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a b s t r a c t

The paper investigates a nonparametric regression method based on smoothing spline analysis of

variance (ANOVA) approach to address the problem of global sensitivity analysis (GSA) of complex and

computationally demanding computer codes. The two steps algorithm of this method involves an

estimation procedure and a variable selection. The latter can become computationally demanding

when dealing with high dimensional problems. Thus, we proposed a new algorithm based on

Landweber iterations. Using the fact that the considered regression method is based on ANOVA

decomposition, we introduced a new direct method for computing sensitivity indices. Numerical tests

performed on several analytical examples and on an application from petroleum reservoir engineering

showed that the method gives competitive results compared to a more standard Gaussian process

approach.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The recent significant advances in computational power have
allowed computer modeling and simulation to become an integral
tool in many industrial and scientific applications, such as nuclear
safety assessment, meteorology or oil reservoir forecasting. Simula-
tions are performed with complex computer codes that model
diverse complex real world phenomena. Inputs of such computer
codes are estimated by experts or by indirect measures and can be
highly uncertain. It is important to identify the most significant
inputs, which contribute to the model prediction variability. This task
is generally performed by the variance-based sensitivity analysis also
known as global sensitivity analysis (GSA) (see [1] and [2]).

The aim of GSA for computer codes is to quantify how the
variation of an output of the computer code is apportioned to
different inputs of the model. The most useful methods that
perform sensitivity analysis require stochastic simulation techni-
ques, such as Monte-Carlo methods. These methods usually
involve several thousands computer code evaluations that are
generally not affordable with realistic models for which each
simulation requires several minutes, hours or days. Consequently,
meta-modeling methods become an interesting alternative.

A meta-model is an approximation of the computer code’s
input/output relation, which is fast to evaluate. The general idea
ll rights reserved.

. Touzani),
of this approach is to perform a limited number of model
evaluations (hundreds) at some carefully chosen training input
values, and then, using statistical regression techniques to con-
struct an approximation of the model. If the resulting approxima-
tion is of a good quality, the meta-model is used instead of the
complex and computationally demanding computer code to per-
form the GSA.

The most commonly used meta-modeling methods are those
based on parametric polynomial regression models, which require
specifying the polynomial form of the regression mean (linear,
quadratic, etc.). However, it is often the case that the linear (or
quadratic) model can fail to identify properly the input/output
relation. Thus, in nonlinear situations, nonparametric regression
methods are preferred.

In the last decade many different nonparametric regression
models have been used as a meta-modeling method. To name a
few of them [3–5] utilized a Gaussian Process (GP). [6,7] used a
polynomial chaos expansions to perform a GSA.

In addition [8–10] provide a comparison of various parametric
and nonparametric regression models, such as linear regression
(LREG), quadratic regression (QREG), projection pursuit regression
multivariate adaptive regression splines (MARS), gradient boost-
ing regression, random forest, Gaussian process (GP), adaptive
component selection and smoothing operator (ACOSSO), etcy for
providing appropriate metamodel strategies.

We focus in this work on the modern nonparametric regres-
sion method based on smoothing spline ANOVA (SS-ANOVA)
model and component selection and smoothing operator (COSSO)
regularization, which can be seen as an extension of the LASSO
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[11] variable selection method in parametric models to nonpara-
metric models. Moreover, we use the ANOVA decomposition basis
of the COSSO to introduce a direct method to compute the
sensitivity indices.

In this paper, we first review the SS-ANOVA, then we will
describe the COSSO method and its algorithm. Furthermore we
will introduce two new algorithms which provide the COSSO
estimates, the first one using an iterative algorithm based on
Landweber iterations and the second one using a modified least
angle regression algorithm (LARS) (see [12,13]). Next we will
describe our new method to compute the sensitivity indices.
Finally, numerical simulations and an application from petroleum
reservoir engineering will be presented and discussed.
2. Smoothing spline ANOVA approach for metamodels

In mathematical terms, the computer code can be represented
as a function Y ¼ f ðXÞwhere Y is the output scalar of the computer
code, X¼ ðXð1Þ, . . . ,XðdÞÞ the d-dimensional inputs vector which
represent the uncertain parameters and f : Rd-R is the unknown
function that represents the computer code. Our purpose is to
introduce an estimation procedure for f.

A popular approach to the nonparametric estimation for
high dimensional problems is the smoothing spline analysis of
variance (SS-ANOVA) model [14]. To remind, the ANOVA expan-
sion is defined as

f ðXÞ ¼ f 0þ
Xd

j ¼ 1

f jðX
ðjÞ
Þþ
X
jo l

f jlðX
ðjÞ,XðlÞÞþ � � � þ f 1,...,dðX

ð1Þ, . . . ,XðdÞÞ

ð1Þ

where f0 is a constant, fj’s are univariate functions representing
the main effects, fjl’s are bivariate functions representing the two
way interactions, and so on.

It is important to determine which ANOVA components should
be included in the model. Lin and Zhang [15] proposed a penalized
least square method with the penalty functional being the sum of
component norms. The COSSO is a regularized nonparametric
regression method based on ANOVA decomposition.

In the following subsections, we first review the definition
of the COSSO method. Then we present the COSSO algorithm
proposed in [15]. Finally we introduce three new variations of the
COSSO algorithm.

2.1. Definition

Let f AF , where F is a reproducing kernel Hilbert space
(RKHS) (for more details we refer to [14,16]) corresponding to
the ANOVA decomposition (1), and let Hj ¼ f1g �Hj

be a RKHS of
functions of XðjÞ over ½0,1�, where f1g is the RKHS consisting of only
the constant functions and Hj

is the RKHS consisting of functions
f jAHj such that /f j,1SHj ¼ 0. Then the model space F is the
tensor product space of Hj

F ¼ �
d

j ¼ 1
Hj ¼ f1g �

Xd

j ¼ 1

Hj
�
X
jo l

½Hj
�H l
� . . . ð2Þ

Each component in the ANOVA decomposition (1) is associated to
a corresponding subspace in the orthogonal decomposition (2).
We assume that only second order interactions are considered in
the ANOVA decomposition and an expansion to the second order
generally provides a satisfactory description of the model.

Let us consider the index a� j for a¼ 1, . . . ,d with j¼ 1, . . . ,d
and a� ðj,lÞ for a¼ dþ1, . . . ,dðdþ1Þ=2 (where dðdþ1Þ=2 corre-
sponds to the number of ANOVA components) with 1r jo lrd.
Using such notation in (2) we obtain

F ¼ f1g � �
q

a ¼ 1
F a ¼ f1g �

Xd

j ¼ 1

Hj
�
X
jo l

½Hj
�H l
� ð3Þ

where F 1, . . .F q are q orthogonal subspaces of F and
q¼ dðdþ1Þ=2. We denote by J � J the norm in the RKHS F . For
some l the COSSO estimate is given by the minimizer of

1

n

Xn

i ¼ 1

ðyi�f ðxiÞÞ
2
þl2

Xq

a ¼ 1

JPaf J ð4Þ

where l is the regularization parameter and Pa is the orthogonal
projection onto Fa.

