
Chicago, Illinois USA
 

*Although the research described in this article has been funded wholly or in part by the United States

Environmental Protection Agency through STAR Cooperative Agreem ent #R-82940201-0 to  The  University

of Chicago, it has not been subjected to the Agency’s required peer and policy review and therefore does not

necessarily reflect the  views of the Agency, and no official endorsem ent shou ld be inferred. 

The University of Chicago
Center for Integrating Statistical and Environmental Science

www.stat.uchicago.edu/~cises

TECHNICAL REPORT NO. 4

SPACE-TIME COVARIANCE FUNCTIONS*

M. Stein
May 2003

 

http://www.stat.uchicago.edu/~cises
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ABSTRACT: A good model for the covariance function of a stationary process in space and time

should accurately describe the variances and correlations of all linear combinations of the process.

In particular, it does not suffice to find a model that describes the purely temporal covariances

and the purely spatial covariances accurately. Rather, it is critical to capture the spatial-temporal

interactions as well. This work considers a number of properties of spatial-temporal covariance

functions and how these relate to the spatial-temporal interactions of the process. First, it examines

how the smoothness away from the origin of a spatial-temporal covariance function affects, for

example, temporal correlations of spatial differences. Models that are not smoother away from the

origin than they are at the origin, such as separable models, have a kind of discontinuity to certain

correlations that might be undesirable in some circumstances. A class of spectral densities is given

whose corresponding spatial-temporal covariance functions are infinitely differentiable away from

the origin and that allows for arbitrary and possibly different degrees of smoothness for the process

in space and time. Second, this work considers models that are asymmetric in space-time: the

correlation between site xxx at time t and site yyy at time s is different than the correlation between site

xxx at time s and site yyy at time t. A general approach is described for generating asymmetric models

from symmetric ones by taking derivatives. Finally, the implications of a Markov assumption in

time on spatial-temporal covariance functions are examined and an explicit characterization of all

such continuous covariance functions given. Some explicit examples of Markov models are obtained.

Several of the new models described in this work are applied to wind data from Ireland.
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1. INTRODUCTION

Stochastic models describing how processes vary across space and time are essential to the

application of statistics to geophysical and environmental sciences. Although data for geophysical

processes are often taken at fixed locations and times, the processes themselves usually are defined

on continuous index sets in space and time, and the interest here is in modeling the processes

themselves and not any particular dataset. Thus, this work addresses models for processes on

Rd×R, where d is the spatial dimension of the process, generally 1, 2 or 3. Let Z(xxx, t) be the value

of the random field at location xxx and time t. A reasonable starting point is to develop models that

describe the first two moments of Z. This work focuses on stationary models; i.e., assume there

exists a function K on Rd×R such that cov{Z(xxx, s), Z(yyy, t)} = K(xxx−yyy, s− t) for all xxx,yyy ∈ Rd and

all s, t ∈ R. Of course, K cannot be just any function; it must be positive definite so that variances

of all linear combinations of Z are nonnegative. The restriction to stationary models is not meant

to suggest that nonstationary models are unimportant. However, as with many recent efforts to

develop nonstationary spatial models (Sampson and Guttorp 1992, Higdon 1998, Fuentes 2002,

Fuentes and Smith 2001, Nott and Dunsmuir 2002, Clerc and Mallat 2003), stationary space-time

models should play a central role as a building block for nonstationary models.

Christakos (1992, 2000), Jones and Zhang (1997), Cressie and Huang (1999), Brown, et al.

(2000), Gneiting (2002), Ma (2003) and Hartfield and Gunst (2003) describe some recent efforts to

develop new classes of stationary space-time covariance functions on Rd×R. There is considerable

additional work on models in continuous space and discrete time; see, for example, Haslett and

Raftery (1989) and Handcock and Wallis (1994). Before one can judge the utility of a class of

models, one needs to have some understanding of what space-time covariances imply about the

corresponding processes. Because it is often difficult to think about spatial and temporal variations

simultaneously, it is tempting to focus on K(000, ·), how the covariances at a single place vary across

time, and K(·, 0), how the covariances at a single time vary across space. If these were the only

characteristics that mattered, then separable models, which are of the product form K1(xxx)K2(t),

would suffice, since K1 positive definite on Rd and K2 positive definite on R imply K1K2 is positive

definite on Rd × R. Allowing the spatial covariances and the temporal covariances to define the

spatial-temporal covariances is a severe restriction, however. Expanding on considerations in Stein

(1999, Section 2.11), Section 2 shows that separable covariance functions generally imply that

small changes in the locations of observations can lead to large changes in the correlations between
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certain linear combinations of observations. The source of this “discontinuity” can be traced to

a lack of smoothness away from the origin of separable covariance functions or, more accurately,

that they are not smoother away from the origin than at the origin. For example, the space-time

covariance function exp(−|xxx| − |t|) is not differentiable at the origin, but is also not differentiable

in t for t = 0 and any xxx, nor is it differentiable in the components of xxx for xxx = 000 and any t.

Furthermore, many of the nonseparable space-time covariance functions proposed in recent works

have a similar lack of differentiability along certain axes and thus similar properties with their

implied correlations.

One is thus led to seek space-time covariance functions that are smooth everywhere except

possibly when xxx = 000 and t = 0. Another goal here is to find models that allow different degrees of

smoothness across space than across time. For example, one may want to allow the process to be

mean square differentiable with respect to spatial coordinates but not with respect to time. It is

difficult to write down directly space-time covariance functions that possess different amounts of

smoothness in space than in time and are much smoother away from the origin than at the origin.

As in many problems with covariance functions, it is helpful to work in the spectral domain. In

particular, Section 3 gives results showing that if the derivatives of a spectral density have certain

moments, then the corresponding covariance function (i.e., the Fourier transform of the spectral

density) possesses derivatives away from the origin. Denoting the temporal frequency by v and the

spatial frequency by www, these results can be used to show that for c1, c2, α1, α2, ν, a2
1 + a2

2 positive

and d/α1 + 1/α2 < 2ν, the Fourier transform of

f(www, v) =
{
c1(a2

1 + |www|2)α1 + c2(a2
2 + v2)α2

}−ν (1)

is positive definite and infinitely differentiable away from the origin. Furthermore, by appropriately

choosing α1, α2 and ν, one can achieve any combination of degrees of smoothness in space and in

time.

There are other properties besides smoothness away from the origin to consider in developing

models for space-time covariance functions. One desirable practical property is to have an explicit

expression for the space-time covariance function or, if that is not available, at least a fast and

accurate algorithm for computing it numerically. Explicit expressions for the Fourier transforms

of the spectral densities in (1) are available only in some very limited special cases. If α1 or α2
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equals 1, then the calculation of K(xxx, t) can be reduced to one-dimensional integral transforms,

which can be computed numerically fairly readily.

Another property that one may often want for space-time models is isotropy in space. It is

not completely obvious how to define spatial isotropy in the space-time context. If K(xxx, 0) only

depends on |xxx|, let us say that K is spatially isotropic. If for every t, K(xxx, t) depends on xxx only

through |xxx|, then because every real, positive definite function must be even, K(xxx, t) depends only

on (|xxx|, |t|). In this case, since K(xxx, t) = K(HHHxxx, t) for every orthogonal matrix HHH, let us call K

directionally invariant.

All spectral densities of the form (1) depend on (www, v) only through (|www|, |v|). Consequently,

the corresponding covariance functions are all directionally invariant. Directional invariance im-

plies full symmetry in space-time in the sense that K(xxx, t) = K(−xxx, t) = K(xxx,−t) = K(−xxx,−t)

(Gneiting 2002). Such an assumption is innapropriate for processes in which there is a dominant

flow direction over time. Directional flows are common for atmospheric processes that tend to

track dominant wind patterns. Section 5 shows how one can generate spatially isotropic models

that are not fully symmetric by taking derivatives of directionally invariant models.

One common method for restricting the classes of processes one considers is to assume some

kind of Markov or autoregressive structure. Section 6 gives a characterization of the class of mean

square continuous, stationary, space-time Gaussian processes Z that are Markov in time in the sense

that the process at times t > 0 and the process at times s < 0 are conditionally independent given

the process at time 0. From this characterization, one can see that the requirement of stationarity

in space-time restricts the temporal dynamics to a damping term and a phase modulation for

each spatial frequency. Section 6 gives some specific examples of such covariance functions and

investigates their properties in terms of the nature of this damping and phase modulation. In

particular, if the damping is sufficiently weak at some frequencies, then for any given xxx, Z(xxx, ·)
can possess long-range dependence in time. The fact that a space-time process that is Markov in

time can be long-range dependent when observed at a single location across time is intriguing and

may possibly help to explain the frequency with which geophysical time series exhibit long-range

dependence.

Section 7 applies some of these models to 18 years of daily wind speeds at 12 sites in Ireland.

These data were studied at length by Haslett and Raftery (1989), but not with an eye towards
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obtaining a model for the covariance function on R2×R. Gneiting (2002) fitted one of his proposed

models to these data via weighted least squares and demonstrated its superiority to a separable

model. However, Gneiting (2002) noted a clear lack of full symmetry in the data, a feature which

his model did not capture. Using approximate likelihoods, Section 7 considers a number of models

not possessing full symmetry and shows that they fit the data substantially better than the model

Gneiting (2002) used.

Proofs of all propositions are given in the Appendix.

