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Inference Based on Randomization
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Chapter 1

The Completely Randomized Design with a

Numerical Response

A Completely Randomized Design (CRD) is a particular type of comparative study. The word

design means that the researcher has a very specific protocol to follow in conducting the study.

The word randomized refers to the fact that the process of randomization is part of the design.

The word completely tells us that complete randomization is required, in contrast to some form of

incomplete randomization, such as the randomized pairs design we will study later in these notes.

What is a numerical response? See the following section.

1.1 Comparative Studies

So, what is a comparative study? Let’s look at its two words, beginning with the word study.

According to dictionary.com (http://dictionary.reference.com) the fifth definition

of study is:

Research or a detailed examination and analysis of a subject, phenomenon, etc.

This reasonably well fits what I mean by a study. Next, again according to dictionary.com, the first

definition of compare (the root word of comparative) is:

To examine (two or more objects, ideas, people, etc.) in order to note similarities and

differences.

Because of time limitations, for the most part in these notes we will restrict attention to exactly

two, as opposed to two or more, things being compared.

In the examples of the first two chapters, Dawn wants to compare two flavors of cat treats;

Kymn wants to compare two settings on an exercise machine; Sara wants to compare two golf

clubs; andCathywants to compare two routes for jogging. In the practice and homework problems

of these first two chapters you will be introduced to several other comparative studies. Indeed, a

large majority of the chapters in this book are devoted to comparative studies. Why? Two reasons:

3
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1. Comparative studies are extremely important in science.

2. The discipline of Statistics includes several good ideas and methods that help scientists per-

form and analyze comparative studies.

Next, some terminology: the two things being compared are called the two levels of the study

factor. For our examples we have the following study factors and levels.

• Dawn’s study factor is the flavor of the cat treat, with levels equal to chicken-flavored and

tuna-flavored.

• For Kymn’s study, her exercise apparatus is called an ergometer which requires two choices

by its operator. Kymn’s study factor is the machine setting with first level defined as small

gear with the vent closed; her second level is large gear with the vent open.

• Sara’s study factor is the golf club she used with levels 3-Wood and 3-Iron,

• Cathy’s study factor is the route for her one mile run with levels at her local high school and

through the park.

The remaining components of a comparative study are:

• The units that provide the researcher with information.

• The response which is the particular information from the unit of interest to the researcher.

• One of the followingmethods:

– The researcher identifies each unit with its level of the study factor, or

– The researcher assigns each unit to a level of the study factor.

I choose to introduce you to the units and the response for each of our studies in the various sections

below. I do want to say a bit about themethod in the last bullet of the above list.

Examples of identifying, sometimes called classifying, are: comparing men and women; com-

paring old people with young people; comparing residents of Wyoming with residents of Wiscon-

sin. Our development of randomization-based inference—beginning with Chapter 3—in Part I of

these notes, will not consider any studies that involve identifying units with levels.

As the last sentence implies, randomization-based inference is restricted to studies in which

the researcher has the option of assigning units to levels. In fact, as the name suggests, we attend

only to those studies in which the researcher exercised the option of assignment by using a method

called randomization. You will learn about randomization in Chapter 3.
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1.2 Dawn’s Study; Various Tools

Dawn completed my class several years ago. In this section you will be introduced to Dawn’s

project.

The choice of a project topic, or, indeed, any research, should begin with a curiosity about how

the world operates. Here is Dawn’s motivation for her study, as she wrote in her report.

I decided to study my cat’s preference to two different flavors of the same brand-name

cat treats. I was interested in this study because I figured that Bob, my cat, would

prefer the tuna-flavored treats over the chicken-flavored because Bob absolutely loves

canned tuna with a passion. My interest came when I looked at the ingredients on the

two labels. I noticed that the percentage of real chicken in the chicken-flavored treats

was larger than the percentage of real tuna in the tuna-flavored treats.

Thus, Dawn had a pretty good idea of what she wanted to study. Her next step was to operationalize

the above notions into the standard language of a comparative study. We know her study factor

and its levels from the previous section. Now, we need to specify: the definition of the units and

the response.

A unit consisted of presenting Bob with a pile of ten treats, all of the same flavor. The flavor of

the treats in the pile determined the level of the study factor for that unit: either chicken (level 1)

or tuna (level 2). The response is the number of treats that Bob consumed in five minutes.

The technical term unit is not very descriptive. In this course there will be two types of units:

trials and subjects. Dawn’s units are trials. Essentially, we have trials if data collection involves

doing something repeatedly. In Dawn’s case this something is setting out a pile of ten treats. And

then doing it again the next day. By contrast, in many studies the different units are different

people. When the units are people, or other distinct objects, we call them subjects. As we will

see later in these notes, sometimes the distinction between trials and subjects is blurry; fortunately,

this doesn’t matter.

Dawn decided to collect data for 20 days, with one trial per day. Dawn further decided to

have 10 days assigned to each level of her study factor. (Sometimes, as here, I will speak of

assigning units to levels. Other times I will speak of assigning levels to units. These two different

perspectives are equivalent.) Dawn had to decide, of course, which days would be assigned to

chicken-flavored and which days would be assigned to tuna-flavored. She made this decision by

using a method called randomization. Randomization is very important. We will learn what it is

in Chapter 3. In fact, the word randomized in CRD emphasizes that trials are assigned to levels

by randomization. Without randomization, we have some other kind of comparative study; not a

CRD.

For example, suppose a researcher wants to compare the heights of adult men and women. The

study factor would be sex with levels male and female. Note that the researcher most definitely

cannot assign subjects (individual adults) to level (female or male) by randomization or any other

method! Sex as a study factor is an example of a classification factor, also called observational

factor because each unit is classified according to the level it possessed before entry into the study.

Thus, for example, Sally is a female before the study begins; she is not assigned by the researcher

to be a female.
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Table 1.1: Dawn’s data on Bob’s consumption of cat treats. ‘C’ [‘T’] is for chicken [tuna] flavored.

Day: 1 2 3 4 5 6 7 8 9 10

Flavor: C T T T C T C C C T

Number Consumed: 4 3 5 0 5 4 5 6 1 7

Day: 11 12 13 14 15 16 17 18 19 20

Flavor: C T C T C C T C T T

Number Consumed: 6 3 7 1 3 6 3 8 1 2

Whenever units are assigned by randomization to levels, we call the levels treatments. Thus, if

you hear a researcher talking about the treatments in a study, you may conclude that randomization

was utilized.

When Dawn randomized, she arrived at the following assignment:

Trials 1, 5, 7, 8, 9, 11, 13, 15, 16 and 18 are assigned to chicken-flavored treats and

the remaining ten trials are assigned to tuna-flavored treats.

Very imprecisely, the purpose of a CRD is to learn whether the treatments influence the

responses given by the units. For Dawn, this becomes: Does the flavor of the treat influence the

number of treats that Bob consumes?

Here is an aside, especially for readers with a strong background in experimentation: A key

word in the above is influence. In many types of studies, hoping to find influence is too opti-

mistic; in these cases we can seek only an association between the two levels being compared

and the response. As we will see later, randomization plays a key role here. Roughly speaking,

with randomization we might find influence; without randomization, the most we can hope for is

association.

There are several other important features of how Dawn performed her study, but I will defer

them for a time and introduce the numbers she obtained. Dawn’s data are presented in Table 1.1.

Let me make a few brief comments about this display.

I use the terms specific to Dawn’s study as my labels in this table; namely, day, flavor and

number of treats consumed as opposed to trial (or unit), treatment and response. A major goal of

mine is to develop a unified approach to CRDs and for this goal, general language is preferred.

When we are considering a particular study, however, I prefer language that is as descriptive of the

study’s components as possible.

Take a few moments to make sure you understand the presentation in Table 1.1. For example,

note that on day 6, Bob was presented tuna-flavored treats and he consumed four of them.

My next step in presenting Dawn’s data is to separate, by treatment, the list of 20 numbers into

two groups of 10. These appear in Table 1.2. Note that in this table I preserve the order in which

the data, within treatment, were collected; e.g., the first time Bob was presented with chicken (day

#1), he consumed 4 treats; the second time (day #5) he consumed 5 treats; and so on. I have done
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Table 1.2: Dawn’s data on Bob’s consumption of cat treats, by treatment.

Observation Number: 1 2 3 4 5 6 7 8 9 10

Chicken : 4 5 5 6 1 6 7 3 6 8

Tuna: 3 5 0 4 7 3 1 3 1 2

Table 1.3: Dawn’s data on Bob’s consumption of cat treats, sorted within each treatment.

Position: 1 2 3 4 5 6 7 8 9 10

Chicken: 1 3 4 5 5 6 6 6 7 8

Tuna: 0 1 1 2 3 3 3 4 5 7

this because sometimes a researcher wants to explore whether there is a time-trend in the data. We

won’t look for a time-trend in this study, in part, to keep this presentation simple.

Usually it is useful to sort—always from smallest to largest in Statistics—the data within each

treatment. I present these new lists in Table 1.3. Of the three tables I have created with Dawn’s

data, I find the sorted data easiest to interpret quickly. For example, I can see easily the smallest

and largest response values for each treatment and, more importantly, that, as a group, the chicken

responses are substantially larger than the tuna responses.

In Statistics we talk a great deal about within group and between group variation. Within the

sorted list of chicken data, I see variation. Indeed, I would say that there is a great deal of day-

to-day variation in Bob’s consumption of chicken-flavored treats. Similarly, I see a great deal of

variation within the sorted tuna data. Finally, I see a substantial amount of variation between the

flavors: the responses to chicken are clearly larger, as a group, than the responses to tuna. In fact,

you can easily verify that overall Bob ate 51 chicken treats compared to only 29 tuna treats.

Statisticians and scientists find it useful to draw a picture of data. We will learn a variety of

pictures, starting with the dot plot also called the dot diagram. The dot plots for Dawn’s data are

in Figure 1.1. Some of you are already familiar with dot plots. Others may find them so obvious

that no explanation is needed, but I will give one anyways. I will explain a dot plot by telling you

how to construct one. Look at the dot plot for chicken. First, I draw a segment of the number line

that is sufficient to represent all data, using the method described below. The plot contains 10 dots,

one for each of the 10 chicken responses. Dots are placed above each response value. When a

particular response value occurs more than once, the dots are stacked so that we can see how many

are there. For example, there are three dots above the number ‘6’ in the dot plot of the chicken data

because on three chicken-days Bob consumed six treats.

Statisticians enjoy looking at a dot plot and labeling its shape. I don’t see a shape in either of

these dot plots. Indeed, I would argue that it is extremely unusual to see a shape in a small amount

of data. One thing that I do see is that neither of these dot plots is symmetric. Left-to-right

symmetry is a big deal in Statistics-pictures (as we will see). With real data perfect left-to-right

symmetry is extremely rare and we are usually happy to find approximate symmetry. In fact, I
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Figure 1.1: The dot plots for the cat treat study.

Chicken:

0 1 2 3 4 5 6 7 8

• • • •• ••
•

• •

Tuna:

0 1 2 3 4 5 6 7 8

• •• • ••
•

• • •

would say that the tuna dot plot is approximately symmetric. You may reasonably disagree and it

turns out not to matter much in this current example.

Do you recall my earlier remarks about within and between variation in these data? I comment

now that these features are easier to see with the dot plots than with the listings of sorted data. This

is a big reason why I like dot plots: Sometimes they make it easier to discover features of the data.

It is, of course, a challenge to look at 10 (for either treatment) or 20 (for comparing treatments)

response values and make sense of them. Thus, statisticians have spent a great deal of time studying

various ways to summarize a lot of numbers with a few numbers. This can be a fascinating topic

(well, at times, for statisticians, if not others) because of the following issues:

1. Are there any justifications for selecting a particular summary?

2. For a given summary, what are its strengths and desirable properties?

3. What are the weaknesses of a given summary?

Statisticians classify summaries into three broad categories. (There is some overlap between these

categories, as you will learn later.)

1. Measures of center. Examples: mean; median; mode.

2. Measures of position. Examples: percentiles, which include quartiles, quintiles and median.

Also, percentiles are equivalent to quantiles.

3. Measures of variation (also called measures of spread). Examples: range; interquartile range;

variance and standard deviation.

Don’t worry about all of these names; we will learn a little bit about some of them now and will

learn more later. I suspect that many of you already know a little or a lot about several of these

summaries. (For example, my granddaughter learned about medians at age nine in fourth grade.)
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For Dawn’s data we will learn about the three measures of center listed above. To this end, it

will be convenient to adopt some mathematical notation and symbols. We denote the data from the

first [second] treatment by the letter x [y]. Thus, Dawn’s chicken data are denoted by x’s and her

tuna data are denoted by y’s. We distinguish between different observations by using subscripts.

Thus, in symbols, Dawn’s chicken data are:

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10.

Obviously, it was very tedious for me to type this list and, thus, in the future I will type simply

x1, x2, . . . x10. Similarly, Dawn’s tuna data are denoted by y1, y2, . . . y10.
Our next bit of generalization is needed because we won’t always have 10 observations per

treatment. Let n1 denote the number of observations on treatment 1 and n2 denote the number of

observations on treatment 2. For Dawn’s data, of course, n1 = n2 = 10. Whenever n1 = n2 we

say that the study is balanced.

The subscripts on the x’s and y’s denote the order in which the data were collected. Thus, for

example, x1 = 4 was the response on the first chicken-day; x2 = 5 was the response on the second
chicken-day; and so on.

We will need notation for the sorted data too. We try to avoid making notation unnecessarily

confusing. Thus, similar things have similar notation. For the sorted data we still use x’s and
y’s as above and we still use subscripts, but we denote sorting by placing the subscripts inside

parentheses. Thus, Dawn’s sorted chicken data are:

x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10).

More tediously, for Dawn’s chicken data

x(1) = 1, x(2) = 3, x(3) = 4, x(4) = 5, x(5) = 5, x(6) = 6, x(7) = 6, x(8) = 6, x(9) = 7, x(10) = 8.

Note that the collection of sorted values

x(1), x(2), . . . x(n1)

is called the order statistics of the data.

The mean of a set of numbers is its arithmetic average. For example, the mean of 5, 1, 4 and

10 is:

(5 + 1 + 4 + 10)/4 = 20/4 = 5.

We don’t really need a mathematical formula for the mean, but I will give you one anyways. Why?

Well, later you will need to be comfortable with some formulas of this type, so we might as well

introduce an easy one now.

Suppose we havem numbers denoted by

w1, w2, w3 . . . wm.

The mean of thesem numbers is

w̄ =
w1 + w2 + w3 + . . .+ wm

m
=

∑m
i=1wi

m
=

∑

w

m
. (1.1)
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As you can see, we denote the mean by w̄, read w-bar. For our notation for a CRD, we will have

means denoted by x̄ and ȳ. Often in these notes I will be informal in my use of summation notation;

for example,
∑

w in these notes will be an instruction to sum all the w’s in the problem at hand.

Note, of course, that for any set of data, summing sorted numbers gives the same total as

summing unsorted numbers. You may easily verify that for Dawn’s data:

x̄ = 51/10 = 5.1 and ȳ = 29/10 = 2.9.

In words, in Dawn’s study, the mean number of chicken treats eaten by Bob is larger than the mean

number of tuna treats eaten by Bob. Usually (but not always; exceptions will be clearly noted), we

compare two numbers by subtracting. Thus, because 5.1 − 2.9 = 2.2 we will say that the mean

number of chicken treats eaten by Bob is 2.2 larger than the mean number of tuna treats eaten by

Bob.

The idea of the median of a set of numbers is to find the number in the center position of the

sorted list. This requires some care because the method we use depends on whether the sample

size is an odd number or an even number. For example, suppose we have five sorted numbers: 1,

3, 6, 8 and 8. There is a unique center position, position 3, and the number in this position, 6, is the

median. If, however, the sample size is even, we need to be more careful. For example, consider

four sorted numbers: 1, 4, 5 and 10. With four positions total, positions 2 and 3 have equal claim

to being a center position, so the median is taken to be the arithmetic average of the numbers in

positions 2 and 3; in this case the median is the arithmetic average of 4 and 5, giving us 4.5.

For both sets of Dawn’s data (chicken and tuna) there are 10 numbers; hence, there are two

center positions, namely positions 5 and 6. If you look at Table 1.3 on page 7 again, you will

see that the median for Dawn’s chicken data is (5 + 6)/2 = 5.5 and the median for her tuna data

(3 + 3)/2 = 3.
If we have m numbers denoted by w’s then the median is denoted by the symbol w̃, which is

read as w-tilde. There are two formulas for calculating the median.

• If the sample sizem is an odd integer, define k = (m+ 1)/2, which will be an integer.

w̃ = w(k) (1.2)

• If the sample sizem is an even integer, define k = m/2, which will be an integer.

w̃ = (w(k) + w(k+1))/2 (1.3)

You are not required to use these formulas. Usually, I find it easier to visually locate the center

position(s) of a list of sorted data.

I have one additional comment on Equation 1.2, which applies to many of the equations and

formulas in these notes. When you are reading this equation, do not have your inner-voice say,

“w-tilde equals w-sub-parentheses-k.” This sounds like gibberish and won’t help you learn the

material. Instead, read what the equation signifies. In particular, I recommend reading the equation

as “We obtain the median by finding the number in position k of the sorted list.” Similarly, I read

Equation 1.3 as, “We obtain the median by taking the arithmetic average of two numbers. The first
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of these numbers is the number in position k of the sorted list. The second of these numbers is

immediately to the right of the first number.”

We won’t use the mode much in these notes, but I will mention it now for completeness. It is

easiest to explain and determine the mode by looking at a dot plot of the data. Refer to Figure 1.1

on page 8. In the chicken dot plot the tallest stack of dots occurs above the number 6. Thus, 6 is

the mode of the chicken data. Similarly, the mode of the tuna data is 3. If two (or more) response

values are tied for being most common, they are both (all) called modes. As an extreme case, with

a set ofm distinct numbers, every response value is a mode. It seems bizarre to claim that reporting

m values of the mode is a summary of them observations!

1.2.1 A Connection Between Pictures and Numbers

For any set of numbers, there is a very strong connection between their dot plot and their mean.

Suppose that we have m numbers denoted by w1, w2, . . . wm. As usual, let w̄ denote the mean

of these numbers. From each wi we can create a new number, called its deviation, which is short

for deviation from the mean. We create a deviation by taking the number and subtracting the

mean from it. Symbolically, this gives us the followingm deviations:

w1 − w̄, w2 − w̄, . . . , wm − w̄.

Let’s have a quick example. Suppose that m = 3 and the three observations are 4, 5 and 9,

which gives a mean of w̄ = 6. Thus, the deviations are

4− 6, 5− 6 and 9− 6; or − 2,−1 and 3.

Below is a dot plot of our three numbers.

4 5 6 7 8 9

• • •

Below is the same dot plot with the deviations identified.

4 5 6 7 8 9

• • •
Deviations:

Observations:

−2 −1 +3

The following points are obvious, but I want to mention them anyways:

• The observation 4 has deviation −2 because it is two units smaller than the mean.

• The observation 5 has deviation −1 because it is one unit smaller than the mean.

• The observation 9 has deviation +3 because it is three units larger than the mean.

11



In general, a non-zero deviation has a sign (positive or negative) and a magnitude (its absolute

value). Thus, the deviations for the three observations 4, 5 and 9 have signs: negative, negative

and positive and magnitudes 2, 1 and 3, both respectively. The sign of a deviation tells us whether

its observation is smaller than (negative) or larger than (positive) the mean. The magnitude of

a deviation tells us how far its observation is from the mean, regardless of direction. Note, of

course, that an observation has deviation equal to zero (which has no sign, being neither positive

nor negative, and magnitude equal to 0) if, and only if, it is equal to the mean of all the numbers in

the data set.

You have probably noticed that the three deviations for my data set sum to zero; this is not an

accident. For any set of data:

m
∑

i=1

(wi − w̄) =
m
∑

i=1

wi −mw̄ = mw̄ −mw̄ = 0.

In words, for any set of data, the sum of the deviations equals zero. Statisticians (and others)

refer to this property by saying that the mean is equal to the center of gravity of the numbers. If

this terminology seems a bit mysterious or arbitrary, perhaps the following will help.

Below I have once again drawn the dot plot of my data set ofm = 3 numbers: 4, 5 and 9, with

one addition to the picture.

3 4 5
�@

7 8 9

• • •

I have placed a fulcrum at the value of the mean, 6. Imagine the number line as the board on a

seesaw and imagine that this board has no mass. Next, imagine each dot as having the same mass.

Next, view the three dots as three equal weight (equal mass) children sitting on the board. We can

see that with this scenario that with the fulcrum placed at the mean, 6, the seesaw will balance.

Look at the dot plots for Dawn’s data in Figure 1.1 on page 8. First, consider the chicken data.

We can see quickly that if we placed a fulcrum at 5, the picture would almost balance; in fact,

recall, that x̄ = 5.1. Similarly, looking at the tuna data, we can see quickly that if we placed a

fulcrum at 3, the picture would almost balance; in fact, recall, that ȳ = 2.9. Thus, we can look at

a dot plot and get a quick and accurate idea of the value of the mean.

1.3 The Standard Deviation

I have mentioned, for example, the within-chicken variation in Dawn’s data. We need a number that

summarizes this variation. The summary we choose is a function of the deviations defined above.

Actually, there are two measures of variation, also called spread, that we will investigate: the

variance and the standard deviation. These two measures are very closely related; the standard

deviation is the square root of the variance. Or, if you prefer, the variance is the square of the

standard deviation. As a rough guide, statisticians prefer to measure spread with the standard

deviation while mathematicians prefer to use the variance. As the course unfolds, you can decide
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Table 1.4: The computation of the variances and standard deviations for Dawn’s data on Bob’s

consumption of cat treats.

Chicken Tuna

Observation x x− x̄ (x− x̄)2 y y − ȳ (y − ȳ)2

1 4 −1.1 1.21 3 0.1 0.01
2 5 −0.1 0.01 5 2.1 4.41
3 5 −0.1 0.01 0 −2.9 8.41
4 6 0.9 0.81 4 1.1 1.21
5 1 −4.1 16.81 7 4.1 16.81
6 6 0.9 0.81 3 0.1 0.01
7 7 1.9 3.61 1 −1.9 3.61
8 3 −2.1 4.41 3 0.1 0.01
9 6 0.9 0.81 1 −1.9 3.61
10 8 2.9 8.41 2 −0.9 0.81
Total 51 0.0 36.90 29 0.0 38.90

Mean x̄ = 51/10 = 5.1 ȳ = 29/10 = 2.9

Variance s21 = 36.9/9 = 4.100 s22 = 38.9/9 = 4.322

Stand. Dev. s1 =
√
4.1 = 2.025 s2 =

√
4.322 = 2.079

which measure you prefer. It’s not really a big deal; as best I can tell, mathematicians prefer the

variance because lots of theorems are easier to remember when stated in terms of the variance. (For

example, under certain conditions, the variance of the sum is the sum of the variances it certainly

easier to remember than the same statement in terms of standard deviations. If you doubt what I

say, try it!) On the other hand, for the types of work we do in Statistics, the standard deviation

makes more sense.

Our approach will be to calculate the variance. Once the variance is obtained, it is just one

more step—taking a square root—to obtain the standard deviation. I will introduce you to the

computational steps in Table 1.4. Let’s begin by looking at the treatment 1 (chicken) data. In the

x column I have listed the ten response values. I placed these numbers in the order in which they

were obtained, but that is not necessary. If you want to sort them, that is fine. I sum the x’s to find

their total, 51, and then divide the total by n1 = 10 to obtain their mean, x̄ = 5.1. Next, I subtract
this mean, 5.1, from each observation, giving me the column of deviations, x − x̄. As discussed
earlier a deviation is positive [negative] if its observation is larger [smaller] than the mean.

For the chicken data, five deviations are negative and five are positive. In terms of magnitude,

two deviations are very close to 0 (their magnitudes are both 0.1, for observations 2 and 3); the

deviation for observation 5 has the distinction of having the largest magnitude, 4.1. The idea is

that we want to summarize these ten deviations to obtain an overall measure of spread within the
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chicken treatment. In my experience many people consider it natural to compute the mean or

median of the magnitudes of the deviations. Neither of these operations—calculating the mean or

median magnitude—is shown in the table because neither turns out not to be particularly useful in

our subsequent work. What turns out to be very useful, as we shall see throughout these notes, is

to square each deviation. The squared deviations appear in the (x− x̄)2 column of the table.

We find the total of the squared deviations, which appears in the table as 36.90 for the chicken

data.

Now, another strange thing happens. (Squaring the deviations was the first strange thing.)

Mathematicians and statisticians disagree on what to do with the total of the squared deviations,

again 36.90 for the chicken data. Mathematicians argue in favor of calculating the mean of the

squared deviations; i.e., to divide 36.90 by n1 = 10 to obtain 3.690. Statisticians divide by

(n1 − 1) = 9 to obtain 36.90/9 = 4.100.

In these notes we will follow the lead of statisticians and divide the sum of squared deviations

by the sample size minus one. The resultant number is called the variance of the data and is

denoted by s21 for our x’s and s22 for our y’s. Let me summarize the above with the following

formula.

Definition 1.1 Suppose that we havem numbers, denoted by

w1, w2, . . . , wm

with mean denoted by w̄. The variance of these numbers is denoted by s2 and is computed as

follows:

s2 =

∑m
i=1(wi − w̄)2

m− 1
=

∑

(w − w̄)2

m− 1
(1.4)

In particular, for the data from treatment 1, the variance is denoted by s21 and is computed as

follows:

s21 =

∑n1

i=1(xi − x̄)2

n1 − 1
=

∑

(x− x̄)2

n1 − 1
. (1.5)

For the data from treatment 2, the variance is denoted by s22 and is computed as follows:

s22 =

∑n2

i=1(yi − ȳ)2

n2 − 1
=

∑

(y − ȳ)2

n2 − 1
(1.6)

Why do statisticians divide by the sample size minus one? As discussed earlier—when talking

about the center of gravity interpretation of the mean—I noted that for any data set the sum of the

deviations equals 0. This fact is illustrated for both the chicken and tuna data sets in Table 1.4.

Let’s focus on the chicken data. Each deviation gives us information about the spread in the data

set. Thus, initially, one might think that there are 10 items of information in the 10 deviations. But,

in fact, there are only nine items of information because once we know any nine of the deviations

the value of the remaining deviation is determined; it equals whatever is needed to make the 10

deviations sum to 0.
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Here is a simpler example: suppose that I havem = 3 numbers. Two of the deviations are: +4
and −7. Given these two deviations, we know that the third deviation must be +3. A picturesque

way of saying this is that for m = 3 observations, “Two of the deviations are free to be whatever

number they want to be, but the third deviation has no freedom.” In other words, the three devi-

ations have two degrees of freedom. Thus, in our chicken or tuna data, the ten deviations have

nine degrees of freedom. In general, for m observations, the m deviations have (m − 1) degrees
of freedom.

Let’s return to the question:

Why do statisticians divide by the sample size minus one?

The answer is: Because statisticians divide by the degrees of freedom. There are many reasons

why statisticians divide by the degrees of freedom and we will learn some of them in these notes.

I won’t, however, introduce new concepts in this chapter simply to explain why,

The variance of the chicken data is 4.100. You may follow the presentation in Table 1.4 and

find that the variance of the tuna data is 4.322. This measure of spread is nearly identical for the

two data sets; in words, the two data sets have almost exactly the same amount of spread; well, at

least as measured by the variance.

As stated earlier, statisticians prefer to take the (positive) square root of the variance and call it

the standard deviation. There are three main reasons statisticians prefer using the standard devia-

tion to measure spread rather than the variance.

1. In many of the formulas we will see in these notes, especially those for population-based

inference, the standard deviation appears, not the variance.

2. In Chapter 2, I will give you a guide, called the empirical rule, which allows us to interpret

the value of the standard deviation. There is no such useful guide for interpreting the vari-

ance. I am saving this for Chapter 2 in order to keep the size of the current chapter—your

first after all—less daunting.

3. The standard deviation gets the units of the variable correct; the variance does not. I will

explain this below for the data from Dawn’s study.

Regarding the third reason above, consider the unit of the variable for the study of Bob the cat.

(Yes, this is unfortunate language. The unit of the variable is not the units of the study. This is

one reason I prefer to call the units of the study either trials or subjects.) Each observation counts

the number of cat treats consumed. For example, on the first chicken day, four cat treats were

consumed by Bob. The mean for the chicken data is 5.1 cat treats. Each deviation is measured

in cat treats: the chicken day when Bob consumed 7 treats has a deviation of 7 − 5.1 = 1.9 cat

treats. This day gives a squared deviation of (1.9)2 = 3.61 cat treats squared, whatever they are.