2.2. COSSO algorithm

Lin and Zhang [15] have shown that the minimizer of (4) has
the form bf ¼ bbþPq

a ¼ 1
bf a, with bf aAF a. By the reproducing kernel

property of F a, bf aAspanfKaðxi,�Þ, i¼ 1, . . . ,ng, where Ka is the
reproducing kernel of F a defined by

Kaðx,x0Þ ¼ Kjðx,x0Þ ¼ k1ðxÞk1ðx
0Þþk2ðxÞk2ðx

0Þ�k4 9x�x09
� �

where klðxÞ ¼ BlðxÞ=l! and Bl is the lth Bernoulli polynomial. Thus,
for xA ½0,1�

k1ðxÞ ¼ x�
1

2

k2ðxÞ ¼
1

2
ðk2

1ðxÞ�1=12Þ

k4ðxÞ ¼
1

24
k4

1ðxÞ�
k2

1ðxÞ

2
þ

7

240

 !

Moreover, the reproducing kernel Ka for the RKHS F a such as
Fa �Hj

�H l
, are given by the following tensor products:

KaðX,X0Þ ¼ KjðX
ðjÞ,XðjÞ

0

ÞKlðX
ðlÞ,XðlÞ

0

Þ

For more details we refer to [14].
Lin and Zhang [15] have also shown that (4) is equivalent to a

more easier form to compute, which is

1

n

Xn

i ¼ 1

fyi�f ðxiÞg
2þl0

Xq

a ¼ 1

y�1
a JPaf J2

þn
Xq

a ¼ 1

ya subject to yaZ0

ð5Þ

where l0 is a constant and n is a smoothing parameter. If ya ¼ 0,
then the minimizer of (5) is taken to satisfy JPaf J¼ 0 and we use
the convention 0=0¼ 0. The penalty term of y’s,

Pq
a ¼ 1 ya, controls

the sparsity of each component f a.
For fixed h¼ ðy1, . . . ,yqÞ

T (5) is equivalent to the standard SS-
ANOVA [14] and therefore the solution has the form

f ðxÞ ¼ bþ
Xn

i ¼ 1

ci

Xq

a ¼ 1

yaKaðxi,xÞ ð6Þ

and let Ka be the n�n matrix fKaðxi,xjÞÞg, i¼1,y,n, j¼1,y,n, let
Ky stand for the matrix

Pq
a ¼ 1 yaKa and 1n the column vector

consisting of n ones. Then f ¼ Kycþb1n with c¼ ðc1, . . . ,cnÞ
T and

(5) can be expressed as

1

n
Y�

Xq

a ¼ 1

yaKac�b1n

�����
�����

2

þl0cT Kycþn
Xq

a ¼ 1

ya ð7Þ

For a fixed h, (7) can be written as

min
c,b

JY�Kyc�b1nJ
2
þnl0cT Kyc ð8Þ
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which is a smoothing spline problem (a quadratic minimization
problem) and the solution satisfies

ðKyþnl0IÞcþb1n ¼ Y ð9Þ

1T
nc¼ 0 ð10Þ

where I is the identity matrix.
Alternately, for fixed c and b, (7) can be written as

min
y

Jz�DhJ2
þnn

Xq

a ¼ 1

ya subject to yaZ0 ð11Þ

where z¼ Y�ð1=2Þnl0c�b1n and D the n� q matrix with the a th
column da ¼ Kac. Note that this formulation is similar to the
nonnegative garrote (NNG) optimization problem introduced in
[17].

An equivalent form of (11) is given by

min
y

Jz�DhJ2 subject to yaZ0 and
Xq

a ¼ 1

yarM ð12Þ

for some MZ0. Lin and Zhang [15] noted that the optimal M

seems to be close to the number of important components.
For computational consideration Lin and Zhang [15] preferred to
use (12) rather than (11).

Notice that the COSSO algorithm is a two step procedure.
Indeed, it iterates between the standard smoothing spline (8)
estimator, which gives a good initial estimate and the NNG (12)
estimator, which is a variable selection procedure.

They also observed empirically that after one iteration the result
is close to that at convergence. For convenience, in what follow,
we call COSSO-solver the algorithm introduced in [15]. Thus the
COSSO-solver algorithm is presented as a one step update procedure

Algorithm 1 (COSSO-solver).
1.
 Initialization: Fix ya ¼ 1, a¼ 1, . . . ,q

2.
 For each fixed l0 in a chosen range solve for c and b with

(8). Tune l0 using v-fold-cross-validation. Set c0 and b0

the solution of (8) for the best value of l0. Fix l0 at the
chosen value.
3.
 For each fixed M in a chosen range, apply the following
procedure:
3.1
 Solve for c and b with (8).

3.2
 For c and b obtained in step 3.1, solve for h with (12).

3.3
 For h obtained in step 3.2, solve for c and b with (8).
Tune M using v-fold-cross-validation. Fix M at the
chosen value.
4.
 For l0 from steps 2, M from steps 3 and with c0 and b0

obtained in step 1, solve for h with (12). The solution

corresponds to the final estimate of h.

5.
 With the new h from steps 4 and for each fixed l0 in a

chosen range solve for c and b with (8).Tune l0 using v-
fold-cross-validation. The solution corresponding to the

new best value of l0 is the final estimate of c and b.
Notice that we have added the tuning procedure of l0 in step
5 with respect to the original COSSO algorithm [15] because we
observed empirically that it improved the method’s performance,
particularly for the high dimensional problems.

2.3. COSSO based on the iterative projected shrinkage algorithm

Consider the (11) regression problem

min
y

Jz�DhJ2
þnn

Xq

a ¼ 1

ya subject to yaZ0
The functional (11) is convex since the matrix DTD is symmetric and
positive semidefinite and since the constraints ya40 also define a
convex feasible set. For the convex optimization problem, the
Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient
for the optimal solution hn, where hn

¼ arg minhJz�DhJ2
þnnPq

a ¼ 1 ya subject to yaZ0. These KKT conditions are defined as

f�dT
aðY�Dhn

Þþngyn

a ¼ 0�dT
aðY�Dhn

ÞþnZ0 yn

aZ0

which is equivalent to

�dT
aðY�Dhn

Þþn¼ 0 if yn

aa0 ð13Þ

�dT
aðY�Dhn

Þþn40 if yn

a ¼ 0 ð14Þ

where da denotes the a th column of D. Therefore, from (13) and (14)
we can derive the fixed-point equation

hn
¼POþ ðd

Soft
n ðh

n
þDT
ðY�Dhn

ÞÞÞ ð15Þ

where POþ is the nearest point projection operator onto the
nonnegative orthant (closed convex set) Oþ ¼ fx : xZ0g, and dSoft

l
is the soft-thresholding function defined as

dSoft
n ðxÞ ¼

0 if 9x9rn
x�n if x4n
xþn if xo�n

8><>: ð16Þ

Thus, in the framework of Landweber algorithm [18] we introduced
in [19] the iterative projected shrinkage (IPS) algorithm to solve (11).
This algorithm is defined by

h½pþ1�
¼POþ ðd

Soft
n ðh

½p�
þDT
ðY�Dh½p�ÞÞÞ ð17Þ

We have assumed that lmaxðD
T DÞr1 (where lmax is the maximum

eigenvalue). Otherwise we solve the equivalent minimization
problem

min
h

J
z

c
�

D

c
hJ2
þ

nn
c

Xq

a ¼ 1

ya subject to yaZ0

where the positive constant c ensures that lmaxðD
T DÞr1. In practice,

slow convergence, particularly when D is ill-conditioned or ill-posed,
is an obstacle to a wide use of this method in spite of the good results
provided in many cases. Indeed, IPS procedure is a composition of
the projected thresholding with the Landweber iteration algorithm,
which is a gradient descent algorithm with a fixed step size, known to
converge usually slowly. Unfortunately, combining the Landweber
iteration with the projected thresholding operation does not accel-
erate the convergence, especially with a small value of n. Several
authors proposed different methods to accelerate various Landweber
algorithms, among them [20–22]. The latter brought an efficient
procedure, named two-step iterative shrinkage/thresholding (TwIST).
We adapted this algorithm in order to solve the NNG optimization
problem (11). The accelerated projected iterative shrinkage (AIPS)
algorithm is defined as

