamic Initial Guess Retrieval (TIGR)
database, and the surface was set to be water. A total
of 744 radiance profiles over the ocean (81 clear scenes,
202 water clouds, and 461 ice clouds) are given in the
dataset. Clouds were randomly placed within a given
TIGR profile atmospheric layer. Cloud layers colder
than 253 K were assigned as ice and those warmer than
273 K were assigned water. Clouds with layer temper-
atures between these limits were randomly selected as
either an ice or water cloud. Water contents within a
cloud layer were randomly selected and range between

0.05 and 0.5 g m23 for water clouds and 0.0007 and
0.11 g m23 for ice clouds. The effective radii for water
and ice clouds range between 2.5 and 20 and 10 and
80 mm, respectively, and were randomly selected in the
simulation. Each simulated radiance profile consists of
seven reflectances (at 0.66, 0.86, 0.46, 0.55, 1.2, 1.6,
and 2.1 mm) and five brightness temperatures (at 6.6,
7.3, 8.6, 11, and 12 mm). Note that differing surface
conditions that affect the observations in ways that are
important for cloud classification should have their own
training sets.

Figure 4 shows boxplots of the reflectances and the
brightness temperatures along 12 spectra channels for
each type. Generally, clouds are characterized by higher
reflectance and lower temperature than the underlying
earth surface. The boxplots confirm this general char-
acteristic of clouds compared to clear sky. Here, we use
the abbreviations R and BT for reflectance and bright-
ness temperature, respectively. The top panels of the
figure show the profiles of clear scenes, the middle pan-
els show those of water clouds, and the bottom panels
those of ice clouds. No single channel seems to give a
clear separation of the three categories. We observe a
fair amount of overlap in the profiles among the three
types. Figure 5 displays scatterplots of some features
(either variable or transformation of variables) of in-
terest, which have been used conventionally to distin-
guish between categories. They are deduced from do-
main knowledge of the physics underlying weather phe-
nomena. The scatterplot of BT versus BT 2channel channel31 32

BT is in the top left, while pairs of R /channel channel29 1

R and R are shown in the top right. Althoughchannel channel2 2

the features in the top two plots are partially effective
in distinguishing the three types of scenes, R andchannel2

log10(R /R ), shown in the bottom left panel,channel channel5 6

appear to be most informative.

c. Analysis

To test how predictive the two features, R andchannel2

log10(R /R ), are, we split the dataset into achannel channel5 6

training set and a test set and applied the MSVM with
these two features only to the training data. To have a
fair evaluation of this or any other flexible classification
algorithm, it is appropriate to evaluate the algorithm on
a test set that was not used in building it, since the
training set error will in general be an underestimate of
the accuracy on future observations. Almost half of the
original data, 370 examples, were selected randomly
from the bottom left panel in Fig. 5 as the training set.
The Gaussian kernel was used and the tuning parameters
l and s were tuned by fivefold cross validation. The
test error rate of the SVM rule over the 374 test ex-
amples was 11.5% (543/374). Figure 6 shows the clas-
sification boundaries. Most of the misclassifications oc-
curred due to the considerable overlap between ice
clouds and clear sky examples at the lower left corner
of the plot. Table 1 shows the cross tabulation of the
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FIG. 4. The boxplots of seven reflectances and five brightness temperatures for clear sky, water clouds,
and ice clouds over the ocean.

predicted category based on the classifier over the test
set. It turned out that adding three more features
(R1/R2, BT31, BT32 2 BT29) to the MSVM to make five-
dimensional attribute vectors instead of two-dimension-
al ones did not improve the classification accuracy sig-
nificantly. We could classify correctly just five more
examples than the two-features-only case with the mis-
classification rate 10.16% (538/374).