2. PROPERTIES OF COVARIANCE FUNCTIONS THAT ARE NOT SMOOTH AWAY FROM

THE ORIGIN

Stein (1999, p. 30 and p. 52) criticizes covariance functions that are not sufficiently smooth

away from the origin. This section revisits some of the examples in Stein (1999) and shows how

covariance functions that are not sufficiently smooth away from the origin can imply a kind of

discontinuity in correlations of certain linear combinations of the random field.

Let us start by considering the triangular covariance function, K(t) = (1 − |t|)+, which is

positive definite on R. This function is not differentiable at t = ±1. Suppose Z is a stationary

process on R with covariance function (1− |t|)+. Define ρε(t) = corr{Z(ε)−Z(0), Z(t+ ε)−Z(t)}.
If 0 < ε < 1/2, then for |t| < ε, ρε(t) = 1− |t|/ε, for ||t| − 1| < ε, ρε(t) = (||t| − 1|/ε− 1)/2 and for

other t, ρε(t) = 0. Thus, for all t, ρ(t) = limε→0 ρε(t) exists, ρ(0) = 1, ρ(±1) = −1/2 and ρ(t) = 0

otherwise. The discontinuity in ρ at 0 is not troubling and is, indeed, inevitable for any model

for which K ′(0+) < 0. The discontinuity at ±1 is a concern and is a direct result of the lack of

differentiability of K at ±1. Indeed, if a covariance function K is continuous, has a continuous

and bounded derivative on (0,∞) and K ′(0+) < 0, then it is possible to show that ρ(t) exists for

all t and is 0 for all t 6= 0.

Next consider a random field Z on R2 with covariance function K(t, s) = e−|t|−|s|. This

separable covariance function is criticized in Stein (1999, Section 2.11) for the severe dependence

of variances of certain linear combinations of the random field on the choice of axes. In fact, the

problem with this covariance function is very similar to the problem with the triangular covariance

function. Define ρε(t, s) = corr{Z(ε, 0)−Z(0, 0), Z(t+ε, s)−Z(t, s)}. For every s, limε→0 ρε(t, s) =

ρ(t, s) exists, ρ(t, s) = 0 whenever t 6= 0 and ρ(0, s) = e−|s|. Thus, for all s, ρ is not continuous

at (0, s). Again, the discontinuity is only troubling for s 6= 0 and can be traced to the lack of
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smoothness of K at (0, s). Specifically, if K is continuous, {∂K(t, 0)/∂t}|t=0+∈ (−∞, 0) and K has

continuous and bounded first partial derivatives everywhere except at the origin, then ρ(t, s) = 0

everywhere except the origin. When s and t are both axes in space, such a dramatic dependence

of correlations on the locations of the observations would be hard to justify for natural processes.

When t represents time and s space, a ridge in the covariance function along the time and/or space

axis may or may not be appropriate. What is certainly the case is that models with such ridges

are different in an important way from models not having these ridges and that the decision on

whether to use a model with ridges should be made consciously and in light of the evidence in the

data.

This discontinuity of limiting correlations occurs for a broad class of covariance functions

with a “ridge” along one of its axes. For a nonnegative integer m, suppose Z(t, s) is m times

mean square differentiable in its first coordinate and write Zm(t, s) for this mth mean square

derivative. The covariance function of Zm is given by Km(t, s) = (−1)m∂2mK(t, s)/∂t2m. Define

ρm
ε (t, s) = corr{Zm(ε, 0) − Zm(0, 0), Zm(t + ε, s) − Zm(t, s)} and let ρm(t, s) be its limit as ε ↓ 0,

assuming the limit exists.

Proposition 1. Suppose Km is a continuous function on R2, 0 < α1 < · · · < αp < 2,

C1, . . . , Cp are even functions on R with C1(0) 6= 0 such that

Km(t, s) = Km(t, 0) +
p∑

j=1

Cj(s)|t|αj + Rs(t),

where, for any given s, Rs(t) = O(t2) as t → 0, and Rs(·) has a bounded second derivative. Then

sup
t∈R

lim
ε↓0

∣∣∣∣
C1(s){|t + ε|α1 − 2|t|α1 + |t− ε|α1}

2C1(0)εα1
− ρm

ε (t, s)
∣∣∣∣ = 0 (2)

and ρm(t, s) exists for all (t, s) with

ρm(t, s) =
{

C1(s)/C1(0), t = 0
0, t 6= 0.

(3)

Many separable covariance functions K(t, s) = K1(t)K2(s) satisfy the conditions of Proposi-

tion 1, since whatever lack of smoothness K(t, 0) has for t near 0 will automatically be preserved in

K(t, s) for t near 0 unless K2(s) = 0. Thus, separable covariance functions tend to have “ridges”
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along their axes. More specifically, if K
(2m)
1 (t) = C0 +

∑p
j=1 Cj |t|αj +R(t), where R(t) = O(t2) and

has a bounded second derivative, then the conditions of Proposition 1 are satisfied. Furthermore,

(3) holds under the weaker condition that R has a bounded second derivative in some neighborhood

of the origin. Some covariance functions have logarithmic terms in their expansions at the origin

(e.g., a term like t2 log(|t|)) for which it is possible to obtain an extension of Proposition 1. The

only other commonly used continuous covariance functions K1 for which K(t, s) = K1(t)K2(s)

would not satisfy the conditions of Proposition 1 are covariance functions that are analytic, such

as e−t2 . Stein (1999) argues that such covariance functions are physically unrealistic because they

imply implausibly smooth processes.

Cressie and Huang (1999) and Gneiting (2002) describe approaches of generating nonsepara-

ble space-time covariance functions. However, all of the examples in Cressie and Huang (1999) are

analytic along either the spatial or temporal coordinates. Gneiting (2002) shows that all functions

of the form

K(xxx, t) =
σ2

ψ(t2)d/2
ϕ

( |xxx|2
ψ(t2)

)
,

where ϕ is completely monotone on [0,∞) and ψ is positive and has a completely monotone

derivative on [0,∞) are positive definite on Rd × R. Gneiting (2002) gives examples of possible ϕ

and ψ such that K is not analytic in xxx or t. However, in these cases, whatever lack of smoothness

K(xxx, 0) has for xxx near 000 will be shared by K(xxx, t) for t 6= 0 and xxx near 0, since fixing t 6= 0, K(xxx, t)

is just a rescaling of K(xxx, 0). Moreover, whatever lack of smoothness K(000, t) = σ2ψ(t2)−d/2ϕ(0)

has for t near 0 will also hold for fixed xxx 6= 000 and t near 0 in K(xxx, t) unless ϕ
(|xxx|2/ψ(t2)

)
just

happens to cancel the lack of smoothness in ψ(t2)d/2. All of the examples of completely monotone

functions in Gneiting (2002) are strictly monotone, so at least for these ϕ, there cannot be such a

cancellation for more than one value of |xxx|. Thus, it would appear that the nonseparable covariance

functions proposed in Gneiting (2002) do not remove one of the potentially undesirable features of

separable covariance functions.

For d = 1, Heine (1955) gives the following covariance function that is infinitely differentiable

away from the origin and for which the process is smoother in space than in time:

K(x, t) = e−α|x| erfc
(

β|t|1/2 − α|x|
2β|t|1/2

)
+ eα|x| erfc

(
β|t|1/2 +

α|x|
2β|t|1/2

)
, (4)
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where erfc is the complementary error function and α and β are positive constants. In fact, (4) is

the Fourier transform of (1) when d = 1, a2 = 0, α1 = 2, α2 = ν = 1 and a1, c1 and c2 are chosen

appropriately. Thus, it follows from Proposition 6 in Section 3 that (4) is infinitely differentiable

away from the origin. Ma (2003, (5.3)) generalizes (4) by showing that

K(x, t) = e−α|x| erfc
(

γ(t)1/2 − α|x|
2γ(t)1/2

)
+ eα|x| erfc

(
γ(t)1/2 +

α|x|
2γ(t)1/2

)
(5)

is positive definite for γ any valid variogram on R. If γ is infinitely differentiable away from the

origin, then (5) is as well. However, K(x, 0) = 2e−α|x| for any γ, so that this class of models is

limited in its possible purely spatial covariance functions.

Another way to quantify the differences between covariance functions with ridges and those

without is to consider the Kullback-Liebler divergence between models for given finite sets of

observations. Suppose Z is a mean 0, stationary Gaussian random field on R2 and is observed at

(j, k) for j, k ∈ 1, . . . , 20. Suppose further that the true covariance function for Z is exp
{− (t2 +

s2)1/2/10
}
, an isotropic exponential model, but one fits the separable model θ1 exp

{−(|t|+|s|)/θ2

}

to the data. If θ1 = 1 and θ2 = 10, then the covariances of the two models are identical when

either t or s is 0. The Kullback-Liebler divergence from a density f to a density g is KL(f, g) =
∫

f log(f/g), that is, the expected log likelihood of f relative to g when f is true. This divergence

is 0 if g = f and is positive otherwise. Setting g equal to the joint density of the observations

under the separable covariance with θ1 = 1 and θ2 = 10 yields KL(f, g) = 672.23, or well over

one unit of divergence per observation, an enormous value. Setting θ2 = 10 and choosing θ1 to

minimize the divergence yields θ1 = 5.443 and a divergence of 122.52. Selecting both θ1 and θ2

to minimize the divergence gives (θ1, θ2) = (0.4562, 2.426) and a divergence of 56.34. Thus, when

fitting the separable model to data from the isotropic model, one would expect the maximum

likelihood estimates of (θ1, θ2) to be near (0.4562, 2.426) (or at least much nearer to these values

than to (1, 10)).

