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General questions of absolute continuity and singularity of Gaussian
measures have been considered in works of Ya. Gaek [1], J. Feldman [2]
and Yu. A. Rozanov 3]. However, in considering concrete Gaussian measures
it is desirable to be able to answer these questions using only the defining
characteristics of the corresponding processes.

As is known, to solve the problem of absolute continuity and to find the
density it is necessary to solve a certain operator equation, which for ordinary
processes leads to a Fredholm integral equation of the first type. The existence
of a solution of this equation ensures absolute continuity. But the question
of the existence of solutions of such equations is very complex. Hence there
arises the problem: to find conditions of absolute continuity of measures
which do not involve the existence of a solution of the corresponding equa-
tions.

For stationary processes, several conditions expressed in terms of corre-
lation functions or spectral densities have been given by Rozanov [4], [3].
Other general conditions appear in the summary report of I. I. Gikhman and
A. V. Skorokhod [6], as well as in the book by the same authors [7] (Chapter 7,

5).
In the present paper, analogous conditions using only spectral functions

and densities are found for homogeneous Gaussian fields. The authors have
restricted themselves only to the case when the means of the Gaussian fields
are equal to zero and the correlation functions differ. The case of identical
correlation functions and distinct means is studied by M. I. Yadrenko in [8].
Combining the results of [8] with those of.this paper one can obtain conditions
of absolute continuity of homogeneous fields for distinct means and correla-
tion functions. To be especially noted is the case of isotropic Gaussian fields
which are considered separately.

Conditions of absolute continuity and singularity of measures corres-
ponding to Gaussian random fields have not yet been studied sufficiently.
In this connection note the works of Z. S. Zerakidze [9, [10], G. M. Molchan
and Yu. I. Golosov [11].
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28 A. V. Skorokhod and M. I. Yadrenko

1. Notation, Statement of the Problem, Auxiliary Results

Let R"= {t:t (t,...,t,)} be n-dimensional Euclidean space, and
let be a closed bounded region in R"; if T (T,.-., T,), then I1 is the
parallelopiped

L() is the space of square-integrable functions on , and if x(t) L(),
y(t) L(), then

if t 6 R", s R", then

(x(t), y(t)) f x(t)y(t) dt;

(t, s) tkSk
k=l

Let (l(t) and 2(t) be Gaussian homogeneous random fields on
with zero mathematical expectations and correlation functions R(t- s)
and Rz(t s). As is known,

(1) R(t S) ei’’t-)F(d,), j 1, 2,

where Fj(. is a finite measure on the a-algebra B of Borel sets in R" (the
spectral measure of j(t)). If Fj(. is absolutely continuous relative to Lebesgue
measure, then dF/d2 fj(k)is the spectral density of j(t).

The random field j(t) has the representation

(2) (t) f ci(’t)Zj(d,),

where Zj(. is a random additive set function on B such that

(3) EZj(S1)Zj(S2) Vj(S $2) S B, S2 a.
We shall also consider homogeneous and isotropic random fields.

The correlation function of such a field Rj(p) depends only on the distance
between the points t and s, the spectral measure Fj(.) is invariant under
rotations around the origin and the representation (1) takes on the form

(4) R(p) 2"- z)/zF
/:2-

where () lzl < F(d) is a bounded nondecreasing function, J(x) is the
Bessel function of first kind of v-th order. A homogeneous and isotropic
random field (t) has the form (see [12], [13)"

h(m,n) t JmSm(r, 01’ 2’ 30 (r)(n- 2)/2(5) j(t) c. E 2 On (40) +(n- 2)/2(’?’) Zlm(d/)
m=0 /=1
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Absolute continuity ofmeasures 29

where (r, 0a, ,0,_ 2, q) are the spherical coordinates of t, and S,,(O,...,l
0,_2, 0) are the orthonormal spherical harmonics of degree rn (cf. [14]),
c,2 2"- 1F(n/2)rc,/2, and

(m+n- 3)!
h(m,n)=(2m+ n- 2)

(n- 2)!m!

is the number of such harmonics, Z(. is a sequence of additive random set
functions defined on Borel sets in (0, + o) such that

(6) EZ(S) 0, EZ(S1)Z(S2) 6 *j(S S2).
The random fields j(t), j 1, 2, induce, on the Hilbert space L2(),

Gaussian measures with zero means and correlation operators

(7) Njx(t) Rj(t s)x(s)ds.

We shall be interested in conditions of absolute continuity of the
measures g and #, expressed in terms of the spectral measures and spectral
densities as well as in the calculation of d#/dg.