Thus, the variance for the chicken data is 4.100 cat treats squared. When we take the square root

of 4.100 to obtain the standard of 2.025, we also take the square root of cat treats squared, giving

us a standard deviation of 2.025 cat treats.
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1.4 Computing

WARNING: In this course I will direct you to several websites for computing. In my experi-

ence, some of these websites do not work for all web servers. My recommendation is to use

Firefox, Safari or Chrome. If you have difficulties, contact your instructor for this course.

In this chapter we have seen several tools for presenting and summarizing data: dot plots,

means, medians, variances and standard deviations. I have presented these tools as if we perform

all the necessary operations by hand. Obviously, we need to reduce the tedium involved in using

these tools. Before I discuss the specifics of computing for this chapter, I want to give you a brief

overview of computing in this course.

For simple computations, I recommend that you use an inexpensive handheld calculator. For

example, I use the calculator on my cellphone; it performs the four basic arithmetic operations and

takes square roots. Thus, if you tell me that the variance of a set of data equals 73.82, I pull out my

cell phone and find that the standard deviation is
√
73.82 = 8.592. Similarly, if you tell me that

x = 5, b0 = 20 and b1 = −1, I can determine that the value of

y = b0 + b1x is y = 20− 1(5) = 20− 5 = 15.

There are literally dozens of approaches you could use to perform more involved computations

required in this course; five approaches that come to mind are:

1. Using a variety of websites.

2. Using the statistical software packageMinitab.

3. Using some other statistical software package. Of special interest is the open-source software

package R. (Yes, its name is a single letter.)

4. Using a sophisticated hand-held calculator.

5. Using a spreadsheet program, for example Excel.

In these notes I will provide guidance on the first of these approaches. I use Minitab extensively

to produce output that is not available from any website. If you are interested in learning about

Minitab, let me know. No promises as to what we will do, but I would like to know. Neither the

TA nor I will provide any guidance on the other three options above or, indeed, any other option

you might know. Thus, please do not ask us to do so.

The websites are great because:

• They are free.

• They have some quirks, but, for the most part, require little or no training before they are

used.

The websites, however, have two potential problems.

• I cannot guarantee that they will remain available because I am not the tsar of the internet.
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• Whereas I personally have a great deal of faith in the validity of answers provided byMinitab

and R, I don’t really know about these sites. I have found a serious error in the Binomial

Probabilities website and will warn you about it when the time comes. I have found some

other errors that we can work around and will mention them when the time is appropriate.

Are there other errors? Who knows? If you find or suspect an error, please let me know.

I have used Minitab in my teaching and research since 1974. Perhaps obviously, I am very

satisfied with its performance. Advantages of Minitab include:

• If you do additional course work in Statistics, eventually you will need to learn a statistical

software package.

• Knowledge of Minitabmight be a useful addition to any application for employment. Might;

no guarantee.

• If you enjoy programming, Minitab will give you a good understanding of the steps involved

in a statistical analysis.

The two main drawbacks to learning Minitab are:

• It is not free. At the time of my typing this chapter, I do not know the price of Minitab for my

course. The number I have heard is $30 which would buy you a six-month rental of Minitab.

• Compared to the websites, Minitab requires more time before you can get started. In my

experience, a great feature of Minitab is this amount of time is much smaller than for any

other statistical software package.

Now I will discuss each of the tools mentioned above and how I expect you to make use of

them. By the way, in these Course Notes I focus on what I expect you to know in order to do the

homework and to be successful on the exams. (By exams I mean the midterm(s) and final exams.)

If you choose to submit project reports—details to be provided—then you might need to do some

work by hand.

Dot plots. There is a website that will draw a dotplot of a set of data. You won’t need to use it

in this course, but I include it for completeness. In general, if I want you to see a dotplot, I will

provide it for you. The website is:

http://rossmanchance.com/applets/DotPlotApplet/DotPlotApplet.html.

If you are interested in this website, I suggest you try it with the chicken data from Dawn’s study.

Median. The difficulty lies in taking the set of data and sorting its values. This is no fun by hand,

but is easy with a spreadsheet program. Once you have the sorted data, youmay use Equation 1.2 or

Equation 1.3, depending on whether your sample size is odd or even, respectively. (Both equations

are on page 10.) If you don’t know how to use a spreadsheet program, no worries; on exams,

except possibly for very small data sets, I will give you the sorted list of data.
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Mean, variance and standard deviation. As with the median, you may perform the arithmetic

by using a spreadsheet program. In particular, if you look again at Table 1.4 on page 13, you can

visualize how to create these columns using a spreadsheet. Again as with the median, if you don’t

know how to use a spreadsheet program, no worries; on exams, I will give you the value of the

mean and the value of either the variance or standard deviation. For homework, the computation

of the mean, variance and standard deviation can be achieved by using our first website. Go to the

site:

http://vassarstats.net

On the left side of the page is a blue border, with links in white type. About 75% of the way down

the list, click on:

t-Tests & Procedures.

Click on the third of the four paragraphs that appear, Single Sample t-Test. You will be taken to a

page with a heading Procedure followed by aData Entry box. This website is a bit nasty, meaning

that you need to be very careful how you enter the data. I entered the chicken data in Table 1.2

into the box and clicked on the calculate box. The website produced quite a collection of statistics,

including the following:

• The sample size, 10; the sum of the observations, 51; the sum of squared (SS) deviations,

36.9; the variance, 4.1; the standard deviation, 2.0248; the mean, 5.1; and the degrees of

freedom (df), 9.

If you use this website, you need to be very careful with data entry.

1. If you enter your observations by typing: After typing each observation, hit the enter key;

i.e., you may not enter more than one observation per line.

2. If you enter your observations by ‘cutting and pasting:’ You must cut and paste a column

of numbers; one number per row, as described above for typing. If you paste a row that

includes more than one observation, it won’t work.
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1.5 Summary

Scientists use comparative studies to investigate certain questions of interest. A comparative study

has the following components:

• Units: Units are either trials or subjects. The researcher obtains information—the value(s)

of one (or more) feature(s)—from each unit in the study.

• Response: The feature of primary interest that is obtained from each unit.

• The scientist wants to investigate whether the level of a study factor influences (strong) or

is associated with (weak) the values of the responses given by the units. Almost always in

these notes, a comparative study will have two levels.

• Of very great importance to the scientist is themethod by which units are identified with or

assigned to levels of the study factor.

Regarding this last item, if the method is:

Units are assigned to levels (or vice versa) by the process of randomization (as de-

scribed later in Chapter 3)

then the comparative study is called a Completely Randomized Design (CRD). For a CRD the

levels of the study factor are called the treatments.

In the first few chapters of these notes the response always will be a number; hence, it is called

a numerical response. When a CRD is performed or conducted, the result is that the researcher has

data. Our goal is to discover how to learn from these data.

The data can be displayed in tables, in three ways of interest to us.

1. The table can present the data exactly as collected. An example of this is Table 1.1 on page 6.

2. The data can be presented as above, but separated into groups by treatment. An example of

this is Table 1.2 on page 7.

3. The data in the previous table can be sorted, from smallest to largest, within each treatment.

An example of this is Table 1.3 on page 7.

It is instructive to draw pictures of the data, one picture for each treatment. The picture we

learned about in this chapter is the dot plot. An example of a dot plot is in Figure 1.1 on page 8.

Finally, we learned about four numbers that can be computed to summarize the information in

a set of data. They include two measures of center: the mean and the median; and they include two

mathematically equivalent measures of variation (spread): the variance and the standard deviation.

There is an exact connection between the dot plot and the mean; namely, the mean is the center

of gravity of the dot plot.
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Table 1.5: Sorted speeds, in MPH, by time, of 100 cars.

Speeds at 6:00 pm

26 26 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28

28 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30

30 30 31 31 31 31 32 33 33 33 34 34 35 43

Speeds at 11:00 pm

27 28 30 30 30 31 31 31 32 32 32 32 32 32 32 33 33 33

33 33 33 33 34 34 34 34 34 34 35 35 35 35 36 36 36 37

37 37 37 37 37 38 38 39 39 40 40 40 40 40

1.6 Practice Problems

The idea behind this section is to give you an additional example that highlights the many ideas

and methods that you need to learn from this chapter.

First, let me describe the data set we will use in this section. On a spring evening, a Milwaukee

police officer named Kenny measured the speeds of 100 automobiles. The data were collected on

a street in a “warehouse district” with a speed limit of 25 MPH. Fifty cars were measured between

roughly 5:45 and 6:15 pm, referred to below as 6:00 pm. The remaining 50 cars were measured

between roughly 10:40 and 11:20 pm, referred to below as 11:00 pm.

Each car’s speed was measured to the nearest MPH. The sorted data, by time, are in Table 1.5.

The dot plots of the speeds, by time, are given in Figure 1.2. These speed data will be used to

answer questions 1–6 below.

1. This is a comparative study, but not a CRD. Identify the following components of this study.

(a) What are the units? Are the units trials or subjects?

(b) What is the response?

(c) What is the study factor? What are its levels?

(d) Explain why this is not a CRD.

2. Look at the two dot plots in Figure 1.2. Write a few sentences that describe what the pictures

reveal. You should discuss each picture separately and you should compare them.

3. Calculate the mean, median and standard deviation of the 6:00 PM data.

4. Calculate the mean, median and standard deviation of the 11:00 PM data.

5. Briefly discuss your answers to questions 2–4.

6. We will see repeatedly in these notes that the presence of even one outlier might have a big

impact on our analysis. Let’s explore this topic a bit. Delete the largest observation from the
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Figure 1.2: Dot plots of speeds, by time.
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6:00 data set and recalculate the mean, median and standard deviation of the remaining 49

observations. Discuss your answers.

1.7 Solutions to Practice Problems

1. (a) The units are the cars driving past the police officer. I think of each car driving past as a

trial. If you knew that the 100 cars were driven by 100 different people, you could view

the units as subjects. (To paraphrase a well-known national association—channeling

Harry Potter, that whose name we do not mention—cars don’t speed, drivers speed.)

This is an example where either designation—trials or subjects—has merit. It really is

not a big deal whether we call call the units trials or subjects.

(b) The response is the speed of the car, measured to the nearest integer miles per hour.
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(c) The study factor is the time of day, with levels 6:00 PM and 11:00 PM.

(d) In my experience, many students find this question to be difficult. Some have said,

“Yes, it’s a CRD because the cars are driving past at random.” This is an example of a

very important issue in this class. Randomization has a very specific technical meaning.

We must follow the meaning exactly in order to have randomization. Admittedly, I have

not told you what randomization is, so you might think I am being unfair; if this were

an exam, I would be unfair, but this is a practice problem. The key point is that in order

to have randomization the police office first had to have control over when the cars

drove past. He had to have a list of the 100 cars (drivers) and say, “You 50, drive past

me at 6:00; the remaining 50, you drive past me at 11:00.” Clearly, he did not have this

control; he observed when the cars drove past.

As is rather obvious from the dot plots, cars at the later hour are driven at substantially

higher speeds than cars driven at the earlier hour. But—as we will see later and you

can perhaps see now—does this mean that a given person tends to drive faster at the

later time or does this mean that fast drivers come out late at night? You might have a

strong feeling as to which of these explanations is better (or you might have some other

favorite), but here is my point: The data we have will not answer the question of why.

In my earlier language, we cannot say that time-of-day influences speed; we only can

say that time-of-day is associated with speed.

2. Obviously, there are many possible good answers to this question. My answer follows. Don’t

view this as the ideal, but rather try to understand why my comments make sense and think

about ways to improve my answer.

6:00 PM data: Everybody is driving faster than the speed limit, 25. A substantial majority

(32 of 50, if one counts) of the cars are traveling at 28, 29 or 30 MPH. There is not a very

much spread in these 50 observations, except for the isolated large value of 43. (A large

[small] isolated value is called a large [small] outlier.)

11:00 PM data: Everybody is driving faster than the speed limit; in fact, all but two drivers

exceed the limit by at least 5 MPH. There is a lot of spread in these response values. There

are three clear peaks: from 32–34; at 37; and at 40. The peak at 40 is curious; lots of

people (well, five) drive 40, but nobody drives faster. Previous students of mine (I do like

this example!) have opined that the drivers are trying to avoid a big increase in penalties for

being caught driving more than 15 MPH over the speed limit.

Comparing dot plots: The most striking feature is that the speeds are substantially larger at

11:00. Also, there is more spread at 11:00 than at 6:00.

3. I used the website http://vassarstats.net, following the method described in Sec-

tion 1.4. I entered the 6:00 PM data and obtained:

x̄ = 29.68 and s1 = 2.810.

To obtain the median we note that n1 = 50 is an even number. Following Equation 1.3 on

page 10, we compute k = 50/2 = 25 and k + 1 = 26. From Table 1.5, the response 29 is in

both positions 25 and 26. Thus, the median x̃ equals 29.
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4. I used the website http://vassarstats.net, following the method described in Sec-

tion 1.4. I entered the 11:00 PM data and obtained:

ȳ = 34.42 and s2 = 3.252.

From Table 1.5, the response 34 is in both positions 25 and 26. Thus, the median x̃ equals

34.

5. The mean [median] speed at 11:00 is 4.74 [5.00] MPH larger than the mean [median] speed

at 6:00. The differences in these measures of center agree with what we see in the dot plots.

The ratio of the standard deviations is 3.252/2.810 = 1.157. Thus, as measured by the

standard deviation, there is almost 16% more spread in the later data.

6. With the help of the website, x̄ = 29.408 and s1 = 2.071. For the median, the sample size is

now 49, an odd number. From Equation 1.2 on page 10, we find that k = (49 + 1)/2 = 25.
The observation in position 25 is 29 and it is the median.

The deletion of the outlier has left the median unchanged. The mean decreased by 29.68 −
29.41 = 0.27 MPH; or, if you prefer, the mean decreased by 0.9%. The standard deviation

decreased by 26.3%! As we will see repeatedly in these notes, even one outlier can have a

huge impact on the standard deviation.

I do not advocate casually discarding data. If you decide to discard data, you should always

report this fact along with your reason for doing so.

Beginning with Chapter 3 we will devote a great deal of effort into learning how to quantify

uncertainty, using the language, techniques and results of probability theory. It is important

to learn how to quantify uncertainty, but it is equally important to realize that there are many

situations in which we cannot, in any reasonable way, quantify uncertainty. Often we just

need to accept that our answers are uncertain. In the current case, there is uncertainty about

who drives down a street on any given night. I don’t know why the driver responsible for

the large outlier at 43 MPH decided to drive down the street being studied when Kenny was

collecting data. But it’s certainly possible that he/she could have chosen a different route or

a different time. Thus, I think it is interesting to see what would happen to our analysis if

one of the subjects/trials had not been included in the study.
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Figure 1.3: The dot plots of Brian’s running times, by type of boots.

Combat Boots:

320 330 340 350

• • • • • • •• • •

Jungle Boots:

300 310 320 330

• • • • •• • ••
•

1.8 Homework Problems

Brian performed a balanced Completely Randomized Design with 20 trials. His response is the

time, measured to the nearest second, he needed to run one mile. Wearing combat boots, his sorted

times were:

321 323 329 330 331 332 337 337 343 347

Wearing jungle boots, Brian’s sorted times were:

301 315 316 317 321 321 323 327 327 327

Figure 1.3 presents the two dot plots for Brian’s study. Use Brian’s data to solve problems 1–4.

1. Calculate the mean, median and standard deviation for the combat boots data.

2. Calculate the mean, median and standard deviation for the jungle boots data.

3. Recalculate the mean, median and standard deviation for the jungle boots data after you

delete the small outlier (leaving a set of nine observations).

4. Write a few sentences to explain what you have learned from your answers to problems 1–3

as well as an examination of these dot plots.

Note: There is no unique correct answer to this problem. I don’t put questions like this on

my exams—grading such questions is very subjective and I try to avoid such grading issues.

Also, I don’t want you to feel you are at a disadvantage compared to the other students

in this class who, surprisingly, are all majoring in military footware. Seriously, I try to

avoid grading you based on your scientific knowledge in any particular field that I choose to

present. Answering this question is, however, good practice for your projects. In a project,

you choose the topic; if you choose a topic for which you have no knowledge, no interest

and no aptitude, then your grade will suffer!
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Figure 1.4: The dot plots of Reggie’s dart scores, by his distance from board.

10 Feet:

180 190 200 210 220 230

• • • • •• •• •• • • •• •

12 Feet:

160 170 180 190 200 210

• • • • • • • •• • •• • • •

Reggie performed a balanced CRD of 30 trials. Each trial consisted of a game of darts, where a

game is defined as throwing 12 darts. Treatment 1 [2] was throwing darts from a distance of 10 [12]

feet. Reggie’s response is the total of the points obtained on his 12 throws and is called his score,

with larger numbers better. Below are Reggie’s sorted scores from 10 feet:

181 184 189 197 198 198 200 200 205 205 206 210 215 215 220

Below are Reggie’s sorted scores from 12 feet:

163 164 168 174 175 186 191 196 196 197 200 200 201 203 206

Reggie’s two dot plots are presented in Figure 1.4. Use Reggie’s data to answer problems 5–7.

5. Calculate the mean, median and standard deviation for the scores from 10 feet.

6. Calculate the mean, median and standard deviation for the scores from 12 feet.

7. Write a few sentences to explain what you have learned from your answers to problems 5

and 6 as well as an examination of Reggie’s dot plots.

Keep in mind my comments in problem 4 above.
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Chapter 2

The CRD with a Numerical Response:

Continued

This chapter continues the theme of Chapter 1. I begin with another example of a student project.

2.1 Kymn the Rower

Kymn was a member of the women’s varsity crew at the University of Wisconsin-Madison. When

she could not practice on a lake, she would work out on a rowing simulation device called an

ergometer. One does not simply sit down at an ergometer and begin to row. It is necessary to

choose the setting for the machine. There are four possible settings, obtained by combining two

dichotomies:

• One can opt for the small gear setting or the large gear setting.

• One can choose to have the vent open or closed.

Kymn decided that she was not interested in two of these settings: the large gear with the vent

closed would be too easy and the small gear with the vent open would too difficult for a useful

workout. As a result, Kymn wanted to compare the following two settings:

• Treatment 1: The small gear with the vent closed, and

• Treatment 2: The large gear with the vent open.

For her response, Kymn chose the time, measured to the nearest second, she required to row the

equivalent of 2000 meters.

In the above, I have implicitly defined Kymn’s trial as sitting on the erg and rowing the equiv-

alent of 2000 meters. Kymn decided to perform a total of 10 trials in her study.

Kymn’s data are in Table 2.1, with dot plots in Figure 2.1. Look at these data for a few

minutes. What do you see? Below are some features that I will note.

1. Every response on treatment 2 is smaller than every response on treatment 1.

27



Table 2.1: Kymn’s times, in seconds, to row 2000 meters on an ergometer. Treatment 1 is the small

gear with the vent closed; and treatment 2 is the large gear with the vent open.

Trial: 1 2 3 4 5 6 7 8 9 10

Treatment: 2 1 1 1 2 2 1 2 2 1

Response: 485 493 489 492 483 488 490 479 486 493

Figure 2.1: The dot plots for Kymn’s rowing study.

Treatment 1: Small Gear, Vent Closed:

479 481 483 485 487 489 491 493

• • • ••

Treatment 2: Large Gear, Vent Open:

479 481 483 485 487 489 491 493

• • • • •

2. The variation in treatment 2 is larger than the variation in treatment 1. Having noted this

fact, in both treatments there is very little within-treatment variation. It is impressive, yet

perhaps unsurprising for a well-conditioned athlete, that in response times of slightly more

than 8 minutes, there is so little variation in trial-to-trial performance.

If one looks at the dot plots, and remembers the center of gravity interpretation of the mean, one can

see that the mean on treatment 1 is a bit larger than 491 seconds and that the mean on treatment 2

is a bit smaller than 485 seconds; these visual conclusions are supported by computation. In

particular, for future reference note that the means, medians and standard deviations of these data

are:

x̄ = 491.4, x̃ = 492, s1 = 1.817, ȳ = 484.2, ỹ = 485 and s2 = 3.420.

2.2 Sara’s Golf Study; Histograms

Sara performed a balanced CRD with 80 trials. Her response was the distance—in yards—that she

hit a golf ball at a driving range. (She hit the ball into a net which displayed how far the ball would

have traveled in real life. I have no idea how accurate these devices are.) Sara had two treatments:

hitting the ball with a 3-Wood (treatment 1) and hitting the ball with a 3-Iron (treatment 2). If you

don’t know much about golf, don’t worry; all that matters is that Sara wanted to compare two clubs

with particular interest in learning which would lead to a larger response.
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Table 2.2: The distance Sara hit a golf ball, in yards, sorted by treatment.

3-Wood

22 32 38 56 58 77 81 93 99 101

101 101 104 107 107 108 109 109 110 111

113 114 115 116 118 122 122 127 127 128

128 128 129 131 131 137 139 139 140 147

3-Iron

27 52 53 57 58 59 68 68 68 82

84 88 92 92 92 92 97 97 98 99

100 101 105 107 107 107 108 109 110 116

118 127 132 132 136 136 137 138 139 139

Figure 2.2: The dot plots for Sara’s golf study.
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Sara’s data, sorted by treatment, are presented in Table 2.2. Even a cursory examination of this

table reveals that, within each treatment, there is a huge amount of variation in Sara’s responses.

Dot plots of Sara’s data are presented in Figure 2.2.

I don’t like these dot plots very much, but let me begin by mentioning their good features. As

with all dot plots, each plot is a valid presentation of its observations. If you want to see the exact

values of all of the observations and how they relate spatially, the dot plot is great. In addition,

a dot plot is good at revealing outliers: we can see the three very small response values with the

3-Wood and the one very small value with the 3-Iron. Now I will discuss, briefly, what I don’t like

about these dot plots.

The 3-Wood data range from a minimum of 22 yards to a maximum of 147 yards. This distance,

125 yards, towers over the number of observations, 40. As a result, there must be, and are, a large

number of gaps in our picture and usually (there are weird exceptions) with so little data spread

out so far, the peaks are very short and, hence, likely have no scientific meaning. There is another

way to view the above comments: the dot plot is very bumpy; i.e., it is not very smooth. As I will
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Table 2.3: Frequency tables of the distances Sara hit a golf ball, by treatment.

3-Wood 3-Iron

Class Width Freq. Rel. Freq. Density Freq. Rel. Freq. Density

Interval (w) (f ) (rf = f/n1) (d = rf/w) (f ) (rf = f/n2) (d = rf/w)
0–25 25 1 0.025 0.001 0 0.000 0.000

25–50 25 2 0.050 0.002 1 0.025 0.001

50–75 25 2 0.050 0.002 8 0.200 0.008

75–100 25 4 0.100 0.004 11 0.275 0.011

100–125 25 18 0.450 0.018 11 0.275 0.011

125–150 25 13 0.325 0.013 9 0.225 0.009

Total — 40 1.000 — 40 1.000 —

(n1) (n2)

discuss later in the subsection on kernel densities, smoothness is very important to scientists.

Here is what I mean by bumpy. Imagine the number line is a road and the dots are bumps in

the road. Driving a car (or if you prefer a greener example, riding a bike) along the road will result

in a flat road (the gaps) interrupted by numerous bumps.

Finally, it is very difficult to see a shape in either of these dot plots. This is disturbing because

the quest for a shape is one of the main reasons that scientists draw pictures of data.

Admittedly, all of the dot plots we have seen in these notes have been bumpy. Most of our dot

plots have not had a recognizable shape, but that is to be expected with a small amount of data, as

we had in Dawn’s and Kymn’s studies in our exposition, as well as Brian’s and Reggie’s studies

in the homework to Chapter 1. Arguably, policeman Kenny’s dot plots (see Figure 1.2 on page 21

in the Chapter 1 Practice Problems), based on a large number of observations and a small range of

values, did reveal shapes. Below we will introduce histograms, which are smoother (statisticians

often prefer this more positive term to less bumpy) than dot plots and usually reveal shape better.

Finally, I will introduce you briefly to kernel density estimates that are, in the sense we will learn,

better than histograms both on smoothness and revealing shapes.

In the excellent movie Amadeus (1984), a dramatization of the life of composer Wolfgang

Amadeus Mozart (1756–1791), a jealous competitor derides one of Mozart’s works as having too

many notes. In a similar spirit, one can criticize a dot plot for having too much detail. Our next

picture, the histogram sacrifices some of the detail of a dot plot. The reward, one hopes, is a better,

more useful, picture.

The first thing to note is that to refer to the histogram for a set of data is a bit misleading.

The definite article—the—is inappropriate because many histograms can be drawn for any set of

data, for two reasons. First, as we will see below, a histogram is dependent on our choice of class

intervals, and there are always many possible choices for these. Second, for a given choice of

class intervals, there are three possible histograms: the frequency histogram, the relative frequency

histogram and the density histogram.

The first step in creating a histogram is to create a frequency table. Table 2.3 presents fre-
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quency tables for both treatments for Sara’s data. Let me carefully explain these tables. The first

column presents my choices for the class intervals. Because I am very interested in comparing

the responses on the two treatments, I am using the same class intervals for both tables. This isn’t

necessary, but I do think it’s a good idea.

In this course—exams and these notes, including homework—I will always give you the class

intervals. (If you perform a project that requires a frequency table, then you will need to choose

the class intervals.) Our class intervals will always follow the rules listed below. (Thus, if you need

class intervals for your project, please follow these rules.) As you no doubt have already surmised,

these rules do not rate high on the excitement-o-meter, but they are necessary. And there is a really

annoying feature: There are two other versions of these rules—far inferior to the rules below—

each of which appears in many textbooks of introductory Statistics. (Don’t let the adjective many

dismay you; there are hundreds, if not thousands, of introductory Statistics texts and nearly all

should be avoided. But that’s another topic.)

A valid collection of class intervals will satisfy the following five rules.

1. Each class interval has two endpoints: a lower bound(ary) and an upper bound(ary). As in

Table 2.3, when one reads down the first column, the lower (and upper) bounds increase.

2. The smallest class interval boundary must be less than or equal to all observations in the

data set.

3. The largest class interval boundary must be greater than or equal to all observations in the

data set.

4. The upper bound of a class interval must equal exactly the lower bound of the next class

interval.

5. Because adjacent class intervals have an endpoint in common, we need the following end-

point convention:

When determining the frequencies of the class intervals (see below), each interval

includes its left endpoint, but not its right endpoint.

There is one exception to this endpoint convention: The last class interval includes both of

its endpoints.

Let me say a few more words about our fourth rule. In Table 2.3, the first two class intervals are

0–25 and 25–50. There are two ways that the fourth rule could be violated; here are examples of

each:

• If these intervals were changed to, say, 0–25 and 30–50, then there would be a gap between

the intervals.

• If these intervals were changed to, say, 0–25 and 20–50, then these intervals would overlap.
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We allow neither gaps nor overlap; either of these features would ruin our histograms.

We have spent a lot of effort on the class intervals! Let’s return to Table 2.3 and examine its

remaining columns.

The second column presents the width (w) of each class interval. The width of a class interval is
the distance between its endpoints. For example, the first class interval, 0–25, hasw = 25−0 = 25,
as printed. Note that in this table, all class intervals have the same width. There are reasons that a

researcher may prefer to have variable-width class intervals (see Practice Problems below), but if

one chooses to have variable-width class intervals, then one must use the density histogram because

both of the other histograms are misleading (again, see Practice Problems below). Misleading is

perhaps a bit strong. Statisticians agree that they are misleading, but, for all I know, you might be

a person who is never misled by a picture.

The frequency counts (f ) are pretty evident. For example, in the 3-Wood data set, four

observations—77, 81, 93 and 99—fall in the interval 75–100; hence, the frequency of this interval

is 4. An interval’s relative frequency (rf ) is obtained by dividing its frequency by the number of

observations in the data set. Thus, for example, the relative frequency for the 75–100 class interval

in the 3-Wood data is rf = 4/40 = 0.100. Finally, an interval’s density (d) is obtained by dividing
its relative frequency by its width.

Let me give you an example in which the endpoint convention in the fifth rule above comes

into play. In Sara’s 3-Iron data set, the observation 100 is counted as a member of the interval

100–125, not the interval 75–100.

I will now use the frequency tables for Sara’s data to draw frequency histograms. These his-

tograms are presented in Figure 2.3. First, I will discuss how to draw a frequency histogram by

hand. Second, I will discuss the information revealed by Sara’s frequency histograms. Finally, I

will discuss Sara’s relative frequency and density histograms.