h½1� ¼POþ ðd
Soft
n ðh

½0�
ÞÞ ð18Þ

h½pþ1�
¼ ð1�aÞh½p�1�

þða�bÞh½p� þbPOþ ðd
Soft
n ðh

½p�
þDT
ðY�Dh½p�ÞÞÞ ð19Þ

In accordance with Theorem 4 given by [22] the parameters a and
b are set to

a¼ br2
þ1

b¼ 2a=ð1þzÞ

where br ¼ ð1� ffiffiffi
z

p
Þ=ð1þ

ffiffiffi
z

p
Þ and z¼ lminðD

T DÞ (where lmin is the
minimal eigenvalue) if lminðD

T DÞa0, else z¼ 10�k with k¼ 1, . . . ,4
needs to be tuned by running a few iterations. The condition k¼ 1
corresponds to mildly ill-conditioned problems and k¼ 4 for severely
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ill-conditioned problems. For more detail about the choice of these
parameters we refer to [22].

COSSO using IPS or AIPS. Thereby, the COSSO algorithm
using IPS or AIPS, which we call respectively COSSO–IPS and
COSSO–AIPS, will iterate between (8) and (11) instead of iterating
between (8) and (12). Thus the COSSO–IPS algorithm (respec-
tively COSSO–AIPS algorithm) is defined as

Algorithm 2 (COSSO–IPS/COSSO–AIPS).
1.
 Initialization: Fix ya ¼ 1, a¼ 1, . . . ,q

2.
 For each fixed l0 in a chosen range solve for c and b with

(8). Tune l0 using v-fold-cross-validation. Set c0 and b0

the solution of (8) for the best value of l0. Fix l0 at the
chosen value.
3.
 For each fixed n in a chosen range, apply the following
procedure:
3.1
 Solve for c and b with (8).

3.2
 For c and b obtained in step 3.1, solve for h with (11) by

using the IPS (respectively AIPS) algorithm.

3.3
 For h obtained in step 3.2, solve for c and b with (8).
Tune n using v-fold-cross-validation. Fix n at the chosen
value.
4.
 For l0 from steps 2, M from steps 3 and with c0 and b0

obtained in step 1, solve for h with (11)by using the IPS
(respectively AIPS) algorithm. The solution corresponds
to the final estimate of h.
5.
 With the new h from steps 4 and for each fixed l0 in a

chosen range solve for c and b with (8). Tune l0 using
v-fold-cross-validation. The solution corresponding to

the new best value of l0 is the final estimate of c and b
Note that it can be shown that h¼ 0 for nZnmax, with
nmax �maxa j d

T
aY j. Hence, the value of n, which needs to be

estimated, is bounded by nmax and nmin, with nmin small enough.
Then, n is tuned by v-fold-cross-validation.

2.4. COSSO based on nonnegative LARS algorithm

Consider (11) the NNG regression problem, [13] provided an
efficient algorithm similar to LARS for computing the entire path
solution as n is varied. We called this algorithm the nonnegative
LARS (NN-LARS) and it is described below

Algorithm 3 (NN-LARS).
1.
 Start from k¼1, y½0�1 , . . . ,y½0�q ¼ 0, Ak ¼ | and the residual

r½0� equal to the vector z

2.
 Update the active set
Ak ¼Ak�1 [ fj
n
g with jn ¼ arg max

jAAc
k

ðdT
j r½k�1�Þ
where Ac
k is the complementary of Ak.
3.
 Compute the current descent direction vectors
w½k�Ak
¼ ðDT

Ak
DAk
Þ
�1DT

Ak
r½k�
4.
 Now, for every lAAc
k compute gl that satisfies

dT
l r½kþ1� ¼ dT

j r½kþ1�. Hence
dT
l r½k��gld

T
l DAk

w½k�Ak
¼ dT

j r½k��gld
T
j DAk

w½k�Ak
,with lAAc

k and jAAk
It follows
gl ¼
dT

j r½k��dT
l r½k�

dT
l DAk

w½k�Ak
�dT

j DAk
w½k�Ak

with lAAc
k and jAAk
5.
 For every jAAk, compute gj ¼minðaj,1Þ where aj ¼�y
½k�
j =w½k�j
6.
 If for every j we have gjr0 or minj
þ ðgjÞ41, set g¼ 1.

Otherwise, set g¼ gjn ¼minj
þ ðgjÞ and update the

coefficients vector by using the new g
h½kþ1�
Ak
¼ h½k�Ak

þgw½k�Ak
If jn=2Ak put the corresponding variable into the active set

Akþ1 ¼Ak [ fj
n
g, otherwise drop the corresponding variable

from the active set Akþ1 ¼Ak�fj
n
g.
7.
 Set r½kþ1� ¼ z�Dh½kþ1�, k¼ kþ1 and continue until g¼ 1.
COSSO using NN-LARS. Thus the COSSO algorithm using the
NN-LARS algorithm, which we call COSSO–NN-LARS is define as
follow

Algorithm 4 (COSSO–NN-LARS).
1.
 Initialization: Fix ya ¼ 1, a¼ 1, . . . ,q

2.
 For each fixed l0 in a chosen range solve for c and b with

(8). Tune l0 using v-fold-cross-validation. Set c0 and b0 the

solution of (8) for the best value of l0. Fix l0 at the chosen
value.
3.
 Apply the following procedure:

3.1 Solve for c and b with (8).

3.2 For c and b obtained in step 3.1, solve for h with (11) by
using the NN-LARS algorithm.
3.3 For each h (corresponding to each step k of NN-LARS
algorithm) obtained in step 3.2, solve for c and b with (8).

Choose the iteration step k of NN-LARS algorithm which
correspond to the solution that minimizes the v-fold-cross-
validation criterion. Set K the best chosen step.
4.
 For l0 from steps 2, K from steps 3 and with c0 and b0

obtained in step 1, solve for h with (11) by using the
NN-LARS algorithm. The solution corresponding to the step

K is the final estimate of h.