Assuming no such domain knowledge regarding

which features to look at, we applied the MSVM to the
original 12 radiance channels without any transforma-
tions or variable selection. This yielded a 12.03% test
error rate, which is slightly larger than those of the
MSVMs with the tailored two or five features. Inter-
estingly enough, when all the variables were trans-
formed by the logarithm function, the MSVM achieved
a test error rate of 9.89%. The results are summarized
in Table 2. We have observed that clear sky examples
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FIG. 5. Scatterplots of (top left) BT vs BT 2channels channel31 32

BT , (top right) R /R vs R , and (bottom left)channel channel channel channel29 1 2 2

R vs log10(R /R ).channel channel channel2 5 6

are more clumped than the other two types of examples
for all the combinations of features considered in Table
2. To roughly measure how hard the classification prob-
lem is due to the intrinsic overlap between class distri-
butions, we applied the nearest neighbor (NN) method.
An inequality in Cover and Hart (1967) relates the mis-
classification rate of the NN method to the Bayes risk,
the smallest error rate theoretically achievable, as the
training sample size becomes infinitely large. The in-
equality says that the probability of error for the NN
method is no more than twice the Bayes error rate, as
the size of a training set goes to infinity. The last column
in Table 2 shows the test error rates of the NN method.
They suggest that the dataset is not separable in any
simple way. The relations between one-half of the NN
test error rates and the actual error rates incurred by the
MSVM are reasonably close, if not very tight. It would

be interesting to investigate further if any sophisticated
variable (feature) selection methods might improve the
accuracy substantially.

So far, we have treated different types of misclassi-
fication equally. However, misclassifying clouds as clear
could be more serious than other kinds of misclassifi-
cations, in practice, since essentially this cloud detection
algorithm will be used as cloud mask for the EOS. The
following cost matrix was considered, which penalizes
misclassifying clouds as clear 1.5 times more than mis-
classifications of other kinds:

0 1 1 
 

C 5 1.5 0 1 , (14) 
 
1.5 1 0 

where we coded clear as class 1, water clouds as class
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FIG. 6. The classification boundaries determined by the MSVM
using 370 training examples randomly selected from the bottom left
plot in Fig. 5.

TABLE 2. Test error rates for the combinations of variables and
classifiers.

No. of
variables Variable descriptions

Test error rates (%)

MSVM NN

2
5

12
12

(i) R2, log10 (R5/R6)
(i) 1 R1/R2, BT31, BT32 2 BT29

(ii) Original 12 variables
Log transformed (ii)

11.50
10.16
12.03
9.89

16.58
12.30
20.86
18.98

TABLE 1. Distribution of the predicted class based on the MSVM
with two features.

True category

Predicted category

Clear sky Water clouds Ice clouds Total

Clear sky
Water clouds
Ice clouds

18
0

14

0
100

4

23
2

213

41
102
231

FIG. 7. The classification boundaries determined by the nonstandard
MSVM when the cost of misclassifying clouds as clear is 1.5 times
higher than that of other types of misclassifications.

2, and ice clouds as class 3. Its corresponding classi-
fication boundaries are drawn in Fig. 7. It was observed
that if the cost 1.5 is replaced by 2, then there is no
region left for the clear sky category at all within the
square range of the two features considered here. Just
to suggest how the boundaries can be manipulated by
changing the costs, the boundaries for the nonstandard
MSVM when the cost matrix is

0 4 4 
 

C 5 1 0 1 (15) 
 
1 1 0 

are plotted in Fig. 8. We note that in an operational
system it would be easy with this method to examine
the effects of different cost matrices on the overall data
analysis system.

d. Assessing prediction strength

As noted previously, the MSVM is not estimating
probabilities, but the hinge loss at x*, which measures
how close the MSVM is to the class label of the class
it has identified, may be used as a yardstick of the
strength of the classification at x*. Letting Lhinge(x*) be
the hinge loss of the classification of the attribute vector
x* with respect to fl, the fitted MSVM, then the hinge
loss is

k

rL (x*) 5 L [ f (x*) 2 y* ] , (16)Ohinge cat(*)r l r 1
r51

where y*r is the rth component of the class label as-
signed by the MSVM fl(x*), and cat(*) is the category
assigned. Thus, for example, if the largest component
of fl(x*) occurs for r 5 1, then (for the standard case)
Lcat(*)r 5 0 for r 5 1 and 1 otherwise, and Lhinge(x*) 5

[ (x*) 1 (1/k 2 1)]1 and will be increasinglyk rS fr52 l

positive as the (x*) increase above 2(1/k 2 1) for rrf l

± 1.
The hinge loss could be calibrated in various ways.