Drawing a Frequency Histogram. We proceed as follows.

1. Draw a portion of the number line and locate the various class interval boundaries on it.

2. Above each class interval draw a rectangle whose height is equal to the frequency of the

class interval.

What do we learn by inspecting a frequency histogram? Whenever we have histograms of

data from two groups we can look to see if the groups differ substantially in centers and/or spreads.

For Sara’s data, we see that she definitely hit the ball farther with the 3-Wood than with the 3-Iron.

This conclusion is supported by computing means and medians for her data. I also include the

standard deviations below.

x̄ = 106.875, x̃ = 112.0, s1 = 29.87, ȳ = 98.175, ỹ = 99.5 and s2 = 28.33.

Statisticians and scientists are particularly interested in assessing the shape of a histogram,

although this is a very inexact activity. Below are my comments on Sara’s two histograms:
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Figure 2.3: Frequency histograms for Sara’s golf study.

3-Wood:

0 25 50 75 100 125 150

1 2
4
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13

3-Iron:
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8
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1. 3-Wood Histogram: There is one tallest rectangle, above the class interval 100–125 yards.

Thus, this is the most popular class interval for Sara’s 3-Wood responses. The rectangle(s) to

the right [left] of this peak rectangle is called the right tail [left tail] of the histogram. The

left tail is much longer than the right tail (100 yards versus 25), but the right tail is heavier

(13 observations versus 9). Because of the longer left tail, we label this histogram skewed

to the left.

2. 3-Iron Histogram: This histogram exhibits almost perfect left-to-right symmetry.

Note the following facts:

• The 3-Wood histogram is skewed to the left and its mean is smaller than its median: 106.875 <
112.0.

• The 3-Iron histogram is approximately symmetric and its mean and median are approxi-

mately equal: 98.175 ≈ 99.5.

These are two examples of the following famous Result that is not quite a Theorem.

Result 2.1 The following are usually true:

• If the dot plot or histogram of a set of data is approximately symmetric, then its mean and

median are approximately equal.

• If the dot plot or histogram of a set of data is clearly skewed to the right, then its mean is

larger than its median.
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• If the dot plot or histogram of a set of data is clearly skewed to the left, then its mean is

smaller than its median.

Let’s apply this result to some of our data sets.

Brian’s Running Data. In the Chapter 1 homework, we learned about Brian’s study of running.

Dot plots of his two data sets are in Figure 1.3 on page 24. Brian’s combat boots data look neither

symmetric nor skewed to me. The mean, 333.0, is very similar to the median, 331.5. Brian’s jungle

boots data look strongly skewed to the left, but the mean, 319.5, is only somewhat smaller than the

median, 321.0.

Brian’s data sets help me to illustrate a common misconception about Result 2.1. For example,

in my experience, sometimes a person calculates the mean and median of a data set and finds that

they are equal or similar in value. The person then asserts, without drawing a picture—dot plot or

histogram or any other picture—of the data, that the distribution of the data is symmetric. This

can be wrong as illustrated by both of Brian’s data sets. (We can also find data sets for which the

mean is larger [smaller] than the median but the distribution of the data would not be described as

skewed to the right [left].)

The message is: Do not confuse an if . . . then result with an if and only if result. In math,

all definitions and some results (theorems) are if and only if. Many results, in math or other

disciplines, are if . . . then results. For example, at the time of my typing these words, the following

is a true statement.

If a person is or has been the President of the United States, then the person is male.

The reverse is not true. I—and millions of other men—have never been the President of the United

States.

Reggie and Darts. In the Chapter 1 homework, we learned about Reggie’s study of darts. Dot

plots of his two data sets are in Figure 1.4 on page 25. Reggie’s data from 10 feet look approxi-

mately symmetric to me. The mean, 201.53, is very similar to the median, 200.0. Reggie’s data

from 12 feet look strongly skewed to the left. In agreement with Result 2.1, the mean, 188.0, is

smaller than the median, 196.0.

I conclude that Result 2.1 is accurate for Reggie’s data.

Kenny and Fast Cars. In the Chapter 1 practice problems, we learned about Kenny’s study of

car speeds. Dot plots of his two data sets are presented in Figure 1.2 on page 21. Kenny’s 6:00

data are strongly skewed to the right with a large outlier, but the mean, 29.68, is only a bit larger

than the median, 29.0. Kenny’s 11:00 data are not approximately symmetric, yet the mean, 34.42,

is very similar to the median, 34.0.

I conclude that Result 2.1 is not very accurate for Kenny’s data.
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Relative Frequency and Density Histograms. In the above, I stated that for a frequency his-

togram the height of a rectangle is equal to the frequency of its class interval. As you might guess

or already know, a relative frequency histogram differs from a frequency histogram in only one

way: The height of any of its rectangles is equal to the relative frequency of the corresponding

class interval. For Sara’s data, this involves taking her frequency rectangles and dividing each

height by 40, in order to convert to relative frequencies. Even if you have not seen the movie,

Honey, I Shrunk the Kids, you likely realize that this shrinkage of each rectangle (in going from

frequency to relative frequency) has no impact on the shape of the histogram. Thus, in terms of

shape, it does not matter which of these two histograms we use.

Similarly, a density histogram differs from the previous two histograms only in terms of the

heights of its rectangles: The height of any of its rectangles is equal to the density of the corre-

sponding class interval. For Sara’s data, this involves taking her relative frequency rectangles and

dividing each height by the constant width, 25, in order to convert to densities. Again, as in the

movie, Honey, I Shrunk the Kids, this shrinkage (because w > 1) has no impact on the shape of

the histogram. Thus, in terms of shape, for histograms with constant-width class intervals, it does

not matter which of these three histograms we use. Please note the following items:

1. As we will see in the Practice Problems, if the class intervals do not have constant widths,

you should not use the frequency or relative frequency histogram. They will have the same

misleading shape. In this situation, the density histogram will have a different shape and

should be used.

2. If we have constant-width class intervals and if w < 1, then the densities are larger than

the relative frequencies, but all three histograms still have the same shape. (See the totally

unnecessary sequel Honey, I Blew Up the Kid.)

3. In a frequency or relative frequency histogram we look at the height of a rectangle. The

height reveals either how many or what proportion of observations are in the class interval,

depending on the histogram. For a density histogram, one should look at the area of a

rectangle, not its height. In particular, for a density histogram, the area of a rectangle is the

relative frequency of the class interval:

Area = Base × Height = w(rf/w) = rf .

4. In view of the previous item, we see that the total area of a density histogram equals 1.

In view of the above, which of the three histograms is best? Or does it matter?

1. If one chooses to have variable-width class intervals, the density histogram must be used.

2. If for theoretical or other reasons—see later developments in these notes—one wants the

total area of the picture to equal one, the density histogram must be used.

3. If neither of the above apply, then all three histograms give the same picture. In this situation,

I avoid the extra work involved in constructing the density histogram. So, how do I choose

between frequency and relative frequency histograms?
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(a) If the number of observations is small, I prefer frequency: with, say, 10 observations

I prefer to say, “Four of the observations are . . . ” rather than “Forty percent of the

observations are . . . .”

(b) If the number of observations is large, I prefer relative frequency: with, say, 16,492

observations I prefer to say, “Twenty-five percent of the observations are . . . ” rather

than “Four thousand one hundred twenty-three of the observations are . . . .”

(c) If I am comparing two data sets, as we always do in a comparative study, and the sample

sizes n1 and n2 are substantially different, then I prefer relative frequency histograms

over frequency histograms.

2.2.1 Kernel Densities

Let us return to my earlier discussion of Sara’s dot plots being bumpy. Look again at her histograms

in Figure 2.3 and remember my road analogy on page 30. Here each road has long expanses that

are flat, making it much smoother than its corresponding dot plot. Unfortunately, these flat, smooth

roads result in the careless travel periodically hitting a wall or going over a cliff! (Well, period-

ically, provided such encounters prove to be neither incapacitating nor sufficiently discouraging

to end one’s journey.) Clearly, these roads require warning signs and elevators (lifts in the U.K.)!

A solution to these dangers is provided by what I will simply call kernel density histograms, or

kernel densities, for short. Later in these notes you will learn that a better name is kernel density

histogram estimates. But right now we don’t know what estimates are and we certainly don’t

know what kernels are.

Kernels are fairly easy to explain—though not until we develop several more ideas. They

are somewhat difficult to implement and require some careful computations. Software packages

exist that will perform the computations for you, but we won’t be covering them in this course.

I use the statistical software package Minitab to create all of the kernel densities in this course.

For our purposes, a kernel density provides a smoother picture of our data than either a dot plot

or a histogram. In my experience, kernel densities frequently appear in online articles and in

published reports—books, journals and magazines. As a result, even though I won’t teach you

how to construct a kernel estimate, there is value in my introducing you to the idea of one.

Figure 2.4 provides kernel densities for both of Sara’s data sets. I want to make several com-

ments on these pictures.

1. For a given set of data, there is not the kernel density, there are many. Think of kernel

densities as being a range of possibilities between two extremes: the dot plot which is very

bumpy and a histogram that has one class interval for all data which, of course, will be one

rectangle and, hence, smooth. The kernel densities I have plotted are in some sense the best

kernel densities. If the idea of best interests you, read the next item; if not, you may ignore

the next item.

2. If you want more information on kernel densities, see the Wikipedia entry for kernel density

estimation. Following the terminology in Wikipedia, I chose the Normal kernel (also called

the Gaussian kernel) with bandwidth h = 15 for both pictures. This choice of bandwidth is
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Figure 2.4: Kernel densities for Sara’s 3-Wood and 3-Iron data.
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close to the values (which are similar, but slightly different for the two data sets) given under

the heading Practical estimation of the bandwidth.

3. The 3-Wood kernel density is skewed to the left, in agreement with my histogram. The

3-Iron kernel density is approximately symmetric, again in agreement with my histogram.

4. Given the small amount of time we will spend on this topic, I don’t want you to be concerned

about too many issues. Essentially, kernel estimates are good because they give us a smooth

picture of the data. They can also be used to calculate areas; hence, my inclusion of a vertical

scale on these pictures. The area under a kernel density equals one, which explains why they

include the word density in their name.

5. Kernel densities are a reasonable descriptive tool provided the response is a measurement.

They should not be used if the response is a count. Thus, I would definitely avoid creating a

kernel density for Dawn’s study of Bob the cat. Some statisticians relax this directive if the

count variable exhibits a large amount of variation. For example, some statisticians might

use a kernel density to describe Reggie’s dart scores. Sadly, we can’t spend additional time

on this subject.

2.3 Interpreting the Standard Deviation

Please excuse a slight digression. Years ago at a conference on Statistics education, I heard a won-

derful talk about students’ understanding of the standard deviation. The speaker had interviewed

her students approximately one month after the end of her one semester course on introductory

Statistics. She found that very few students—even among the students who earned an A in her

course—could adequately explain the meaning of the standard deviation. I really admired the

speaker for talking about something that many (most? all?) of us teachers suspect: There is
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something about the standard deviation that our students just don’t get. I conclude that teachers—

including me—need to improve our explanations of the standard deviation. This section is my

attempt to do better than I have in the past.

Note: Whenwe have a comparative study, for example a CRD, we have two standard deviations—

one for each set of data—and we distinguish them with subscripts. Similarly, we distinguish our

two means by using different letters of the alphabet, x and y. When I discuss means and standard

deviations in general terms, my data are represented by

w1, w2, . . . , wm, with mean w̄ and standard deviation s.

I hope that this won’t be confusing.

Let’s revisit what we know. We have decided to measure spread by looking at how much each

observation differs from our arithmetic summary, the mean. The discrepancy between an observa-

tion and the mean is called the deviation of the observation. A deviation can be negative, zero or

positive. The sign of a deviation tells us whether its observation is smaller than—if negative—or

greater than—if positive—themean. The magnitude (absolute value) of a deviation tells us how far

the observation is from the mean, regardless of direction. Our goal is to find a way to summarize

all these deviations with one number which will be our measure of the spread in the data.

It is a waste of time to summarize deviations by calculating their mean because for every data

set the mean deviation is 0. It seems to make sense to summarize deviations by computing the mean

of the magnitudes, but, alas, this summary is of no use in Statistics. Instead, we do something very

strange. Something I never saw in all my years of studying math until I took my first Statistics

course.

• We square each deviation (equivalently, square each magnitude);

• We compute almost the mean (remember: we divide by degrees of freedom, not sample size)

of the squared deviations, calling the resulting number the variance;

• We compensate for having squared the deviations by next taking the square root of the vari-

ance and call the result the standard deviation.

Now, consider the name: standard deviation. Why this name? Well, the deviation part makes

sense; the summary we obtain is function of the set of deviations. In my experience, it’s the word

standard that befuddles people. Why the modifier standard? I actually don’t know. My guess is

that we say standard because, as we will see repeatedly in these notes, the standard deviation is

essential for the process of standardizing. We will see that standardizing is very useful. But, for

me, this is a chicken versus egg situation: my guess is that the idea of standardizing is more basic

and, hence, a key number in its process is called the standard deviation. But, I might have this

backwards; or the truth might be something else entirely. If the proper person sees these notes,

perhaps he/she will tell me the answer and I can improve this presentation!

Let us agree to accept that, perhaps, standard deviation is a strange name for s, and let’s proceed
to learning what it means. For example, I stated earlier that for Sara’s 3-Iron data,

ȳ = 98.175 and s2 = 28.33.
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Figure 2.5: Elastic Man capturing approximately 68% of Sara’s 3-Iron data.
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(Recall that the 3-Iron was Sara’s treatment 2; thus, we use y’s for the data and a subscript of 2 on

the s.) How do we interpret the value 28.33 for s2? First, recall that we have an exact interpretation
of the value 98.175 for ȳ: namely, 98.175 is exactly the center of gravity of the dot plot of the data.

Our interpretation of s2 is weaker in that it is not exact, it is only an approximation. To make

matters worse, sometimes it’s a bad approximation. One positive note: if we have access to a

picture of the distribution of the data, then we will know whether the approximation is bad and

how it is bad. (See the Practice Problems.)

Our approximation is given in the result below. I recommend that you quickly skim this result

and read my motivation which follows it.

Result 2.2 The Empirical Rule for interpreting the value of the standard deviation. Suppose

that we have a set of data. Denote its mean by w̄ and its standard deviation by s. The three

approximations below collectively are referred to as the Empirical Rule.

1. Approximately 68% of the observations lie in the closed interval [w̄ − s, w̄ + s],

2. Approximately 95% of the observations lie in the closed interval [w̄ − 2s, w̄ + 2s], and

3. Approximately 99.7% of the observations lie in the closed interval [w̄ − 3s, w̄ + 3s].

Here is the idea behind the Empirical Rule. The superhero Elastic Man has the ability to stretch

his arms as much as he desires. He is standing on the number line at the mean of the data. He

poses the following question to himself:

How far do I need to stretch my arms in order to encompass 68% of Sara’s 3-Iron data?

The first approximation in the Empirical Rule answers this question; it tells Elastic Man to stretch

enough so that one hand is at (ȳ − s2) and the other hand is at (ȳ + s2). This activity is pictured

in Figure 2.5. This picture is a bit busy, so let me spend a few minutes explaining it. Elastic Man

(a.k.a. square-headed man) is standing above the mean of the data, at 98.175. His hands extend

from

ȳ − s2 = 98.175− 28.33 = 69.845 to ȳ + s2 = 126.505.
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Table 2.4: The performance of the Empirical Rule for Sara’s golf data. The values in this table are

the number (percentage) of observations, out of 40, in each interval. Remember that the mean and

standard deviation (SD) are x̄ = 106.175 [ȳ = 98.175] and s1 [s2] for the 3-Wood [3-Iron] data.

Interval:

Data Set Mean ± SD Mean ±2 SD Mean ±3 SD
3-Wood 29 (72.5) 37 (92.5) 40 (100)

3-Iron 22 (55.0) 39 (97.5) 40 (100)

According to the Empirical Rule, his reach encompasses approximately 68% of the data. Let’s see

whether the Empirical Rule is accurate. If you look at Sara’s 3-Iron data in Table 2.2 on page 29,

you will see that nine observations are smaller than 69.845 and nine observations are larger than

126.505. Thus, in actuality, 40 − (9 + 9) = 22 observations lie within the reach of Elastic Man.

Sadly, 22/40 = 0.55 = 55%. The Empirical Rule’s 68% is a poor approximation of 55%. But is

it really that bad? Looking at the list of observations again, we see that Elastic Man barely misses

three observations at 68 yards and one observation at 127 yards. Add these four observations to

the previous total of 22 and we get 26 of 40 observations, which is 65% of the 40 observations

and is close to the Empirical Rule’s approximation of 68%. Thus, the approximation fails for these

data because Elastic Man needs to stretch a bit farther than s2 yards in each direction in order to

encompass approximately 68% of the data.

I did additional arithmetic and counting to investigate the Empirical Rule’s performance for

both sets of Sara’s data. The results are in Table 2.4. My recommendation: Don’t bother checking

these numbers; you will get your chance to create such a table in a Homework problem. The Em-

pirical Rule states that the calculated intervals will encompass approximately 68%, 95% and 99.7%

of the data. For five of the intervals the approximations are good and I have already discussed the

other interval.

Actually, the Empirical Rule tends to work better for larger amounts of data; 40 observations

really aren’t many in this setting. But even with thousands of observations, there are situations

in which the Empirical Rule, gives one or more poor approximations. The first interval, mean ±
SD, is particularly problematic, just as it was for Sara’s 3-Iron data. This topic is not central to

our development in these notes; thus, I will save further examples to the Practice Problems and

Homework.

2.4 Cathy’s Running Study

I end this chapter with a very small balanced CRD. This will serve as a simple, yet real, example

for several ideas presented later in these notes.

Cathy was a very busy student, wife and mother enrolled in my class. One of her favorite

escapes was to run one mile. She had two routes that she ran: one through a park and one at

her local high school. She decided to use her project assignment to compare her two routes. In
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Table 2.5: Cathy’s times, in seconds, to run one mile. HS means she ran at the high school and P

means she ran through the park.

Trial: 1 2 3 4 5 6

Location: HS HS P P HS P

Time: 530 521 528 520 539 527

particular, Cathy performed a balanced CRD with six trials. A trial consisted of Cathy running one

mile and the response was the time, measured to the nearest second, required for Cathy to complete

her run. Her treatments were: running at the high school (treatment 1) and running through the

park (treatment 2). She assigned trials to treatments by randomization. Her data are presented in

Table 2.5. Below are the means, medians and standard deviations for Cathy’s data.

x̄ = 530, x̃ = 530, s1 = 9.00, ȳ = 525, ỹ = 527 and s2 = 4.36.

2.5 Computing

Given a set of numerical data, the website:

http://www.wessa.net/rwasp_density.wasp#output.

will create a kernel density. Time limitations prevent me from discussing this site further.

I could find no websites that create histograms for a set of data.
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2.6 Summary

For many data sets, a dot plot does not provide a satisfactory picture of the distribution of the data.

In such cases, a researcher might opt for a histogram.

The quest for a histogram begins with the construction of the frequency table. A frequency

table consists of five columns, with headings: class interval, width, frequency, relative frequency

and density. Note the following:

1. Class Interval: There are many valid choices for the class intervals in a frequency table.

The collection of class intervals, however, must satisfy the five rules listed on page 31. In

these notes I will always provide you with class intervals that obey these rules.

2. Width: The width of a class interval is equal to its upper bound minus its lower bound. It is

worth noting whether a frequency table has constant-width or variable-width class intervals.

3. Frequency: For each class interval count the number of observations that lie within it, using

our endpoint convention: every class interval includes its left endpoint, but not its right, with

the exception that the last class interval includes both of its endpoints. The frequencies sum

to the number of observations in the data set.

4. Relative Frequency: Divide each frequency by the number of observations in the data set;

the result is the relative frequency. The relative frequencies for any table sum to one.

5. Density: The density of a class interval is equal to its relative frequency divided by its width.

To draw a frequency histogram, follow the two steps on page 32. In particular, the height of a

rectangle equals the frequency of its class interval. By contrast, in a relative frequency histogram

the height of each rectangle equals the relative frequency of its class interval. For a density his-

togram, the height of each rectangle equals the density of its class interval which implies that the

area of each rectangle equals the relative frequency of its class interval.

For a frequency table with constant-width class intervals, all three histograms have the same

shape. For a frequency table with variable-width class intervals, one should use the density his-

togram; the other two types of histograms are misleading.

We learned in Chapter 1 that the mean of a set of data is exactly equal to the center of gravity

of the data set’s dot plot. Thus, for example, if a dot plot is exactly symmetric then the mean (and

median) equal the point of symmetry. Result 2.1 on page 33 extends this relationship to dot plots

that are not exactly symmetric. This is not a totally satisfactory result because the best I can say is

that its conclusions are usually true. Despite this weakness, Result 2.1 is considered to be useful.

As discussed earlier in this chapter, a dot plot can be a very bumpy picture of a distribution of

data. A histogram replaces the bumps with a picture that is flat between (up or down) jumps. A

kernel density goes one step further: it has neither bumps nor jumps; it is a smooth picture of the

distribution of the data. You will never be asked to construct a kernel density.

The Empirical Rule (Result 2.2) provides us with an interpretation of the value of the standard

deviation, s: Approximately 68% [95%; 99.7%] of the deviations have a magnitude that is less

than or equal to s [2s; 3s].
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Table 2.6: Sorted speeds, in MPH, by time-of-day, of Kenny’s 100 cars.

Speeds at 6:00 pm

26 26 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28

28 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30

30 30 31 31 31 31 32 33 33 33 34 34 35 43

Speeds at 11:00 pm

27 28 30 30 30 31 31 31 32 32 32 32 32 32 32 33 33 33

33 33 33 33 34 34 34 34 34 34 35 35 35 35 36 36 36 37

37 37 37 37 37 38 38 39 39 40 40 40 40 40

2.7 Practice Problems

Recall from Chapter 1 that Kenny the policeman conducted a comparative study on the speeds of

cars. Kenny’s data are reprinted in Table 2.6. We will use these data in some of the problems

below.

1. Using class intervals 26–29, 29–32, 32–35, 35–38, 38–41, and 41–44, construct the fre-

quency tables for both sets of Kenny’s data. Remember to use the endpoint convention; for

example, the observation 32 is placed in the interval 32–35.

2. Using your tables from problem 1, draw the frequency histograms for both sets of Kenny’s

data.

3. Kernel densities for Kenny’s data are in Figure 2.6 on page 47. Comment on these pictures.

4. The means and standard deviations of Kenny’s data are:

x̄ = 29.68, s1 = 2.81, ȳ = 34.42 and s2 = 3.25.

Use these values and Kenny’s actual data in Table 2.6 to check the performance of the Em-

pirical Rule.

5. The purpose of this problem is to give you some practice working with the three types of

histograms. The parts of this problem presented below are variations on the thememy dog ate

my homework in the sense that each part provides only partial information about a histogram.

(a) I have a single rectangle from a histogram. Its endpoints are 12 and 15 and its height is

0.03. Given that there are n = 1000 observations in the data set, how many observations

are in this interval (remembering our endpoint convention) if it is:

i. A frequency histogram?

ii. A relative frequency histogram?
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iii. A density histogram?

(b) I have a single rectangle from a histogram. Its endpoints are 10.00 and 10.05 and its

height is 3. Given that there are n = 500 observations in the data set, how many

observations are in this interval (remembering our endpoint convention) if it is:

i. A frequency histogram?

ii. A relative frequency histogram?

iii. A density histogram?

(c) I have a single rectangle from a histogram. Its endpoints are 20 and 22, but I am not

going to tell you its height. Given that there are n = 600 observations in the data set,

and that 10% of these observations are in this interval, how tall is the rectangle if it is:

i. A frequency histogram?

ii. A relative frequency histogram?

iii. A density histogram?

The remaining Problems in this section do not follow my usual Question–Answer format. Rather,

they are extended examples, where I illustrate some ideas, but don’t ask you to do any work. These

remaining problems are important, so please read them carefully.

6. This is an extreme example of skewed data, but the data are real. I want to use strongly

skewed data because, as you will see, having variable-width class intervals is very useful for

skewed data. One of my favorite books for skimming through is The Baseball Encyclopedia.

Before the internet this book was the first place I would look if I had a question about the

history of American professional baseball. A huge segment of The Baseball Encyclopedia

is devoted to the career statistics of every man who has played major league baseball, dating

back to the 1880s, as I recall. The men are separated into two sections, players and pitchers.

(A few men appeared in both sections, most notably Babe Ruth who had substantial, and

glorious, years as both a pitcher and a player.) A few years ago I selected 200 men at

random from the tens of thousands in the player section. I suspect that you have a good idea

what I mean by at random; I will discuss the concept carefully in Part II of these notes. For

my present purposes, your understanding of this issue is not important.

For each man selected, I recorded a simple statistic: the total number of games in which he

appeared during his major league career. I won’t list the 200 observations here, but I will

give you some highlights:

(a) The shortest career was one game, a value possessed by 11 players in my sample.

(b) The longest career in my sample was 3,308 games.

(c) My three favorite summary statistics are below. Because these data are not from a

comparative study, I will denote my data by w’s, the mean by w̄, the standard deviation
by s and the sample size by m.

w̄ = 354.1, w̃ = 83.5 and s = 560.4.
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Note that for this nonnegative response, the ratio of the mean to the median is

354.1/83.5 = 4.24!

(d) In a data set for which almost one quarter (actual count, 47) of the observations are

fewer than 10 games, 21 players had careers of more than 1,000 games, of which six

had careers of more than 2,000 games. In fact, the 21 players with the longest careers

played a total of 35,151 games, which is almost one-half of the total of 70,810 games

played by all 200 players! Any way you look at this data set, these data are strongly

skewed to the right.

Figure 2.7 presents a constant-width frequency histogram of these data. The class intervals

are: 0–100, 100–200, 200–300, . . . , 3300–3400 games. I do not like this picture! Here is the

main feature that I don’t like about it:

Despite having 34 class intervals, over one-half of the data (103 observations) are

placed into one interval. At the other extreme, there are twelve class intervals

with no observations, six class intervals with one observation and a total of 24

class intervals with three or fewer observations!

This is a bit like having a road atlas (we used these before google maps and gps) with

hundreds of pages devoted to Alaska and one-quarter page to New York City. Well, in my

actual road atlas, two pages are devoted to New York City and only one page to Alaska. My

road atlas puts emphasis on the place with lots of streets and people and discounts the state

with only a handful of highways. We should do the same in Statistics. We accomplish this

goal by using variable-width class intervals. The guiding principle is:

• In regions of the number line in which data are plentiful, we want detail. Thus, we

make the class intervals narrow.

• In regions of the number line in which data are scarce, we group data more coarsely.

Thus, we make the class intervals wide.

Following this principle, I drew a density scale histogram for these baseball data with the

following class intervals:

• Four intervals with width = 25: 0–25, 25–50, 50–75 and 75–100;

• Four intervals with width = 100: 100–200, 200–300, 300–400 and 400–500;

• One interval with width = 500: 500–1000;

• One interval with width = 1000: 1000–2000; and

• One interval with width = 1500: 2000–3500.

This new histogram is presented in Figure 2.8. I will make two comments about it.
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(a) In the earlier picture, 103 observations were grouped together into the first class in-

terval, 0–100 games. In the new histogram, this interval has been divided into four

narrower intervals. With this extra detail, we can see that almost two-thirds (actual

count, 67 out of 103) of these careers were shorter than 25 games (remember out end-

point convention: 0–25 does not include 25). In fact, the rectangle above 0–25 has

area:

25(0.0134) = 0.335.

Recall that for a density histogram, area equals relative frequency. Thus, 33.5% of

the observations are in the interval 0–25. Finally, 33.5% of 200 equals 67 players, as I

mention above parenthetically.

(b) Beginning with the class interval 500–1000 and moving to the right, this new histogram

is much smoother than the earlier constant-width frequency histogram. I like this be-

cause, as a baseball aficionado, I can think of no reason other than chance variation for

the numerous bumps in the earlier histogram. Note that the area of the rectangle above

1000–2000 is:

1000(0.000075) = 0.075.

Thus, 7.5% of the 200 players—i.e., 15 players—had careers of 1000–2000 games.

Finally, Figure 2.9 is the frequency histogram for the same class intervals as in Figure 2.8.

When you compare these two figures you will see why statisticians label the frequency his-

togram misleading. It is misleading because even if we are told to focus on the height of

each rectangle, we see the area.