5.
 With the new h from steps 4 and for each fixed l0 in a

chosen range solve for c and b with (8). Tune l0 using
v-fold-cross-validation. The solution corresponding to the

new best value of l0 is the final estimate of c and b.
Notice that even if the NN-LARS algorithm provides the entire
solution path, the choice of the best model (as we will empirically
show later) becomes computationally expensive for a high
dimensional problem.
3. Global sensitivity analysis

3.1. Variance based Sobol’ indices

In order to describe this concept, let us suppose that the
mathematical model of the computational code is defined on the
unit d-dimensional cube (XA ½0,1�d). The main idea from Sobol’
approach [1] is to decompose the response Y ¼ f ðXÞ into sum-
mands of different dimensions via ANOVA decomposition (1). The
integrals of every summand of this decomposition over any of its
own variables are assumed to be equal to zero, i.e.Z 1

0
f j1 ,...,js

ðXðj1Þ, . . . ,XðjsÞÞ dXðjkÞ ¼ 0 ð20Þ

where 1r j1o � � �o jsrd, s¼ 1, . . . ,d and 1rkrs. It follows
from this property that all the summands in (1) are orthogonal,
i.e, if ði1, . . . ,isÞa ðj1, . . . ,jlÞ, thenZ
Od

f i1 ,...,is f j1 ,...,jl
dX¼ 0 ð21Þ

Using the orthogonality, Sobol’ [1] showed that such decomposi-
tion of f ðXÞ is unique and that all the terms in (1) can be evaluated
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via multidimensional integrals

f 0 ¼ EðYÞ ð22Þ

f jðX
ðjÞ
Þ ¼ EðY9XðjÞÞ�EðYÞ ð23Þ

f j,lðX
ðjÞ,XðlÞÞ ¼ EðY9XðjÞ,XðlÞÞ�f j�f l�EðYÞ ð24Þ

where E(Y) and EðY9XðjÞÞ are respectively the expectation and the
conditional expectation of the output Y. Analogous formulae can
be obtained for the higher-order terms. If all the input factors are
mutually independent, the ANOVA decomposition is valid for any
distribution function of the XðiÞ’s and using this fact, squaring and
integrating (1) over ½0,1�d, and by (21), we obtain

V ¼
Xd

j ¼ 1

Vjþ
X

1r jo lrd

Vjlþ � � � þV1,2,...,d ð25Þ

where Vj ¼ V ½EðY9XðjÞÞ� is the variance of the conditional expecta-
tion that measures the main effect of Xj on Y and
Vjl ¼ V ½EðY9XðjÞ,XðlÞÞ��Vj�Vl measures the joint effect of the pair
ðXðjÞ,XðlÞÞ on Y. The total variance V of Y is defined to be

V ¼ EðY2
Þ�f 2

0 ð26Þ

Variance-based sensitivity indices, also called Sobol’ indices, are
then defined by

Sj1 ,...,js
¼

Vj1 ,...,js

V
ð27Þ

where 1r j1o � � �o jsrd and s¼ 1, . . . ,d. Thus, Sj ¼ Vj=V is called
the first order sensitivity index (or the main effect) for factor XðjÞ,
which measures the main effect of XðjÞ on the output Y, the second
order index Sjl ¼ Vjl=V , for ja l, is called the second order sensi-
tivity index expresses the sensitivity of the model to the interac-
tion between variables XðiÞ and XðjÞ on Y and so on for higher
orders effects. The decomposition in (25) has the useful property
that all sensitivity indices sum up to one.Xp

j ¼ 1

Sjþ
X

1r jo lrp

Sjlþ . . . þS1,2,...,p ¼ 1 ð28Þ

The total sensitivity index (or total effect) of a given factor is
defined as the sum of all the sensitivity indices involving the
factor in question.

STj
¼
X
l#j

Sl ð29Þ

where #j represents all the Sj1 ,...,js
terms that include the index j.

Total sensitivity index of an input XðjÞ measures the part of output
variance explained by all the effects in which it plays a role. Note
however that the sum of all STj

is higher than one because
interaction terms are counted several times. It is important to
note that total sensitivity indices can be computed by a single
multidimensional integration and do not require computing all
high order indices (see [1]). Then comparing the total effect
indices provides information about influential parameters.

GSA enables to explain the variability of the output response
as a function of the input parameters through the definition of
total and partial sensitivity indices. The computation of these
indices involves the computation of several multidimensional
integrals that are estimated by Monte Carlo method and thus
require huge random samples. For this reason GSA techniques are
prohibitive if used directly using the computer code (fluid flow
simulator for example).

3.2. Global sensitivity analysis using COSSO

It has been shown in the previous section that when the input
vector components are independently distributed (and XA ½0,1�d),
the component functions in the ANOVA decomposition are
orthogonal and contain relevant information on the input/output
relationships. Moreover, the total variance V of the model can be
decomposed into its input variable contributions. Using the
variance decomposition (25) and the COSSO solution form (6)
we have

V 	
Xd

j ¼ 1

Vjþ
X

1r jo lrd

Vjl ð30Þ

V 	
Xq

a ¼ 1

E ya
Xn

i ¼ 1

ciKaðxi,XÞ

" #2
0@ 1A ð31Þ

Let us consider a N i.i.d. random sample from the distribution of X,
say fzi ¼ ðzi1 , . . . ,zid Þ

T ,i¼ 1, . . . ,Ng. The Monte-Carlo estimate of Vj

is given by

bV j ¼
1

N

XN

m ¼ 1

yj

Xn

i ¼ 1

ciKjðxij ,zmj
Þ

" #2

ð32Þ

Hence the main effect indices (first order sensitivity indices) are
estimated as

bSj ¼
bV jbV ð33Þ

where bV is the total variance estimation. The estimation of Vjl are
given by

bV jl ¼
1

N

XN

m ¼ 1

yjl

Xn

i ¼ 1

ciKjðxij ,zmj
ÞKlðxil ,zml

Þ

" #2

ð34Þ

Thus, the second order indices are estimated by

bSjl ¼
bV jlbV ð35Þ

Since we assume that a truncated form of ANOVA decomposition
provides a satisfactory approximation of the model, the total
effect indices estimation is given bybSTj
¼ bSjþ

X
la j

bSjl ð36Þ

Notice that to compute all the indices (main effect, interaction
and total effect) we need only N evaluations of the meta-model.
4. Simulations

The present section is focused on studying the empirical
performance of the four different versions of COSSO estimate
and compares them to the GP method. In this work we used a
standard implementation of the GP (see a brief description in
appendix). However, it is important to note that the quality of the
GP model is strongly dependent on the covariance function and
hyperparameters estimation, so results can differ from an imple-
mentation to another. Moreover, more flexible GP method such as
[23] may be more effective on the studied examples. The different
versions of COSSO are COSSO–IPS, COSSO–AIPS, COSSO–NN-LARS
and COSSO-solver which use a standard convex optimizer (Matlab
code developed by the COSSO’s authors [15]). The empirical
performance of estimators will be measured in terms of predic-
tion accuracy and global sensitivity analysis (GSA). The measure
of accuracy is given by Q2 defined as

Q2 ¼ 1�

Pntest

i ¼ 1ðyi�
bf ðxiÞÞ

2Pntest

i ¼ 1ðyi�yÞ2
with ntest ¼ 1000 ð37Þ

where yi denotes the ith test observation of the test set, y is their
empirical mean and bf ðxiÞ is the predicted value at the design point



Fig. 1. Plot of g-Sobol function vs. inputs Xð1Þ and Xð2Þ with other inputs fixed

at 0.5.

Table 1
Analytical values of the total effect indices of the

g-Sobol function.

Input Total effect

Xð1Þ 0.787

Xð2Þ 0.242

Xð3Þ 0.034

Xð4Þ 0.011

Xð5,...,8Þ 0

Table 2
Q2 results from the g-Sobol function. The estimated standard deviation of Q2 is

given in parentheses.

n Q 2
Time (s)

COSSO–NN-LARS 100 0.86 (0.03) 4

200 0.91 (0.02) 14

400 0.99 (0.01) 59

COSSO–IPS 100 0.82 (0.08) 28

200 0.90 (0.01) 45

400 0.97 (0.02) 195

COSSO–AIPS 100 0.84 (0.07) 6

200 0.90 (0.01) 15

400 0.99 (0.01) 53

COSSO-solver 100 0.85 (0.06) 8

200 0.90 (0.01) 18

400 0.99 (0.01) 59

GP 100 0.93 (0.01) 29

200 0.96 (0.01) 86

400 0.95 (0.01) 342
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xi. We also compare the methods for different experimental
design sizes, uniformly distributed on ½0,1�d and built by Latin
Hypercube Design procedure [24] with maximin criterion [25]
(maximinLHD). For each setting of each test example, we run
50 times and average. Thus we define the quantity Q 2 ¼ 1=50P50

k ¼ 1 Qk
2.