To illustrate some of these problems, consider a simulated realization of these 400 observations

from a Gaussian random field with mean 0 and isotropic covariance function exp
{−(t2+s2)1/2/10

}
.

Figure 1 plots the empirical variogram along each axis at distances 1, 2, . . . , 10 and along the

45◦ and 135◦ lines at distances 21/2j for j = 1, . . . , 7. Even though the truth is isotropic, the

empirical variogram perhaps superficially suggests some anisotropy. When fitting the correct model
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θ1 exp
{ − (t2 + s2)1/2/θ2

}
, the maximum likelihood estimates are θ̂1 = 1.725 and θ̂2 = 17.5.

Although these estimates are not very accurate, θ̂1/θ̂2 = 0.0986, which is very close to the true

value for θ1/θ2 of 0.1, as one should expect since θ1/θ2 controls the local behavior of Z (Stein

(1999), Chapter 6). Figure 1 shows that the true variogram and the MLE (maximum likelihood

estimate) under the correct model are nearly identical at shorter distances. Furthermore, both of

these curves track the empirical variograms reasonably well at the shorter distances. Fitting the

separable model θ1 exp
{− (|t|+ |s|)/θ2

}
to these data via maximum likelihood gives θ̂1 = 0.656241

and θ̂2 = 2.93, which are not all that far from the values 0.4562 and 2.426 that minimize the

Kullback-Liebler divergence. Figure 1 shows that this fitted model badly disagrees with both the

empirical variogram and the truth at the shorter distances. It is certainly possible to pick θ1 and θ2

so that the fitted model and the empirical variogram agree reasonably well visually. For example,

Figure 1 plots a fitted separable model with estimates θ̂1 = 1.725 and θ̂2 = 20.8, which tracks the

the empirical variogram much better than does the MLE.

One conclusion to draw from this example is that MLEs can produce bizarre-looking estimates

when the model is seriously flawed. However, it would be a serious mistake to conclude that

visually agreeable fits to the empirical variogram are a safer approach to parameter estimation

when one is concerned about model misspecification. Despite the appearance of Figure 1, the

visually fit separable model is arguably a worse fit to the data than the MLE. The problem is

that the empirical variogram only provides information about some aspects of the data. Consider

var{Z(0, 0)−Z(0, 1)−Z(1, 0)+Z(1, 1)}, which equals 4K(0, 0)−8K(1, 0)+4K(1, 1) under either the

isotropic or separable models. The true value for this quantity is 0.2338, the estimated value under

the MLE for the isotropic model is 0.2308 and the estimated value under the MLE for the separable

model is 0.2195. In contrast, the estimated value under the visual fit for the separable model is

0.01518, which is off by more than an order of magnitude. We see that considering variances of

linear combinations of more than two observations can be helpful in identifying problems with

models for covariance functions.

3. SMOOTHNESS OF SPECTRAL DENSITIES AND COVARIANCE FUNCTIONS

This section explores the relationship between the existence of moments for derivatives of a

spectral density and derivatives of the corresponding covariance function at locations other than

the origin. Let us first consider the problem in one dimension. Suppose f is the spectral density for
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a real-valued weakly stationary process, so that f is nonnegative, even and integrable on R. Then

K(x) =
∫
R eiwxf(w)dw is the corresponding continuous covariance function. It is well-known that

if f has a finite mth moment, then K is m times differentiable and K(m)(x) =
∫
R(iw)meiwxf(w)dw.

If m is even, then the condition that f has a finite mth moment is also necessary for K to have an

mth derivative at 0. For example, if f(w) = (1 + w2)−1, then f does not have a first moment, so

that one cannot conclude that K has a derivative at 0. In fact, because f is even, it is possible to

show (Feller 1971, p. 565) that x
∫∞
x f(w)dw → 0 as x → ∞ is necessary and sufficient for K ′(0)

to exist. When f(w) = (1 + w2)−1, x
∫∞
x f(w)dw → 1 as x → ∞, so that K ′(0) does not exist.

Indeed, K(x) = πe−|x|, which is not differentiable at 0.

Of course, πe−|x| is infinitely differentiable everywhere except the origin and the goal here is

to find verifiable conditions on the spectral density directly that would imply that K has derivatives

away from the origin. If f is differentiable with f ′ integrable and f(w) → 0 as |w| → ∞, then

for x 6= 0, integrating by parts, K(x) = ix−1
∫
R eiwxf ′(w)dw. If, in addition, wf ′(w) is integrable,

then for x 6= 0,

K ′(x) = − i

x2

∫

R
eiwxf ′(w)dw − 1

x

∫

R
weiwxf ′(w)dw. (6)

When f(w) = (1 + w2)−1, f ′(w) = −2w/(1 + w2)2, so that wf ′(w) is integrable. One can then

use (6) to recover K ′(x) = −πe−x for x > 0 and K ′(x) = πex for x < 0. However, we would not

generally use (6) to calculate K ′(x), since whenever it is possible to calculate the integrals in (6)

explicitly, it would usually be easier to calculate K itself and differentiate the result. Consider

instead f(w) = {1 + (1 + w4)1/2}−1, for which there does not appear to be an explicit expression

for the corresponding covariance function K. In this case, x
∫∞
x f(w)dw → 1 as x → ∞, so K is

not differentiable at 0. Nevertheless, it is easy to verify that wf ′(w) is integrable and hence K ′(x)

exists for all x 6= 0.

If f has higher derivatives possessing moments, it is possible to express derivatives of K for

x 6= 0 in terms of these derivatives of f . Define (k)j = k(k + 1) · · · (k + j − 1) and (k)0 = 1.

Proposition 2. If f is k times differentiable and f (k)(w) and wmf (k)(w) are integrable,

then K(m)(x) exists for all x 6= 0 and is given by

K(m)(x) = ik
m∑

j=0

(
m

j

)
(−1)j(k)jx

−k−j

∫

R
(iw)m−jf (k)(w)eiwxdw. (7)
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If f itself does not satisfy the conditions of Proposition 2, it may still be possible to show its

Fourier transform possesses derivatives away from the origin by writing f as the sum of a function

satisfying the conditions of Proposition 2 and another function possessing finite moments.

Proposition 3. Suppose f = f1 + f2, where f1 is k times differentiable and f (k)(w),

wmf
(k)
1 (w) and wmf2(w) are integrable. Then K is m times differentiable for all x 6= 0 and

K(m)(x) = ik
m∑

j=0

(
m

j

)
(−1)j(k)jx

−k−j

∫

R
(iw)m−jf

(k)
1 (w)eiwxdw

+
∫

R
(iw)mf2(w)eiwxdw.

For example, f(w) = (1 + |w|)−2 is not differentiable at 0, but defining f1(w) = (1 + w2)−1 and

f2 = f − f1, Proposition 3 proves that the corresponding covariance function is differentiable for

x 6= 0. Indeed, using Gradshteyn and Ryzhik (2000, 3.722) and integration by parts, one can show

that the Fourier transform of (1 + |w|)−2 is infinitely differentiable away from the origin.

If f does not satisfy the conditions of Propositions 2 or 3, the corresponding K may or may

not have derivatives away from the origin. Consider the spectral density f(w) = (1−cos w)/(πw2).

This integrable function does not have a finite first moment. Furthermore, x
∫∞
x f(w)dw does not

tend to 0 as x → ∞, so the corresponding covariance function K does not have a derivative at

0. Now f is infinitely differentiable, but wf (k)(w) is not integrable for any k, which follows from

f (k)(w) = cos(k) w/(πw2) + O(|w|−3) as |w| → ∞. Thus, the sufficient condition in Proposition 2

for showing K is differentiable for all x 6= 0 is not satisfied for any k. In fact, K(x) = (1 − |x|)+,

which is not differentiable at x = ±1.

Let us next consider an example in which neither Propositions 2 nor 3 apply, but K is

still infinitely differentiable away from the origin. If f(w) = sin(w2)/w2 + 2/(1 + w2), then f is

nonnegative and integrable and K(x) = π
{

2e−|x| + S(1
2 |x|)− C(1

2 |x|) + π1/2 sin
(

x2+π
4

)}
, where

C and S are the Fresnel integrals C(x) = (2/π)1/2
∫ x
0 cos(t2)dt and S(x) = (2/π)1/2

∫ x
0 sin(t2)dt,

(Bateman Manuscript Project 1954). It is straightforward to verify that K is not differentiable at

0 but is infinitely differentiable for all x 6= 0. Furthermore, Proposition 2 clearly does not apply

for any m positive and it is possible to show that neither does Proposition 3, since any f1 that
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follows the oscillations of f sufficiently well to make f2 have any finite moments cannot have any

derivatives with finite moments.

Now let us consider the situation in Rd. Write www = (w1, . . . , wd)′, xxx = (x1, . . . , xd)′ and for

a d-tuple mmm with nonnegative integer components, set m = m1 + · · · + md. Let Dmmm denote the

differential operator ∂m/∂xm1
1 · · · ∂xmd

d . For vectors aaa and bbb of length d, define aaabbb =
∏d

i=1 abi
i and

say aaa ≤ bbb if ai ≤ bi for 1 ≤ i ≤ d.