In the sequel we shall use general conditions of absolute continuity
of measures in Hilbert space. Let us formulate them (the proofs are given in
[73).

Let and 2 be Gaussian measures defined on the -algebra of
Borel sets in Hilbert space X, where the mean values of and are equal to
zero and the correlation operators are N and 2.

Assertion A. The measures x and 2 are absolutely continuous and
only if

1) the operator D /2/2 I is a Hilbert-Schmidt operator;
2) the eigenvalues 6 of D are greater than 1.
If and are absolutely continuous then formula

(8) exp - (Nl/Zx e)2 6 -log(1 + 2)
k=l 1 6k

holds, where e are the eigenvectors ofD corresponding to the

Assertion B. If there is a bounded operator V satisfying the condition

V2 =1-2,
Sp V* V < , and 1 is not in the spectrum of then and 2 are absolutely
continuous.

If the assumptions of Assertion B hold and Sp V is defined (i.e., the
series E (Ve, e converges in each orthonormal basis), then

d2 (det(I + V)exp{ -(- Vx, x)}.(9)

As is known, if the Gaussian measure 2 is absolutely continuous
relative to 1 (2 < 1), then 1 and 2 are equivalent ( #2), i.e., 1 < 2.
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30 ,4. v. Skorokhod and M. I. Yadrenko

Let be the class of Fourier transformations of functions in L2(
which are zero off . By a theorem of P61ya-Plancherel (cf. [15]) the function
g(k) Wn if and only if it can be extended in complex n-dimensional space
to an entire function of exponential type T (T,..., T,) and is square-
integrable on R". By /,U(F1) we denote the closure of in the metric

]lg(k)lt, f Ig(k)12Fl(dk).

Let W be the space of functions b(k, Ix) which can be represented in

the form

b(k, lx)=ffexp{i(t,k)-i(s, tx)}q)(t,s)dtds,

where q(t, s) L2( X ), and ,U(F1) is the closure of U in the metric
generated by the scalar product

(b l, b 2) f f b (k, Ix)b 2(k, It)F1 (dk)Fl(dlt).

2. Conditions of Absolute Continuity of Measures Corresponding to Random
Homogeneous Fields

Theorem 1. The measures lal and # are absolutely continuous ifand only if
there is afunction b(k, la) in ,U(F1) such that

t"
R2(t- s)- Rx(t- s): _1 _] exp{-i(k, t)+ i([a.s)}b(k.,)Fl(dk)F(dtl),

(t,s)e(10)

Here

(11) --(,(. ))- exp O(k, la)Z(dk)Z,(dt) + c

where 0(k, la) is related to b(k, t) by the relation:

o(k, la)b(It, v)Fx(dt) b(k, v) 0(k,(12)

and

c log E exp{0(k, la)Z(dk)Z,(dft)}.

PROOF. NECESSITY. Let #1 and 2 be equivalent. Then the spaces L(#x)
and L(#2) of linear functionals which are measurable with respect to #1
and #2 are the same. Each measurable linear functional for a homogeneous
random field has the form l(j(t), t )= f g(k)Z(dk), where g(k) W(F).
From general results on absolute continuity (cf. [7]) in Hilbert space it
follows that if # and #2 are equivalent, then one can construct a sequence of
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Absolute continuity ofmeasures 31

measurable linear functionals l forming a complete orthogonal system in
L(/t) and L(//2) (these are the functionals (- /2x, e)). Let l [ g(,)Z(dk).
From the orthogonality of the lu with respect to # and 2 it follows that

for k - m. We shall norm g(k) so that

f Ig,(,)12F(d,)= 1, f Igk(,)12F2(d,)= 1 + c,.

From what was said above regarding the l, it follows here that Ec < .
Let us set

b(k, It) Ckgk(,)gk().
k=l

Then b(k, ) U2(F1), and one can see that b(k, la) satisfies (10). To this end
consider the function

7(t, S) J J exp{- i(L, t) + i(ll, s)}b(L, II)F, (dL)F(dll)

+R,(t-s)- R2(t-s)
and let us show that ?(t, s) 0. Let q(t) be any function in L2( and

u(k) f exp{ -i(k, t)}(t) dr.

Then using Parseval’s equality we obtain

f f,(t,s)w(t)w(s)dtds=
x

k=i

x _1 u(k)gk(L)Fl(d1) O.