Concerning the performance in terms of GSA, we will study the
accuracy of the total effect indices estimation. Furthermore, we
will study the size effect of the sample used to estimate the total
effect indices by Monte-Carlo integration. We will compare the
estimation results of the sensitivity indices obtained by the
developed method and using COSSO–AIPS to those obtained by
Sobol’ method (described in [1,2]) for sensitivity indices estima-
tion using COSSO–AIPS and using GP meta-modelling procedure.
The main purpose of our comparison to the GP is the fact that GP
is widely used in the framework of meta-modelling.

To fit COSSO models using a standard convex optimizer we
have used the matlab code developed by the COSSO’s authors
Yi Lin and Hao Helen Zhang. COSSO–IPS, COSSO–AIPS and COSSO–
NN-LARS are adapted versions of the original Matlab code. The GP
code used here is a commercial version implemented using R in
the CougarFlow TM software [26].
4.1. Example 1

Consider the g-Sobol function, which is strongly nonlinear and
is described by a non-monotonic relationship. Because of its
complexity and the availability of analytical sensitivity indices,
this function is a well-known test case in the studies of GSA. Fig. 1
illustrates the g-Sobol function against the two most influential
parameters Xð1Þ and Xð2Þ. The g-Sobol function (see [2]) is defined
for 8 input factors as

gSobolðX
ð1Þ, . . . ,Xð8ÞÞ ¼

Y8

k ¼ 1

gkðX
ðkÞ
Þ with gkðX

ðkÞ
Þ ¼

94�ðkÞ�29þak

1þak

where fa1, . . . ,a8g ¼ f0,1,4:5,9,99,99,99,99g. The contribution of
each input XðkÞ to the variability of the model output is repre-
sented by the weighting coefficient ak. The lower this coefficient
ak, the more significant the variable XðkÞ. For example

ak ¼ 0-xðkÞ is very important;

ak ¼ 1-xðkÞ is relatively important;

ak ¼ 4:5-xðkÞ is poorly important;

ak ¼ 9-xðkÞ is non� important;

ak ¼ 99-xðkÞ is non� significant:

8>>>>>><>>>>>>:
The analytical values of Sobol’ indices are given by

Vj ¼
1

3ð1þajÞ
2

, V ¼
Yd

k ¼ 1

ðVkþ1Þ�1, Sj1 ,...,js
¼

1

V

Ys

k ¼ 1

Vk

where 1r j1o � � �o jsrd and s¼ 1, . . . ,d. The analytical values of
the total effect indices are shown in Table 1.

4.1.1. Assessment of the prediction accuracy

Table 2 summarizes the results for the 50 realizations of the g-
Sobol model with three different experimental design sizes
(n¼100, n¼200 and n¼400). It appears that for this example
the GP outperforms all of the COSSO versions for n¼100 and
n¼200. However, when the experimental design size increases,
the performance of the GP does not get much better while all the
COSSO methods increase their accuracy by increasing the sample
size. Indeed, for n¼400 the COSSO methods outperforms GP
especially COSSO–NN-LARS, COSSO–AIPS and COSSO-solver,
which have Q 2 quantity equal to 0.99 that indicates that those
meta-models explain 99% of the model variance. All the COSSO
versions provide quite similar results for this example. Moreover,
as expected, the AIPS method is clearly faster than IPS. Notice that



Fig. 2. Total effect indices vs. sample effect (Example 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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even if the NN-LARS provides the entire path of the solution, the
COSSO–NN-LARS method has the same computational cost as
COSSO–AIPS and COSSO-solver, because it uses the best model
chosen by v-fold-cross-validation which is computationally
costly. Note that the model discontinuities on the first derivative
in this example could benefit from using other regression method
which can handle discontinuities.
4.1.2. Global sensitivity analysis

In this subsection, we apply the COSSO–AIPS method in order
to estimate the total effect indices. The choice of COSSO–AIPS
instead of other COSSO methods was motivated by the good
performance of the method and its fast execution on the studied
examples in this paper. We first focus on the robustness of the
size effect of the sample used to estimate the indices. To this end,
we repeated the experiment 100 times with two different sample
size, N¼500 and N¼5000, built using maximinLHD. We estimate
the indices using a meta-model build by COSSO–AIPS of an
experimental design of size n¼400 and having a Q2 equal to
0.99. We compare the results to those obtained by Sobol’ method
of indices estimation based on the same COSSO–AIPS model and a
meta-model build by GP on the same experimental design, the Q2

for this meta-model is equal to 0.96. As introduced previously
Sobol’ method to estimate the total effect needs 2 samples, thus
we build, using a maximinLHD procedure, 200 samples of two
sizes: N¼500 and N¼5000. Fig. 2 summarizes the results for the
100 different samples and the two sizes (N¼500 and N¼5000).
Each panel is a boxplot of the 100 estimations of the total effect
index bSTj

, j¼ 1, . . . ,8. Red lines are drawn at the corresponding
analytical values of the total effects indices. We see that our direct
method of indices estimation based on COSSO procedure is more
robust than Sobol’ method using the COSSO–AIPS and GP meta-
models, especially when the sample size is small (N¼500).
Moreover our method needs only N evaluation of the COSSO–
AIPS meta-model while Sobol’ method needs 2Nd evaluations of
GP meta-model (for N¼5000, 80 000 evaluations are used). To
study the performance of the total effect indices estimations
versus the sizes of the experimental design we compute the
indices, using sample of size N¼5000, for each of the 50’s
realizations and for the three different experimental design sizes
(n¼100, n¼200 and n¼400). Fig. 3 summarizes the results. Each
panel is a boxplot of the 50 estimations of bSTj

, j¼ 1, . . . ,8. Red
lines are drawn at the corresponding analytical values of the total
effects indices. As expected the estimations based on GP meta-
models outperforms those based on COSSO–AIPS for n¼100 and
n¼200, which is due to the better performances in terms of Q2 of
the GP for these experimental design sizes. Nevertheless, for
n¼400 the estimations based on COSSO–AIPS are better than
those based on GP.

4.2. Example 2

Let us consider the same example that has been used in [15].
This 10 dimensional regression problem is defined as

f ðXÞ ¼ g1ðX
ð1Þ
Þþg2ðX

ð2Þ
Þþg3ðX

ð3Þ
Þþg4ðX

ð4Þ
Þþg1ðX

ð3Þ
þXð4ÞÞ

þg2
Xð1ÞXð3Þ

2

 !
þg3ðX

ð1ÞXð2ÞÞ ð38Þ



Fig. 3. Total effect indices vs. experimental design size effect (Example 1). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Table 3
95% CI and the reference values of the total effect indices

for Example 2.