Proposition 4. Suppose Dkkkf exists, Dqqqf is integrable for all qqq ≤ kkk and wwwmmmDkkkf(www) is

integrable. If xj 6= 0 for every j such that kj > 0 then DmmmK(xxx) exists and is given by

DmmmK(xxx) =
∑

ppp+qqq=mmm

d∏

j=1

(
mj

pj

)
ikj (−1)pj (kj)pjx

−kj−pj

j

∫

Rd

(iwww)qqq
{

Dkkkf(www)
}

eiwww′xxxdwdwdw.

Note that if kj = 0, (kj)pj = 0 for pj > 0, in which case, take (kj)pjx
−kj−pj

j to be 0 even if xj = 0.

Let us apply this result to the spectral density f(w1, w2) = π−2(1+w2
1)
−1(1+w2

2)
−1. Neither

w1f(w1, w2) nor w2f(w1, w2) are integrable, but it is easy to show that Dkkkf(www) and wwwkkkDkkkf(www)

are integrable for all kkk ≥ 000. It follows that for all xxx with x1x2 6= 0, DmmmK(xxx) exists for all mmm ≥ 000

and if t 6= 0, D(m,0)K(t, 0) and D(0,m)K(0, t) exist for all m. However, neither w2D
(m,0)f(www) nor

w1D
(0,m)f(www) are integrable for any m ≥ 0. Thus, Proposition 4 says nothing about the existence

of D(0,1)K(t, 0) or D(1,0)K(0, t) for t 6= 0. In fact, K(xxx) = e−|x1|−|x2|, so that D(0,1)K(t, 0) and

D(1,0)K(0, t) do not exist for t 6= 0.

The next proposition gives simple conditions on f under which DmmmK(xxx) exists for all xxx 6= 000.

Proposition 5. For j = 1, . . . , d, suppose (∂`/∂w`
j)f(www) exists and is integrable for ` ≤ k

and |www|n(∂k/∂wk
j )f(www) is integrable. Then for all xxx 6= 000, DmmmK(xxx) exists for all mmm such that

m1 + · · ·+ md ≤ n. Furthermore, if xj 6= 0,

DmmmK(xxx) =
mj∑

p=0

(
mj

p

)
ik(−1)p(k)px

−k−p
j

∫

Rd

(iwww)mmm

(iwj)p

{
∂k

∂wk
j

f(www)

}
eiwww′xxxdddwww.
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This follows immediately from Proposition 4.

The conditions in Proposition 5 may not be easy to verify in practice, so the next result gives

a general class of spectral densities for which these conditions always hold. For two functions f

and g on a domain D, write f ¿ g if there exists C < ∞ such that |f(x)| ≤ Cg(x) for all x ∈ D.

Write www′ = (www′1,www
′
2) where wwwj ∈ Rdj for j = 1, 2. Although d2 is always 1 for space-time models,

Proposition 6 and certain results in the next section take on a more symmetric and transparent

form when treating the more general case considered here.

Proposition 6. Suppose f(www) = {g1(|www1|2) + g2(|www2|2)}−ν , where ν > 0, f is bounded,

g1 and g2 are infinitely differentiable functions on [0,∞) and there exist α1, α2 positive such that

g
(k)
j (t) ¿ (1+t)αj−k for j = 1, 2 and all nonnegative integers k. A necessary and sufficient condition

for f to be integrable is d1/(α1ν) + d2/(α2ν) < 2. If f is integrable, its Fourier transform K(xxx)

possesses all partial derivatives of all orders for all xxx 6= 000.

Many algebraic functions satisfy the required conditions on gj . For example, if P is a strictly

positive polynomial of order p on [0,∞) and γ > 0, then (dk/dtk)P (t)γ ¿ (1+ t)pγ−k on [0,∞) for

all k.

4. A NEW CLASS OF SPACE-TIME COVARIANCE FUNCTIONS

One rich class of spectral densities that satisfies the conditions of Proposition 6 is

f(www) =
{
c1(a2

1 + |www1|2)α1 + c2(a2
2 + |www2|2)α2

}−ν (8)

for c1, c2, a1, a2, α1, α2 positive and d1/(α1ν) + d2/(α2ν) < 2. Note that (8) is just (1) when

d2 = 1. Jones and Zhang (1997) consider d1 = 2 and α2 = ν = d2 = 1. The Fourier transform

K(xxx1,xxx2) of (8) depends only on |xxx1| and |xxx2|. To see how K behaves when either |xxx1| or |xxx2| are

0, consider

K1(xxx1) = K(xxx1,000) =
∫

Rd1

eiwww′1xxx1

{∫

Rd2

f(www1,www2)dwdwdw2

}
dwdwdw1,

so that f1(www1) =
∫
Rd2 f(www1,www2)dwdwdw2 is the spectral density for the covariance function K1(xxx1). The

behavior of K1(xxx1) for xxx1 near 000 depends on the behavior of f1(www1) for large |www1|. Letting rj = |wwwj |
for j = 1, 2, as r1 →∞, it is possible to show

∫

Rd2

{
c1(a2

1 + |www1|2)α1 + c2(a2
2 + |www2|2)α2

}−ν dwdwdw2
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=
2πd2/2

Γ(d2/2)

∫ ∞

0

{
c1(a2

1 + r2
1)

α1 + c2(a2
2 + r2

2)
α2

}−ν
rd2−1
2 dr2

∼ 2πd2/2

Γ(d2/2)

∫ ∞

0

{
c1r

2α1
1 + c2r

2α2
2

}−ν
rd2−1
2 dr2

=
πd2/2

Γ(d2/2)α2c
ν+1
1

(
c1

c2

)d2/(2α2) Γ
(

d2
2α2

)
Γ

(
ν − d2

2α2

)

Γ(ν)
r
−α1(2ν−d2/α2)
1 (9)

using Gradshteyn and Ryzhik (2000, 3.241.4). A similar result holds with the roles of www1 and www2

switched. A desirable feature for a class of models for f is that for all γj > 0 and βj > 0, there

is an element in the class such that fj(wwwj) ∼ βjr
−γj−dj

j is achievable for j = 1, 2. Because γj is

directly related to the smoothness of the process in xxxj (Stein 1999), roughly speaking, one can then

separately allow for any degree of smoothness of the process along its first d1 dimensions and any

different degree of smoothness along its last d2 dimensions. This can in fact be done with any one

of ν, α1 or α2 fixed in the model (8). For example, if ν is fixed, by taking

α1 =
γ1 + d1 + d2γ1/γ2

2ν
, α2 =

γ2 + d2 + d1γ2/γ1

2ν
,

and c1 and c2 appropriately, fj(wwwj) ∼ βjr
−γj−dj

j as rj →∞ for j = 1, 2. To check that the resulting

f is in fact integrable, note that

d1

να1
+

d2

να2
=

2d1

φ1 + d1 + d2φ1/φ2
+

2d2

φ2 + d2 + d1φ2/φ1

<
2d1

d1 + d2φ1/φ2
+

2d2

d2 + d1φ2/φ1
= 2.

Next, if α2 > 0 is fixed, by taking

α1 =
α2(φ1 + d1 − 1)

φ2
, ν =

(φ1 + d1)(φ2 + d2)− d2

2α2(φ1 + d1 − 1)

and c1 and c2 appropriately, fj(wwwj) ∼ βjr
−γj−dj

j as rj → ∞ for j = 1, 2. The resulting f is

integrable since
d1

να1
+

d2

να2
= 2

(φ1 + d1)(φ2 + d2)− φ1φ2 − d2

(φ1 + d1)(φ2 + d2)− d2
< 2.

A similar result holds if α1 > 0 is fixed.

Thus, in terms of controlling the high frequency behavior of the resulting space-time process

as just a spatial or just a temporal process, one might as well set one of ν, α1 or α2 to a fixed value.
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However, if f and f̃ with parameter values (ν, α1, α2, c1, c2, a1, a2) and (ν̃1, α̃1, α̃2, c̃1, c̃2, ã1, ã2) re-

spectively give the same values for (β1, β2, γ1, γ2), then the two spectral densities are not asymp-

totically the same as |www| → ∞. For example, if d1 = d2 = 1, f(w1, w2) = 21/2(2 + w2
1 + w2

2)
−2 and

f̃(w1, w2) =
{
(1 + w2

1)
2 + (1 + w2

2)
2
}−1, then both models give γ1 = γ2 = 2 and β1 = β2 = 2−1/2π,

but f(w1, w2)/f̃(w1, w2) does not tend to a constant as |www| → ∞. However, f(w1, w2)/f̃(w1, w2) is

bounded away from 0 and ∞, so that while the two models are different at high frequencies, they

are arguably not very different. In particular, if 0 < L ≤ f(www)/f̃(www) ≤ U < ∞ for all www, then the

ratio of variances assigned to any linear combination of values of the random field by the spectral

densities f and f̃ will be in [L,U ].

Thus, if one is hoping to reduce the number of parameters in (8) from seven to some lower

number, fixing one of α1, α2 or ν is a reasonable place to start. Suppose from now on that α2 = 1.

To further reduce the number of parameters, a1 and a2, which are range parameters of a sort,

would be a place to look. If either a1 or a2 are 0 but not both, then the resulting f is still

integrable. Furthermore, if a2 = 0, by a minor modification of the argument in Proposition 6,

the resulting covariance function is infinitely differentiable away from the origin. One could set

a1 = a2 = 0, in which case f is not integrable, but it does correspond to the spectral “density”

for an intrinsic space-time random function (Christakos 1992) and leaves one with a 4-parameter

model for spatial-temporal variations with great flexibility in the local purely spatial and purely

temporal variations.