Thus 7(t, s) 0.
SUFFXEYCY. Let b(k, It) K(F) and satisfy (10). Consider the integral

operator

(14) Vg(la) f b(, It)g(,)F (d,)

If b(,, la) (F), then this operator maps ##(F1)into itself and is
Hilbert-Schmidt. Let gk(k) denote a complete orthonormal sequence of
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32 A. V. Skorokhod and M. I. Yadrenko

eigenfunctions of V and let 2 denote the corresponding eigenvalues. Then

k=l k=l

We shall prove that {g(k)} is orthogonal not only in (F1) but also in
(F). Let q.(t) be a sequence of functions in L() such that

u.(t) f exp{- i(k, t)}q,(t)dt g(k)

as n oo in the sense ofconvergence of W(F). Then

f f f Rl(t-)(Dkn(t)(DJn(s)
.x. .x.

f f b(,

Passing to the limit as n - m we obtain

f g,(k)g(k)F2(dk f g(k)gj(k)F1(dE)

f f bO [t)gkO)g)(t)Fl(dk)Fl(d.) O.

From (10) it follows that b(k, la) can be chosen so that b(k, It) b(-, -la),
and then the g(k) can be chosen so that g(k) g(- ). Under this condition
j" g(k)Zj(dk) will be a sequence of real linear orthogonal functionals of the
random fields j(t).

By Assertion A, # and p are equivalent to

d#(l(.)) exp - k=l 1 + k
It remains only to note that

where

l+2kk=l fg(k)Z (dk)

-log(l+ .k)l t.
--11 f f

0(,, ) k=lE 1 +
g(k)g(ia).

Theorem 1 is proved.

Corollary 1. If there exists a function c(u, v) L( ), satisfying the
equation

A(t- s)= R2(t- s)- Rl(t- s)= _" ]" R,(u t)c(., v)RI(S v)d. dr,

(15)
te,se,

then lal and la2 are equivalent.
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Absolute continuity ofmeasures 3 3

Indeed, (10) follows from (15) if we set

b(k, ,)= _If exp{i(u, k)- i(v, ,)}c(u, v)du dr,

and b(k,) (F).
Let us suppose that a(t) has spectral density f(k) and that f(k) is

bounded on R". Then from the fact that b(k,)6 (F) it follows that
b(k, )f(k)f() L2(R" R"). Using this fact it is not hard to obtain, by
means of arguments analogous to those used in proof of Theorems 11 and 12
of Chapter III in [16], the following result due to Zerakidze [10].

Theorem 2. The measures and are equivalent and only if the

function
A(t- s) R2(t- s)- R(t-s), (t,s) x ,

can be extended to afunction which is square-integrable on R" R" and whose
Fourier transformation (k, ) satisfies the condition

(16)
f(k)f()

dk d < .
Let (a, ..., a) be a tuple of n non-negative integers, let

[al , Daf(xl, xn)
lf(Xl,

k=l X’ 8X
and let C() be the collection of infinitely differentiable functions whose
supports are concentrated in .

We denote by W() the closure of C() in the metric

}]f ,w,) If(x)[ 2 dx+ f ,Df(x)[ 2 dx,(17)

if s is an integer, and in the metric

f ’Df(x)-Df(Y)ldxdy(18) Ifl w3)= If(x)l 2 dx + Ix yl"+2

when s [s3 + 7, 0 < 7 < 1, i.e., the W() are the known Sobolev classes.
Suppose that the boundary of satisfies conditions of continuation beyond, preserving the Sobolev class (cf. 19], p. 444).

Let

(19) +

From Theorem 2, using results of L. N. Slobodetskii [17 (see also [18)
we obtain

Theorem 3. If condition (19) holds, then the measures and are
equivalent ifand only if((t)e W().
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34 A. v. Skorokhod and.M. I. Yadrenko

For n 1 this coincides with a result of Rozanov (Theorem 13, Chapter
III of [16]) and in the general case generalizes a result of Zerakidze 10].

Now let us give sufficient conditions of equivalence of measures cor-
responding to homogeneous random fields under the assumption that there
exist spectral densities. An important role in the sequel is played by the
following lemma on orthogonal bases for (F,).

Lemma. Letf(k) [(/9o(k)[ 2, q)O(,) ffs and let {gk()} be an orthonormal
basis in (F). Let 1-I x, T (T1, T,) be a parallelopiped enclosing the
region . Then,

1 I-Ik= +
(20) Z ]g(Z)l 2 =< s,.

Poov. Since is everywhere dense in /U(F1), it suffices to show the
inequality for the case when g(k) /U. In this case, q(k)qgo(k) /]nv+ and
hence

g(,)qgo(,) | exp{-i0,, t)}q/(t)dt,
T-t-s

where O(t) L(I-Ix +). Since

f g(k)qo(k)g(k)qgo() dk

we have, by Parseval’s equality,

k(t)(t) dt (2rC),6k.
Thus {2rt"/2qgk(t)} is an orthonormal system in 1-Ix+ and from Bessel’s

inequality we obtain

ig i ll2 =< 2. +
k=l k=l

and the assertion follows.