7. The goal of this problem is to give you additional insight of the Empirical Rule, Result 2.2.

I used Minitab to generate three artificial data sets, each of size 1000. I will not give you a

listing of these data sets, nor will I draw their histograms. Instead, note the following:

(a) The data sets all have the same mean, 500, and standard deviation, 100.

(b) The first data set has a symmetric, bell-shaped histogram. The second data set has a

symmetric, rectangular-shaped histogram. The third data set is strongly skewed to the

right.

Table 2.7 presents a number of summaries of these three data sets. Please examine this table

before reading my comments below. Remember: I have not given you enough information

to verify the counts in this table; trust me on these please.

(a) The Empirical Rule approximations are nearly exact for the symmetric, bell-shaped

histogram. The Empirical Rule does not work well for the other shapes.

(b) For the symmetric, rectangular-shaped histogram the Empirical Rule approximation

count for the interval w̄±s is much larger than the actual count. For the interval w̄±2s
the Empirical Rule approximation count is much smaller than the actual count.

46



Figure 2.6: Kernel estimates for Kenny’s 6:00 PM and 11:00 PM data.
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(c) For the strongly skewed histogram, the Empirical Rule approximation count for the

interval w̄ ± s is much smaller than the actual count. Because of this discrepancy,

statisticians sometimes abuse the language and say that for skewed data, the standard

deviation is too large. Obviously, the standard deviation is simply an arithmetic com-

putation; it is what it is and is neither too large nor too small. But, in my opinion, the

misspeak has some value. First, in the Empirical Rule, instructing Elastic Man to reach

s units in both directions in order to encompass 68% of the data is, indeed, telling

my favorite superhero to reach too far. Second, as we will see often in these notes

when looking at real data, even one extreme value in a data set has a large impact on

the value of the standard deviation—making it larger, often much larger. Skewed data

almost always contain at least one extreme value.

Also, the Empirical Rule approximation count for the interval w̄ ± 2s is quite close

to the actual count. Finally, the Empirical Rule approximation count for the interval

w̄ ± 3s is substantially larger than the actual count.

(d) Table 2.7 also presents counts for the data set on length of baseball careers that we

studied in the previous problem. These baseball data had 200 observations, not 1,000,

so I needed to adjust my Empirical Rule approximation counts. The pattern for these

baseball data matches the pattern for the artificial strongly skewed data set.
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Figure 2.7: Frequency histogram of the number of games played by n1 = 200 major league

baseball players.
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Figure 2.8: Variable-width density histogram of the number of games played by n1 = 200 major

league baseball players.
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Figure 2.9: Misleading frequency histogram of the number of games played by n1 = 200 major

league baseball players.
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Table 2.7: An examination of the performance of the Empirical Rule for the three artificial data

sets in Practice Problem 7 and the real baseball career data in Practice Problem 6.

Actual Counts:

Data Set Shape Min. Max. w̄ ± s w̄ ± 2s w̄ ± 3s
1 Symmetric, bell 177 823 682 954 998

2 Symmetric, rectangular 327 673 578 1,000 1,000

3 Skewed to the right 402 989 868 941 979

Empirical Rule Approximation: 680 950 997

Baseball Careers: 0 3,308 175 192 194

Empirical Rule Approximation: 136 190 199
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2.8 Solutions to Practice Problems

1. The frequency tables are in Table 2.8.

2. The histograms are in Figure 2.10.

3. These pictures are smooth, of which I approve! The 6:00 PM kernel density is skewed to the

right with a peak at about 29 MPH, in agreement with our earlier pictures. The 11:00 PM

kernel density has a single peak at about 33 MPH. Its two tails have approximately the same

length, but the right tail is heavier.

Here is a feature that I do not like about the 11:00 PM kernel density: To me, one of the most

interesting features in the data set is the fact that while five cars were traveling 40 MPH,

none was going faster. This feature is obliterated in the kernel density.

4. The first interval for the 6:00 PM data is:

x̄± s1 = 29.68± 2.81 = [26.87, 32.49].

From the table, we see that two observations are smaller than 26.87 and seven observation

are larger than 32.49. Thus, this interval encompasses 50 − (2 + 7) = 41 observations,

which is 82% of the total of 50 observations. The Empirical Rule approximation of 68% is

not good.

The second interval for the 6:00 PM data is:

x̄± 2s1 = 29.68± 5.62 = [24.06, 35.30].

This interval encompasses 50− 1 = 49 observations, which is 98% of the total of 50 obser-

vations. The Empirical Rule approximation of 95% is a bit small.

Finally, the third interval for the 6:00 PM data is:

x̄± 3s1 = 29.68± 8.43 = [21.25, 38.11].

This interval encompasses 50− 1 = 49 observations, which is 98% of the total of 50 obser-

vations. The Empirical Rule approximation of 99.7% is a bit large.

The first interval for the 11:00 PM data is:

ȳ ± s2 = 34.42± 3.25 = [31.17, 37.67].

From the table, we see that eight observations are smaller than 31.17 and nine observation

are larger than 37.67. Thus, this interval encompasses 50−(8+9) = 33 observations, which
is 66% of the total of 50 observations. The Empirical Rule approximation of 68% is quite

good.

The second interval for the 11:00 PM data is:

ȳ ± 2s2 = 34.42± 6.50 = [27.92, 40.92].
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This interval encompasses 50− 1 = 49 observations, which is 98% of the total of 50 obser-

vations. The Empirical Rule approximation of 95% is a bit small.

Finally, the third interval for the 11:00 PM data is:

ȳ ± 3s2 = 34.42± 9.75 = [24.67, 44.17].

This interval encompasses all 50 observations, The Empirical Rule approximation of 99.7%

is quite good.

5. (a) Given that the height is 0.03:

i. This is impossible. For a frequency histogram the height of each rectangle must

be an integer.

ii. Three percent of the 1000 observations are in this interval:

0.03(1000) = 30 observations.

iii. The area of the rectangle is 3(0.03) = 0.09. Thus, 9% of the 1000 observations

are in this interval:

0.09(1000) = 90 observations.

(b) Given that the height is 3:

i. 3. For a frequency histogram the height of a rectangle tells us how many observa-

tions are in its class interval.

ii. This is impossible. For a relative frequency histogram the height of a rectangle

cannot exceed one.

iii. The area of the rectangle is 0.05(3) = 0.15. Thus, 15% of the 500 observations

are in this interval:

0.15(500) = 75 observations.

(c) We are given that the relative frequency of the interval is 0.10, which makes its fre-

quency 0.10(600) = 60.

i. 60. For a frequency histogram the height of a rectangle equals the number of

observations in the class interval.

ii. 0.10. For a relative frequency histogram the height of a rectangle equals the rela-

tive frequency of observations in it.

iii. The width of the class interval is 2. Thus, the density of the interval is 0.10/2 =
0.05, which is also the height of its rectangle.
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Table 2.8: Frequency tables for Kenny’s data.

6:00 PM 11:00 PM

Class Rel. Density Rel. Density

Interval Width Freq. Freq. Freq. Freq.

26–29 3 19 0.38 0.127 2 0.04 0.013

29–32 3 23 0.46 0.153 6 0.12 0.040

32–35 3 6 0.12 0.040 20 0.40 0.133

35–38 3 1 0.02 0.007 13 0.26 0.087

38–41 3 0 0.00 0.000 9 0.18 0.060

41–44 3 1 0.02 0.007 0 0.00 0.000

Total 50 1.00 50 1.00

Figure 2.10: Frequency histograms of car speeds, by time.
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Figure 2.11: Kernel densities for Brian’s combat boots and jungle boots data.
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2.9 Homework Problems

In the Chapter 1 Homework Problems we learned about Brian’s study of his running times. (See

page 24.) Use Brian’s data, reproduced below, to solve problems 1–5. Wearing combat boots,

Brian’s sorted times were:

321 323 329 330 331 332 337 337 343 347

Wearing jungle boots, Brian’s sorted times were:

301 315 316 317 321 321 323 327 327 327

1. Create the frequency table and draw the frequency histogram for Brian’s combat boot data,

using the class intervals: 320–330, 330–340 and 340–350. Briefly describe the shape of the

histogram.

2. Create the frequency table and draw the frequency histogram for Brian’s combat boot data,

using the class intervals: 321–333, 333–345 and 345–357. Briefly describe the shape of the

histogram.

3. Compare your answers to problems 1 and 2.

4. Create the frequency table and draw the frequency histogram for Brian’s jungle boot data,

using the class intervals: 300–310, 310–320 and 320–330. Briefly describe the shape of the

histogram.

5. Figure 2.11 present kernel densities for Brian’s two data sets. Briefly describe what these

pictures reveal about the data. Compare these kernel densities to the three frequency his-

tograms from problems 1, 2 and 4.
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6. Refer to Sara’s golfing data in Table 2.2. For this problem only I am going to combine Sara’s

two sets of data to obtain one set of data with 80 observations. The mean of these 80 numbers

is 102.52 and the standard deviation is 29.25.

How do the Empirical Rule (Result 2.2) approximations perform for these data?

7. Below is a dot plot ofm = 19 observations.
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••
••
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•

••
•

••
•

••
•

•

(a) How would you label the shape of this dot plot? Approximately symmetric? Skewed?

Other?

(b) Calculate the mean and median of these data.

(c) Given your answers to (a) and (b), comment on Result 2.1.
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Chapter 3

Randomization, Probability and Sampling

Distributions

3.1 Assignments and Randomization

Recall that Dawn’s study of her cat Bob was presented in Chapter 1. Table 3.1 presents her data.

Reading from this table, we see that in Dawn’s study, the chicken-flavored treats were presented to

Bob on days (trials):

1, 5, 7, 8, 9, 11, 13, 15, 16 and 18.

Why did she choose these days? How did she choose these days? It will be easier to begin with

the ‘How’ question.

We have been looking at the data collected by Dawn. We have listed the observations; separated

them by treatment; sorted them within treatment; and, within treatments, drawn dot plots and

computed means, medians, variances and standard deviations. But now we need to get into our

time machine and travel back in time to before Dawn collected her data. We go back to when

Dawn had her study largely planned: treatments selected; trials defined; response specified; and

the decision to have a balanced study with 20 trials. We are at the point where Dawn pondered,

“Which 10 trials should have chicken-flavored treats assigned to them? How should I decide?”

Table 3.1: Dawn’s data on Bob’s consumption of cat treats. ‘C’ [‘T’] is for chicken [tuna] flavored.

Day: 1 2 3 4 5 6 7 8 9 10

Flavor: C T T T C T C C C T

Number Consumed: 4 3 5 0 5 4 5 6 1 7

Day: 11 12 13 14 15 16 17 18 19 20

Flavor: C T C T C C T C T T

Number Consumed: 6 3 7 1 3 6 3 8 1 2
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The answer is that Dawn did this by using a process called randomization. I will explain what

randomization is by showing you three equivalent ways to randomize.

First, some terminology. We call the list of 10 trials above an assignment of treatments to

trials. It tells us which trials were assigned to the first treatment (chicken). It also implies which

trials were assigned to the second treatment (tuna); namely, all of the trials not listed above. If we

are going to study assignments—and we are—it is easier if we make our assignments as simple to

display as possible. Thus, an assignment will be presented by listing the trials that it assigns

to treatment 1.

A natural question is: How many different assignments were possible for Dawn’s study? The

answer is 184,756. I will give a brief digression into how I obtained this number.

You might recall from math the expression m!, which is read em-factorial. If m is a positive

integer, then this expression is defined as:

m! = m(m− 1)(m− 2) · · · 1 (3.1)

Thus, for example,

1! = 1; 2! = 2(1) = 2; 3! = 3(2)(1) = 6; and so on.

By special definition (which will allow us to write more easily certain formulas that will arise later

in these notes), 0! = 1. Finally, for any other value of m (negatives, non-integers), the expression

m! is not defined.
We have the following result. You don’t need to worry about proving it; it is a given in these

notes.

Result 3.1 (The number of possible assignments.) For a total of n = n1 + n2 units, the number

of possible assignments of two treatments to the units, with n1 units assigned to treatment 1 and

the remaining n2 units assigned to treatment 2, is

n!

n1!n2!
(3.2)

I will evaluate Equation 3.2 for three of the studies presented in Chapters 1 and 2.

• For Cathy’s study, n = 6 and n1 = n2 = 3. Thus, the number of possible assignments is

6!

3!3!
=

6(5)(4)

3(2)(1)
= 20.

Notice that it is always possible to reduce the amount of arithmetic we do by canceling some

terms in the numerator and denominator. In particular, the 6! in the numerator can be written

as

6(5)(4)3!

and its 3! cancels a 3! in the denominator.
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• For Kymn’s study, n = 10 and n1 = n2 = 5. Thus, the number of possible assignments is

10!

5!5!
=

10(9)(8)(7)(6)

5(4)(3)(2)(1)
= 252.

• For Dawn’s study, n = 20 and n1 = n2 = 10. Thus, the number of possible assignments is

20!

10!10!
= 184,756.

Notice that for Cathy’s and Kymn’s study, I determined the answer by hand because the numbers

are small enough to handle easily. Dawn’s study is trickier. Many of you, perhaps most, perhaps

all, will consider it easy to determine the answer: 184,756. But I will not require you to do so. As

a guide, I will never have you evaluatem! for anym > 10.
Sara’s study is a real challenge. The number of possible assignments is

80!

40!40!
.

This answer, to four significant digits, is

1.075× 1023.

Don’t worry about how I obtained this answer. If this issue, however, keeps you awake at night,

then send me an email and I will tell you. If enough people email me, then I will put a brief

explanation in the next version of these Course Notes.

I now will describe three ways—two physical and one electronic—that Dawn could have per-

formed her randomization.

1. A box with 20 cards. Take 20 cards of the same size, shape, texture, etc. and number

them 1, 2, . . . , 20, with one number to each card. Place the cards in a box; mix the cards

thoroughly and select 10 cards at random without replacement. The numbers on the cards

selected denoted the trials that will be assigned treatment 1.

2. A deck of 20 ordinary playing cards. (This method is especially suited for units that

are trials.) We need to have 10 black cards (spades or clubs) and 10 red cards (diamonds

or hearts). We don’t care about the rank (ace, king, 3, etc.) of the cards. The cards are

thoroughly shuffled and placed in a pile, face down. Before each trial select the top card

from the pile; if it is a black card, then treatment 1 is assigned to the trial; if it is a red card,

then treatment 2 is assigned to the trial. The selected card is set aside and the above process

is repeated for the remaining trials.

3. Using a website. This method will be explained in Section 3.5 later in this chapter.

Are you familiar with the term black box? I like the definition in Wikipedia

http://en.wikipedia.org/wiki/Black_box
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which is:

In science and engineering, a black box is a device, system or object which can be

viewed solely in terms of its input, output and transfer characteristics without any

knowledge of its internal workings, that is, its implementation is ”opaque” (black).

Almost anything might be referred to as a black box: a transistor, an algorithm, or the

human mind.

Our website for randomization is a black box. It executes a computer program that supposedly is

mathematically equivalent to my two methods of randomization that involve using cards. I say it’s

a black box because we aren’t really interested in the computer code of the program.

Thus, if you want to think about how randomization works, I recommend you think of the

cards. For my purposes of instruction the most convenient method for me is to use the website

to obtain examples for you. If I were to replicate Dawn’s study on my cat Buddy I would use

the second card method above. But that’s me. If you perform a project for this class, you may

randomize however you please, as long as you use one of the three methods above.

Before I get back to Dawn’s study, I want to deal with an extremely common misconception

about randomization. Randomization is a process or a method that is fair in the sense that every

possible assignment has the same chance of being selected. Randomization does not guaran-

tee that the assignment it yields will look random. (Among the many issues involved is how

one decides what it means for an assignment to look random.) Later in these Course Notes, we

will discuss designs that involve restricted randomization; in particular, we will learn about the

Randomized Pairs Design.

I used the website and obtained the following assignment for Dawn’s study:

1, 2, 4, 7, 9, 10, 11, 14, 15, 18.

Note that this assignment is different from the one that Dawn used. Given that there are 184,756

possible assignments I would have been very surprised if I had obtained the same assignment as

Dawn!

Here is the commonality of our three methods of randomization: Before we select an assign-

ment, all 184,756 possible assignments for Dawn’s study are equally likely to be selected. For the

first method of randomizing, this fact is conveyed by saying that the cards are indistinguishable;

they are thoroughly mixed; and 10 cards are selected at random. For the second method of ran-

domizing, this fact is conveyed by saying that the cards are shuffled thoroughly. Finally, whereas

the electronic methods’ operations are a total mystery to us, the programmer claims that it makes

all assignments equally likely. In this class we will use the website randomizer for a variety of

purposes (not just randomization) and we will accept without question its claim of making every

assignment equally likely.

The most important thing to remember about probability is that it is always about a future

uncertainty.

Now, back to Dawn’s study of Bob. Remember, we are at a place in time before Dawn selected

an assignment. Thus, it makes sense to talk about probabilities. Because all assignments are
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equally likely to be selected, we assign each of them the same probability of being selected, as

given below.

P (Any particular assignment) =
1

Total number of possible assignments
(3.3)

For Dawn’s study, the probability of any particular assignment is 1/184,756. For Cathy’s study,

the probability of any particular assignment is 1/20 = 0.05 because, recall (Equation 3.2) that for

n1 = n2 = 3, there are 20 possible assignments of treatments to units.

We will be interested in combining assignments (perhaps with some common feature) into a

collection of assignments. Let A denote any collection of assignments. Such a collection is called

an event. Before we select an assignment via randomization, it makes sense to ask whether or not

the assignment that will be obtained (note the future tense) is one of the assignments belonging to

the event A. If it is, we will say that the event A has occurred. We have the following definition of

the probability that an event A will occur.

P (A) =
Number of assignments in A

Total number of possible assignments
(3.4)

An important example of a collection of assignments is the collection of all possible assignments;

it is called the Sample Space and is denoted by S (an upper case ess with an attitude). From

Equation 3.4 we see that the probability of the sample space occurring is 1 or 100%.

The sample space is called the certain event. Why? Well, by definition it contains all possible

assignments; thus, it is certain to occur. Thus, we see that certainty corresponds to a probability

of 1. An empty collection of assignments is impossible to occur and has probability equal to 0.

Thus, probability is a quantification of uncertainty for which 0 corresponds to impossible and 1

corresponds to certainty.

3.2 The Skeptic’s Argument

Recall my earlier discussion of within- and between-variation. Let’s return to within variation.

Consider, for example, Dawn’s sorted chicken data: 1, 3, 4, 5, 5, 6, 6, 6, 7 and 8. These numbers

vary. This fact cannot be debated. In words, some days Bob consumed a large number of chicken

treats and other days he consumed very few. Bob exhibited a large amount of day-to-day variation

in his eating of chicken treats. In somewhat more picturesque language, some days Bob was very

hungry; other days hungry; other days not so hungry and other days barely hungry at all.

Now consider between-variation. I originally stated that the chicken data were, as a group,

larger than the tuna data. I need to be more precise; I need to replace the vague expression as a

group by something else. Well, I have already talked about this; I will summarize a data set by

calculating its mean (or median, but let’s stick to the mean now for simplicity). Thus, the between-

variation is reflected in the mean for chicken being 2.2 treats larger than the mean for tuna.

This leads to a very important realization. Whereas the within variation is definitely real, I

cannot be sure that the between variation is real. Indeed, for dramatic purposes I am going to

invent a person I call the Skeptic. The Skeptic is the originator of what we will call the Skeptic’s

Argument, stated below:
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The flavor of the treat is irrelevant. The number of treats that Bob consumed on any

given day was determined by how hungry Bob was on that day.

The Skeptic’s Argument is so central to what we do in this course that it behooves us to spend

some time thinking about it.

Consider the day when Bob was offered chicken and he consumed eight treats. According to

the Skeptic, the flavor was irrelevant. Bob consumed eight treats because he was very hungry that

day. If Bob had been offered tuna that day, the Skeptic believes that Bob would have consumed

eight treats. Similarly, there was a day that Bob was offered tuna and he refused to eat. To the

Skeptic, this means that on that day Bob was not hungry at all and, if he had been offered chicken

treats, he would have eaten none of them.

Please note the following two items:

1. As mere mortals, it is impossible for us to determine with certainty whether or not the

Skeptic’s Argument is correct.

2. You are certainly allowed to have your own opinion as to whether the Skeptic is correct. I am

not going to tell you what to believe, just as I would not tell you whether you like chocolate.

You need to learn, however, how statisticians evaluate the Skeptic’s Argument.

Regarding the second item above, there are many details to learn about how statisticians work. The

method we advocate has both strengths and weaknesses and we will learn about both categories of

features.

It will be useful to invent an adversary for the Skeptic; I will call it the Advocate. I want to

avoid making this current chapter too long; thus, I will delay our consideration of the Advocate’s

Argument until Chapter 5.

Please note the following. For ease of exposition, on occasion I will refer to the Skeptic and

Advocate as real people. I want these characters to be gender-free; hence, when I refer to either of

them with a pronoun—as I do the Advocate in the previous paragraph—I will use the pronoun it

rather than he or she.

In the remainder of this chapter we will combine the Skeptic’s Argument with our notions

of probability to obtain the sampling distribution of the test statistic. The importance of this

sampling distribution will be presented in Chapter 5.

3.3 The Sampling Distribution of the Test Statistic for Cathy’s

Study

Recall that Cathy’s running study was introduced on page 40.

For convenience, I have presented her data again in Table 3.2. Also, her treatment means are:

x̄ = (530 + 521 + 539)/3 = 530 and ȳ = (528 + 520 + 527)/3 = 525.

We see that Cathy’s randomization assigned trials 1, 2 and 5 to the high school and the remaining
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Table 3.2: Cathy’s times, in seconds, to run one mile. HS means she ran at the high school and P

means she ran through the park.

Trial: 1 2 3 4 5 6

Location: HS HS P P HS P

Time: 530 521 528 520 539 527

Table 3.3: The 20 possible assignments for Cathy’s CRD.

1,2,3 1,2,4 1,2,5 1,2,6 1,3,4 1,3,5 1,3,6 1,4,5 1,4,6 1,5,6

2,3,4 2,3,5 2,3,6 2,4,5 2,4,6 2,5,6 3,4,5 3,4,6 3,5,6 4,5,6

trials to the park. In order to save space below, I will refer to this as assignment 1,2,5.

The number of possible assignments for Cathy’s study is quite small; using Equation 3.2 on

page 56, we obtain:
6!

3!3!
=

6(5)(4)

3(2)
= 20 possible assignments.

Thus, it is relatively easy to list all possible assignments; they are presented in Table 3.3.

As I show above, Cathy’s mean time on the high school route is 5 seconds larger than her mean

time on the park route, because, x̄− ȳ = 530− 525 = 5 seconds. It is helpful now, and necessary

in Chapter 5, for me to introduce additional notation and terminology.

Because I am comparing treatments by subtracting means, I will give the difference a symbol;

let u = x̄ − ȳ. For Cathy’s data, u = 5. We call u the observed value of the test statistic U .

Admittedly, this language and notation is confusing. But it is standard and I am unable to change

it because, frankly, I am not the tsar of the Statistics world!

I suggest that you think of these ideas in the following way. Before anyone collects data, the

test statistic, U , is a rule or plan or protocol for what will be done with the data. In this chapter

(and two more to follow) the rule is: we will collect data, separate data by treatments, compute

means and compare means by subtracting. When the rule is applied, the result of all that work will

be a number, which we denote by u.
The reason we need the above is because of the interesting way (peculiar way?) statisticians

analyze data. Above we see that Cathy’s study led to u = 5 as the observed value of the test

statistic. The question we face is: How do we interpret u = 5? Should we be impressed? Should

we be unimpressed? Is it real? (Whatever that means!)

This leads us to one of the big ideas in Statistics:

We evaluate what actually happens in a study by comparing it to everything that

could have happened in the study.

So, the first thing I do now is I start adding the adjective actual in places that were previously

modifier free. In particular, Cathy’s actual assignment was 1,2,5 which led to her actual x’s of 530,
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521 and 539 and her actual y’s of 528, 520 and 527, and her actual means of 530 and 525 and,

most importantly, her actual u of 5.

Next, let’s look at the statement, “Everything that could have happened.” Do not take an

expansive view of this statement! It could have happened that Cathy chose a different topic; or

that Cathy did not take my class; or that I never became a statistician; or that the dinosaurs were

never wiped out by an asteroid.

Statisticians take an extremely narrow view of the statement, “Everything that could have hap-

pened.” To us, what happened is that Cathy obtained assignment 1,2,5; everything that could have

happened refers to the 19 other possible assignments.

Therefore, the fundamental quest of a statistician looking at Cathy’s data—and indeed most

studies we ever consider— is to determine what u would have been obtained for each of the other

(19, in Cathy’s case) possible assignments. Nineteen is a pretty small number; thus, examining 19

assignments seems manageable. Let’s give it a try!

Let’s begin with assignment 1,2,3 which means, of course, that Cathy would run at the high

school on trials 1, 2 and 3, and through the park on trials 4, 5 and 6. What would have happened?

Well, I can give you a partial answer quite easily. In fact, I can list several things that I know to

be true:

• Trial 1: In the actual study, trial 1 was assigned to the high school and Cathy obtained

a response of 530. Thus, because assignment 1,2,3 assigns trial 1 to the high school, the

response would have been 530.

• Trial 2: For the same reason I give above for trial 1, the response would have been 521.

• Trial 4: In the actual study, trial 4 was assigned to the park and Cathy obtained a response

of 520. Thus, because assignment 1,2,3 assigns trial 4 to the park, the response would have

been 520.

• Trial 6: For the same reason I give above for trial 4, the response would have been 527.

• Trial 3: In the actual study, trial 3 was assigned to the park and Cathy obtained a response of

528. Assignment 1,2,3 assigns trial 3 to the high school. As a result, nobody can say what

the response would have been!

• Trial 5: As with trial 3, nobody can say what the response would have been.

It seems that we are at an impasse. I cannot say, with certainty, what would have happened if Cathy

had used assignment 1,2,3. In fact, a variation of the above argument can be made for every one of

the 19 assignments that were not used in the actual study.

So, what do we do? We add an assumption. We add the assumption that the Skeptic’s Argument

is correct. Now, let’s revisit my argument above for trial 3.

• Trial 3: In the actual study, trial 3 was assigned to the park and Cathy obtained a response of

528. Assignment 1,2,3 assigns trial 3 to the high school.
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Table 3.4: The values of u for all possible assignments for Cathy’s CRD.

Assignment x values y values u
1, 2, 3 530, 521, 528 520, 539, 527 −2.33
1, 2, 4 530, 521, 520 528, 539, 527 −7.67
1, 2, 5 530, 521, 539 528, 520, 527 +5.00 (Actual)
1, 2, 6 530, 521, 527 528, 520, 539 −3.00
1, 3, 4 530, 528, 520 521, 539, 527 −3.00

1, 3, 5 530, 528, 539 521, 520, 527 +9.67
1, 3, 6 530, 528, 527 521, 520, 539 +1.67
1, 4, 5 530, 520, 539 521, 528, 527 +4.33
1, 4, 6 530, 520, 527 521, 528, 539 −3.67
1, 5, 6 530, 539, 527 521, 528, 520 +9.00

2, 3, 4 521, 528, 520 530, 539, 527 −9.00
2, 3, 5 521, 528, 539 530, 520, 527 +3.67
2, 3, 6 521, 528, 527 530, 520, 539 −4.33
2, 4, 5 521, 520, 539 530, 528, 527 −1.67
2, 4, 6 521, 520, 527 530, 528, 539 −9.67

2, 5, 6 521, 539, 527 530, 528, 520 +3.00
3, 4, 5 528, 520, 539 530, 521, 527 +3.00
3, 4, 6 528, 520, 527 530, 521, 539 −5.00
3, 5, 6 528, 539, 527 530, 521, 520 +7.67
4, 5, 6 520, 539, 527 530, 521, 528 +2.33

Because the Skeptic is correct, the treatment does not matter. Cathy obtained a response of

528 on trial 3 because that reflected her energy, enthusiasm, the weather, whatever, on trial 3.

If she had run at the high school, her response would have been 528.

With a similar argument, we see that by adding the assumption that the Skeptic is correct, we know

that Cathy’s time on trial 5 would have been 539 whether she ran at the high school (as she actually

did) or through the park, as assignment 1,2,3 would have told her to do.

To summarize: for assignment 1,2,3, Cathy’s x’s would have been: 530, 521 and 528; her y’s
would have been 520, 539 and 527. (You can find these easily by looking at Table 3.2 and simply

ignoring the listed treatments; after all, according to the Skeptic, the treatments don’t matter.)