Input Total effect 95% CI Reference value

Xð1Þ ½0:343,0:346� 0.344

Xð2Þ ½0:213,0:215� 0.214

Xð3Þ ½0:285,0:288� 0.286

Xð4Þ ½0:377,0:380� 0.379

Xð5,...,10Þ 0 0

Table 4
Q2 results from Example 2. The estimated standard devia-

tion of Q2 is given in parentheses.

n Q 2
Time (s)

COSSO–NN-LARS 100 0.80 (0.09) 6

200 0.94 (0.03) 30

400 0.99 (0.01) 118

COSSO–IPS 100 0.82 (0.08) 27

200 0.95 (0.02) 50

400 0.99 (0.01) 140

COSSO–AIPS 100 0.82 (0.08) 7

200 0.94 (0.02) 22

400 0.99 (0.01) 84

COSSO-solver 100 0.82 (0.08) 19

200 0.93 (0.03) 37

400 0.98 (0.01) 110

GP 100 0.76 (0.03) 25

200 0.88 (0.02) 95

400 0.94 (0.02) 490
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where

g1ðtÞ ¼ t; g2ðtÞ ¼ ð2t�1Þ2; g3ðtÞ ¼
sinð2ptÞ

2�sinð2ptÞ
;

g4ðtÞ ¼ 0:1 sinð2ptÞþ0:2 cosð2ptÞþ0:3 sin2
ð2ptÞ

þ0:4 cos3ð2ptÞþ0:5 sin3
ð2ptÞ

Therefore Xð5Þ, . . . ,Xð8Þ are uninformative. This analytical model is
fast enough to evaluate so we can calculate the total effect indices
with great precision. Thus the reference values of the indices are
computed by direct Monte-Carlo simulation using Sobol’ method
(with N¼250 000, which correspond to 5� 106 evaluations).
Table 3 shows 95% confidence intervals (95% CI) provided by
100 different samples and the chosen reference values

4.2.1. Assessment of the prediction accuracy

Table 4 summarizes the results for the 50 realizations of the
example 2 model with three different experimental design sizes
(n¼100, n¼200 and n¼400). Here we see that for all versions and
for all sizes of experimental designs the COSSO method outper-
forms GP. The accuracy for all methods improves as the experi-
mental design increases. Notice that the COSSO–AIPS method is
the fastest one, especially with a large experimental design size as
opposed to the GP, which is the slowest method.



Fig. 4. Total effect indices vs. sample effect (Example 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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4.2.2. Global sensitivity analysis

As in the previous subsection, we apply the COSSO–AIPS
method in order to estimate the total effect indices. We first
focus on the size effect of the sample used to estimate the indices.
Thus we build, using a maximinLHD procedure, 100 samples of
two sizes: N¼500 and N¼5000; then we estimate the indices by
the developed method as well as by Sobol’ method using a meta-
model built by COSSO–AIPS of an experimental design of size
n¼400 and having a Q2 equal to 0.99. We compare the results to
those obtained by Sobol’ method using GP meta-model on the
same experimental design, the Q2 of this meta-model is equal to
0.95. We then build 200 samples of two sizes: N¼500 and
N¼5000 using a maximinLHD procedure.

Fig. 4 shows the results obtained by the 100 different samples
and for the two sizes (N¼500 and N¼5000). Each panel is a
boxplot of the 100 estimations of the total effect indices bSTj

,
j¼ 1, . . . ,10. Red lines are drawn at the corresponding reference
values of the total effects indices. We see that our direct method
of indices estimation based on COSSO is more robust than Sobol’
one using the meta-models based on GP and COSSO–AIPS
especially when the sample size is small (N¼500).

A summary of the indices estimation on 50 realizations and for
the three different experimental design size (n¼100, n¼200 and
n¼400) is shown in Fig. 5. Each panel is a boxplot of the 50
estimations of bSTj

, j¼ 1, . . . ,10. Red lines are drawn at the
corresponding analytical values of the total effects indices. It
appears that the indices estimation using COSSO–AIPS suffers
more from the small experimental design sizes than GP, espe-
cially for those indices corresponding to the uninformative inputs.
However, as the sample size increases, our COSSO–AIPS method
performs better than Sobol’ method with GP.
4.3. Example 3

This third example is a high dimensional model with d¼20.
This model is defined as

f ðXÞ ¼ g1ðX
ð1Þ
Þþg2ðX

ð2Þ
Þþg3ðX

ð3Þ
Þþg4ðX

ð4Þ
Þþ1:5g2ðX

ð8Þ
Þþ1:5g3ðX

ð9Þ
Þ

þ1:5g4ðX
ð10Þ
Þþ2g3ðX

ð11Þ
Þþ1:5g4ðX

ð12Þ
Þþg3ðX

ð1ÞXð2ÞÞ

þg2
Xð1Þ þXð3Þ

2

 !
þg1ðX

ð3ÞXð4ÞÞþ2g3ðX
ð5ÞXð6ÞÞþ2g2

Xð5Þ þXð7Þ

2

 !

where the functions g1, g2, g3 and g4 are the same as for example
2. Notice that Xð13Þ, . . . ,Xð20Þ are uninformative. The reference
values of the total effect indices are computed by direct Monte-
Carlo simulation using Sobol’ method (with N¼250 000, which
corresponds to 5� 106 evaluations). Table 5 shows 95% confi-
dence intervals (95% CI) provided by 100 different samples and
the chosen reference values.

4.3.1. Assessment of the prediction accuracy

Table 6 summarizes the results for the 50 realizations of the
example 3 model with two different experimental design sizes
(n¼200 and n¼400) built using maximinLHD procedure. For this
example we choose to do not test COSSO–IPS since we shown in
the previous tests that AIPS have better computational perfor-
mance. It can be seen that for this model GP has a bad
performance for both sizes of the experimental design. We
suspect that the optimization method used to estimate the GP
covariance hyperparameters gets stucked in local minima and do
not provide an optimal solution. Concerning the COSSO methods



Fig. 5. Total effect indices vs. experimental design size effect (Example 2). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Table 5
95% CI and the reference values of the total effect indices for Example 3.

Input Total effect 95% CI Reference value

Xð1Þ ½0:050,0:051� 0.050

Xð2Þ ½0:031,0:032� 0.031

Xð3Þ ½0:042,0:043� 0.042

Xð4Þ ½0:055,0:057� 0.056

Xð5Þ ½0:139,0:141� 0.140

Xð6Þ ½0:129,0:132� 0.130

Xð7Þ ½0:033,0:034� 0.033

Xð8Þ ½0:050,0:051� 0.050

Xð9Þ ½0:116,0:119� 0.117

Xð10Þ ½0:147,0:149� 0.148

Xð11Þ ½0:207,0:210� 0.209

Xð12Þ ½0:147,0:149� 0.148

Xð13,...,20Þ 0 0

Table 6
Q2 results from Example 3. The estimated standard deviation of Q2 is given in

parentheses.

n Q 2
Time (s)

COSSO–NN-LARS 200 0.73 (0.10) 120

400 0.75 (0.08) 281

COSSO–AIPS 200 0.78 (0.08) 78

400 0.94 (0.04) 274

COSSO-solver 200 0.78 (0.09) 355

400 0.94 (0.02) 720

GP 200 0.40 (0.05) 240

400 0.56 (0.03) 1105
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we can see that as the size of the experimental design increases,
both COSSO–AIPS and COSSO-solver provide increasingly accurate
estimates. However, we can note that COSSO–NN-LARS does not
increase its performance as others and as one would expect. As for
previous examples, notice that COSSO–AIPS is the fastest method
especially comparing to COSSO-solver and GP.
4.3.2. Global sensitivity analysis

In this section, total effect indices are computed using COSSO–
AIPS. Here we do not compare the results to those using Sobol’
method with GP meta-model, because of its bad prediction perfor-
mance (see Table 6). As previously, we first study the effect of the
sample size N on indices estimations. We build 100 samples of two
sizes: N¼500 and N¼5000 with maximinLHD procedure and we
compute the indices using our direct method and Sobol’ method with
a predictive COSSO–AIPS meta-model (Q2¼0.98) using on an experi-
mental design of size n¼400. We can see in Fig. 6 that those
estimates are close to the reference values of the indices and that
robustness of estimations increases by increasing N. Note that with
N¼500 estimations are still quite good. In addition, as for the
previous examples the direct method outperforms the Sobol’ method.