Theorem 4. Let and 2 be the measures corresponding to the homo-
geneous random fields j(t) with Ej(t) 0 and spectral densities fj(k), t ,
j 1, 2. If f() , Iqgo(2)J 2, where qgo( n and

(21) f[fz(k)-f(k)12
then # and la2 are equivalent for every bounded region .

PROOF. Let us first prove this result under the assumption that fz(k)
_> f(k) for all k R". Let

(22) clqgo(k)l 2 -< f(/) < Cz[Po(k)] 2.
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Absolute continuity ofmeasures 3 5

Consider the functions

j()- ClI(J00()I 2, L() Cl[(D0()I 2 - /2()

fz(k) L(k) c, Io(k)l 2.

We denote by, "g, g the measures induced by the Gaussian homogeneous
random fields on having, respectively, spectral densities f(2), f2(2), f3(2).
Since - fi * , to prove the equivalence of and g it suffices to
show that fi fi. Let us do this.

Let FilE) be the spectral function having spectral density (k). Consider
any orthonormal basis {g(k)} in (). Let

h()

Then we have

]gk(k)l 2 h(k)f (k) dk
k=l

=< f g2(k)h2(k)L(k)dk

)f ]2
k=l 7[ L

C2)2( + Sk) f [f2( :fl()] 2

Let V be a symmetric opeato in () for which
We have shown that for every orthonomal basis {3(Z)} in () the elation

([V-I]gk,gk)2 < oO

holds, i.e., V I is a Hilbert-Schmidt operator.
Let {g(k)} be a sequence of eigenfunctions of V- I and let e be the

corresponding eigenvalues. Then,

b(k, t)
k=l

2belongs to #/(/1) since E= < o. Let/ be the correlation function of
the random field with spectral density f() and () exp{i(k, t)}. Then

/2(t S)- /l(t s)= (IV- I]lPt

a(t,g)(gk,s)
k=l

f f exp{i(t, ) i(s, la)}b(k, It)(d2)lx(dlx
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36 A. V. Skorokhod and M. I. Yadrenko

By Theorem 1, 2 1" Thus it follows, as already noted, that 2
Let us drop the assumption that fz(k) > fl(k).
Consider the functions

fx()- cxlqo()l 2, f2(,)- c110(,)12 + max (O,j -J’),

73() L()- CI[(DO()I 2, L() 72( @ 73(,).

Let fi, " ~/,/3, # be the measures corresponding to the homogeneous
random fields with spectral densities f, re, f3, f, respectively.

Note that /2 fir. In fact,

72( ) 2
C2

2

< O0

But #1 fi, fi3, #4 )f */23. Hence/, /z. Moreover,/,4 #2e, since

f [L() L()’] 2

f [f2()- L()I2
Hence #1 #2.

Note that the theorem still holds even if (22) fails to hold on a set A of
finite measure such that

[.
Lloo()l

Indeed, in this case one can consider the measure/, corresponding to the
random field with spectral density

f L(),f()
cllq)o(k)l 2,

The spectral density f]’(k) satisfies (22). Moreover, by assumption,

f’(k)
dk < oo, i= 1,2.

Hence, #1 #, #2 # and # #2.
Let us point out yet another sufficient condition for equivalence of

/ and/2 resulting from Assertion B.

Theorem . If there exists a function c(t, u) L2( ), satisfying the
equation

(23) A(t s) f c(t, U)Rl(U s) du,

then the measures la and #2 are equivalent.
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Absolute continuity ofmeasures 37

3. Conditions of Absolute Continuity of Measures Corresponding to
Homogeneous and Isotropic Random Fields

Let us now consider certain conditions for absolute continuity of
measures corresponding to homogeneous isotropic random fields.