Continuing, for assignment 1,2,3, Cathy’s x̄ = 526.33, ȳ = 528.66 and u = −2.33. I can repeat

this analysis for the remaining 18 possible assignments. My work is summarized in Table 3.4.

You don’t need to verify all of the entries in this table, but you should verify enough to convince

yourself that you understand the method.

There is no nice way to say this: The results in Table 3.4 are a mess! The 20 possible as-
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Table 3.5: The sampling distribution of U for Cathy’s CRD.

u P (U = u) u P (U = u) u P (U = u)
−9.67 0.05 −3.00 0.10 3.67 0.05
−9.00 0.05 −2.33 0.05 4.33 0.05
−7.67 0.05 −1.67 0.05 5.00 0.05
−5.00 0.05 1.67 0.05 7.67 0.05
−4.33 0.05 2.33 0.05 9.00 0.05
−3.67 0.05 3.00 0.10 9.67 0.05

Table 3.6: Kymn’s times, in seconds, to row 2000 meters on an ergometer. Treatment 1 is the small

gear with the vent closed; and treatment 2 is the large gear with the vent open.

Trial: 1 2 3 4 5 6 7 8 9 10

Treatment: 2 1 1 1 2 2 1 2 2 1

Response: 485 493 489 492 483 488 490 479 486 493

signments lead to 18 different values of u! Before I give in to despair, I will summarize this

information in Table 3.5. In this new table, I have taken the 18 different values of u and sorted

them from smallest to largest. I then divided their frequencies of occurrence (16 of which are one

and two of which are two) by the total number of assignments, 20, to obtain the probabilities given

in the table. This table is a representation of the sampling distribution of the test statistic U .

Sometimes, the sampling distribution is represented by an equation; in any event it contains all

possible values of U , each matched with its probability of occurring. As we will see in Chapter

5, the sampling distribution is a critical component of how we learn from a CRD. Before our next

example, the last one of this chapter, I will make an obvious comment: Even for a CRD with a

very small number of possible assignments—20 in this case—it is extremely tedious and messy to

determine the sampling distribution of the test statistic U .

3.4 The Sampling Distribution of U for Kymn’s CRD

Kymn’s study and data were presented in Chapter 2. Her data are reproduced in Table 3.6.

Kymn’s study will be manageable for me because, as shown earlier, there are only 252 possible

assignments of trials to treatments. Note from Table 3.6 that her actual assignment was 2, 3, 4, 7

and 10, which yielded

x̄ = 491.4, ȳ = 484.2 and u = 491.4− 484.2 = 7.2.

I used the randomizer to obtain a second possible assignment: I obtained 4, 5, 7, 9 and 10.
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Table 3.7: Frequency table for u for the 252 possible assignments for Kymn’s study.

u Freq. u Freq. u Freq. u Freq. u Freq. u Freq.

−7.2 1 −4.8 3 −2.4 10 0.4 12 2.8 10 5.2 4

−6.8 1 −4.4 5 −2.0 8 0.8 10 3.2 8 5.6 3

−6.4 1 −4.0 8 −1.6 14 1.2 13 3.6 6 6.0 1

−6.0 1 −3.6 6 −1.2 13 1.6 14 4.0 8 6.4 1

−5.6 3 −3.2 8 −0.8 10 2.0 8 4.4 5 6.8 1

−5.2 4 −2.8 10 −0.4 12 2.4 10 4.8 3 7.2 1

0.0 16 Total 252

Referring to Table 3.6, you can verify the following:

x̄ = (492 + 483 + 490 + 486 + 493)/5 = 488.8, ȳ = (485 + 493 + 489 + 488 + 479)/5 = 486.8

and u = 488.8 − 486.8 = 2.0. I continued the above process, examining all 252 possible assign-

ments and determining the value of u = x̄− ȳ for each of them. (Warning: Do not attempt this! It

was no fun and quite tedious; although, in fairness, I should acknowledge that many teachers are

actually quite good at doing this. I am not.) The 252 assignments result in 37 possible values of u;
my results are presented in Table 3.7. If we divide these frequencies by 252 we have the sampling

distribution for U . (Admittedly, we would need to change the column headings.) But I do not

enjoy dividing by 252 and such divisions do not give pleasant decimals, so I won’t do it. You get

the idea without this extra pain. We will return to Kymn’s sampling distribution in Chapter 5.

I will note that Kymn’s actual u = 7.2 was the largest possible value of u; that is, every one

of the other 251 possible assignments gives a value for u that is smaller than 7.2. This is no great

surprise; Kymn’s actual data had the five largest values on treatment 1 and the five smallest values

on treatment 2. Thus, not a surprise, but as we will see, very important.

In Chapter 5 we will learn why the sampling distribution of a test statistic is important. But

first we must deal with the following issue. When there are trillions or billions or even thousands

of possible assignments, the method I used for Cathy’s and Dawn’s studies—basically, a tedious

enumeration of every possibility—simply is not practical, even with the help of a clever computer

program. Therefore, in Chapter 4 we will learn how to approximate a sampling distribution.

I end this section with the following useful result on symmetry.

Result 3.2 (Balance and symmetry.) For a balanced CRD, the sampling distribution of U is sym-

metric around 0.

Proof: You don’t need to read this proof, but it is so elegant that math-ophiles might enjoy it.

Let a1 denote any assignment. Let −a1 denote its mirror image; i.e., the units assigned to

treatment 1 [2] by a1 are assigned to treatment 2 [1] by −a1. Thus, for example, if n = 6, the
mirror image of assignment 1,2,3 is assignment 4,5,6.

Let b be any positive number. Consider the collection, A, of assignments, if any, that give
u = b. Let B denote the collection of assignments that are mirror images of the assignments in A.

65



Clearly, every assignment in B gives u = −b. As a result, P (U = b) = P (U = −b) for every
b > 0. Hence, the result follows.

The symmetry promised by Result 3.2 can be seen in Tables 3.5 and 3.7.

3.5 Computing

In this section you will learn how to use a website to perform randomization. Please click onto the

following site:

http://www.randomizer.org/form.htm

If all is working well, you will still be able to see this page plus another window that has opened

up and is at the above site. Let’s look at your new web-window.

You will see that there are eight rectangular boxes. When you use this site to obtain an assign-

ment via randomization you will be able to enter your values of interest in the top seven of these

boxes. Currently, these seven boxes contain the default values provided by the site’s programmer.

After you have changed any, all or none of the entries in these seven boxes you should click on the

bottom box, which contains the words:

Randomize Now!

My guess is that the exclamation point is to remind you how exciting it is to be doing Statistics!

Personally, I am so excited to see how this works, I will click on the bottom box without any

changes to the default settings. I did so and obtained:

11, 49, 18, 27, 50

You try it. I bet that you did not obtain the same numbers I obtained above.

Let’s now look at the seven boxes and discover why they exist. The first box sits to the right of

the following question:

How many sets of numbers do you want to generate?

As we shall see below, the “sets of numbers” are assignments. Thus, the question is: How many

assignments do you want to generate? If I am a researcher seeking an assignment for my study,

I would want only one assignment and I would not change the default value, which is 1. If a

Homework question asks you to generate, say, five assignments, then you would place the number 5

in the box. Well, you could leave the 1 in the box and run the site five times, but that would be

tedious and waste time.

The second box sits to the to the right of the question:

How many numbers per set?

For our purpose—obtaining an assignment for CRD—enter the value n1 in the box.

The third and fourth boxes sit to the right of a directive to specify the range of numbers you

desire. Calculate the value of n = n1 + n2, the total number of units in the CRD, and enter:
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From: 1 (i.e., you may leave the default value)

To: n

The fifth box sits to the to the right of the question:

Do you wish each number in a set to remain unique?

For randomization we need n1 different units selected for assignment to treatment 1. Thus, we opt

for the default answer: Yes.

The sixth box sits to the to the right of the question:

Do you wish to sort the numbers that are generated?

For randomization we don’t care the order in which the n1 units are selected. Thus—and because

it is easier to work with a sorted list—you should change the default to

Yes: Least to Greatest.

Finally, the seventh box sits to the to the right of the question:

How do you wish to view your random numbers?

I find the proffered place markers to be very annoying. Thus, I recommend using the default: Place

Markers Off.

Problem 1 in the Practice Problems will provide you with practice using this site.

67



3.6 Summary

In a CRD, the researcher has the authority to assign units to levels of the study factor and exer-

cises this authority by assigning units using the process of randomization. The three equivalent

methods of randomizing are listed on page 57. The first two of these involve using a collection

of cards. If you ever need to randomize (for example, in your own research or for a project in this

class) it is fine to use cards, but most people find it more convenient to use an electronic method. In

other words, the cards give us a way to visualize—if not perform—randomization. The electronic

method was detailed in Section 3.5.

For a CRD with n = n1 + n2 units, of which n1 are assigned to treatment 1, the number of

possible assignments equals
n!

n1!n2!
,

where factorials are defined in Equation3.1 on page 56.

Probability is a quantification of uncertainty about the future. At this stage in these notes, we

are interested in applying the idea of probability to the process of randomization. In particular, be-

forewe randomize, we believe that every possible assignment is equally likely to be the assignment

chosen by randomization. Thus, we assign the same probability to every possible assignment:

P (Any particular assignment) =
1

Total number of possible assignments
.

An event is any specified collection of assignments. For any event A we calculate its probability

as:

P (A) =
Number of assignments in A

Total number of possible assignments
.

Typically—but not always—in a CRD the two treatment means calculated from the data will

be different numbers. Statisticians want to decide whether this observed difference between treat-

ments is real. This is not an easy question to formulate or answer. The first step is to consider the

Skeptic’s Argument which states that the two treatments are the same in the following sense:

For any given unit, if it were possible to assign the unit to both treatments, the two

responses obtained would be identical.

In a CRD, because it is impossible to assign a unit to both treatments, a researcher cannot say, with

certainty, whether the Skeptic’s Argument is correct. In Chapter 5 we will learn how to examine

the validity of the Skeptic’s Argument using the ideas of a statistical test of hypotheses. Learning

all the facets of a statistical test of hypotheses is a lengthy and difficult endeavor; as a result, we

will break the process into manageable sized pieces. The first piece is the specification of the test

statistic and the derivation of its sampling distribution.

We summarize the data from a CRD by computing the mean response for each treatment: x̄ [ȳ]
for treatment 1 [2]. Define u = x̄− ȳ; u is the difference of the treatment means. The number u is

called the observed value of the test statistic U .

One of the big ideas in Statistics is:
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We evaluate what actually happens in a study by comparing it to everything that

could have happened in the study.

Statisticians take a rather modest view of the notion of everything that could have happened; this

means the following. On the one hand we have the evidence from the actual data: the actual value

of u. On the other hand, we have the distribution of the values of u. The distribution is obtained by
looking at every possible assignment—including the assignment that was actually used—and for

each assignment determining the value of u. As illustrated in the text, such a distribution cannot

be obtained without an additional assumption. The assumption we will explore in the next few

chapters is the assumption that the Skeptic is correct. With this assumption, the distribution is

called the sampling distribution of the test statistic U .

In this chapter we have seen via two examples that if the number of possible assignments is

small—an admittedly vague term—then the exact sampling distribution can be determined. In

the next chapter, we will learn how a computer can be used to obtain an approximate sampling

distribution. These ideas will come together in Chapter 5 when we learn how scientists and

statisticians use either the exact or an approximate sampling distribution to investigate the issue of

whether the observed treatment difference is real.

Much later in this Part I we will see that it is possible to obtain a distribution of values of u
when the Skeptic is incorrect. This will allow us to investigate what is called the power of a test

of hypotheses and we will learn why the power is very important to a scientist.

Result 3.2 on page 65 states that for a balanced CRD, the sampling distribution of U is sym-

metric around 0.
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3.7 Practice Problems

1. Use the website discussed in Section 3.5 to obtain five assignments for Kymn’s rowing study

using the process of randomization. Recall that Kymn performed a balanced CRD with a

total of 10 trials.

2. Table 3.8 presents artificial data for a balanced CRD with a total of n = 6 units.

(a) What is the actual assignment that the researcher used?

(b) Calculate the actual values of x̄, ȳ and u = x̄− ȳ.

3. Refer to the previous question. It is too tedious for you to determine the entire sampling

distribution for U , but I want to make sure you understand the steps. Thus, please answer

the questions below.

(a) Assuming that the Skeptic is correct, calculate the values of x̄, ȳ and u = x̄ − ȳ for

assignment 1,3,6.

(b) Assuming that the Skeptic is correct, calculate the values of x̄, ȳ and u = x̄ − ȳ for

assignment 1,4,5.

(c) Assuming that the Skeptic is correct, calculate the largest possible value of u; which
assignment gives this value?

4. Table 3.9 presents an artificial data set with n1 = 2 and n2 = 4.

(a) How many possible assignments are there?

(b) List all possible assignments. Identify the actual assignment.

(c) Calculate the actual values of x̄, ȳ and u.

(d) Assuming that the Skeptic is correct, calculate the values of x̄, ȳ and u = x̄ − ȳ for

assignment 5,6.

(e) Assuming that the Skeptic is correct, calculate the values of x̄, ȳ and u = x̄ − ȳ for

assignment 1,4.

(f) The sampling distribution of U is given in Table 3.10.

i. Is the sampling distribution of U symmetric? Explain your answer.

ii. Obtain P (U ≥ 6); obtain P (U ≤ −6); obtain P (|U | ≥ 6).
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Table 3.8: Artificial data for Practice Problems 2 and 3.

Unit: 1 2 3 4 5 6

Treatment: 2 1 1 2 1 2

Response: 9 6 30 3 12 15

Table 3.9: Artificial data for Practice Problem 4.

Unit: 1 2 3 4 5 6

Treatment: 2 2 1 2 1 2

Response: 8 4 4 0 20 12

3.8 Solutions to Practice Problems

1. My answer is below. You will no doubt obtain an answer different from mine.

Below are my responses to the information requested by the website, some with a brief

parenthetical explanation.

• 5 (the number of assignments I requested); 5 (the value of n1); From 1 To 10 (10 is the

total number of trials in the study); Yes; Yes, Least to Greatest; and Place Markers Off.

Below are the assignments I obtained:

1, 3, 4, 8, 9

3, 4, 5, 8, 9

1, 4, 7, 9, 10

1, 2, 3, 8, 9

2, 3, 7, 8, 9

2. (a) From Table 3.8 we can see that units 2, 3 and 5 were assigned to treatment 1. Thus, the

actual assignment is 2,3,5.

(b) Again from Table 3.8,

x̄ = (6 + 30 + 12)/3 = 16 and ȳ = (9 + 3 + 15)/3 = 9.

Table 3.10: The sampling distribution of U for Practice Problem 4.

u P (U = u) u P (U = u) u P (U = u) u P (U = u)
−9 2/15 −3 3/15 3 2/15 9 1/15
−6 2/15 0 2/15 6 2/15 12 1/15
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Thus, u = 16− 9 = 7.

3. (a) From Table 3.8,

x̄ = (9 + 30 + 15)/3 = 18 and ȳ = (6 + 3 + 12)/3 = 7.

Thus, u = 18− 7 = 11.

(b) Again from Table 3.8,

x̄ = (9 + 3 + 12)/3 = 8 and ȳ = (6 + 30 + 15)/3 = 17.

Thus, u = 8− 17 = −9.

(c) The six response values sum to 75. Thus, for any assignment

x̄+ ȳ = 75/3 = 25,

as illustrated above repeatedly. Thus,

u = x̄− ȳ = x̄− (25− x̄) = 2x̄− 25.

We get the largest possible value of u by finding the largest possible value of x̄. The
largest possible value of x̄ is (30 + 12 + 15)/3 = 19 which gives ȳ = 25 − 19 = 6.
Thus, 19 − 6 = 13 is the largest possible value of u. From Table 3.8, we see that this

largest value of u is achieved by assignment 3,5,6.

4. (a) Using Equation 3.2 we obtain:

6!/[2!4!] = [6(5)]/2 = 15.

(b) As usual, I identify an assignment by listing the units that are assigned to the first

treatment. I obtain:

1,2; 1,3; 1,4; 1,5; 1,6; 2,3; 2,4; 2,5; 2,6; 3,4; 3,5; 3,6; 4,5; 4,6; and 5,6.

From Table 3.9, the actual assignment is 3,5.

(c) From Table 3.9,

x̄ = (4 + 20)/2 = 12, ȳ = (8 + 4 + 0 + 12)/4 = 6 and u = 12− 6 = 6.

(d) From Table 3.9,

x̄ = (20 + 12)/2 = 16, ȳ = (8 + 4 + 4 + 0)/4 = 4 and u = 16− 4 = 12.

(e) From Table 3.9,

x̄ = (8 + 0)/2 = 4, ȳ = (4 + 4 + 20 + 12)/4 = 10 and u = 4− 10 = −6.
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(f) i. No. There are many ways to justify this answer; here is mine. For symmetry

(around any value, not just 0) the largest possible value of U, 12 in this case, must

have the same probability as the smallest possible value of U , −9 in this case.

They don’t.

ii. The computations are below.

P (U ≥ 6) = P (U = 6)+P (U = 9)+P (U = 12) = 2/15+1/15+1/15 = 4/15.

P (U ≤ −6) = P (U = −6) + P (U = −9) = 2/15 + 2/15 = 4/15.

P (|U | ≥ 6) = P (U ≥ 6) + P (U ≤ −6) = 4/15 + 4/15 = 8/15.
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Table 3.11: Artificial data for Homework Problem 2.

Unit: 1 2 3 4 5

Treatment: 2 1 2 1 2

Response: 12 6 24 0 12

3.9 Homework Problems

1. Use randomization to obtain one assignment for each of the following situations.

(a) n1 = n2 = 12.

(b) n1 = 8; n2 = 15.

(c) n1 = 15; n2 = 8.

2. Table 3.11 presents artificial data from a CRD with n1 = 2 and n2 = 3. Use these data to
answer the questions below.

(a) How many possible assignments are there?

(b) List all possible assignments. Identify the actual assignment.

(c) Calculate the actual values of x̄, ȳ and u.

(d) Assuming that the Skeptic is correct, calculate the values of x̄, ȳ and u for assign-

ment 1,4.

(e) Assuming that the Skeptic is correct, calculate the values of x̄, ȳ and u for assign-

ment 3,5.
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Chapter 4

Approximating a Sampling Distribution

At the end of the last chapter, we saw how tedious it is to find the sampling distribution of U even

when there are only 20 possible assignments. We also experienced the limit of my comfort zone:

252 possible assignments. For studies like Dawn’s (184,756 possible assignments) and especially

Sara’s (1.075 × 1023 possible assignments) there are way too many possible assignments to seek

an exact answer. Fortunately, there is an extremely simple way to obtain a good approximation—

subject to the caveats given below—to a sampling distribution regardless of how large the number

of possible assignments.

4.1 Two Computer Simulation Experiments

Let’s return to Dawn’s study. Our goal is to create a table for Dawn that is analogous to Table 3.7

on page 65 for Kymn’s study; i.e. we want to determine the value of u = x̄ − ȳ for every one of

the 184,756 possible assignments. This is too big of a job for me!

Instead of looking at all possible assignments, we look at some of them. We do this with a

computer simulation experiment. I wrote a computer program that selected 10,000 assignments

for Dawn’s study. For each selection, the program selected one assignment at random from the col-

lection of 184,756 possible assignments. (You can visualize this as using our randomizer website

10,000 times.) For each of the 10,000 simulated assignments, I determined its value of u = x̄− ȳ.
My results are summarized in Table 4.1.

Suppose that we want to know P (U = 0). By definition, it is the proportion of the (184,756)

possible assignments that would yield u = 0. We do not know this proportion because we have

not looked at all possible assignments. But we have—with the help of my computer—looked at

10,000 assignments; of these 10,000 assignments, 732 gave u = 0 (see Table 4.1). The relative

frequency of u = 0 in the assignments we have examined is an intuitively obvious approximation

to the relative frequency of u = 0 among all possible assignments. The relative frequency of u = 0
among all possible assignments is, by definition, P (U = 0). To summarize, our approximation of

the unknown P (U = 0) is the relative frequency of assignments that gave u = 0; which is, from

our table, 0.0732.

The above argument for P (U = 0) can be extended to P (U = u) for any of the possible
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Table 4.1: The results of a computer simulation experiment with 10,000 replications (reps) for

Dawn’s study.

Relative Relative Relative

u Freq. Freq. u Freq. Freq. u Freq. Freq.

−3.6 1 0.0001 −1.2 419 0.0419 1.2 394 0.0394
−3.4 1 0.0001 −1.0 506 0.0506 1.4 315 0.0315
−3.2 3 0.0003 −0.8 552 0.0552 1.6 251 0.0251
−3.0 4 0.0004 −0.6 662 0.0662 1.8 150 0.0150
−2.8 16 0.0016 −0.4 717 0.0717 2.0 108 0.0108
−2.6 25 0.0025 −0.2 729 0.0729 2.2 93 0.0093
−2.4 45 0.0045 0.0 732 0.0732 2.4 54 0.0054
−2.2 78 0.0078 0.2 765 0.0765 2.6 23 0.0023
−2.0 113 0.0113 0.4 716 0.0716 2.8 17 0.0017
−1.8 191 0.0191 0.6 674 0.0674 3.0 8 0.0008
−1.6 240 0.0240 0.8 553 0.0553 3.2 3 0.0003
−1.4 335 0.0335 1.0 507 0.0507

Table 4.2: Selected probabilities of interest for Dawn’s CRD and their approximations.

Probability of Interest Its Approximation

P (U ≥ 2.2) r.f. (U ≥ 2.2) = 0.0198

P (U ≤ 2.2) r.f. (U ≤ 2.2) = 1− 0.0105 = 0.9895

P (|U | ≥ 2.2) r.f. (|U | ≥ 2.2) = 0.0198 + 0.0173 = 0.0371

values u. But it will actually be more interesting to us to approximate probabilities of more com-

plicated events than P (U = u). In particular, recall that Dawn’s actual u was 2.2. As we will see

in Chapter 5, we will be interested in one or more of the probabilities given in Table 4.2. Let me

give you some details on how the answers in this table were obtained.

To obtain r.f. (U ≥ 2.2) we must sum the relative frequencies for the values 2.2, 2.4, 2.6, 2.8,

3.0 and 3.2. From Table 4.1, we obtain

0.0093 + 0.0054 + 0.0023 + 0.0017 + 0.0008 + 0.0003 = 0.0198.

For r.f. (U ≤ 2.2) note that this value is 1− r.f. (U > 2.2) = 1−0.0105. Finally, r.f. (|U | ≥ 2.2) is
the sum of two relative frequencies: (U ≥ 2.2) and (U ≤ −2.2). The first of these has been found

to equal 0.0198. The second of these is

0.0078 + 0.0045 + 0.0025 + 0.0016 + 0.0004 + 0.0003 + 0.0001 + 0.0001 = 0.0173.
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Table 4.3: Selected probabilities of interest for Sara’s CRD and their approximations.

Probability of Interest Its Approximation

P (U ≥ 8.700) r.f. (U ≥ 8.700) = 0.0903

P (U ≤ 8.700) r.f. (U ≤ 8.700) = 0.9107

P (|U | ≥ 8.700) r.f. (|U | ≥ 8.700) = 0.0903 + 0.0921 = 0.1824

Adding these we get,

r.f. (U ≥ 2.2) + r.f. (U ≤ −2.2) = 0.0198 + 0.0173 = 0.0371.

Next, I performed a computer simulation experiment for Sara’s CRD. As stated earlier, there

are more than 1023 different assignments for a balanced study with n = 80 total trials. Trying to

enumerate all of these would be ridiculous, so we will use a computer simulation with 10,000 reps.

My simulation study yielded 723 distinct values of u! This is way too many to present in a

table as I did for Dawn’s study. (The simulation study for Dawn, recall, yielded 35 distinct values

for u and that was unwieldy.)

Recall that for Sara’s data

x̄ = 106.875 and ȳ = 98.175, giving u = 8.700.

Table 4.3 presents information that will be needed in Chapter 5.

4.2 How Good are These Approximations?

Tables 4.2 and 4.3 present six unknown probabilities and their respective approximations based on

simulation experiments with 10,000 reps. Lacking knowledge of the exact probabilities I cannot

say exactly how good any of these approximations are. What I can say, however, is that each of

them is very likely to be very close to the exact (unknown) probability it is approximating. How can

I know this? Well, we will see how later in this course when we learn about confidence intervals,

so you will need to be patient.

And, of course, the terms very likely and very close are quite vague. Here is what we will

do for now. First, the expression very close will be replaced by a specific number, call it h, that
is computed from our simulation results. In words, it is very likely that the simulation study

approximation is within h of its exact probability. (If this is confusing, see the numerical examples

below.)

Next, the expression very likely will be replaced by nearly certain. I know what you are think-

ing: nearly certain also is vague, but I hope that you feel that it is somehow more encouraging

than very likely. As we will learn later (for those who can’t stand the suspense!) nearly certain

77



corresponds to what we will call being 99.73% confident. (Alas, I really can’t tell you exactly

what this means until we study confidence intervals.)

Here is what we do. Letm denote the number of reps in our simulation experiment; recall that

m = 10,000 for our two studies. Let r denote any (unknown) probability that interests us. Let r̂
denote the relative frequency approximation of r. For example, in Dawn’s study r̂ = 0.0198 is our
approximation to the unknown r = P (U ≥ 2.2). The nearly certain interval for r is given by the
following:

r̂ ± 3

√

r̂(1− r̂)

m
(4.1)

Another way to say this is that we are nearly certain that r̂ is within h of r, where

h = 3

√

r̂(1− r̂)

m
.

We will evaluate this interval for each of our six approximations. You don’t need to verify these

computations, but you will be asked to do similar computations for homework.

• For r̂ = 0.0198, the nearly certain interval for r is

0.0198± 3

√

0.0198(0.9802)

10000
= 0.0198± 0.0042 = [0.0156, 0.0240].

• For r̂ = 0.9895, the nearly certain interval for r is

0.9895± 3

√

0.9895(0.0105)

10000
= 0.9895± 0.0031 = [0.9864, 0.9926].

• For r̂ = 0.0371, the nearly certain interval for r is

0.0371± 3

√

0.0371(0.9629)

10000
= 0.0371± 0.0057 = [0.0314, 0.0428].

• For r̂ = 0.0903, the nearly certain interval for r is

0.0903± 3

√

0.0903(0.9097)

10000
= 0.0903± 0.0086 = [0.0817, 0.0989].

• For r̂ = 0.9107, the nearly certain interval for r is

0.9107± 3

√

0.9107(0.0893)

10000
= 0.9107± 0.0086 = [0.9021, 0.9193].

• For r̂ = 0.1824, the nearly certain interval for r is

0.1824± 3

√

0.1824(0.8176)

10000
= 0.1824± 0.0116 = [0.1708, 0.1940].
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There is a surprising feature to Formula 4.1. The feature is hidden, so it is easy to overlook. The

surprising feature is that the total number of possible assignments (184,756 for Dawn, more than

1023 for Sara) does not appear in the formula! All that matters is the number of reps, m, in the

simulation experiment. In my experience, many people believe that precision is a function of the

percentage of objects examined. For our current problem, the percentage of assignments examined

does not matter; it’s the number of assignments examined that matters.

We can improve the precision of a nearly certain interval by making it narrower, which we can

achieve by increasing the value of m. Personally, I think that the precision of the nearly certain

interval withm = 10,000 reps is fine unless r̂ is very close to 0. (See more on this below.) In order

to show you why I feel this way, I did another simulation experiment for Dawn’s study, this time

with m = 90,000 reps. Combining my two experiments I have m = 100,000 reps and I will use

the results of the 100,000 reps to recalculate two of my nearly certain intervals for Dawn’s study.

As an example, suppose I am interested in r = P (U ≥ 2.2). Of the 100,000 reps, 1,879

assignments gave u ≥ 2.2. Thus, the approximate probability is

r̂ = 1879/100000 = 0.01879.

The nearly certain interval for the exact probability is

0.01879± 3

√

0.01879(0.98121)

100000
= 0.01879± 0.00129 = [0.01750, 0.2008].

Note that the value of h for this interval is 0.00129, compared to h = 0.0042 for our simula-

tion with 10,000 reps. Also, of the 100,000 reps, 1,792 assignments gave u ≤ −2.2. Thus, the

approximation for P (|U | ≥ 2.2) is

0.01879 + 0.01792 = 0.03671.

The nearly certain interval for the exact probability is

0.03671± 3

√

0.03671(0.96329)

100000
= 0.03671± 0.00178 = [0.03493, 0.03849].