The calibration set should be independent of the training
examples. Here we use the 374 test examples. The test
examples were sorted according to their predicted class.
Within each class the hinge loss based on the MSVM
that was used in constructing Fig. 6 was computed for
each test example and saved along with an indicator as
to whether or not the classification was correct. For each
(prediction) class, the probability of a correct prediction
as a function of the hinge loss was then (roughly) es-
timated using linear logistic regression on the pairs of
hinge losses and indicators. The two plots in Fig. 9
depict these estimated probabilities of an accurate clas-
sification for liquid and ice clouds. Red tick marks rep-
resent the actual data pairs derived from the test set and
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FIG. 8. The classification boundaries determined by the nonstandard
MSVM when the cost of misclassifying clear sky examples is 4 times
as high as that of other types of misclassifications.

FIG. 9. The estimated MSVM prediction accuracy as a function of
the loss estimated via linear logistic regression, for the (left) water
and (right) ice cloud predicted classes. Red ticks are the actual pairs
of the hinge loss and the indicator of correct prediction (1: correct,
0: incorrect) for each test example.

used for the logistic regression. The corresponding plot
for the clear sky category is not shown, as the estimated
probability of an accurate classification was essentially
independent of the observed hinge loss. This is easily
explained by inspection of Fig. 6, in which the clear
attribute vectors are very closely bunched compared to
the other attribute vectors and overlaid by ice cloud
attribute vectors.

5. Comparison with the MODIS algorithm

a. Labeled MODIS scenes and MODIS analysis

The MODIS instrument provides an opportunity for
applying the MSVM algorithm to satellite observations.
A comprehensive remote sensing algorithm for cloud
masking has been developed by members of the MODIS
atmosphere science team. In this section we compare
the MSVM and the MODIS algorithm on MODIS ob-
servations that have been identified by an expert.

Assessing any cloud algorithm is difficult. One val-
idation approach is to use an expert analyst to label
pixels as clear or cloudy through visual inspection of
the spectral, spatial, and temporal features in a set of
composite satellite images. The analyst uses knowledge
of and experience with cloud and surface spectral prop-
erties to identify clear sky, water clouds, and ice clouds.
In this study, 1536 MODIS scenes over the Gulf of
Mexico in July 2002 were classified as clear, ice cloud,
or water cloud by a satellite expert. There were 256
clear conditions, 952 ice clouds, and 328 water clouds
identified. Each of these three groups were divided in
half by a random mechanism, and the first halves were
set aside as a training set for the MSVM, leaving 128,
476, and 164 clear, ice cloud, and water cloud profiles,
respectively, for a test set of 768 profiles. Training and

testing were done using the same channels as in the
simulation.

As a reference, the expert analysis is compared with
the operational MODIS cloud mask detection algorithm
on the test set. The MODIS cloud mask classifies each
pixel as either confident clear, probably clear, uncertain,
or cloudy. The cloud mask algorithm (see Ackerman et
al. 1998) uses a series of threshold tests to detect the
presence of clouds in the instrument field of view. De-
signed to operate globally during the day and night, the
specific tests executed are a function of surface type
(including land, water, snow/ice, desert, and coast) and
solar illumination.