We suppose at the outset that the random fields (t) and 2(t) are
observed on the sphere S,(r) of radius r in R". Let/ and/2 be the measures
induced by (t) and 2(t) in the space of functions L2(S,(r)). We take as basis
in L2(S,(r)) the spherical harmonics

{S(01, 0,_ 2, q)" m O, 1,... 1,..., h(m,n)}.
Then it is easy to verify using (5) that the correlation operators ’1 and

2 of 1 and 2 are diagonal and the eigenvalues of the operator
D /2/2 I are equal to

b)(r)
tml-- (2 1

bm)(r)
where

(24)

rn O, 1, ;1= 1, h(m,n),

(i) fo J2m+(n+ 2)/2(/r) dOi(/],)b(r)
(kr)n_ 2

From Assertion A we obtain

Theorem 6. The measures # and #2 are equivalent if and only if

(25) Fb(ml)(r) ]2E h(m, n) 1
m=O Lbm)(r)

In this case,

d/A2
d#l

h(m,n)

=exp --m=O l:

[b)(r)- b)(r)l-g (-[_ bm (r)bm (r) _]

am+(n- 2)/2(/r) Zm(d2) log(26) x
(r)(n 2)/2

Note that from the spectral representation (5) for (t) it follows that

fo Jm+(.-z)/z()r)zm(d2 l fs (r, u)S(u)m.(du),
(’r)(n 2 )/2 C

where u s S,(1), m,(du) is Lebesgue measure on S,(1).
We suppose additionally that

(27) 2 h(m, n) L--U- 1
,.=o bm ()
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38 A. V. Skorokhod and M. I. Yadrenko

converges. The convergence of (25) and (27) ensures that of the infinite
product

(28) A,(r) .-oI-I
and the expression (26) for the density of #1 and #2 can be written as

{lfs fs l(u,v,r)(r,u)(r,v)m,(du)m,(dv)},dlt2 A,(r) exp - .() .(1)
(29)

dt
where

-b()
/(u, v, r) -2 b)(r)b.t2)( S(U)Sm(V)"

Cn m=O l=

By a theorem for adding spherical harmonics,

h(m,n)

Sm(l]i)Sm()
l=l

h(m, n)C-2)/2(cos (u, v>)
co, C- 2)/2(1)

where cos(u, v) is the angular distance between u and v, and o, is the area
of the surface of the unit sphere in R", and the C(x) are the Gegenbauer
polynomials defined for v 4:0 (i.e., n - 2) by means of the generating function

Hence, for n > 2,

/(u, v, r)

and for n 2,

(1 2xt + t2)-= CVm(X)tm.
m=0

1 V b)(r)_b)(r) (, 2C,,- )/2(COS )),
(n 2)(2)" z"o b r (2)bm )(r)

1 b(ml)(r)_b(m2)(r)
l(qg, 0, r)

(2702 (x) (2) r
exp{-im(q

m=-oo bm (r)bm ()

Let be any bounded region in R". We suppose that (d2) and (I)2(d2)
are absolutely continuous with respect to Lebesgue measure and

Oj(d2)/d2. The sufficient condition of equivalence formulated in Theorem
4 takes on in the case of homogeneous and isotropic fields the following form.

Theorem 7. If

(30) q 2(2)122"-x d2 <
q a(2)

then the measures # and #2 are equivalent for every bounded region .
Now let be a ball of radius R in R" and

(31) r2 fo Jm+(n- 2)/2(/],rl) Jm+(n- 2)/2(/],r2)
rn ,’1, i[:)-- (2r i)(n- 2)/2
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Absolute continuity ofmeasures 39

From (15) and (23), using the representation (5) and the property of ortho-
gonality of spherical harmonics, we obtain the following sufficient conditions
for equivalence of p and/f.

Theorem 8. If there exists a sequence offunctions c,,(p x, Pz) such that

1) c,.(p P2)P]"-a)/2p.- 1)/2 6 L2([0, R] [0, R]),

2) (2) -bb, 0,, r2) )(r, r2)

c; c,.(p, P2)b)(p, r,)b2)(r, P)P"x-P"- dp dp2,
"o

0<r__<R, 0<r <R

3) h(m, n) C2m(pl, P2)P"- P"2- dp, dp2 <
rn=0

then the measures lu and # are equivalent.
Note here that the function c(u, v) in (15) has the form

C(Px, Y, P2,72) h(m, n)c(p, P2)
C-2)/2(cs(v’ 2))

=o C-/(1)
where (p, 7a), (P2, Y2), 7 Sn, 72 Sn, are the polar coordinates of u and v.

Theorem 9. If there exists a sequence offunctions a(r r2) such that

) Arl, r)r]"-l/r"-/ e L([0, R] x [0, R]),

2) b(r,r) b(r,r) b(r, O)e(r, p)p- dp,

0<r R, 0<r < R

) (, ,) (, r)]-’r- dd < ,
then the measures p and p are equivalent.

Received by the editors
August 9, 1971
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