There are only a few special cases of spectral densities of the form (8) for which explicit

expressions for K are available. Consider first α1 = α2 = 1, in which case there is no loss of gener-

ality in taking a2 = 0. Setting β = (c1/c2)1/2, K(xxx1,xxx2) is proportional to Mν−(d1+d2)/2

(
a1(|xxx1|2 +

β2|xxx2|2)1/2
)
, where Mν(r) = rνKν(r) and Kν is a modified Bessel function of order ν. For φ, θ

and ν all positive, every function of the form φMν(θr) is an isotropic covariance function in any

number of dimensions. This class of covariance functions is called the Matérn class (Handcock and

Stein 1993) in honor of Matérn’s pioneering work in spatial statistics (Matérn 1960).

Equation (8) can sometimes be transformed analytically when α1 6= α2 if α1, α2, and ν

are all integers. For example, as noted earlier, the covariance function in (4) is obtained when

d1 = d2 = 1, α1 = 2, α2 = 1, a2 = 0 and ν = 1. It is possible to extend this result to other positive

integer values for ν. Rather than pursuing models with d1 = 1 further, let us instead consider

d1 = 3, d2 = 1, α1 = 2, α2 = 1, a2 = 0 and ν > 1 an integer, for which it is also possible to obtain
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an explicit expression for K. For d1 = 3, one cannot take ν = 1, because the resulting f is not

integrable. To find, for example, the Fourier transform of
{
c2(a2 + |www|2)2 + v2

}−2, first note that

∫

R

eivt

{
c2(a2 + |www|2)2 + v2

}2 dv =
πe−c2(a2+|www|2)|t|

2c6(a2 + |www|2)3 {1 + c2(a2 + |www|2)|t|},

so letting r = |xxx| (Yaglom 1987),

K(xxx, t) = 2π2

∫ ∞

0

e−c2(aw+k2)|t|

c6(a2 + k2)3
{
1 + c2(a2 + k2)|t|}sin(kr)

kr
k2dk

=
2π2e−c2a2|t|

rc6

{∫ ∞

0

e−c2k2|t|

(a2 + k2)3
k sin(kr)dk + c2|t|

∫ ∞

0

e−c2k2|t|

(a2 + k2)2
k sin(kr)dk

}
.

Integrating by parts and using Gradshteyn and Ryzhik (2000, 3.954),

∫ ∞

0

e−c2k2|t|

(a2 + k2)2
k sin(kr)dk

=
1
2

∫ ∞

0

e−c2k2|t|

a2 + k2
{−2c2k|t| sin(kr) + r cos(kr)}dk

=
π

4
c2|t|ec2a2|t|

{
ear erfc

(
ac|t|1/2 +

r

2c|t|1/2

)
− e−ar erfc

(
ac|t|1/2 − r

2c|t|1/2

)}

+
πr

8a
ec2a2|t|

{
ear erfc

(
ac|t|1/2 +

r

2c|t|1/2

)
+ e−ar erfc

(
ac|t|1/2 − r

2c|t|1/2

)}
.

Similarly evaluating
∫∞
0 e−c2k2|t|(a2 + k2)−3k sin(kr)dk yields

K(xxx, t) =
π2

16c6
ear erfc

(
ac|t|1/2 +

r

2c|t|1/2

) (
1
a3
− r

a2
+

4c4t2

r

)

+
π2

16c6
e−ar erfc

(
ac|t|1/2 − r

2c|t|1/2

)(
1
a3

+
r

a2
− 4c4t2

r

)

+
π3/2|t|1/2

4c5a2
exp

(
−c2a2|t| − r2

4c2|t|
)

. (10)

For xxx = 000 or t = 0, define K by continuity, so that K(xxx, 0) = π2

8c6a3 e−ar(1 + ar) and

K(000, t) =
π2

8c6

(
1
a3

+ 4c4t2
)

erfc
(
ac|t|1/2

)
+

π3/2e−c2a2|t|

c6

(
c|t|1/2

4a2
− c3|t|3/2

2

)
. (11)

From (9), f1(www1) ∼ C1|www1|−6 as |www1| → ∞ for a positive constant C1, and it follows (Bingham,

Goldie and Teugels 1987) that K(xxx, 0) must be of the form b0 − b1|xxx|2 + b2|xxx|3 + o(|xxx|3) as xxx → 000,
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with b2 6= 0. In fact, K(xxx, 0) = π2

8c6

(
1
a3 − 1

2a |xxx|2 + 1
3 |xxx|3

)
+ O(|xxx|4) as xxx → 000. From either the

spectral or spatial domain, one sees that the process is exactly once mean square differentiable in

any spatial direction. From (9), f2(v) ∼ C2|v|−5/2 as v → ∞ for some positive C2, which implies

that K(000, t) = b0 − b1|t|3/2 + o(|t|3/2) as t → 0 for some b1 6= 0. Indeed, applying Taylor series to

(11), it is possible to show that as t → 0, K(000, t) = π2

8c6a3 − 2π3/2

3c3
|t|3/2 + O(t2). Thus, the process is

not mean square differentiable in time. Finally, although it is not obvious from (10), Proposition 6

implies that this function is infinitely differentiable away from the origin.

If α2 = 1 in (8), then the Fourier transform over www2 can be obtained analytically. Specifically,

defining θ(t) = {c1c
−1
2 (a2

1 + t)α1 + a2
2}1/2 for t ≥ 0,

∫

Rd2

{
c1(a2

1 + |www1|2)α1 + c2(a2
2 + |www2|2)

}−ν
eiwww′2xxx2dwdwdw2 =

πd2/2Mν−d2/2

(
θ(|www1|2)|xxx2|

)

2ν−d2/2−1cν
2Γ(ν)θ(|www1|2)2ν−d2

.

Thus, K(xxx) can be computed by numerically carrying out a one-dimensional Bessel transform. If

d1 is odd, then this Bessel transform reduces to one-dimensional Fourier transforms, which can be

approximated quickly for a large number of x1 values using the fast Fourier transform. A separate

transform needs to be done for every value of |xxx2| of interest, but this should still be feasible in

many circumstances.

5. MODELS LACKING FULL SYMMETRY

This section describes a simple and general approach to deriving space-time covariance func-

tions that are spatially isotropic but not fully symmetric. If K has spectral density f(www, v), then

K is spatially isotropic if and only if f1(www) =
∫
R f(www, v) dv depends (almost everywhere) on www only

through |www|. Consider a nonnegative, integrable function of the form

f(www, v) = g1(www)g2(v)h1(|www|, |v|) + h2(|www|, |v|), (12)

with g1 and g2 odd functions. A density of this form is an even function of (www, v) and hence is

the spectral density of a real-valued stationary space-time random field. Furthermore, f1(www) =
∫
R h2(|www|, |v|) dv, so the corresponding random field is spatially isotropic. Note that the inclusion

of h2 is essential in (12), since the only way g1(www)g2(v)h1(|www|, |v|) can be nonnegative everywhere is

to be identically 0. For a particular subclass of spectral densities of the form (12), it is commonly

possible to obtain an explicit expression for the covariance function K(xxx, t). Specifically, suppose
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zzz ∈ Rd has length 1, scalars a, c1 and c2 are nonnegative, b2 ≤ 4c1c2 and

f(www, v) =
{
a + b(www′zzz)v + c1|www|2 + c2v

2
}
Ψ(|www|, |v|), (13)

where (1 + |www|2 + v2)Ψ((|www|, |v|) ≥ 0 is integrable over Rd+1. These conditions imply that f is

nonnegative and integrable and, since it is of the form (12), the resulting K is spatially isotropic.

Furthermore, if K0(xxx, t) is the Fourier transform of Ψ, then

K(xxx, t) = aK0(xxx, t)− b
d∑

j=1

zj
∂2

∂xj ∂t
K0(xxx, t)

− c1

d∑

j=1

∂2

∂x2
j

K0(xxx, t)− c2
∂2

∂t2
K0(xxx, t).

Now K0(xxx, t) only depends on (xxx, t) through (|xxx|, t), so define the function K0 on R+ × R by

K0(|xxx|, t) = K0(xxx, t). Writing K
(m1,m2)
0 for D(m1,m2)K0,

d∑

j=1

∂2

∂x2
j

K0(xxx, t) =
d∑

j=1

[
K

(2,0)
0 (|xxx|, t) x2

j

|xxx|2 + K
(1,0)
0 (|xxx|, t)

{ |xxx|2 − x2
j

|xxx|3
}]

= K
(2,0)
0 (|xxx|, t) +

d− 1
|xxx| K

(1,0)
0 (|xxx|, t)

and
d∑

j=1

zj
∂2

∂xj ∂t
K0(xxx, t) =

xxx′zzz
|xxx|K

(1,1)
0 (|xxx|, t),

where the conditions on Ψ guarantee the existence of the relevant derivatives of K0. Putting these

results together yields

K(xxx, t) = aK0(|xxx|, t)− b
xxx′zzz
|xxx|K

(1,1)
0 (|xxx|, t)− c1K

(2,0)
0 (|xxx|, t)

− c1
d− 1
|xxx| K

(1,0)
0 (|xxx|, t)− c2K

(0,2)
0 (|xxx|, t).

(14)

In practice, whenever an analytic expression for K0 is available, there is commonly an analytic

expression available for its derivatives. Furthermore, if K0 is infinitely differentiable everywhere

but at the origin, then so is K.

Let us consider a specific example for which all of the calculations can be done analytically.