Fig. 7 summarizes the results using meta-models built with
two different sizes of experimental design (n¼200 and n¼400).
As one would expect the accuracy of the indices estimations



Fig. 6. Total effect indices vs. sample effect (Example 3).

Fig. 7. Total effect indices vs. experimental design size effect (Example 3).
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improves as the experimental design increases (in other words as
the predictivity improves). This study was done using the 50
meta-models used in the previous section using a N¼5000
sample to compute the total effect indices.
5. Petroleum reservoir test cases

5.1. PUNQS test case

5.1.1. Reservoir model description

The PUNQS case is a synthetic reservoir model taken from a
real field located in the North Sea. The PUNQS test case, which is
qualified as a small-size model, is frequently used as a benchmark
reservoir engineering model for uncertainty analysis and for
history-matching studies.

The geological model contains 19�28�5 grid blocks, 1761 of
which are active. The reservoir is surrounded by a strong aquifer
in the North and the West, and is bounded to the East and South
by a fault (Fig. 8). A small gas cap is located in the centre of the
dome shaped structure. The geological model consists of five
independent layers, where the porosity distribution in each layer
was modelled by geostatistical simulation. The layers 1, 3, 4 and
5 are assumed to be of good quality, while the layer 2 is of poorer
quality. The field contains six production wells located around the
gas–oil contact. Due to the strong aquifer, no injection wells are



Fig. 8. Top structure map of the reservoir field (PUNQS test case).

Table 7
PUNQS model Q2 results.

n Q2 Time (s)

COSSO–NN-LARS 200 0.67 200

400 0.81 450

COSSO–AIPS 200 0.69 70

400 0.82 300

COSSO-solver 200 0.67 280

400 0.81 700

GP 200 0.75 402

400 0.84 794
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required. For more detailed description on the model see [27].
Twenty uncertain parameters uniformly distributed and indepen-
dent, are considered in this study


 DensityGas U½0:8;0:9� kg=m3: gas density



 DensityOil U½900;950� kg=m3: oil density



 MPH U½0:5;1:5�: horizontal transmissibility multipliers for

each layers (from 1 to 5)



 MPV U½0:5;5�: vertical transmissibility multipliers for each

layers (from 1 to 5)



 PermAqui1 U½100;200� mD: analytical permeability of the

aquifer 1



 PermAqui2 U½100;200� mD: analytical permeability of the

aquifer 2



 PoroAqui1 U½0:2;0:3�: analytical porosity of the aquifer 1



 PoroAqui2 U½0:2;0:3�: analytical porosity of the aquifer 2



 SGCR U½0:02;0:08�: critical gas saturation



 SOGCR U½0:2;0:3�: critical oil gas saturation; largest oil satura-

tion at which oil is immobile in gas



 SOWCR U½0:15;0:2�: critical oil water saturation; largest oil

saturation at which oil is immobile in water



 SWCR U½0:2;0:3�: critical water saturation

For this study we focus on an objective function output, defined
as

OFðXÞ ¼
ðf ðXÞ�dÞT C�1

D ðf ðXÞ�dÞ

2
ð39Þ

where CD is the covariance matrix of the observed data and d

the observed data. The objective function (39) represents the
mismatch between observed and simulated data. This data con-
sists of time series given with two months frequency during the
first 6 years for the following simulator outputs: Gas Oil Ratio,
Bottom Hole Pressure, Oil Production Rate, and Water Cut. The
observed data is synthetically generated using a random value for
the uncertain parameters in the simulator and adding, to each
time step of the results, random Gaussian noise, with mean zero
and standard deviation of 10% of the average value of the
corresponding time series. To define the weights in the objective
function definition, we consider independent measurement errors
for each time dependent output. This error was taken to be equal
to 10% of the average value of each time series.

5.1.2. Assessment of the prediction accuracy

Each of the input range has been rescaled to the interval ½0,1�
and the reservoir simulator is run on two experimental designs of
size n¼200 and n¼400, which were built using maximinLHD.
Then we construct meta-models using COSSO–AIPS, COSSO-sol-
ver, COSSO–NN-LARS and GP. In order to estimate Q2 the
simulator was run at an additional sample set of size ntest ¼ 500.
Table 7 shows the results of this study. We see that for this test
case GP outperforms COSSO’s methods, but differences between
Q2 given by the used methods are small when the design size is
n¼400. In addition, as previously shown COSSO–AIPS is less time
consuming than others especially if we compare it with GP.
Consequently COSSO and particularly COSSO–AIPS is well adapted
to perform GSA.

5.1.3. Global sensitivity analysis

Here we use COSSO–AIPS and GP to produce meta-models
which are built using the experimental design of size n¼400. To
compute the total effect and main effect indices via COSSO–AIPS
we use a sample of size N¼5000 and two samples of the same
size for the case using GP. We provided here the main effect
indices to show the reader the importance of the interaction
effects in this model. Table 8 shows the computed indices: we can
see that the main effect and the interactions of MPH5 explain
more than 65% of the model variance, then we have a group
of five inputs (SWCR, MPH1, SOGCR, SGCR and PermAqui1 )
with relatively important effects and a group of five or six
(depending on the method used) inputs with poor importance
(0:054bSTj

40:01), while the remaining are considered as unin-
formative. The GSA results using COSSO–AIPS and GP are almost
equivalent.

5.2. IC fault model

5.2.1. Reservoir model description

The geological model consists of six layers of alternating good
and poor quality sands (see Fig. 9). The three good quality layers
have identical properties, and three poor quality layers have
different set of identical properties. The thickness of the layers



Table 8
GSA from PUNQS model.

Input Total effect Main effect

GP

MPH5 0.656 0.396

SWCR 0.193 0.013

MPH1 0.143 0.035

SOGCR 0.122 0.003

SGCR 0.112 0.021

PermAqui1 0.060 �0:011

MPH3 0.049 0.001

DensityOil 0.040 �0:007

PermAqui2 0.035 �0:010

SOWCR 0.024 �0:019

MPV4 0.023 �0:016

MPV1 0.005 �0:019

MPV2 0.005 �0:019

MPV5 0.004 �0:018

MPV3 0.002 �0:018

PoroAqui1 0.003 �0:017

DensityGas 0.001 �0:019

MPH4 0.001 �0:018

MPH2 0.001 �0:019

PoroAqui2 0 �0:019

COSSO–AIPS

MPH5 0.664 0.402

SWCR 0.203 0.034

MPH1 0.160 0.058

SGCR 0.104 0.041

SOGCR 0.091 0.019

PermAqui1 0.062 0.003

MPH3 0.034 0.007

PermAqui2 0.021 0.002

MPV1 0.021 0

DensityOil 0.019 0.008

MPV4 0.018 0.004

SOWCR 0.011 0.003

PoroAqui2 0.005 0.001

PoroAqui1 0.004 0.002

MPV3 0.003 0

MPV5 0.002 0

MPV2 0.002 0

DensityGas 0.001 0

MPH2 0 0

MPH4 0 0

Fig. 9. IC fault model.