In my experience, the increase in precision does not justify running my computer 10 times longer

than required for 10,000 reps. (These reps do take time and consume electricity!)

4.3 A Warning about Simulation Experiments

The six nearly certain intervals above for the six probabilities of interest suggest that with a simu-

lation experiment consisting of 10,000 reps we can obtain a very precise approximation to an exact

probability. There is a caveat I need to mention.

With a 10,000 rep simulation experiment, if r̂ is ≤ 0.0050 or ≥ 0.9950 then you should not

compute the nearly certain interval. For other values of m ≥ 1000, do not compute the nearly

certain interval if r̂ is ≤ 50/m or ≥ 1 − (50/m). If you ignore my directive and go ahead and
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calculate the nearly certain interval, it might indeed contain the exact probability of interest. (And

if it does, we won’t know it.) The difficulty is that we can no longer trust the modifier nearly

certain. As an extreme example, suppose that r̂ = 0, which means that the event of interest never

occurred in the simulation experiment. If you plug this value into Formula 4.1 the nearly certain

interval becomes the single number 0. Whereas the probability of an event A can be very very

small, as long as A contains at least one of the possible assignments, it can never be 0.

As we will learn later in these notes, if r̂ does equal 0, we can be nearly certain that r ≤ 5.92/m.

There are other results for very small non-zero values of r̂ and we will learn how to find them later.

In many applications—though not all, as we shall see— if r̂ ≤ 0.0050, then the researcher is

happy with the conclusion that r is very small and is not very concerned with having a precise

nearly certain interval.

4.4 Computing

I performed the simulation studies reported in this chapter by using the statistical software package

Minitab. I could find no website that allows me to perform a full-blown simulation study, by

which I mean a simulation that gives me all m (recall, usually m = 10,000) values of the target

statistic, in the current situation, u. Later I will show you a website that does allow us to perform

a simulation study, but it gives only two relative frequencies as output. It turns out that these are

two very useful relative frequencies, so the website will be valuable to us.

I have one other comment about our simulation studies. Some of you may have been wonder-

ing about this issue. Note that I have never claimed that my simulation examines m different

assignments. Indeed, each rep of my simulation selects an assignment at random without caring

about which assignments have already been examined. I do this for the following reasons.

1. A program that keeps track of the assignments already examined would be much more dif-

ficult to write, it would require more computer storage space and would require much more

computer time to execute. (If you have any experience writing programs, you probably agree

that these three claims are believable.)

2. The possibility that my simulation experimentmight examine some assignments more than

once creates no bias in my answers; it simply makes my answers a little bit less efficient;

i.e., the nearly certain interval would change ever so slightly—becoming narrower—if I

guaranteed m different assignments are selected.

3. I don’t want you to waste time worrying about the validity of item 2 immediately above; we

will revisit this issue when we discuss population-based inference in Part II of these Course

Notes.

4. In view of items 1 and 2 in this list, if you want a more precise approximation to an unknown

probability, increasing the value ofm is a much smarter choice than writing a new computer

program.

80



4.5 Summary

In Chapter 3 we learned about the exact sampling distribution for the test statistic U . In Chapter 5

we will learn why we need this sampling distribution to analyze our data with a statistical test

of hypotheses. In this current chapter we learned an important technique for approximating a

sampling distribution: a computer simulation experiment.

The sampling distribution calculates the value of u for all possible assignments. A computer

simulation experiment calculates the value of u for some possible assignments. The number of

assignments examined by a computer simulation experiment is called its number of reps and is

denoted by m. In these notes, m will usually be 10,000; on some occasions it will equal 100,000;

and on a few rare occasions it will equal 1,000. The assignment for any rep is selected at random

from the collection of all possible assignments, for example, by using the randomizer website. As

will be discussed later in these notes, you should realize that a computer simulation experiment

need not select m distinct assignments.

After performing a computer simulation experiment, the analyst creates a listing of all values

of u that were obtained in the experiment and the relative frequency of occurrence of each value

of u. An example of such a table is given in Table 4.1 on page 76 for Dawn’s study of her cat. We

may use this table to approximate the exact and unknown P (U = u) for all possible values u of

the test statistics. The approximation is simply the relative frequency of occurrence of (U = u) in
the computer simulation experiment.

In our applications of these ideas in Chapter 5 and later in these notes, we will usually be

interested in events that are more complicated than simply (U = u). To this end, let A denote any

event which involves the value of the test statistic U . Let r denote the exact probability of the event
A. Let r̂ be the relative frequency of the event A in the computer simulation experiment. We view

r̂ as our approximation of r.
Form ≥ 1000, if r̂ satisfies the following inequality

50/m < r̂ < 1− (50/m),

then one can compute the nearly certain interval for r, given below:

r̂ ± 3

√

r̂(1− r̂)

m
.

We are nearly certain that this interval of numbers includes the true, unknown, value of r. An

equivalent way to interpret this result is:

We are nearly certain that r̂ is within h of r, where

h = 3

√

r̂(1− r̂)

m
.

Themeaning of the modifier nearly certainwill be explored later in these notes. Also, the situations

in which r̂ ≤ 50/m or r̂ ≥ 1− (50/m) will be considered later in these notes.
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4.6 Practice Problem

1. In the dart game 301 the object is to be the first player to score exactly 301 points. In each

round a player throws three darts and the total score of the three darts is added to the player’s

score at the end of the previous round. If the new total is greater than 301, the player’s

score reverts to the total at the end of the previous round. Thus, for example, if a player

reaches a total of 300 at the end of a round, then the player will need exactly one point on

the next round to win; any larger score will be ignored. Doug performed a balanced CRD

with n = 40 trials to compare his personal darts (treatment 1) to bar darts (treatment 2).

The response was the number of rounds Doug required to score exactly 301. The sorted

responses with Doug’s darts are:

12 13 14 14 15 15 17 18 18 19

19 19 20 20 21 21 22 23 25 27

The sorted responses with the bar darts are:

13 15 16 16 17 17 17 18 19 21

21 22 23 25 26 26 27 27 28 30

I obtained the following summary statistics for Doug’s data:

x̄ = 18.60 and ȳ = 21.20, giving u = 18.60− 21.20 = −2.60.

Note that smaller response values are preferred.

I performed a simulation experiment with 10,000 reps. Each rep yielded a possible observed

value u of the test statistic U . I won’t show you all of my results, but I will tell you the

following two relative frequencies:

r.f. (U ≤ −2.60) = 0.0426; and r.f. (U ≥ 2.60) = 0.0418.

Use these results to answer the questions below.

(a) What is our approximation for r = P (U ≤ −2.60)?

(b) Compute the nearly certain interval for r in (a).

(c) What is our approximation for r = P (|U | ≥ 2.60)?

(d) Compute the nearly certain interval for r in (c).
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4.7 Solution to Practice Problem

1. (a) The approximation is r̂ = 0.0426.

(b) The nearly certain interval is

0.0426± 3

√

0.0426(0.9574)

10,000
= 0.0426± 0.0061 = [0.0365, 0.0487].

(c) The approximation is

r̂ = 0.0426 + 0.0418 = 0.0844.

(d) The nearly certain interval is

0.0844± 3

√

0.0844(0.9156)

10,000
= 0.0844± 0.0083 = [0.0761, 0.0927].
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4.8 Homework Problems

1. In the Chapter 1 Homework you learned about Reggie’s study of darts. Reggie performed a

balanced CRD with a total of n = 30 trials. Dot plots of his data are presented in Figure 1.4.
It can be shown that the means for Reggie’s data are:

x̄ = 201.533 and ȳ = 188, giving u = 201.533− 188 = 13.533.

I performed a simulation experiment with 10,000 reps. Each rep yielded a possible observed

value u of the test statistic U . I won’t show you all of my results, but I will tell you the

following two relative frequencies:

r.f. (U ≥ 13.533) = 0.0058; and r.f. (U ≤ −13.533) = 0.0039.

Use these results to answer the questions below.

(a) What is our approximation for r = P (U ≥ 13.533)?

(b) Compute the nearly certain interval for r in (a).

(c) What is our approximation for r = P (|U | ≥ 13.533)?

(d) Compute the nearly certain interval for r in (c).

2. In the Chapter 1 Homework you learned about Brian’s study of running. Brian performed a

balanced CRD with a total of n = 20 trials. Dot plots of his data are presented in Figure 1.3.
It can be shown that the means for Brian’s data are:

x̄ = 333.0 and ȳ = 319.5, giving u = 333.0− 319.5 = 13.5.

I performed a simulation experiment with 100,000 reps. Each rep yielded a possible ob-

served value u of the test statistic U . I won’t show you all of my results, but I will tell you

the following two frequencies:

freq. (U ≥ 13.5) = 56; and freq. (U ≤ −13.5) = 45.

Use these results to answer the questions below. Note that the number of reps is 100,000,

not the usual 10,000.

(a) What is our approximation for r = P (U ≥ 13.5)?

(b) Compute the nearly certain interval for r in (a).

(c) What is our approximation for r = P (|U | ≥ 13.5)?

(d) Compute the nearly certain interval for r in (c).
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Chapter 5

A Statistical Test of Hypotheses

Chapter 3 introduced the Skeptic’s Argument. Also in Chapter 3, we learned that if we assume the

Skeptic is correct, then there is a computable sampling distribution for a test statistic. Computable

is a bit optimistic; as we have seen, I can obtain the exact sampling distribution only for very small

studies. In Chapter 4 we learned how to interpret the results of a computer simulation experiment.

In particular, we found that we can approximate exact probabilities by using relative frequencies.

Furthermore, by calculating the nearly certain interval, we can get an idea of the precision of our

approximations.

There are three main areas of statistical inference that scientists use: prediction, estimation and

tests of hypotheses. In this chapter you will learn how to use the ideas of Chapters 3 and 4 to

perform a test of hypotheses for the CRDs introduced in Chapters 1 and 2 .

5.1 Step 1: Choice of Hypotheses

I will introduce the ideas of this chapter first for Dawn’s study of her cat Bob.

I introduced the Skeptic’s Argument in Chapter 3; it is repeated below:

The flavor of the treat is irrelevant. The number of treats that Bob consumed on any

given day was determined by how hungry Bob was on that day.

It will be useful to invent an adversary for the Skeptic; I will call it the Advocate. The Advocate

believes that the flavor of the treat matters; it is not irrelevant. It will, however, require some work

to understand exactly what the Advocate believes.

After arguing back-and-forth for some time, the Skeptic and Advocate state their positions

concisely:

• The Skeptic: Flavor does not matter. The difference in means, x̄ − ȳ = 5.1 − 2.9 = 2.2
treats, is meaningless. It was just by chance that Bob ate more treats on the chicken days

than he did on the tuna days.

• The Advocate: Flavor matters. The difference in means, 2.2 treats, is too large to reason-

ably be attributed to chance.
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For a statistician, the debate between the Skeptic and the Advocate is evaluated by performing

a statistical test of hypotheses. We will spend some time putting Dawn’s study into this context.

I conjecture that most of you are familiar with the word hypotheses from your work in science,

but I will present these ideas as if they are totally new to you.

First, hypotheses is the plural of the noun hypothesis. A hypothesis is a conjecture about the

way things are. There are always two hypotheses in our approach. (It is possible to have more than

two hypotheses, but this occurs only rarely in practice.) The two hypotheses are:

• The null hypothesis, denoted byH0; and

• The alternative hypothesis, denoted by H1.

These hypotheses do not overlap; hence, they cannot both be true. It is almost always possible to

argue that both hypotheses could be false, but—for the most part—scientists don’t dwell on this

fact.

Before we conduct a study, we don’t know which of these hypotheses is correct. One approach

for dealing with this uncertainty is to assign probabilities. For example, we might begin a study

by saying, “I believe that the probability is 70% that the null hypothesis is true and 30% that the

alternative is true.” Then after we collect and analyze the data, we reassess these probabilities.

This approach is called the Bayesian approach to tests of hypotheses. Historically, the Bayesian

approach has not been very popular with statisticians, but it is becoming more and more popular.

The approach that we will follow can be described quite easily: We assume the null hypothesis

is correct (or true). This will allow us to analyze our data. As a result of our analysis we will reach

one of two possible decisions:

• We will decide that there is enough evidence in our data to switch our allegiance from the

null to the alternative; this is referred to as rejecting the null hypothesis.

• We will decide that the evidence in our data is not sufficiently strong to warrant switching

our allegiance from the null to the alternative; this is referred to as failing to reject the null

hypothesis.

Stating the obvious, note that we do not treat the hypotheses in a symmetrical manner: We

begin our analysis by assuming that the null hypothesis is correct.

For all the studies in this chapter, including Dawn’s study, we take the null hypothesis to be that

the Skeptic is correct. The alternative hypothesis is that the Advocate is correct, but, surprisingly,

we consider three different ways the Advocate can be correct. Thus, it will require some care to

specify the alternative hypothesis.

If you are a supporter of the Advocate, or if you just think that life should be fair whenever

possible, the stipulation in the previous paragraph is strange. Why do we begin the analysis by

assuming the Skeptic is correct? We are actually following a very popular principle of science,

Occam’s Razor. If you are interested in it, I encourage you to read about Occam’s Razor on the

web or elsewhere. For our purposes, Occam’s Razor states that whenever there are two competing

theories that are similar in their ability to explain a phenomenon, we should prefer the simpler

theory. The Skeptic’s Argument, that flavor does not matter, is considered to be simpler than the

86



notion that flavor matters. (If flavor matters we wonder: Why does it matter? and How much does

it matter?) Thus, following Occam’s Razor, we assume that flavor does not matter unless and until

experimentation tells us otherwise.

Remember that we are still at the planning stage of our study. We have decided that our null

hypothesis is that the Skeptic is correct.

As discussed in Chapter 3, we develop the sampling distribution of a test statistic by examining

every possible assignment. In other words, we consider lots of studies that never were performed.

We do something similar now.

Recall that in a CRD we use randomization to assign n1 units to treatment 1 and n2 units to

treatment 2 and have a total of n = n1 + n2 units. Imagine the following alternative design for

a study: Assign all n units to the first treatment. Call this the All Treatment-1 (AT-1) study.

Similarly, the All Treatment-2 (AT-2) study would assign all n units to the second treatment. If

the researcher wants to learn about a single treatment, then an AT- study on that treatment would

be great. But if, as is our situation, the researcher wants to compare treatments, these AT- studies

are very bad. Very bad, but useful for our immediate purposes.

Imagine that the researcher performs the AT-1 study; let µ1 denote the mean of the responses

from the n units. Similarly, imagine that the researcher performs the AT-2 study; let µ2 denote the

mean of the responses from the n units. Let’s consider an example.

In Dawn’s study, there were n = 10 + 10 = 20 units (or trials or days). If the AT-1 study

had been performed, then Dawn would know the value of µ1; it would just be the mean of her 20

observations. Similarly, if Dawn had performed the AT-2 study, then she would know the value of

µ2. If Dawn could have performed both the AT-1 and AT-2 studies then she would know the values

of µ1 and µ2; this would allow her to determine definitively which flavor of treats yielded greater

consumption by Bob.

Of course it was impossible for Dawn to have performed both the AT-1 and AT-2 studies.

Allow me to be fanciful for a moment. Assume that on each day Dawn could immediately create a

clone of Bob. She would then have two Bobs for the trial and could indeed assign each treatment

to a Bob. If she did this clone-enhanced study every day, it would be equivalent to performing

both of the AT- studies. Of course, I am being fanciful because cloning of the kind I am describing

is not possible. (Even if it were possible, there would be major ethical issues of what to do with all

the extra Bobs!)

Henceforth, when I say I have a clone-enhanced study, it means that both of the AT- studies are

performed and, hence, that the values of both µ1 and µ2 are known to me. While it is impossible

to have a clone-enhanced study, this bit of make-believe, as we will see, is quite useful for the

development of our theory and methods.

5.1.1 An Artificial Study

Consider our studies of Chapters 1 and 2 again. In Sara’s golf study, we will be learning how

statisticians decide whether the Skeptic is correct or incorrect. With a total of n = 80 trials in

the study, I find that the idea of the Skeptic being correct or incorrect is a bit overwhelming to

visualize. Therefore, I want to further explore the topic of the Skeptic being correct or incorrect in

a very small study. How small? I will create a balanced study with n = 6 treatments. I will refer
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Table 5.1: Headache Study-1 (HS-1). The response is the time, in minutes, required for headache

relief. Note that smaller values of the response are better.

Subject: 1 2 3 4 5 6

Treatment: 1 2 1 2 2 1

Response: 18 3 24 12 6 15

to the study as the Headache Study-1 (HS-1); its data are given in Table 5.1. Let me describe in

detail HS-1.

The researcher wants to compare two active drugs that are thought to be effective for speedy

relief of minor headache pain; call the drugs A and B. The study is on six subjects. Each subject

is a person who chronically suffers mild tension headaches, not migraines. The six subjects are

assigned labels: 1, 2, . . . , 6. The subjects are assigned to drugs by randomization: the result being

that subjects 1, 3 and 6 are assigned to drug A (treatment 1) and subjects 2, 4 and 5 are assigned to

drug B (treatment 2). Each subject is given the following instructions:

The next time you suffer from mild headache pain, immediately take the pill (drug)

you have been given. Record the length of time, to the nearest minute, until your

headache pain begins to diminish.

The response, of course, is the number of minutes reported by the subject. Note that the smaller

the value of the response, the better.

Our earlier named-studies, performed by Dawn, Kymn, Sara and Cathy, were real-life studies

and the data I use match the values the students reported to me. On occasion, it will be easier for

me—yes, I admit it!—to use artificial data rather than search for real data that illustrate a particular

point I want to make. Especially when I am trying to motivate how statisticians think, it is conve-

nient to divorce my presentation from a real scientific problem. In the current situation I could use

Cathy’s data, but I prefer artificial data so that we don’t get bogged down in the arithmetic. Also,

I want to introduce the idea of studying headaches, because this topic will help motivate our later

work with paired data. This latter reason explains why I have numbered this study ‘1;’ we will

have other artificial headache studies in this course.

5.1.2 What if the Skeptic is Correct?

Let’s take a quick look at the data from HS-1 in Table 5.1. The sorted data on the first treatment

are: 15, 18 and 24 which gives x̄ = 19. The sorted data on the second treatment are: 3, 6 and

12 which gives ȳ = 7. There is separation of the responses, just as we found in Kymn’s study of

rowing: all subjects on treatment 1 gave larger (worse) responses than all subjects on treatment 2.

Table 5.2 rewrites the data in anticipation of the clone enhanced study. Look at this table. There

are 12 spaces for the 12 responses that would be obtained in the clone-enhanced version of HS-1.

Six of these responses are known to us, but each of the other six possible responses (denoted by

?’s in the table) could be any nonnegative integer.
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Table 5.2: The clone-enhanced version of HS-1 without further assumptions.

Subject: 1 2 3 4 5 6 Means

Response on Treatment 1: 18 ? 24 ? ? 15 x̄ = 19
Response on Treatment 2: ? 3 ? 12 6 ? ȳ = 7

Next, let us assume that the Skeptic is correct. On this assumption, the clone-enhanced study

would yield the data given at the top of Table 5.3 as Case 1. (Note to the reader: Don’t simply

read the previous sentence and then proceed to the next sentence below! You should look at Case 1

carefully. Note that for each of the six subjects, the response on treatment 1 is exactly the same as

the response on treatment 2. This is what it means for the Skeptic to be correct.) Let’s look at the

data in this table. We can see from this table that µ1 = µ2 and this common value is

(18 + 3 + 24 + 12 + 6 + 15)/6 = 78/6 = 13.

Later in these notes we will learn about estimation. In a CRD, we will view x̄ as our point

estimate of µ1 and ȳ as our point estimate of µ2. (Here is the idea behind the term point estimate:

we say point because it is a single number and we say estimate because, well, statisticians refer to

this endeavor as estimation; more on this later in these notes.)

On the assumption that the Skeptic is correct in HS-1, we see that the point estimate (x̄ = 19)
of µ1 = 13 is much too large and the point estimate (ȳ = 7) of µ2 = 13 is much too small. In other

words, the actual study suggested a big difference in treatments (19 − 7 = 12) when, in fact, the

treatments have an identical effect on the response.

In a real study, of course, a scientist would not know whether the Skeptic is correct; other

possibilities are shown in Cases 2–5 in Table 5.3. These four possibilities are examined in detail

in the following subsection.

5.1.3 Four Examples of the Skeptic Being Incorrect

In this subsection I will discuss many important features of Cases 2–5 in Table 5.3.

The first thing to note is that, indeed, as I claim, the Skeptic is incorrect for the scenarios in

Cases 2–5. We can see this easily by looking at the responses for subject 1 in each case. For every

case, the response of subject 1 differs under the two treatments; for example, in Case 2 subject

1 gives a response of 18 under treatment 1 and a response of 12 under treatment 2. Because the

Skeptic’s argument is that treatment does not matter for any subject, by finding even one subject

for which treatment matters, we have established that the Skeptic is incorrect.

Next, note that there are many ways that the Skeptic can be incorrect. Why? We can imagine

the six question marks in Table 5.2 being replaced by any number. Of all these possible replace-

ments, only one coincides with the Skeptic being correct. All other combinations of choices makes

the Skeptic incorrect.

Note: My use of any number in the previous paragraph is a bit inaccurate. For a bounded

count response, as in Dawn’s cat treat study, there are only a finite number of possibilities for the
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Table 5.3: A number of possibilities for the responses to the clone-enhanced version of HS-1. In

each case below, the actual data are in bold-faced type.

Case 1: The Skeptic is Correct.

Subject: 1 2 3 4 5 6 µi

Response on Treatment 1: 18 3 24 12 6 15 13

Response on Treatment 2: 18 3 24 12 6 15 13

Case 2: The clone-enhanced version of HS-1

with a constant treatment effect of c = 6.
Subject: 1 2 3 4 5 6 µi

Response on Treatment 1: 18 9 24 18 12 15 16

Response on Treatment 2: 12 3 18 12 6 9 10

Case 3: A possible clone-enhanced version of HS-1

under the assumption that the Skeptic is incorrect.

Subject: 1 2 3 4 5 6 µi

Response on Treatment 1: 18 24 24 9 6 15 16

Response on Treatment 2: 6 3 15 12 6 18 10

Case 4: The clone-enhanced version of HS-1

with a constant treatment effect of c = −3.
Subject: 1 2 3 4 5 6 µi

Response on Treatment 1: 18 0 24 9 3 15 11.5

Response on Treatment 2: 21 3 27 12 6 18 14.5

Case 5: A possible clone-enhanced version of HS-1

under the assumption that the Skeptic is incorrect.

Subject: 1 2 3 4 5 6 µi

Response on Treatment 1: 18 9 24 12 3 15 13.5

Response on Treatment 2: 21 3 21 12 6 18 13.5
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numbers to use in replacing the question marks. For Dawn’s study, there are 11 possible choices

(the integers 0, 1, 2, . . . , 10) for replacing each question mark. With 20 such substitutions—one

for each trial—there are 1120 = 6.73 × 1020 possible combinations of substitutions. And exactly

one of these makes the Skeptic correct. Thus, I hope that you will concede the following point:

For a CRD with a numerical response, there are a great many possible ways to substitute numbers

for the question marks and only one of these substitutions makes the Skeptic correct.

If you concede my point at the end of the previous paragraph, it will be believable (and, in fact,

it is true) that we cannot possibly hope to learn exactly how the Skeptic is incorrect, if indeed it is

incorrect. This situation has two consequences of great importance to us:

• We will spend most of our effort examining the consequences of assuming that the Skep-

tic is correct. (But not all of our effort; see the later material on the power of a test of

hypotheses.)

• We will focus on the values of µ1 and µ2. These values are important because they tell us

(if we only knew what they were!) how each treatment would perform if it was assigned

to every unit. Thus, for example, if smaller responses are preferred, then deciding, say, that

µ1 < µ2 could be interpreted by saying that overall treatment 1 is better than treatment 2.

Let’s look at Cases 2–5 now.

Case 2 is a pretty wonderful situation for a scientist. But it does require care to see why. If you

look at the row means, you find µ1 = 16 and µ2 = 10 which tells you that, on average, headache

relief on treatment 2 is six minutes faster than headache relief on treatment 1. But we can actually

say something much stronger. If you look at Case 2 carefully, you will notice that for every subject

the response on treatment 1 is exactly six minutes larger than the response on treatment 2. Thus, it

is not simply the situation that treatment 2 is six minutes faster, on average, it is six minutes faster

for every subject! Case 2 motivates the following definition.

Definition 5.1 (The constant treatment effect.) In a clone-enhanced study, suppose that the re-

sponse on treatment 1 minus the response on treatment 2 equals the nonzero number c for every
unit. In this situation we say that the treatment has a constant treatment effect equal to c.

Note the following about this definition. Case 2 has a constant treatment effect equal to 6 minutes

because, for every subject, the subtraction yields c = 6 minutes. We require c to be nonzero

because a constant treatment effect with c = 0 is just another way of saying that the Skeptic is

correct.

Next, let’s look at Case 3. Cases 2 and 3 have the same row means, which tells us that, on

average, relief with treatment 2 is six minutes faster than with treatment 1 in both cases. But now

look at the individual subjects in Case 3. For subjects 1–3, treatment 2 is better than treatment 1

and better by more than six minutes. For subjects 4 and 6, treatment 1 is actually better than

treatment 2. Finally, for subject 5 the two treatments give the same response.

In short, Cases 2 and 3 are very different. In Case 2, a physician could tell the group of six

subjects,

All of you should take treatment 2. For every one of you relief will come six minutes

faster with treatment 2 than with treatment 1.
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Contrast this with what the physician would say in Case 3. I am assuming, of course, that the

physician does not know which people are which subjects. The physician would say,

I recommend that all of you take treatment 2. On average for the six of you, relief will

come six minutes faster with treatment 2 than with treatment 1. To be honest, I must

admit that for two of you, treatment 1 is actually better than treatment 2; and, for one

of you, the treatments have exactly the same effect.

Now I must tell you the disappointing news. For a CRD, it is impossible to distinguish between

Cases 2 and 3. This doesn’t bother me a great deal because I know the following to be true.

There is no single study that will answer every possible question of interest. And this

remains true whether you are a good statistician or not.

Thus, you might ask, why do I mention this issue? Why mention the difference between Cases 2

and 3 if I cannot help you distinguish between them? Because as a scientist you should always be

seeking a better understanding of the world. One study, CRD or otherwise, is not the ultimate goal

in one’s career.

Thus, I want to remind you that if you conclude that one treatment is better than the other,

on average, it does not mean that said treatment is better for all units. Similarly, as we will see

below when we look at Case 5, if we conclude that two treatments might be identical, on average,

it does not mean that they are identical for all units. Thus, as a scientist, you should think about

the possibility of Case 3 being the truth. If Case 3 is the truth, as a scientist you should explore

why the units might respond so differently to the treatments. In our Case 3, perhaps subjects 1–3

belong to one genotype, subjects 4 and 6 belong to another and subject 5 belongs to a third. In

this scenario, the physician could advise a patient on which treatment to use by determining the

patient’s genotype. Statistically, this issue can be explored by using a randomized pair design,

which we will study in later chapters.

Case 4 shows us that even though treatment 2 performed better than treatment 1 in our data

(ȳ < x̄), it is possible that, either overall or for every subject, treatment 1 is actually better than

treatment 2. In fact, if you examine Definition 5.1, you will see that Case 4 is the constant treatment

effect with c = −3.
Finally, Case 5 shows that it is possible for the Skeptic to be wrong, yet, overall, the treatments

perform the same. Sadly, a CRD is not able to detect the difference between Cases 1 and 5,

regardless of how many subjects are in the study.

5.1.4 Finally! The Alternative Hypothesis is Specified

Recall that our null hypothesis is that the Skeptic is correct, which we write as follows:

H0 : The Skeptic is correct.

As illustrated in Case 1 in Table 5.3, if the Skeptic is correct, then µ1 = µ2. This equality is always

a consequence of the Skeptic being correct. As illustrated in Case 5 in Table 5.3, however, the

reverse implication is not true; it is possible to have equality of row means (µ1 = µ2) without
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the Skeptic being correct. Thus, be careful! Our null hypothesis is that the Skeptic is correct, not

that the row means are equal. The alternative hypothesis, however, is written in terms of the row

means, as you will now see.

There are three options for the alternative hypothesis. The researcher selects from the following

options.

• H1 : µ1 > µ2.

• H1 : µ1 < µ2.

• H1 : µ1 6= µ2.