For β1 and β2 positive, consider K0(r, t) = Mν+1

(
(β2

1r2 + β2
2t2)1/2

)
with ν > 0, for which the
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corresponding K0 is twice differentiable. Letting y = (β2
1r2 + β2

2t2)1/2 yields (Abramowitz and

Stegun (1965), 9.6.26) K
(1,0)
0 (r, t) = −β2

1rMν(y), K
(1,1)
0 (r, t) = β2

1β2
2rtMν−1(y), K

(2,0)
0 (r, t) =

−β2
1Mν(y) + β4

1r2Mν−1(y) and K
(0,2)
0 (r, t) = −β2

2Mν(y) + β4
2t2Mν−1(y). Using Mν+1(y) =

y2Mν−1(y) + 2νMν(y),

K(xxx, t) =
{
(a− c1β

2
1)β2

1r2 + (a− c2β
2
2)β2

2t2 − bβ2
1β2

2(xxx′zzz)t
}Mν−1(y)

+
(
2aν + c2β

2
2 + c1dβ2

1

)Mν(y).

If c1 = a/β2
1 and c2 = a/β2

2 , then K(xxx, t) = a(2ν + d + 1)Mν(y)− bβ2
1β2

2(xxx′zzz)tMν−1(y). Defining

τ = bβ1β2/(2a) gives the alternative form

K(xxx, t) = a
{
(2ν + d + 1)Mν(y)− 2τ(β1xxx′zzz)β2tMν−1(y)

}
, (15)

where 0 ≤ τ ≤ 1 guarantees that K is positive definite.

Setting d = 2, a = β1 = β2 = 1, zzz = (1, 0)′, ν = 0.5 and τ = 1 in (15), Figure 2 plots

K((x1, 0), t)/K(000, 0). Note that along the x1 axis, xxx and zzz are parallel. The lack of full symmetry

is apparent. On the other hand, zzz is perpendicular to (0, x2) and K((0, x2), t) = K((0,−x2), t)

for all x2 and t. Other angles between xxx and zzz yield a convex combination of the parallel and

perpendicular cases.

Models of the form (15) have equal degrees of smoothness in space and in time. Thus, we

can compare these models to what one would get by setting s =
(|xxx|2 + 2tbbb′xxx + c2t2

)1/2 for |bbb| ≤ c

and letting K(xxx, t) = C(s) for C ∈ Dd+1. This approach always yields elliptical contours for the

covariance function, in contrast to what Figure 2 shows. Whether covariance functions of the

form (15) will prove more useful than, say, covariance functions like φMν(βs) remains to be seen.

However, the general approach outlined in this section can also be applied to covariance functions

that have different smoothness across space than across time.

6. MARKOV MODELS

One commonly used principle for restricting the class of stochastic processes one wishes to

consider is to require some kind of Markov property. Although there are notions of Markovian be-

havior for spatial processes, the Markov property is more frequently used to describe dependence

structure in time, in which case it has the interpretation that the future and the past are condition-

ally independent given the present. So far, this work has only considered the first two moments of
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spatial-temporal processes, but by adding the assumption that the process is Gaussian, then the

question of a process being Markov reduces to whether for every t0 ∈ R, t > t0 and xxx ∈ Rd, the

best linear predictor of Z(xxx, t) in terms of Z(·, t0) is the same as the best linear predictor of Z(xxx, t)

in terms of {Z(yyy, s) : yyy ∈ Rd, s ≤ t0}. If the process Z is stationary in space-time, then it suffices

to verify this property for xxx = 000 and t0 = 0. The following result characterizes all continuous

spatial-temporal covariance functions satisfying this condition.

Proposition 7. A stationary, mean square continuous real-valued space-time process Z has

the property that, for all t > 0, the best linear predictor of Z(000, t) in terms of Z(·, 0) is the same as

the best linear predictor of Z(000, t) in terms of {Z(yyy, s) : yyy ∈ Rd, s ≤ 0} if and only if its covariance

function K is of the form

K(xxx, t) =
∫

Rd

exp{iwww′xxx− |t|β(www)− itφ(www)}F (dddwww), (16)

where β is an even nonnegative Borel-measurable function, φ is an odd Borel-measurable function

and F is a positive, finite symmetric measure on Rd.

Note that K(xxx, 0) =
∫
Rd eiwww′xxxF (dddwww), so that F is the spectral distribution for the spatial

variation of Z. Furthermore, setting t = 0 in (16) shows that K is spatially isotropic if and only

if the measure F depends on www only through |www|. The function β gives a damping factor in time

for each spatial frequency www and the function φ a phase modulation for each frequency. Note that

β(www) may equal 0 for certain frequencies, which means that those frequencies are not damped at

all in time.

If β(www) > 0 almost everywhere with respect to F , one can rewrite (16) as

K(xxx, t) =
1
π

∫

Rd+1

eivt+iwww′xxx β(www)
β(www)2 + {v + φ(www)}2

dv F (dddwww). (17)

If 1/β(www) is integrable over Rd, then taking F (dddwww) = dddwww/β(www) yields [β(www)2+{v+φ(www)}2]−1 as the

spectral density of a stationary space-time Gaussian process that is Markov in time. Thus, spectral

densities of the form (1) correspond to Gaussian Markov processes if and only if ν = α2 = 1.

The model given by Brown, et al. (2000) is the special case of (17) when φ(www) = www′uuu,

β(www) = λ+ 1
2www

′ΣΣΣwww and F (dddwww)/dddwww = exp
(− 1

2www
′ΣΣΣwww

)/(
λ+ 1

2www
′ΣΣΣwww

)
for some λ ≥ 0, a vector uuu and

positive definite matrix ΣΣΣ. All such processes are analytic in space, which may limit their practical

utility.
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A class of models for which (16) can be evaluated analytically is β(www) = ζ log(1 + α−2|www|2),
F (dddwww)/dddwww = (1 + α−2|www|2)−(ν+d)/2 and φ(www) = εwww′zzz for some unit vector zzz and positive α, ν and

ζ. In this case,

K(xxx, t) =
∫

Rd

eiwww′(xxx−εtzzz)

(1 + α−2|www|2)ν+ζ|t|+d/2
dddwww

=
πd/2αd

2ν+ζ|t|−1Γ
(
ν + ζ|t|+ 1

2d
)Mν+ζ|t|(α|xxx− εtzzz|). (18)

Taking t = 0 essentially recovers the Matérn model for the spatial variation:

K(xxx, 0) =
πd/2αd

2ν−1Γ
(
ν + 1

2d
)Mν(α|xxx|),

so that one can get any possible degree of differentiability in space. When xxx = 000, d = 2 and ε = 0,

K(000, t) = πα2/(ν + ζ|t|). For general d, using Stirling’s formula, it is possible to show that as

|t| → ∞, K(000, t) ∼ {πα2/(ζ|t|)}d/2. For d = 1 or 2 and ε = 0, K(000, t) is not integrable in t, so the

process at a single location exhibits long-range dependence.

If ε 6= 0 in (18), then the model is not fully symmetric. Furthermore, from Abramowitz and

Stegun (1965, 9.7.8), K(000, t) decays exponentially as t → ∞. Instead, K(εtzzz, t) ∼ {πα2/(ζ|t|)}d/2

as t →∞, so that the spatial-temporal correlations decay algebraically along this line in space-time.

That a Markov process can exhibit long-range dependence along one of its margins is perhaps

unexpected; certainly, this cannot happen for a finite-dimensional ergodic Markov process. The

source of the long-range dependence for this process is that the damping factor, β(www), is near 0

for |www| near 0, so that the low frequency spatial variations decay very slowly. Geophysical time

series often exhibit long-range dependence and perhaps this can be explained by the fact that one

generally analyzes low-dimensional margins of high or infinite-dimensional systems that are actually

Markov but for which the damping of broad scale spatial features of the system is sufficiently weak

to produce slowly decaying correlations in time.

Let us next consider the smoothness away from the origin of (18), setting ε = 0 for simplicity.

First of all, K is infinitely differentiable at (xxx, t) if t|xxx| 6= 0. If m < ν < m + 1 for a nonnegative

integer m, then Mν(t) =
∑m

j=0 Cjt
2j +Cν |t|2ν +o(|t|2ν) as t → 0, so as t increases, the smoothness

of K(xxx, t) in xxx at xxx = 000 increases with t, although K is not infinitely differentiable in xxx at (000, t) for

any t. It is possible to show that for any given xxx, K(xxx, t) = K(xxx, 0)− Cxxx|t|+ o(|t|) as t → 0 with

20



Cxxx 6= 0, so K has a ridge along the line t = 0. Thus, the models in this class are smoother along

the space axes than they are at the origin but not smoother along the time axis. Whether such a

property will be of practical value remains to be seen, but it is a difference between these models,

models that are smooth everywhere but at the origin, and models that have ridges along both the

space and time axes.

Let us consider one further special case of (16) for which K can be calculated analytically.

For d = 1, φ(w) = 0, β(w) = cw2 with c > 0 and F (dw)/dw = (a2 + w2)−1, using Gradshteyn and

Ryzhik (2000, 3.954.2),

1
π

∫

R2

cw2

c2w4 + v2
· 1
a2 + w2

ei(vt+wx)dv dw

=
πea2c|t|

2a

[
e−ax erfc

{
a(c|t|)1/2 − x

2(c|t|)1/2

}
+ eax erfc

{
a(c|t|)1/2 +

x

2(c|t|)1/2

}]
. (19)

One immediately sees that K(x, t) is infinitely differentiable if t 6= 0. It is possible to show

that K(0, t) = πa−1 − 2π1/2(c|t|)1/2 + O(|t|) as t → 0 and for fixed x 6= 0, K(x, t) = πa−1(1 +

a2c|t|)e−a|x| + O(t2) as t → 0. Thus, K(x, t) does not have a derivative in t when t = 0 for any x,

although it is somewhat smoother away from the origin than at the origin because of the O(|t|1/2)

term in the expansion for K(0, t). More interestingly, although K(0, t) is necessarily maximized at

t = 0, for every x 6= 0, K(x, t) viewed as a function of t achieves a local minimum at t = 0. It is

perhaps surprising that there exists a positive definite function possessing such a property.