Fig. 10. Oil production rate after 10 years vs. kg and kp at a fixed high value of h

(obtained with 1000 simulations).
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has arithmetic progression, with the top layer having a thickness
of 12.5 feet, the bottom layer a thickness of 7.5 feet, and a total
thickness of 60 feet. The width of the model is 1000 feet, with a
simple fault at the mid-point, which off-sets the layers. There is a
water injector well at the left-hand edge, and a producer well on
the right-hand edge. Both wells are completed on all layers, and
operated at a fixed bottom hole pressure.
The simulation model is 100�12 grid blocks, with each
geological layer divided into two simulation layers with equal
thicknesses, each grid block is 10 feet wide. The model is
constructed such that the vertical positions of the wells are kept
constant and equal, even when different fault throws are con-
sidered. The well depth is 8325–8385 feet.

The porosity and permeabilities in each grid block were randomly
drawn from uniform distributions with no correlations. The range
for the porosities was 710 of the mean value, while range for
the permeabilities was 71 of the mean value. The means for the
porosities were 0.30 for the good quality sand and 0.15 for the bad
quality sand. The means of the permeabilities were 158.6 mD for the
good quality sand and 2.0 mD for the poor quality sand.

This simplified reservoir model has three uncertain input para-
meters, corresponding to the fault throw h, the good and the poor
sand permeability multipliers kg and kp. The three parameters are
selected independently from uniform distributions with ranges:
hA ½0,60� kg A ½100,200� and kpA ½0,50�. The analyzed output is in
this test case the oil production rate Qop at 10 years. Fig. 10
illustrates this output against kg and kp at a fixed high value of h.
For more detailed description on the IC fault model, see [28].

5.2.2. Assessment of the prediction accuracy

The simulator is run on four experimental designs of size n¼100,
n¼200, n¼400 and n¼1600 generated by maximinLHD procedure.
Then we construct meta-models using COSSO–AIPS and GP. In order
to estimate Q2, the simulator was run at an additional sample set of
size ntest ¼ 25 000. Table 9 shows the results of this study. Clearly,
COSSO–AIPS outperforms GP in this test case, however an experi-
mental design of size n¼400 is necessary to provide a reasonably
accurate estimate. Moreover, we can note that as the experimental
design increases the accuracy of COSSO–AIPS estimate increases, this
is not the case for GP as remarked in example 1. This can be probably
explained by the fact that the stationarity hypothesis made here in
the GP is not valid [29]. Indeed, by increasing the design from 200 to
400 instead of improving, the estimate becomes worse in terms of
predictivity. Even if there are only three uncertain inputs in this test
case, the approximation of the input/output relation is a complicated
problem. This is due to the presence of the fault that provide strong
discontinuities in the model.

5.2.3. Global sensitivity analysis

As for PUNQS test case we use COSSO–AIPS and GP to produce
meta-models which are built using the experimental design of



Table 9
IC fault model Q2 results.

n Q2 Time (s)

COSSO–AIPS 100 0.34 1

200 0.63 4

400 0.72 15

1600 0.81 280

GP 100 0.33 8

200 0.57 25

400 0.52 63

1600 0.66 1128

Table 10
GSA from IC fault model.

Input Total effect Main effect

GP

h 0.381 0.100

kg 0.173 0.021

kp 0.809 0.596

COSSO–AIPS

h 0.375 0.225

kg 0.030 0.011

kp 0.733 0.586
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size n¼1600. To compute the total effect and main effect indices
via COSSO–AIPS we use a sample of size N¼5000 and two
samples of the same size for the case using GP. Table 10 shows
the computed indices. Following the GSA results produced via
COSSO–AIPS, we can see that the variance of the oil production
rate mainly depend on the fault throw h and the poor sand
permeability kp. With respect to GSA, results produced via GP
gives more interaction effect to the good sand permeability kg

than COSSO–AIPS. The better Q2 of COSSO–AIPS suggests that its
GSA results are more robust.
6. Conclusion

In this work, we presented the COSSO regularized nonpara-
metric regression method, which is a model fitting and variable
selection procedure. One of the COSSO algorithm steps is the NNG
optimization problem. The original COSSO algorithm uses classical
constrained optimization techniques to solve the NNG problem.
These techniques are efficient but time consuming, especially with
high dimensional problems (as empirically shown) and with large
size of experimental design (large number of observations). A new
iterative algorithm was developed, so-called IPS with its accelerated
version (AIPS). Based on the Landweber iterations these procedures
are conceptually simple and easy to implement.

We also applied the NN-LARS algorithm to COSSO that has also
competitive computation time performance comparing to the
original COSSO (COSSO-solver). We empirically show that COSSO
based on the AIPS algorithm is the fastest COSSO version.

Moreover, we used the ANOVA decomposition basis of the COSSO
to introduce a direct method to compute the Sobol’ indices. We
applied COSSO to the problem of GSA for several analytical models
and reservoir synthetic test cases, and we compared its performance
to GP method combined with Sobol’ Monte-Carlo method. For all
the test cases COSSO shows very competitive performances, espe-
cially the COSSO–AIPS version, for which the computational gain was
significant compared to COSSO-solver and GP. Consequently,
COSSO–AIPS constitutes an efficient and practical approach to GSA.
It may be possible to improve the performance of COSSO–AIPS
by using an adaptive weight in the COSSO penalty [30] which may
allows for more flexibility to estimate influential functional
components and in the same time providing heavier penalty to
non-influential functional components.
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Appendix A. Gaussian process

In the underlying statistical model of GP (also known
as kriging) [31], the deterministic response, say, f : Rd-R, is
considered as a realization of a random function. Therefore, the
simulator f is treated as a realization of a stochastic process,
whose form is assumed as

SðxiÞ ¼
Xk

j ¼ 1

bjhjðxiÞþZðxiÞ ðA:1Þ

The regression part in this stochastic model (A.1) is a linear
combination of preselected real-valued functions h1, . . . ,hk, with
coefficients b¼ ðb1, . . . ,bkÞ

T ARk, where h1 is a constant. Moreover,
Z in (A.1) is assumed to be a Gaussian random process with mean
zero and covariance

cov½x,y� ¼ E½ZðxÞZðyÞ� ¼ s2Rðx,yÞ ðA:2Þ

between ZðxÞ and ZðyÞ, where s2 denotes the process variance,
Rðx,yÞ is a specific correlation function, and the symbol E denotes
the usual statistical expectation. The selection of the functions
h2, . . . ,hk of the regression part in the stochastic model (A.1)
relies on prior knowledge concerning the model response.
For instance, in this work we only used h1 which is a constant
term. The correlation function, R, was selected following the
common approach in [32–34], where it is suggested to use a
correlation function of the form

Rðx,yÞ ¼ rðx�yÞ ¼ exp �
Xd

j ¼ 1

yj9xj�yj9
pj

0@ 1A ðA:3Þ

with yj40, 1r jrd, and 0opjr2.
Moreover, by following the recommendations in [32], the

unknown coefficients h¼ ðy1, . . . ,ydÞARd and p in (A.3) are deter-
mined by maximum likelihood estimation (MLE). Likewise, the para-
meter s for the process variance in (A.2) and bARk are determined
by MLE, see [32] for details. The required numerical optimization
relies on the algorithm L-BFGS-B, a constrained version of the quasi-
Newton method, due to Byrd et al. [35]. We apply the L-BFGS-B
algorithm with different random choices for the initial point.
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