Note that even if one chooses the last of these options, µ1 6= µ2, it is scientifically possible that

neither the null nor the alternative is correct; i.e., Case 5 in Table 5.3 could be correct. It is easier—

as well as being the standard approach—for statisticians to ignore this possibility and talk of either

the null or alternative being true. I will take this approach. Does it bother me to do so? No,

because I want you to always interpret any statistical analysis with caution. Always be aware that

we might be ignoring something important.

It is useful to think of the third option for the alternative, µ1 6= µ2, as the combination of the

µ1 > µ2 and µ1 < µ2 options; i.e., for the treatment means to be different (not equal) then either

the mean of treatment 1 is larger than the mean of treatment 2 or the mean of treatment 1 is smaller

than the mean of treatment 2.

Note that usually in these notes I will abbreviate: µ1 > µ2 by >; µ1 < µ2 by <; and µ1 6= µ2

by 6=. This should cause no confusion provided you remember that µ1 is to the left and µ2 is to the

right of the abbreviating symbol.

How does one decide between these three options for the alternative? It is my experience that

many people, especially those new to tests of hypotheses, believe that the obvious choice is 6=.

Some go so far as to say that the alternative should be 6= and that the other two options should be

forgotten. There is logic to this attitude: If the Skeptic is correct, then µ1 = µ2. The negation of

this equality is that µ1 6= µ2.

We could take a survey of all people in this class. Suppose that we all agreed that the alternative

must be 6=. It wouldn’t matter. One of my jobs in this class is to transmit the culture to you.

Currently, the culture of science and statistics is that there are three options. I don’t anticipate that

this culture will change. Thus, we need to consider all three possible alternatives.

We find ourselves back at the question: How does one decide between these three options for

the alternative? Well, again let me remind you that we make this decision before we collect data.

It is considered to be serious cheating to look at one’s data and then select the alternative. (Later

in these notes we will see why this is so.)

Next, other than timing, there are no absolute rules on how to choose among the alternatives.

Each researcher is allowed to make a personal choice and nobody can say that the researcher is

wrong. You might disagree with the researcher or believe that the researcher is misguided, but you

cannot say the researcher is wrong. (It’s a bit like having a favorite color. I cannot say that your

favorite color is wrong!)
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While I am not going to give you a rule, I will give you guidance. I recommend that you use

what I call the Inconceivable Paradigm. Here is how you proceed.

(Note: If you have seen the 1987 movie The Princess Bride you might recall that the hero of

the movie repeatedly said that things that had occurred were inconceivable! This is the attitude I

want to convey; we may think something is inconceivable and be wrong. Inconceivable is weaker

than impossible. And despite what certain sports gear ads imply, impossible is, well, impossible.

Oh, and by the way, if a major character in a movie is old, bald and dumpy, I label him the movie’s

hero. If you need a break from these notes, the following website presents a brief humorous video

on the connection between the movie and the word inconceivable:

https://www.youtube.com/watch?v=qhXjcZdk5QQ.)

Definition 5.2 (The Inconceivable Paradigm.) The Inconceivable Paradigm is defined to be the

following procedure.

• Consider the alternative µ1 > µ2. Is this possibility—in the mind of the researcher—

inconceivable? Answer yes or no.

• Consider the alternative µ1 < µ2. Is this possibility—in the mind of the researcher—

inconceivable? Answer yes or no.

• If the answer to both questions is ‘No, it’s conceivable,’ then use the alternative 6=. If the

answer is ‘Yes, it’s inconceivable’ to exactly one question then you throw away the corre-

sponding alternative and use the other one.

By the way, if one believes that both > and < are inconceivable, then there is, arguably, no

point in doing the study. This person believes that µ1 = µ2 and anything else is inconceivable. It

seems to me that a minimal requirement for being a scientist is the willingness to learn something

from experimentation!

Let’s see how the Inconceivable Paradigm works for Dawn’s study. I will discuss three versions

of Dawn.

1. Dawn G.T. (for >; i.e. greater than; motivated by a favorite comedian of mine, Louis C.K.)

decides that it is inconceivable for Bob to consume less chicken than tuna (this is <). Her

reasoning is, as she wrote in her report,

I noticed that the percentage of real chicken in the chicken-flavored treats was

larger than the percentage of real tuna in the tuna-flavored treats.

Because Dawn G.T. believes that < is inconceivable, she discards it and uses > for her

alternative.

2. Dawn L.T. decides that it is inconceivable for Bob to consume more chicken than tuna. Her

reasoning is, as she wrote in her report,

. . . Bob absolutely loves canned tuna with a passion.
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Because Dawn L.T. believes that > is inconceivable, she discards it and uses < for her

alternative.

3. Dawn N.E. acknowledges her conflicting thoughts: For ‘real’ food Bob seems to prefer tuna,

but he might prefer the chicken version of the -flavored food. Thus, she is unwilling to

label either > or < inconceivable; she refuses to discard either; and is left with 6= as her

alternative.

I suspect that you may have surmisedmy attitude on this issue. If I were the researcher planning

the study of Bob, then I would have used the alternative 6=. My philosophy is that I will use 6=
unless I feel very strongly that one of the options > or < is clearly inconceivable. You are free to

develop your own attitude on this issue, but I would hope that you remain open-minded until we

have covered more material in these notes. I have met scientists who say that they never use 6=
and I have met scientists who say that they always use 6=. I recommend something less rigid than

either of these extremes.

Aside: One of the reasons I chose Dawn’s study to begin these notes is because it is a study in

which one might reasonably choose any of the three options for the alternative. This fact makes

the study particularly attractive for my purpose of introducing you to tests of hypotheses.

Before I continue, let’s look at Kymn’s, Sara’s and Cathy’s studies.

In Kymn’s study, she wrote,

My coxswain told me that rowers who are muscularly very strong perform better on

the small gear setting (treatment 1) than they do on the large gear setting (treatment 2),

while those who are aerobically very fit show the reverse tendency.

Kymn believed her coxswain and considered herself to be aerobically very fit rather than muscu-

larly very strong. As a result, Kymn considered the alternative < (faster times on small gear) to be

inconceivable. Thus, she selected the alternative >: in the clone-enhanced study, her times on the

first treatment, on average, would be larger (worse) than her times on the second treatment.

Sara chose the alternative 6= because she was unwilling to label either > or < inconceivable.

Sara acknowledged that she was a novice golfer and stated in her report that she was learning golf

primarily because she thought it would be useful in her future career in business.

Cathy chose the alternative 6=. She reported that she enjoyed the run through the park more

than the run at the high school, but—before collecting data—she was uncertain as to whether more

enjoyment would lead to running faster or slower.

5.2 Step 2: The Test Statistic and Its Sampling Distribution

We studied the test statistic U and its sampling distribution in Chapters 3 and 4. Recall that we

calculated the sampling distribution by assuming that the Skeptic is correct. In the language of this

chapter, the sampling distribution is calculated on the assumption that the null hypothesis is true.

Recall that the observed value of the test statistic U is denoted by u and is obtained as follows:

u = x̄− ȳ.
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Because of this definition of u, we will call the test of this chapter a test based on means. In

Chapter 6 we will learn about a competitor to the test of this chapter which is a test based on

ranks.

5.3 Step 3: Calculating the P-value

In Step 2 we focus on the null hypothesis and totally ignore the alternative. In particular, it does

not matter which of the three possible alternatives (>, < or 6=) was chosen by the researcher. In

Step 3, we focus on the alternative. As a result, we must work through the details of Step 3 three

times, once for each possible alternative.

5.3.1 The P-value for the alternative >

Remember that I have invented three Dawn researchers: Dawn G.T. ; Dawn L.T. ; and Dawn N.E.

In this subsection we consider Dawn G.T. ; the version of Dawn who chose the alternative >.

The null hypothesis (Skeptic’s Argument) implies that every day the chicken response would

equal the tuna response. Yes, day-to-day responses could vary. But if the null is correct then in the

clone-enhanced study the total (or the mean) number of treats eaten at the end of 20 days would

be exactly the same on the two treatments. If, however, the alternative > is true, then in the clone-

enhanced study at the end of the 20 days the number (mean) of chicken treats eaten would be larger

than the number (mean) of tuna treats eaten.

Of course, Dawn could not perform the clone-enhanced study. What Dawn could perform was

her actual study. In her actual study—I like to use the colorful language of sports here—chicken

defeated tuna by 2.2 treats. Intuitively, the fact that chicken won its actual game with tuna provides

evidence that chicken would have won the clone-enhanced study. In other words, intuitively, the

actual study provides evidence in support of the > alternative.

Now we get to the key question: How strong is this evidence in support of >? We answer this

question in two parts.

Recall that one of the big ideas of Statistics is to evaluate what actually happened by consider-

ing everything that could have happened. Recall, also, that when I type everything that could have

happened I am referring to all the possible assignments that could have arisen from the process of

randomization. We looked at this issue in Chapters 3 and 4 by looking at the sampling distribution

of the test statistic U .

So, the first thing (part) we do is list all the possible values of the test statistic U . It can be

shown that the possible values of U are:

−3.8,−3.6, . . . ,−2, 4,−2.2,−2.0, . . . , 0, . . . , 2.0, 2.2, 2.4, . . . , 3.8.

Before I continue let me make a few comments about this list.

1. The ability to determine all possible values of U will not be helpful in this course. Thus, I

won’t explain how I created this list of values.
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2. Our simulation experiment, reported in Table 4.1 on page 76, obtained almost all of the

values I list above. Indeed, it missed only the values: −3.8, 3.4, 3.6 and 3.8. Because

the simulation experiment yielded the values −3.4 and −3.6, we could have inferred the

existence of the values 3.4 and 3.6 because of symmetry.

3. As we will see below, our argument for finding the P-value does not require us to know all

possible values of U . But knowing them all helps me to motivate the formula for finding the

P-value.

As stated earlier, the actual u = 2.2 provides evidence in support of >. Think of my sport’s

language: In the actual study, chicken defeated tuna by 2.2 treats. If chicken had won the game by

2.4 or 2.6 or . . . or 3.8 treats, then the evidence in support of > would be stronger than the actual

evidence. By similar reasoning, if chicken had won the game 2.0, 1.8, . . .−3.8, then the evidence

in support of > would be weaker than the actual evidence. (Note the absurdity of language of

saying that chicken won the game by a negative amount; winning by a negative amount is more

commonly referred to as losing, but my point remains valid. The evidence for > provided by any

negative value of u would be weaker than the evidence for > provided by the actual positive u.)
To summarize the above, the event (U ≥ 2.2) consists of all assignments that would give

evidence in support of > that is equal to or stronger than the evidence in support of > provided

by the actual study.

All that remains is to calculate the proportion of assignments that give (U ≥ 2.2). This, of
course, is called the probability of (U ≥ 2.2): P (U ≥ 2.2). This probability is called the P-value

for our test of hypotheses and the alternative >.

Let’s pause for a moment before we proceed. You might be thinking,

I have learned the formula for the P-value in one very specific situation: Dawn’s data

with the alternative >. (Big deal!)

In fact, you have learned much more, although it remains for me to tell you. What you have learned

is themeaning of the P-value. This meaning is true in every statistical analysis of data. Every

analysis in this course and beyond. So what is the meaning?

The P-value measures the probability—calculated under the assumption the null hy-

pothesis is true—of obtaining the evidence actually obtained or stronger evidence

in support of the alternative.

Note that we always talk about evidence in support of the alternative; we never talk about evidence

in support of the null. There is no need to evaluate evidence in support of the null because we

begin our analysis assuming the null is true. Here is an analogy: In a felony case, there is no need

to provide evidence of innocence, only of guilt, because the trial begins with the assumption that

the defendant is innocent.

Let’s consider some extreme possibilities for the P-value.

1. Suppose that the P-value is really close to zero, say, one in a billion. This means that the

evidence in the data for the alternative is very strong in the sense that only one in a billion
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assignments would yield the same or stronger evidence. In the face of such a small P-value,

one can cling to the Skeptic being correct only if one believes that something incredibly

unlikely occurred in the study. Personally, I would always reject the null hypothesis with

such a small P-value. I have never met a statistician or a scientist who would admit to

disagreeing with me.

2. Suppose that the P-value is close to one, say, 0.90. This means that the evidence in the data

for the alternative is quite weak in the sense that 90% of the assignments would yield the

same or stronger evidence. Given our preference—because of Occam’s Razor—for the null

hypothesis, nobody would ever suggest rejecting the null hypothesis for such a large P-value.

I hope that the above two examples are helpful, but I must admit—as you have no doubt noticed—

there is a lot of territory between one in a billion and 0.90! Thus, we will need to consider in more

detail how to interpret a P-value. This will come later.

We have spent a great deal of time finding the formula for the P-value for the alternative > for

Dawn’s CRD. Fortunately, the ideas above can be generalized easily to any CRD with a numerical

response. In the general case, the value 2.2 for u simply is replaced by the actual value of u. Thus,
for example, in Kymn’s study we replace 2.2 by her actual u = 7.2; in Sara’s study we replace 2.2
by her actual u = 8.700; and in Cathy’s study we replace 2.2 by her actual u = 5.00.

We have the following general rule for computing the P-value.

Result 5.1 For the alternative µ1 > µ2, the P-value is equal to

P (U ≥ u) (5.1)

In this equation, remember that u is the actual observed value of the test statistic.

Let’s apply Equation 5.1 to our four CRDs. We do this even though only Dawn G.T. and Kymn

chose the alternative >. All of the studies have the potential to provide us with practice at using

Equation 5.1.

1. For Dawn’s CRD, the P-value for > is P (U ≥ 2.2). I don’t know this number. Following

our work in Chapter 4, we will approximate this by its relative frequency in our computer

simulation experiment.

• For my original 10,000 rep simulation experiment, the approximate P-value, 0.0198, is

presented in Table 4.2 on page 76. In addition, in the first bullet in the list beginning on

page 78, I show that we can be nearly certain that the exact P-value is between 0.0156

and 0.0240.

• For my extended, 100,000 rep, simulation experiment referenced on page 79, I obtained

the approximate P-value 0.01879. In addition, I am nearly certain that the exact P-value

is between 0.01750 and 0.02008.

2. For Kymn’s CRD, the P-value for > is P (U ≥ 7.2). It is particularly easy to obtain this P-

value because 7.2 is the largest possible value of U and it is obtained by only one assignment.

Thus, the exact P-value is 1/252 = 0.0040.
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3. For Sara’s CRD, the P-value for > is P (U ≥ 8.7). I don’t know this number. Following

our work in Chapter 4, we will approximate this by its relative frequency in our computer

simulation experiment. For my 10,000 rep simulation experiment the approximate P-value,

0.0903, is presented in Table 4.3 on page 77. In addition, in the fourth bullet in the list

beginning on page 78, I show that we can be nearly certain that the exact P-value is between

0.0817 and 0.0989.

4. For Cathy’s CRD, the P-value for > is P (U ≥ 5.0). We can see from Table 3.5 on page 64

that

P (U ≥ 5.0) = P (U = 5.0) + P (U = 7.67) + P (U = 9.0) + P (U = 9.67) = 0.20.

How should you interpret the P-value? The classical approach advocated by many statisticians

is:

Reject the null hypothesis in favor of the alternative if, and only if, the P-value is less

than or equal to 0.05.

This viewpoint is reinforced by some technical language: Whenever a test yields a P-value that is

less than or equal to 0.05 we say that the data are statistically significant. If the P-value is greater

than 0.05, we say that the data are not statistically significant. We never say that the data are

statistically insignificant; statisticians are quite picky about how we negate our expressions!

A variation on the classical approach is to replace the threshold value of 0.05 by some other

value. The most popular other threshold values are 0.01 and 0.10. In fact, whenever a test yields

a P-value that is less than or equal to 0.01 we say that the data are highly statistically significant.

Statisticians’ use of modifiers in this context is restricted to highly. Perhaps you can someday

popularize some other modifiers; e.g., phatly or awesomely or Bieberly statistically significant.

For the four researchers above, we know the exact P-values for Kymn and Cathy; Kymn’s data

are highly statistically significant and Cathy’s are not statistically significant. For Dawn and Sara,

we don’t know the exact P-values, but based on the nearly certain intervals, we say that Dawn’s

data are statistically significant and Sara’s data are not statistically significant.

5.3.2 The P-value for the alternative <

There is no work to be done for the alternative < because it is mathematically equivalent to the

alternative >. Why? Well, suppose that you are using the alternative <; literally, that treatment

1 gives smaller response values than treatment 2. If you simply relabel the treatments: The old 1

[2] becomes the new 2 [1], the alternative becomes > and we can use the results of the previous

subsection. For completeness, the rule for finding the P-value is below, just in case you don’t want

to be bothered with renaming treatments.

Result 5.2 For the alternative µ1 < µ2, the P-value is equal to

P (U ≤ u) (5.2)

In this equation, remember that u is the actual observed value of the test statistic.
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I will illustrate the use of this formula for our four CRDs, despite the fact that none of the re-

searchers selected this alternative. I simply want to give you practice.

1. For Dawn’s CRD, the P-value for < is P (U ≤ 2.2). I don’t know this number. Following

our work in Chapter 4, we will approximate this by its relative frequency in our computer

simulation experiment. For my original 10,000 rep simulation experiment, the approximate

P-value, 0.9895, is presented in Table 4.2 on page 76. This P-value is so huge that I am

not going to bother reporting the nearly certain interval. (I did, you might recall, find it in

Chapter 4.) In addition, with such a huge approximate P-value I am not going to bother with

looking at the simulation experiment with 100,000 reps.

2. For Kymn’s CRD, the P-value for < is P (U ≤ 7.2). It is particularly easy to obtain this P-

value because 7.2 is the largest possible value of U . Thus, it is the weakest possible evidence

for <, making the exact P-value equal to 1.

3. For Sara’s CRD, the P-value for < is P (U ≤ 8.7). I don’t know this number. Following

our work in Chapter 4, we will approximate the probability of this event by its relative

frequency in our computer simulation experiment. For my 10,000 rep simulation experiment

the approximate P-value, 0.9107, is presented in Table 4.3 on page 77. This P-value is so

huge that I am not going to bother reporting the nearly certain interval. (I did, you might

recall, find it in Chapter 4.)

4. For Cathy’s CRD, the P-value for < is P (U ≤ 5.0). We can see from Table 3.5 on page 64

that

P (U ≤ 5.0) = 1− P (U > 5.0) = 1− 0.15 = 0.85.

Note that all four of these P-values are very large. This is no surprise because for every study,

u > 0. Hence, intuitively, there is extremely weak evidence in support of <.

5.3.3 The P-value for the alternative 6=
I will motivate our method for Dawn N.E. The key to our argument is: The alternative 6= is the

combination of > and <.

Recall that Dawn’s actual u equals 2.2. This positive value reflects the fact that x̄ > ȳ. Intu-
itively, any u > 0 gives stronger evidence for the alternative > than it does for the alternative <.

We know how to calculate the P-value for >; it is P (U ≥ u). Thus, for Dawn N.E. part of her

P-value is P (U ≥ 2.2).

But the idea of the P-value is to look at all possible assignments; many of these assignments

would give a value of u that is negative. In particular, I am interested in all the assignments that

give u = −2.2. Here are two facts to note about u = −2.2:

1. Because it is a negative number, the evidence it provides for the alternative < is stronger

than the evidence it provides for the alternative >.
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2. The strength with which the value u = −2.2 supports < is exactly equal to the strength

with which the value u = 2.2 supports >.

I hope that the second of these facts is reasonable to you. (Actually proving it is beyond the scope

of these notes; I just want it to make sense to you.) If not, consider the following argument.

Dawn obtained u = 2.2 because x̄ = 5.1 and ȳ = 2.9. The assignments that give

u = −2.2 all have x̄ = 2.9 and ȳ = 5.1. Clearly the latter supports< with exactly the

same strength that the former supports >.

We almost have the answer. The P-value for Dawn N.E. must include P (U ≥ 2.2) as discussed
earlier. It must also include P (U = −2.2) because −2.2 provides the same strength of evidence

for 6= as u = 2.2 does. Finally, the P-value for Dawn N.E. must include P (U < −2.2) because
any u < −2.2 provides stronger evidence than u = −2.2 for the alternative < and, hence, 6=.

To summarize, for Dawn N.E. the P-value equals

P (U ≥ 2.2) + P (U ≤ −2.2).

We can approximate this sum by adding the relative frequencies of each term, which we already

did in Table 4.2 on page 76. The result is that the approximate P-value equals 0.0371. As shown

in the third bullet in the list beginning on page 78 in Chapter 4, the nearly certain interval for the

exact P-value is 0.0314 to 0.0428.

We can abstract the above argument for Dawn N.E.

Result 5.3 For the alternative 6=,

• If the actual u = 0 then the P-value equals 1.

• If the actual u > 0 then the P-value equals

P (U ≥ u) + P (U ≤ −u).

• If the actual u < 0 then the P-value equals

P (U ≤ u) + P (U ≥ −u).

• We can combine the previous two items: If the actual u 6= 0, then the P-value equals

P (U ≥ |u|) + P (U ≤ −|u|) (5.3)

Let me make a few comments on the above. If the actual u equals 0, then this is the weakest

possible evidence for the alternative of 6=. Remembering that the P-value is the proportion of

assignments that yield evidence equal to or stronger than the actual evidence, the P-value must

be 1 and no computations are required. Three versions of the situation for u 6= 0 are presented

in Figure 5.1. I will end this subsection by finding the P-value for the alternative 6= for our three

remaining CRDs.
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Figure 5.1: The P-value for the alternative 6= for u 6= 0.

u > 0:

−u 0 u

-�
P (U ≥ u)P (U ≤ −u)

u < 0:

u 0 −u

-�
P (U ≥ −u)P (U ≤ u)

u 6= 0:

−|u| 0 |u|

-�
P (U ≥ |u|)P (U ≤ −|u|)

1. For Kymn’s CRD, the P-value for 6= is P (U ≥ 7.2) + P (U ≤ −7.2). This value is 2/252 =
0.0079. The data are highly statistically significant.

2. For Sara’s CRD, the P-value for 6= is P (U ≥ 8.7) + P (U ≤ −8.7). We can approximate

this sum by adding the relative frequencies of each term, which we already did in Table 4.3

on page 77. The result is that the approximate P-value equals 0.1824. As shown in the last

bullet in the list beginning on page 78 in Chapter 4, the nearly certain interval for the exact

P-value is 0.1708 to 0.1940. These data are not statistically significant.

3. For Cathy’s CRD, the P-value for 6= is P (U ≥ 5.0) + P (U ≤ −5.0). We can see from Ta-

ble 3.5 on page 64 that this probability equals 2(0.20) = 0.40. These data are not statistically
significant.

5.3.4 Some Relationships Between the Three P-values

Let me reiterate: The researcher selects one alternative before collecting data and, thus, obtains one

P-value, be it approximate or exact. That being said, there is insight to be gained by considering

the P-values for all three possible alternatives. I will do this in this subsection. Also, I have a

few remarks about symmetry. Note that all of my comments and results below are for the exact

P-values. This means that these comments and results are approximately true for approximate

P-values.

Suppose that we add the P-value for > to the P-value for <; from Results 5.1 and 5.2, we get:

P (U ≥ u) + P (U ≤ u) = 1 + P (U = u), (5.4)

because the sum includes the assignments that give (U = u) twice and all other assignments once.

Equation 5.4 implies that at least one of these P-values must exceed 0.5000; in words, at least one
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of these P-values must be very large. This is no surprise; if u > 0 [u < 0] then the P-value for <
[>] must be large.

Note that many books state that these two P-values add to one. Literally, this is an incorrect

statement, but for studies with large n it usually is a good approximation.

I won’t prove the facts below and I encourage you simply to accept them. If you want to prove

them and have difficulty, contact your instructor or TA. I am not trying to make this into a math

class; I simply want you to have a better understanding of P-values.

If the three P-values are different numbers, then the alternative 6= never gives the smallest of

the three. It might be the largest or the middle value, but is never the smallest. Curiously, the

following is possible:

If the P-values are two distinct numbers, say b, b and c, then it must be the case that

b < c and the P-value for 6= could be b or c. (See the different result below if the

distribution of U is symmetric.)

The effect of symmetry. We get better results (easier to interpret and understand) if the sampling

distribution ofU is symmetric around 0. We saw in Result 3.2 on page 65 that if a CRD is balanced,

n1 = n2, then the sampling distribution of U is symmetric around 0. In math language, balance is

sufficient for symmetry. It turns out that balance is not necessary for symmetry, but we won’t try

to characterize the situations that yield symmetry.

We need to separate results for the cases where u = 0 and u 6= 0.

• For u = 0, the P-values for > and < are equal and both are larger than 0.5000. Also both

are smaller than 1, except in the trivial case when P (U = 0) = 1, which makes all three

P-values equal to 1. (Think about what it means if P (U = 0) = 1.)

We already know that the P-value for 6= is 1.

• For u 6= 0, define:

b = P (U ≥ u); c = P (U ≤ u); and d = P (U ≥ |u|) + P (U ≤ −|u|).

We see that b, c and d are the P-values for >, < and 6=, respectively.

1. If u > 0: We have b ≤ 0.5 < c and, by symmetry, d = 2b.

2. If u < 0: We have c ≤ 0.5 < b and, by symmetry, d = 2c.

In view of these last two items, you may have realized the following.

Let’s look at the approximate P-value for Dawn N.E. based on my simulation experiment with

10,000 reps. As shown above, it is equal to 0.0371 with a nearly certain interval of [0.0314, 0.0428].
Now, let’s look at the approximate P-value for Dawn G.T. based on the same simulation experi-

ment. As shown above, it is equal to 0.0198 with a nearly certain interval of [0.0156, 0.0240]. But
from the above, the exact P-value for > is equal to one-half of the exact P-value for 6=. Thus, we
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could simply halve our answer for 6= to obtain an answer for >. If we do this, our approximation

is 0.0371/2 = 0.01855, with nearly certain interval

[0.0314/2, 0.0428/2] = [0.0157, 0.0214].

We see that by making use of the symmetry in the problem, we can obtain a more precise ap-

proximation for the P-value for > (the value of h decreases from 0.0042 to 0.00285, a substantial

change).

We have much material to cover in a short time. As a result, I have chosen not to make you

responsible for using this improvement.

5.4 Computing

There is a website that will perform our simulation experiment, but it gives limited output. Begin

by going to a familiar site:

http://vassarstats.net.

This is a good time for you to remember my suggestion that you use Firefox, Safari or Chrome as

your web browser. (In truth, I can only testify that Firefox works; I have tried neither Safari nor

Chrome.) I do know from personal experience that Windows Explorer did not work for me.

When you get to the vassarstats website you will see a list of options in a column on the left

of the page. Click on Miscellanea, the penultimate item in the list. This action takes you to a new

page which gives you a choice of three options; select the second one: Resampling Probability

Estimates for the Difference Between the Means of Two Independent Samples. This selection

takes you to another page which asks you for input.

I don’t want this presentation to be too general, so let’s proceed with a specific example: I will

illustrate the use of this site using Dawn’s study of her cat.

The page requesting input states:

Please enter the size of sample A.

In the box below this request, enter the value of n1, which is 10 for Dawn’s study. After I type 10

I click on the box OK. This takes me to a new page, which states:

Please enter the size of sample B.

In the box below this request, enter the value of n2, which is 10 for Dawn’s study. After I type 10

I click on the box OK.

Now that I have entered my two sample sizes, the site takes me to a page with lots of informa-

tion, with the heading:

Resampling Probability Estimates
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followed by four bullets of information.

The first two bullets explain how to proceed; I will paraphrase these below. The third bullet

presents a Caveat which you may ignore. (The programer’s comments concern using the site

for population-based inference and they are not relevant for our current randomization-based

inference.) The fourth bullet provides us with a familiar equation that we first saw in Formula 3.2

in Chapter 3. This bullet tells us that the total number of possible assignments for Dawn’s study is

184,756.

Now I have some bad news for you. The site requires you to enter the data by typing; i.e.,

cutting-and-pasting is not possible. Thus, I proceed to enter Dawn’s 20 observations into the site.

After entering the 20 numbers, I click on the box labeled Calculate. This action creates quite a lot

of output which we will now examine.

• The site gives us the means of each data set: x̄ = 5.1 and ȳ = 2.9. This provides a partial
check that I entered the data correctly.

• The site gives us u = x̄−ȳ = 2.2, which is callsMa−Mb. (Alas, my kingdom for universally

accepted notation!)

• The site gives us several items that you should ignore: t, df and two proportions that are

one-tailed and two-tailed P-values for something called a t-test. The df is short for degrees

of freedom and if you recall our definition of degrees of freedom in Chapter 1, you know

that each sample has 9 degrees of freedom. As we will learn later in these notes, degrees

of freedom often add, as they do here to give 9 + 9 = 18. The P-values are appropriate for
population-based inference.