Similar to (5), for a valid variogram γ on R, it is possible to show that if |t| is replaced

by γ(|t|) on the right-hand side of (16), the resulting model is still positive definite (although no

longer Markov unless γ(|t|) is a multiple of |t|). To see this, note that, as in Ma (2003), it holds

when φ is identically 0. Setting u = v − φ(www) in (17) yields that the resulting K is the Fourier

transform of a positive, finite, symmetric measure. Thus, in (18), one can replace each appearance

of ζ|t| by γ(|t|) and obtain an explicit class of space-time covariance functions with any degree of

differentiability in space and in time.
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7. IRISH WIND DATA

This section applies some of the models described here to the Irish wind data studied in

Haslett and Raftery (1989) and Gneiting (2002). The daily average wind speeds from 1961–1978

at 12 sites and the intersite distances are available at Statlib, http://lib.stat.cmu.edu/datasets/.

The models lacking full symmetry require the actual locations of the sites, which were not available

from the website, so the latitudes and longitudes used here were reconstructed from an atlas,

yielding intersite distances differing slightly from those in Haslett and Raftery (1989). As in

Haslett and Raftery (1989), the analyses here are on the square roots of the wind speeds because

this transformation makes the data nearly Gaussian. Similar to Haslett and Raftery (1989) and

Gneiting (2002), the data were deseasonalized by regressing the wind speeds averaged across sites

on a small number of annual harmonics. One can undoubtedly fit the data better by including

any number of nonstationarities. Haslett and Raftery (1989) show that excluding one of the sites,

Rosslare, leads to a much better fit of an isotropic model to the spatial variations in wind. However,

there are other apparent nonstationarities in the data, so removing Rosslare does not solve the

problem. For example, by looking at the temporal periodogram of the differences between certain

sites (e.g., Birr and Dublin), it is apparent that the seasonal cycle is not identical at all sites.

Furthermore, a CUSUM plot of the deseasonalized winds at Clones shows a clear shift in the mean

at that site towards the end of 1967. Rather than seek to find and fit all such nonstationarities, the

goal here is to find a good fit among stationary models for all of the data including Rosslare. The

one nonstationarity taken account of is that the mean wind speed can vary spatially. Specifically,

the mean wind speed at site xxxi is modeled as an unknown constant mi. To have a complete model

for the wind speed process over Ireland, one would need a spatial model for this average wind speed

as a function of location. The mean winds are clearly stronger at the coastal sites than inland, and

any sensible model for the mean winds would need to incorporate this information. By analyzing

only differences in time of the observations, the problem of modeling the mis is avoided here.

One way to compare the models would be through the maxima of their likelihoods, but

it is difficult to calculate likelihoods exactly for all 78,888 = 12 × 6574 observations. Letting t =

1, . . . , 6574 indicate the day of the study period, set ZZZt = (Z(xxx1, t), · · · , Z(xxx12, t)). For j = 1, . . . 939,

let YYYj = (ZZZ(j−1)t+2 − ZZZ(j−1)t+1, · · · ,ZZZ(j−1)t+8 − ZZZ(j−1)t+7), a vector of 7 days of first differences in

time of the ZZZts. Since 6574 = 7 × 939 + 1, YYY = (YYY1, · · · ,YYY939) is the vector of all first differences

in time of the data and EYYY = 000. Indexing the model for the covariance function for Z by θθθ, the
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likelihood for θθθ in terms of YYY is the restricted likelihood of the full dataset and the maximizer of

this likelihood is called the restricted maximum likelihood estimator (Christensen 1996). A simple

approximation to the restricted loglikelihood is given by
∑939

j=1 log p(YYYj | θθθ), which is a special

case of an approximation studied in Stein, Chi and Welty (2003) that extends an approach due

to Vecchia (1988) to the restricted likelihood setting. This approximation ignores the dependence

between the YYYjs, but it at least yields an unbiased estimating equation for θθθ (Stein, Chi and Welty

2003).

Using this approximate likelihood, one can compare an extension of the model proposed in

Gneiting (2002) to some of the models proposed here. Combining (4) and (21) in Gneiting (2002)

yields that

K(xxx, t) =
φ(1 + δ1{xxx = 000})
(1 + a|t|2α)βd/2

exp
{
− c|xxx|2γ

(1 + a|t|2α)βγ

}
(20)

is positive definite on Rd × R for all nonnegative a, c, φ and δ and all α, β and γ in [0, 1]. Gneiting

(2002) fits this model to the empirical space-time covariances assuming γ = 1
2 . The presence of

the term δ1{xxx = 000} is crucial to obtaining a good fit to the empirical covariances because of what

appears to be a discontinuity in K(xxx, t) at xxx = 000 for all t, which can be seen if one looks carefully at

Figure 5 in Gneiting (2002). Because the 12 stations are fairly evenly spread throughout Ireland,

one cannot say whether this apparent discontinuity would be present for two sites within, say, a few

kilometers of each other. In any case, the inclusion of such a term, which adds only one parameter

to the model, helps considerably with the fits of the models developed here to these data.

Gneiting (2002) notes that (20) is fully symmetric and that empirical space-time covariances

of the data are not. Figure 3 plots corr{(Z(xxxi, t + 1), Z(xxxj , t)}− corr{(Z(xxxi, t), Z(xxxj , t + 1)} versus

the difference in longitudes between xxxi and xxxj , showing that the asymmetry in the correlations

is strongly related to longitude. Gneiting (2002) discusses how one might extend his models to

include asymmetries, but the method he proposes does not obviously yield explicit expressions for

the covariance function. One simple extension of (20) that allows asymmetry is

K(xxx, t) =
φ(1 + δ1{xxx = 000})
(1 + a|t|2α)βd/2

exp
{
− c|xxx− εtvvv|2γ

(1 + a|t|2α)βγ

}
(21)

for some unit vector vvv ∈ R2. In light of Figure 3 and other exploratory analyses, if the first

component of xxx is longitude, it is plausible to set vvv = (1, 0)′ rather than trying to estimate vvv.
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This model will be compared to three proposed here extended to include the δ parameter

from (20). The first is the Markov model in (18):

K(xxx, t) =
πd/2φαd(1 + δ1{xxx = 000})
2ν+ζ|t|−1Γ

(
ν + ζ|t|+ 1

2d
)Mν+ζ|t|(α|xxx− εt(1, 0)′|). (22)

For δ > 0, this model is no longer Markov. The second is

φ(1 + δ1{xxx = 000})Mν

(
β
(|xxx|2 + 2bx1t + c2t2)1/2

)
. (23)

The third is adapted from (15):

φ(1 + δ1{xxx = 000}){(2ν + 3)Mν(y)− τβ1β2x1tMν−1(y)
}
, (24)

where y =
(
β2

1 |xxx|2 + β2
2t2

)1/2. The approximate likelihoods for each of the models (20)–(24) were

maximized using the routine nlm in R. The differences between these maximized approximate likeli-

hoods and the maximized approximate likelihood for the model given by (20) with γ = 1
2 (effectively

the parametric form fit by Gneiting (2002)) are 22.9, 140.8, 126.7, 186.5, 204.2, respectively for

models (20)–(24). The number of parameters in each of these models is 6, except for (20), which

has 7, and (21), which has 8. The approximate likelihoods suggest that model (24) fits the data

best. The estimated model parameters are (φ̂, ν̂, β̂1, β̂2, τ̂ , δ̂) = (9.34, 0.768, 0.00327, 1.11, 1, 0.768).

Note that τ̂ = 1 is on the boundary of the permissible parameter space. With such a large dataset,

one could undoubtedly find stationary models that fit the data better and nonstationary models

that fit better still.

APPENDIX: PROOFS

Proof of Proposition 1. The conditions on Km imply var{Zm(0, ε) − Zm(0, 0)} ∼
−2C1(0)εα1 as ε ↓ 0. Now

ρm
ε (t, s) =

p∑

j=1

Cj(s){|t + ε|αj − 2|t|αj + |t− ε|αj}

+ Rs(t + ε)− 2Rs(t) + Rs(t− ε).
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For fixed s, Rs(t + ε) − 2Rs(t) + Rs(t − ε) ¿ ε2 for t ∈ R and ε > 0, and if p = 1, (2) follows

immediately. If p > 1, then for |t| ≤ 2ε, |t + ε|αj − 2|t|αj + |t− ε|αj ¿ εαj , and for |t| > 2ε,

|t + ε|αj − 2|t|αj + |t− ε|αj = |t|αj

{(
1− ε

t

)αj

− 2 +
(

1 +
ε

t

)αj
}
¿ |t|αj

(
ε

|t|
)αj

and (2) follows. Since {|t + ε|α1 − 2|t|α1 + |t − ε|α1}/(2εα1) → 1 if t = 0 and to 0 otherwise, (3)

follows.