For many regions of the globe, the uncertain classi-
fication can be considered probably cloudy. For com-
parison with the expert analysis, confident clear and
probably clear are considered clear pixels and the un-
certain and cloudy confidences are labeled as cloudy.
Of the clear pixels in the test set, 115 were misclassified
as cloudy, and 26 of the cloudy pixels were misclassified
as being clear. Thus the test error rate of the MODIS
cloud detection algorithm for these scenes is approxi-
mately 18% 5 (115 1 26)/(768). This is consistent with
the clear sky bias of the cloud mask algorithm, in the
sense that if one of the tests indicates that the pixel is
cloud contaminated, the pixel is flagged as cloudy or
uncertain. In these particular scenes, the cloud mask
misclassified clear pixels with a low reflectance in chan-
nel 2 but a high reflectance ratio between channels 2
and 1. The cloud mask flags these pixels as ‘‘uncertain,’’
which is interpreted as cloud.

b. MSVM analysis of the MODIS labeled pixels

We now turn to the results of first training the MSVM
on the set-aside MODIS scenes, and then testing it on
the same set of 768 scenes used to test the MODIS
algorithm against the expert’s labels. Before presenting
the results it is interesting to compare the labeled MOD-
IS dataset with the simulated data.
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FIG. 10. Scatterplots of (top left) BT vs BT 2channels channel31 32

BT , (top right) R /R vs R , and (bottom left)channel channel channel channel29 1 2 2

R vs log10(R /R ) labeled MODIS observations.channel channel channel2 5 6

FIG. 11. Classification boundaries on the training set based on the
MSVM trained on two variables only.

TABLE 3. Test error rates for the real data.

No. of
variables Variable descriptions

Test error rates
(%) MSVM

2
5

12
12

(i) R2, log10 (R6/R6)
(i) 1 R1/R2, BT31, BT32 2 BT29

(ii) Original 12 variables
Log transformed (ii)

36/768 5 4.69
2/768 5 0.26
6/768 5 0.78
5/768 5 0.65

The 1536 labeled MODIS scenes are plotted in Fig.
10, which may be compared with Fig. 5. These labeled
MODIS scenes are easier to classify than the simulated
scenes of section 4; however, we note how qualitatively
similar they are. This illustrates an interesting result: in
developing an operational MSVM algorithm for MODIS
under observing conditions other than those shown here,
it is likely that the simulated data, which are cheap to
generate, can reasonably be used for preliminary ex-
perimental training and testing of the MSVM algorithm.
This would then be followed by collection of the much
more expensive expert-labeled observational datasets
that would be used to build an actual operational MSVM
algorithm.

The MSVM misclassification rates on the labeled
MODIS test set were under 1.0% for all three of the
cases using 5 or 12 variables (details in Table 3).

It is of course hard to visualize what the MSVM or
any other classification method is doing on five or more
variables. To visualize just how powerful an MSVM
trained algorithm can be, the first two variables in the
training set, along with the classification boundaries giv-
en by the MSVM trained on these two variables, are
plotted in Fig. 11. The error rate on the test set was
4.69% (see Table 3).

6. Summary and conclusions
We have described the usual two-category support

vector machine and the recent generalization, the mul-
ticategory support vector machine. The MSVM is es-
timating the Bayes rule under appropriate conditions and
so can be expected to have favorable properties as an
algorithm for classifying attribute vectors into one of
several categories. We have demonstrated the potential
of this method for classifying MODIS observations as
clear, water cloud, or ice cloud, from simulated MODIS
data, and from MODIS observational data that have
been classified by an expert. The MSVM can be ad-
justed, if desired, to take into account nonrepresentative
training sets and unequal costs of misclassification, and
a rudimentary procedure for assessing the strength of
the prediction is proposed. The method clearly has ben-
efits over the existing MODIS algorithms, which use
thresholds on individual components of the attribute
vectors. (Those classification boundaries would look
like segments of horizontal or vertical lines if applied
to the attributes in Fig. 11.) Both the simulated data and
the observational MODIS data represent ocean condi-
tions. In practice, training sets for the different condi-
tions that materially affect the MODIS observations
would have to be collected and labels established. It is
believed that this method has important potential for
improving the ability of the MODIS data analysis to
efficiently classify clear and different kinds of cloudy
observations.
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