Proof of Proposition 2. Adams (1978, Theorem 4.13) implies f (j) is integrable for

j = 1, . . . , k − 1. Thus, for j ≤ k − 1,

lim
w,w′→∞

{
f (j)(w′)− f (j)(w)

}
=

∫

R
f (j+1)(τ)dτ,

so that lim
w→∞ f (j)(w) exists. Since f (j) is integrable for j ≤ k − 1, one has f (j)(w) → 0 as w →∞.

Since f is even, one also has f (j)(w) → 0 as w → −∞ for j ≤ k − 1. Thus, for x 6= 0, integrating

by parts k times yields K(x) = (i/x)k
∫
R f (k)(w)eiwxdw. Since f (k) has a finite mth moment,

(∂j/∂xj)
∫
R f (k)(w)eiwxdw =

∫
R(iw)jf (k)(w)eiwxdw for j ≤ m and (7) follows.

Proof of Proposition 4. Suppose for an integrable function g on Rd, (∂/∂wj)g(www) exists

and is integrable. If xj 6= 0, then for almost every (w1, · · · , wj−1, wj+1, · · · , wd)′,

∫

R
g(www)eiwjxjdwj = − 1

ixj

∫

R

{
∂

∂wj
g(www)

}
eiwjxjdwj .

Thus, ∫

Rd

g(www)eiwww′xxxdwdwdw = − 1
ixj

∫

Rd

{
∂

∂wj
g(www)

}
eiwww′xxxdwdwdw.

Applying this result repeatedly and using Dqqqf integrable for all qqq ≤ kkk gives

∫

Rd

f(www)eiwww′xxxdwdwdw =
1

(−ixxx)kkk

∫

Rd

{
Dkkkf(www)

}
eiwww′xxxdwdwdw.

Since wwwmmmDkkkf(www) is integrable, for all jjj ≤ mmm,

Djjj

∫

Rd

{
Dkkkf(www)

}
eiwww′xxxdwdwdw =

∫

Rd

(iwww)jjj
{
Dkkkf(www)

}
eiwww′xxxdwdwdw

(Stein and Weiss 1971, p. 5). Proposition 4 follows by repeated application of the product rule for

differentiation and elementary counting arguments.
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Proof of Proposition 6. The integrability of f holds if and only if

∫ ∞

0

∫ ∞

0
(1 + rα1

1 + rα2
2 )−νrd1−1

1 rd2−1
2 dr1 dr2 < ∞,

which one can verify holds for α1, α2 positive if and only if d1/(α1ν) + d2/(α2ν) < 2.

Write wwwj = (wj1, . . . , wjdj )
′ for j = 1, 2 and let bxc be the greatest integer less than or equal

to x. Then for appropriate constants ck`,

∂k

∂wk
j1

gj(|wwwj |2) =
bk/2c∑

`=0

ck`g
(k−`)
j (|wwwj |2)wk−2`

j1 ,

and elementary calculations yield (∂k/∂wk
j1)gj(|wwwj |2) ¿ 1 + |wwwj |2αj−k. For an infinitely differ-

entiable function h on [0,∞) and ν > 0, (dk/dtk)h(t)−ν is a linear combination of terms like

h(t)−k−ν
k∏

j=0
{h(j)(t)}aj for which

k∑
j=0

aj =
k∑

j=0
jaj = k with a1, . . . , ak nonnegative integers. It

follows that |www|m(∂k/∂wk
j1)f(www) is integrable if |www|m(1 + |www1|)k(2α1−1)(1 + |www1|α1 + |www2|α2)−k−ν is

integrable, and

∫

Rd1+d2

|www|m(1 + |www1|)k(2α1−1)(1 + |www1|α1 + |www2|α2)−k−νdwdwdw

¿ 1 +
∫ ∞

1

∫ ∞

1

(rm
1 + rm

2 )rk(2α1−1)
1

r
2α1(k+ν)
1 + r

2α2(k+ν)
2

rd1−1
1 rd2−1

2 dr1dr2

¿ 1 +
∫ ∞

1

{∫ r
α2/α1
2

1

(rm
1 + rm

2 )rk(2α1−1)
1

r
2α2(k+ν)
2

rd1−1
1 rd2−1

2 dr1

+
∫ ∞

r
α2/α1
2

(rm
1 + rm

2 )rk(2α1−1)
1

r
2α1(k+ν)
1

rd1−1
1 rd2−1

2 dr1

}
dr2

¿ 1 +
∫ ∞

1
rd2−1−2α2ν
2

{
rm−2α2k
2 + r

(m−k+d1)(α2/α1)
2 + r

(−k+d1)(α2/α1)+m
2

}
dr2,

which, for any given m, can be made finite by taking k sufficiently large. The same argument

applies when taking the derivative of k with respect to any component of www, so Proposition 6

follows.

Proof of Proposition 7. Let us first prove that Z Markov implies its covariance function

is of the form (18). Write K(xxx, t) =
∫

eixxx′www+ivtG(dddwww, dv) for the spectral representation of K. Be-

cause G is a positive finite measure, one can define the measure F given by F (dddwww) =
∫
v G(dddwww, dv).
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Then G(dddwww, dv) = Hwww(dv)F (dddwww), where Hwww(·) is a positive, finite measure for F -a.e. www. Set

ηwww(t) =
∫

eivtHwww(dv), which is well-defined for F -a.e. www.

Let L2(G) be the closed real linear hull of eixxx′www+ivt with respect to G and H(G) the closed

real linear hull of Z(xxx, t) with respect to G. Then eixxx′www+ivt ←→ Z(xxx, t) defines a Hilbert space

isometry between L2(G) and H(G). Let Pt be the orthogonal projection operator in L2(G) onto

the closed real linear hull of eixxx′www+ivs for s ≤ t, xxx ∈ Rd. It suffices to show that for all xxx ∈ Rd

and all s, t nonnegative, cov{Z(000, t), Z(−xxx,−s)} = cov[E{Z(000, t) | Z(·, 0)}, Z(−xxx,−s)], or in

terms of elements of L2(G),
∫

eixxx′www+iv(s+t)G(dddwww, dv) =
∫

(P0e
ivt)eixxx′www+ivsG(dddwww, dv). The Markov

property implies P0e
ivt is in the closed real linear hull of eixxx′www, so define A(t;www) = P0e

ivt. Now,

lims→0 A(t + s;www) = A(t;www) in L2(F ) because Z(xxx, t) is mean square continuous by hypothesis.

Thus, A(t;www) is jointly measurable in t,www. Next, for s, t nonnegative,

A(t + s;www) = P0e
iv(t+s) = P0Pse

iv(t+s)

= P0(eivsA(t;www)) = A(s;www)A(t;www)

and it follows that A(t;www) = e−α(www)t for all t ≥ 0 for some measurable function α with real and

imaginary parts β and φ, respectively. Since A(t;−www) = A(t;www), β must be even and φ odd. Next,

K even implies A(−t;−www) = A(t;www), so for t ≤ 0, A(t;www) = A(−t;www) = etβ(www)−itφ(www) and it follows

that K is of the form (18) with β even and φ odd. Finally, to see that β must be nonnegative,

note that if β(www) < 0,

lim sup
t→∞

∣∣∣∣
∫

v
eitvHwww(dv)

∣∣∣∣ = lim sup
t→∞

e−|t|β(www) = ∞,

which can only happen for a set of www with measure 0 under F , so that one can assume β nonnegative

everywhere without loss of generality.

To prove the converse, if K is of the form (18), then one needs to show P0e
ivt ∈ L2(F ).

Since K(xxx, t) =
∫

eiwww′xxxηwww(t)F (dddwww), it follows that ηwww(t) = e−|t|β(www)−itφ(www) F -a.e. Then for s, t

nonnegative,
∫ (

eivt − e−|t|β(www)−itφ(www)
)
eiwww′xxx+ivsG(dddwww, dv)

= K(xxx, s + t)−
∫

e−|t|β(www)−itφ(www)+iwww′xxxηwww(s)F (dddwww)

= K(xxx, s + t)−
∫

e−|s+t|β(www)−i(s+t)φ(www)+iwww′xxxF (dddwww)
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= 0,

so that P0e
ivt = ηwww(t), which, for β even and nonnegative and φ odd, is in L2(F ) as required.
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Figure captions

Figure 1. Empirical and fitted variograms for simulated data. Numbers indicate empirical vari-

ograms along one of four indicated directions. Solid curve is true variogram. Dashed curve is MLE

under correct isotropic model, K(x, y) = θ1 exp
{− (x2 + y2)1/2/θ2

}
. The two dotted curves show

the MLE under the separable model, K(x, y) = θ1 exp
{− (|x|+ |y|)/θ2

}
. The lower dotted curve

shows the fitted curve for directions 0◦ and 90◦ and the upper curve for 45◦ and 135◦. The dotted-

dashed curves give curves under the separable model fitted by eye to the empirical variogram; the

lower curve corresponding to the directions 0◦ and 90◦ and the upper curve to 45◦ and 135◦.

Figure 2. Contour plot for correlation function
{
4M1/2

(
(x2

1 +x2
2 + t2)1/2

)−2x1tM−1/2

(
(x2

1 +x2
2 +

t2)1/2
)}/{

4M1/2(0)
}

for x2 = 0.

Figure 3. Plot of corr{Z(xxxi, t + 1), Z(xxxj , t)}− corr{Z(xxxi, t), Z(xxxj , t + 1)} for Irish wind data for all

pairs of sites for which xxxi is east of xxxj .
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Figure 3
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