So far, the site has not done anything to make me excited. I already knew how to obtain x̄, ȳ and

u. For excitement, scroll down to the box labeled:

Resample ×1000.

I click on this box exactly ten times. (Channeling the hand-grenade scene in Monty Python and

the Holy Grail, not nine times; not 11 times; exactly 10 times.) After all this clicking, I obtain the

following information:

Under the heading Probabilities estimated via resampling, there are two P-values:

0.0173 for one one-tailed and 0.0372 for two-tailed. I also am told that the number of

resamplings—as we would say, the number of reps—equals 10,000.

If you are mimicking my actions on your own computer—as I hope you are—then you likely

obtained numbers different from my 0.0173 and 0.0372. For example, I repeated the above steps

and obtained 0.0170 and 0.0372. A third 10,000 rep simulation yielded, for me, 0.0169 and 0.0366.

The one-tailed P-value, 0.0173 (let’s focus on my first set of values), is the approximate P-value

for >. The two-tailed P-value, 0.0372, is the approximate P-value for 6=. These are comparable to

the values, 0.0198 and 0.0371, respectively, that I obtained usingMinitab. I trust Minitab, whereas,

to me, the vassarstats site is totally a black box. Thus, the fact that the latter’s values are similar to

Minitab’s values makes me feel a bit better about recommending you use vassarstats.
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Note that the vassarstats site does not give a P-value for the alternative < for Dawn’s study.

I imagine that the reason for this programming decision is: because u is positive, we know that

the P-value for < will be very large. In fact, I have experimented with the vassarstats site and

determined that its output obeys the following rule:

• If u > 0, the one-tailed approximate P-value is for the alternative>. No approximate P-value

is given for the alternative <.

• If u < 0, the one-tailed approximate P-value is for the alternative<. No approximate P-value

is given for the alternative >.

In my experimentation with this site, I turned to the issue of what happens when u = 0. I

am very distressed with my findings. In particular, if u = 0 the vassarstats website’s one-tailed

answer is wrong! These are harsh words. I don’t like to say that an approximation is wrong, but

theirs is, as I will now demonstrate.

Basically, you may enter any data you want into the site, provided u = 0. I modified Dawn’s

data by switching the 7 and the 8 from treatment 1 to treatment 2 and a 1 and a 3 from treatment 2 to

treatment 1. For these modified data, x̄ = ȳ = 4.0 and u = 0, values all verified by the vassarstats
site. Let’s summarize what we know must be true about the P-values for these modified data.

• Because u = 0 we know that the two-tailed P-value is exactly 1.

• The P-value for > [<] is P (U ≥ 0) [P (U ≤ 0)]. By symmetry (Result 3.2 on page 65),

we know that these probabilities are identical and that both are larger than 0.5 (follows from

Equation 5.4 on page 102).

Thus, as a practical matter, we don’t need to approximate the P-value; we know it is large.

I used the vassarstats site to perform a 10,000 rep simulation experiment. The site gave me one

for the approximate two-tailed P-value (correct answer), but it gave me 0.0761 for the one-tailed

P-value (horribly wrong answer)!

5.4.1 A Final Comment

In the Practice Problems and Homework I want you to use the vassarstats site as detailed above to

obtain approximate P-values for two of the three possible alternatives. I will not give you any data

sets that have u = 0, first because we don’t need to approximate the P-value in this situation and,

second, because the vassarstats answer for one-tailed is wrong, as demonstrated above.

Not surprisingly, I have some misgivings about teaching you to use a site that, on occasion

anyways, gives horribly wrong answers. Teachers are not supposed to do this! How can I justify

my action? Below are my reasons.

1. I don’t have time to teach you Minitab—or any other statistical software package—unless

I delete several topics that I don’t want to delete. I could let simulation experiments be

something magical that only I can obtain, but I don’t want to do that. I want you to be able

to obtain some answers. As best I can tell, vassarstats fails only when u = 0. If I discover
that the site is more flawed than that, I will reconsider my presentation of this material.

106



2. Stating the obvious, in the modern world we routinely obtain answers from computers and

(supposedly) trust them. (Well, we don’t trust what people write unless we are hopelessly

naive. But, in my experience, people trust computations. After all, they are called comput-

ers.) I choose to believe that I am doing you a service by giving you a concrete example of

an error on a site. Ideally, this will motivate you to challenge answers that you obtain. For

example, once you have more experience with P-values, you should realize immediately that

the answer 0.0761 above is ridiculous for u = 0.

3. I would appreciate your feedback, via email, on this issue.
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5.5 Summary

There are three steps to any statistical test of hypotheses.

1. Step 1: Choice of hypotheses.

2. Step 2: The test statistic and its sampling distribution.

3. Step 3: Calculating the P-value.

These three steps will be revisited many times in these Course Notes for different situations in

science and Statistics.

There are always two hypotheses: the null, H0, and the alternative, H1. These must be spec-

ified by the researcher before any data are collected. Specified is a bit misleading, because the

researcher’s options are usually limited. For example, for the test of this chapter, there is only one

possibility for the null and only three possibilities for the alternative.

Compared to the alternative, the null hypothesis provides a simpler model for reality. Thus,

following Occam’s Razor, every statistical test of hypotheses begins with the assumption that the

null is true. After data are collected and analyzed, the researcher will decide to either: reject the

null hypothesis in favor of the alternative, or fail to reject the null hypothesis in favor of the

alternative.

Throughout Part I of these Course Notes the null hypothesis is that the Skeptic is correct. Some

foundation is required before I can specify the alternative.

As we know, in a CRD the goal is to compare how the two treatments influence the responses of

the n units being studied. Most of the CRDs we have considered in exposition, Practice Problems

or Homework have been balanced: equal numbers of units are assigned to each treatment. It seems

reasonable for the purpose of comparison, that it is a good idea to give each treatment the same

number of opportunities to perform. Indeed, there are various mathematical results that say, in

certain circumstances, balance is the best way to compare two treatments. We are not, however,

interested in exploring this topic mathematically.

It is useful to consider the most extreme departure from balance that is possible; namely, as-

signing all units to the same treatment. There are, of course, two ways to do this: AT-1 assigns all

units to treatment 1 and AT-2 assigns all units to treatment 2. Suppose that all units are assigned to

treatment 1; define µ1 to equal the mean response over all n units. Similarly, suppose that all units

are assigned to treatment 2; define µ2 to equal the mean response over all n units.

We invent the fanciful clone-enhanced study in which each unit is cloned and one version of

each unit is assigned to each treatment. If we could perform the clone-enhanced study, then we

would be performing both AT-1 and AT-2 and, hence, we could compute the values of µ1 and µ2.

It is easy to see that if the Skeptic is correct, then µ1 = µ2. In fact, if the Skeptic is correct

we can compute this common value—just calculate the mean response of all units ignoring the

treatment—but we have no interest in this. If the Skeptic is incorrect, I demonstrate in Table 5.3 on

page 90 that anything is possible: µ1 can be smaller than, equal to or greater than µ2. The situation

in which the Skeptic is incorrect and µ1 = µ2 is vexing. Here is why.

The Skeptic being incorrect implies that for some units the treatment does influence the re-

sponse. The equality of µ1 and µ2 implies that for all of the units studied, on average, the two

108



treatments give the same responses. In other words, it must be the case that treatment 1 is superior

to treatment 2 for some units, while the reverse is true for other units. Sadly, there is no way to

distinguish between these two situations with our CRDs.

Of particular interest to us are the alternatives with a constant treatment effect, as defined in

Definition 5.1.

There are three choices for the alternative hypothesis: µ1 > µ2; µ1 < µ2; and µ1 6= µ2. For

brevity, these are referred to as the alternatives >, < and 6=, respectively. These abbreviations

should cause no difficulty, as long as you remember that µ1 always appears to the left of µ2.

After specifying the hypotheses; i.e., choosing the alternative from the options >, < and 6=, it

is time for Step 2: The Test Statistic and Its Sampling Distribution. Step 2 is big and we covered it

in Chapters 3 and 4.

Finally, there is Step 3: Calculating the P-value. We derive three formulas for calculating the

P-value, one for each choice of alternative. In the formulas below, remember that u denotes the

observed value of the test statistic for the actual data obtained in the CRD.

1. For the alternative µ1 > µ2, the P-value is

P (U ≥ u).

2. For the alternative µ1 < µ2, the P-value is

P (U ≤ u).

3. For the alternative µ1 6= µ2, obtaining the P-value is bit tricky.

• If u = 0 then the P-value equals one.

• If u > 0, then the P-value equals

P (U ≥ u) + [P (U ≤ −u).

• If u < 0, then the P-value equals

P (U ≤ u) + [P (U ≥ −u).

• These last two rules can be combined into one. For u 6= 0 the P-value equals

P (U ≥ |u|) + P (U ≤ −|u|).

A nice feature of this last version of the rule is that it reminds us that for the alternative

µ1 6= µ2, the sign of u does not matter; only its magnitude.
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Table 5.4: Frequency Table for u for the 252 possible assignments for Kymn’s Study.

u Freq. u Freq. u Freq. u Freq. u Freq. u Freq.

−7.2 1 −4.8 3 −2.4 10 0.4 12 2.8 10 5.2 4

−6.8 1 −4.4 5 −2.0 8 0.8 10 3.2 8 5.6 3

−6.4 1 −4.0 8 −1.6 14 1.2 13 3.6 6 6.0 1

−6.0 1 −3.6 6 −1.2 13 1.6 14 4.0 8 6.4 1

−5.6 3 −3.2 8 −0.8 10 2.0 8 4.4 5 6.8 1

−5.2 4 −2.8 10 −0.4 12 2.4 10 4.8 3 7.2 1

0.0 16 Total 252

5.6 Practice Problems

1. The purpose of this question is to reinforce the ideas that were illustrated in Table 5.3. First,

I present artificial data from a balanced CRD with a total of eight units:

Unit: 1 2 3 4 5 6 7 8

Treatment: 1 2 2 1 2 1 2 1

Response: 22 14 18 22 10 18 26 14

Next, I present the (largely unknown) results that would be obtained for the clone-enhanced

version of this study. Note that there are eight question marks in this table, one for each unit

because we don’t know how the clones would respond!

Unit: 1 2 3 4 5 6 7 8 Mean

Response on Treatment 1: 22 ? ? 22 ? 18 ? 14 x̄ = 19
Response on Treatment 2: ? 14 18 ? 10 ? 26 ? ȳ = 17

(a) Complete the data table above for the clone-enhanced study on the assumption that the

Skeptic is correct.

(b) Complete the data table above for the clone-enhanced study on the assumption that

Skeptic is incorrect and there is a constant treatment effect that is equal to 10.

2. Refer to HS-1 in this chapter; its artificial data are presented in Table 5.1 on page 88. I want

to use this study of headaches to explore choosing the alternative hypothesis by using the

Inconceivable Paradigm, which was presented in Definition 5.2 on page 94.

(a) Suppose that drug A (treatment 1) is actually an extra-strength version of drug B (treat-

ment 2). In addition, suppose that the researcher believes it is inconceivable that the

extra-strength version is inferior to the regular version.

Given these two suppositions, determine the researcher’s choice for the alternative hy-

pothesis.
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(b) Suppose that drug A is a placebo (which violates my earlier story; sorry) and that B is

an active drug. In addition, suppose that the researcher believes it is inconceivable that

a placebo is superior to drug B.

Given these two suppositions, determine the researcher’s choice for the alternative hy-

pothesis.

3. The purpose of this problem is to give you practice using the three rules for computing

the P-value. In Chapter 3, I presented the distribution of the values of u for the 252 possible

assignments for Kymn’s study of rowing; for convenience, I have reproduced this distribution

in Table 5.4. For parts (a)–(c) below, forget that Kymn’s actual u equals 7.2. Instead, use the

different values of u I specify and Table 5.4 to find the various P-values.

(a) For the alternative>, find the exact P-value for each of the following three values of u:
6.8, 5.6 and 4.0.

(b) For the alternative<, find the exact P-value for each of the following three values of u:
−6.4, −5.2 and −2.8.

(c) For the alternative 6=, find the exact P-value for each of the following three values of

|u|: 5.6, 5.2 and 2.8.

4. In the lone Practice Problem of Chapter 4 (Section 4.6) I introduced you to Doug’s study of

the dart game 301. Please read about the study again now. Remember that smaller response

values correspond to better outcomes for Doug. Doug’s summary statistics included:

x̄ = 18.60 and ȳ = 21.20, giving u = 18.60− 21.20 = −2.60.

In Chapter 4, I reported the following results from a simulation with 10,000 reps that I

performed using Minitab:

r.f. (U ≤ −2.60) = 0.0426; and r.f. (U ≥ 2.60) = 0.0418.

I entered the Doug’s 40 responses into the vassarstats website and had it perform a simula-

tion with 10,000 reps; I obtained the output below:

one-tailed P-value = 0.0433; two-tailed P-value = 0.0836.

(a) Imagine you are back in time with Doug before he collected his data. Doug says, “It is

inconceivable that my throwing bar darts will yield better results than my throwing my

personal darts.”

Which alternative should Doug choose?

(b) Consider the alternative <.

i. What is the approximate P-value based on my Minitab simulation?

ii. What is the approximate P-value based on the vassarstats simulation?
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iii. Compare these two approximations. You don’t need to compute any nearly certain

intervals; simply tell me what you think.

(c) Consider the alternative >.

i. What is the approximate P-value based on my Minitab simulation?

ii. What is the approximate P-value based on the vassarstats simulation?

iii. Compare these two approximations. You don’t need to compute any nearly certain

intervals; simply tell me what you think.

(d) Consider the alternative 6=.

i. What is the approximate P-value based on my Minitab simulation?

ii. What is the approximate P-value based on the vassarstats simulation?

iii. Compare these two approximations. You don’t need to compute any nearly certain

intervals; simply tell me what you think.

5.7 Solutions to Practice Problems

1. (a) There is only one possible way to make the Skeptic correct; it is:

Unit: 1 2 3 4 5 6 7 8 Mean

Response on Treatment 1: 22 14 18 22 10 18 26 14 µ1 = 18
Response on Treatment 2: 22 14 18 22 10 18 26 14 µ2 = 18

(b) There is one possible correct answer; it is:

Unit: 1 2 3 4 5 6 7 8 Mean

Response on Treatment 1: 22 24 28 22 20 18 36 14 µ1 = 23
Response on Treatment 2: 12 14 18 12 10 8 26 4 µ2 = 13

2. (a) The researcher believes it is inconceivable that the numbers on treatment 1 will be

larger than those on treatment 2; thus, > is inconceivable. The researcher’s choice for

the alternative is <.

(b) The researcher believes it is inconceivable that the numbers on treatment 1 will be

smaller than those on treatment 2; thus, < is inconceivable The researcher’s choice for

the alternative is >.

3. (a) For u = 6.8, the exact P-value is P (U ≥ 6.8). From Table 5.4 we find:

Frequency (U ≥ 6.8) = 1 + 1 = 2.

Dividing by the total number of possible assignments, 252, we obtain

P (U ≥ 6.8) = 2/252 = 0.0079.
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For u = 5.6, the exact P-value is P (U ≥ 5.6). Mimicking what I did above,

Frequency (U ≥ 5.6) = 3 + 1 + 1 + 1 + 1 = 7.

Dividing by the total number of possible assignments, 252, we obtain

P (U ≥ 5.6) = 7/252 = 0.0278.

For u = 4.0, the exact P-value is P (U ≥ 4.0). Mimicking what I did above,

Frequency (U ≥ 4.0) = 8 + 5 + 3 + 4 + 3 + 1 + 1 + 1 + 1 = 27.

Dividing by the total number of possible assignments, 252, we obtain

P (U ≥ 4.0) = 27/252 = 0.1071.

(b) For u = −6.4, the exact P-value is P (U ≤ −6.4). From Table 5.4 we find:

Frequency (U ≤ −6.4) = 1 + 1 + 1 = 3.

Dividing by the total number of possible assignments, 252, we obtain

P (U ≤ −6.4) = 3/252 = 0.0119.

For u = −5.2, the exact P-value is P (U ≤ −5.2). Mimicking what I did above,

Frequency (U ≤ −5.2) = 1 + 1 + 1 + 1 + 3 + 4 = 11.

Dividing by the total number of possible assignments, 252, we obtain

P (U ≤ −5.2) = 11/252 = 0.0437.

For u = −2.8, the exact P-value is P (U ≤ −2.8). Mimicking what I did above,

Frequency (U ≤ −2.8) = 1 + 1 + 1 + 1 + 3 + 4 + 3 + 5 + 8 + 6 + 8 + 10 = 51.

Dividing by the total number of possible assignments, 252, we obtain

P (U ≤ −2.8) = 51/252 = 0.2024.

(c) The easy way to solve this is to remember that because the study is balanced, the

sampling distribution of U is symmetric around 0. (Alternatively, symmetry can be

seen in Table 5.4.) Thus, for example, for any u > 0,

P (U ≥ u) = P (U ≤ −u).
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For |u| = 5.6 the P-value is

P (U ≥ 5.6) + P (U ≤ −5.6) = 2(7/252) = 7/126 = 0.0556,

from our result in (a) above.

For |u| = 5.2 the P-value is

P (U ≥ 5.2) + P (U ≤ −5.2) = 2(11/252) = 11/126 = 0.0873,

from our result in (b) above.

For |u| = 2.8 the P-value is

P (U ≥ 2.8) + P (U ≤ −2.8) = 2(51/252) = 51/126 = 0.4048,

from our result in (b) above.

4. (a) Remember that lower responses are preferred and that treatment 1 is using the personal

darts. Doug believed it is inconceivable that the responses on treatment 1 would be

larger than the responses on treatment 2. Thus, he believed that > is inconceivable; his

alternative is <.

(b) For the alternative < the P-value equals P (U ≤ −2.60).

i. Using Minitab, the approximate P-value is 0.0426.

ii. Using vassarstats, the approximate P-value is 0.0433.

iii. These approximations are very close in value. Because I trust Minitab, I now feel

better about the accuracy of vassarstats.

(c) For the alternative > the P-value equals P (U ≥ −2.60).

i. Trick question! I do not give you the appropriate relative frequency from my

Minitab simulation.

ii. The vassarstats site does not give an approximate P-value for this alternative.

iii. I cannot compare approximations that I don’t know. I will note, however, that

because u < 0, I know that the exact P-value is very large. In fact, it is likely

greater than 0.95 because of Equation 5.4 and my answers to (a).

(d) For the alternative 6= the P-value equals

P (U ≥ 2.60) + P (U ≤ −2.60).

i. Using Minitab, the approximate P-value is 0.0426 + 0.0418 = 0.0844.

ii. Using vassarstats, the approximate P-value is 0.0836.

iii. These approximations are very close in value. Because I trust Minitab, I now feel

better about the accuracy of vassarstats.
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5.8 Homework Problems

1. The purpose of this question is to reinforce the ideas that were illustrated in Table 5.3. First,

I present artificial data from an unbalanced CRD with a total of seven units:

Unit: 1 2 3 4 5 6 7

Treatment: 1 2 2 1 2 1 1

Response: 30 24 21 40 33 36 26

Next, I present the (largely unknown) results that would be obtained for the clone-enhanced

version of this study. Note that there are seven question marks in this table, one for each unit

because we don’t know how the clones would respond!

Unit: 1 2 3 4 5 6 7 Mean

Response on Treatment 1: 30 ? ? 40 ? 36 26 µ1

Response on Treatment 2: ? 24 21 ? 33 ? ? µ2

(a) Complete the data table above for the clone-enhanced study on the assumption that the

Skeptic is correct.

(b) Complete the data table above for the clone-enhanced study on the assumption that

Skeptic is incorrect and there is a constant treatment effect that is equal to −12.

2. Suppose that you are going to perform the following CRD. Your units are trials with each

trial being the toss of one dart at a standard dartboard. Your goal on each trial is to have

the dart stick in the center (bull’s eye) of the board. Your response is the distance, measured

to the nearest centimeter, that your dart lands away from the center. If you miss the board

entirely, make your best guess as to where the dart bounced off the wall—assuming you

don’t miss the wall too—and measure from your guess to the center. If your dart hits the

board, but does not stick, use the radius of the board as your response; i.e., this is worse than

any dart that sticks, but better than hitting the wall.

Your treatments are: (1) using your right hand and (2) using your left hand.

Use the Inconceivable Paradigm to obtain your choice for alternative. Briefly explain your

answer.

3. The purpose of this problem is to give you practice using the three rules for computing the

P-value. Table 4.1 in Chapter 4 presents the complete results of a simulation experiment

with 10,000 reps for Dawn’s study of her cat Bob. I have reproduced this table in Table 5.5.

For parts (a)–(c) below, forget that Dawn’s actual u equals 2.2. Instead, use the different

values of u I specify and Table 5.5 to find the approximations to the various P-values.

Use this table to obtain the approximate P-values requested below.

(a) For the alternative >, find the approximate P-value for each of the following values of

u: 2.8 and 2.4.
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Table 5.5: The results of a simulation experiment with 10,000 reps for Dawn’s study.

Relative Relative Relative

u Freq. Freq. u Freq. Freq. u Freq. Freq.

−3.6 1 0.0001 −1.2 419 0.0419 1.2 394 0.0394
−3.4 1 0.0001 −1.0 506 0.0506 1.4 315 0.0315
−3.2 3 0.0003 −0.8 552 0.0552 1.6 251 0.0251
−3.0 4 0.0004 −0.6 662 0.0662 1.8 150 0.0150
−2.8 16 0.0016 −0.4 717 0.0717 2.0 108 0.0108
−2.6 25 0.0025 −0.2 729 0.0729 2.2 93 0.0093
−2.4 45 0.0045 0.0 732 0.0732 2.4 54 0.0054
−2.2 78 0.0078 0.2 765 0.0765 2.6 23 0.0023
−2.0 113 0.0113 0.4 716 0.0716 2.8 17 0.0017
−1.8 191 0.0191 0.6 674 0.0674 3.0 8 0.0008
−1.6 240 0.0240 0.8 553 0.0553 3.2 3 0.0003
−1.4 335 0.0335 1.0 507 0.0507

(b) For the alternative <, find the approximate P-value for each of the following values of

u: −2.6, and −1.8.

(c) For the alternative 6=, find the approximate P-value for each of the following values of

|u|: 2.6 and 3.2.

4. Refer to Problem 1 of the Chapter 4 Homework (Section 4.8), a consideration of Reggie’s

dart data from Homework problems 5–7 in Chapter 1 (Section 1.8).

(a) Using the Inconceivable Paradigm, Reggie chose the alternative >. While you cannot

read Reggie’s mind, I am asking you to provide a plausible reason for his choice of >.

(b) Enter Reggie’s data (available in Chapter 1 Homework) into the vassarstats website.

Perform a simulation experiment with 10,000 reps.

i. The vassarstats site gives you two approximate P-values based on its simulation.

Match these P-values to their alternatives.

ii. In Problem 1 of the Chapter 4 Homework I reported partial results from a simula-

tion experiment with 10,000 reps that I obtained using Minitab. Use these partial

results to obtain approximate P-values for the same alternatives you used in (i).

iii. Compare your P-values in (i) and (ii). Briefly comment.
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Chapter 6

The Sum of Ranks Test

Thus far in these Course Notes we have considered CRDs with a numerical response. In Chapter 5

we learned how to perform a statistical test of hypotheses to investigate whether the Skeptic’s

Argument is correct. Every test of hypotheses has a test statistic; in Chapter 5 we chose the test

statistic U which has observed value u = x̄ − ȳ. For rather obvious reasons, this test using U is

referred to a test of means or a test of comparing means.

We learned in Chapter 1 that the mean is a popular way to summarize a list of numbers. Thus,

it is not surprising to learn that comparing means, by subtraction, is a popular way to compare two

treatments and, hence, the test of Chapter 5 seems sensible. But we also learned in Chapter 1 that

the median is another popular way to summarize a list of numbers. Thus, you might guess that

another popular choice for a test statistic would be the one whose observed value is v = x̃ − ỹ. If
you make this guess, you would be wrong, but close to the truth.

Recall from Chapter 1 that the distinction between the mean and the median can be viewed as

the distinction between focusing on arithmetic versus position. The median, recall, is the number

at the center position of a sorted listed—for an odd sample size—or the average of the values at

the two center positions—for an even sample size. Thus, the value v in the previous paragraph

compares two sorted lists by comparing the numbers in their center positions. This comparison

ignores a great deal of information! In those situations in which, for whatever reasons, we prefer

to focus on positions rather than arithmetic, it turns out that using ranks, defined below, is superior

to using medians in order to compare two sets of numbers.

In this chapter we will consider an option to using U : i.e., we will present a test that compares

the two sets of data by comparing their ranks. When we study power in a later chapter, we will see

that sometimes the test that compares ranks is better than the test that compares means. The last

section of this chapter presents an additional advantage of using a test based on ranks; it can be

used when the response is ordinal, but not numerical.

6.1 Ranks

We begin by doing something that seems quite odd: We combine the data from the two treatments

into one set of data and then we sort the n = n1 + n2 response values. For example, for Dawn’s
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Table 6.1: Dawn’s 20 sorted response values, with ranks.

Position: 1 2 3 4 5 6 7 8 9 10

Response: 0 1 1 1 2 3 3 3 3 4

Rank: 1 3 3 3 5 7.5 7.5 7.5 7.5 10.5

Position: 11 12 13 14 15 16 17 18 19 20

Response: 4 5 5 5 6 6 6 7 7 8

Rank: 10.5 13 13 13 16 16 16 18.5 18.5 20

study of her cat, the 20 sorted response values are given in Table 6.1. You can verify these numbers

from the data presented in Table 1.3 on page 7, but I recommend that you just trust me on this.

We note that Dawn’s 20 numbers consist of nine distinct values. Her number of distinct values is

smaller than 20 because several of the responses are tied; for example, four responses are tied with

the value 3. Going back to Chapter 1, we talk about the 20 positions in the list in Table 6.1. As

examples: position 1 has the response 0; position 20 has the response 8; and positions 6–9 all have

the response 3.

If the n numbers in our list are all distinct, then the rank of each response is its position. This

is referred to as the no-ties situation and it makes all of the computations below much simpler.

Sadly, in practice, data with ties are commonplace. Whenever there are ties, all tied responses

receive the same rank, which is equal to the mean of their positions. Thus, for example, all four

of the responses equal to 3 receive the rank of 7.5 because they occupy positions 6 through 9 and

the mean of 6, 7, 8 and 9 is 7.5. It is tedious to sum these four numbers to find their mean; here

is a shortcut that always works: simply compute the mean of the smallest (first) and largest (last)

positions in the list. For example, to find the mean of 6, 7, 8 and 9, simply calculate (6+9)/2 = 7.5.
When we consider ordinal data in Section 6.5 we will have occasion to find the mean of

43, 44, . . . , and 75.

Summing these 33 numbers is much more tedious than simply computing (43 + 75)/2 = 59.
Finally, for any responses in the list that is not tied with another—responses 0, 2 and 8 in Dawn’s

data—its rank equals its position.

The basic idea of our test based on ranks is that we analyze the ranks, not the responses. For

example, I have retyped Table 6.1 in Table 6.2 (dropping the two Position rows) with the added

feature that the responses from treatment 1 (chicken) and their ranks are in bold face type. For the

test statistic U we performed arithmetic on the responses to obtain the means for each treatment

and then we subtracted. We do the same arithmetic now, but we use the ranks instead of the

responses. For example, let R1 denote the sum of the ranks for treatment 1 and let r1 denote its

observed value. For Dawn’s data we get:

r1 = 3 + 7.5 + 10.5 + 13 + 13 + 16 + 16 + 16 + 18.5 + 20 = 133.5.
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Table 6.2: Dawn’s 20 sorted responses, with ranks. The responses from treatment 1, and their

ranks, are in bold-faced type.

Response: 0 1 1 1 2 3 3 3 3 4

Rank: 1 3 3 3 5 7.5 7.5 7.5 7.5 10.5

Response: 4 5 5 5 6 6 6 7 7 8

Rank: 10.5 13 13 13 16 16 16 18.5 18.5 20

Similarly, let R2 denote the sum of the ranks for treatment 2 and let r2 denote its observed value.

For Dawn’s data we get:

r2 = 1 + 3 + 3 + 5 + 7.5 + 7.5 + 7.5 + 10.5 + 13 + 18.5 = 76.5.

In order to compare the treatments’ ranks descriptively, we calculate the mean of the ranks for each

treatment:

r̄1 = r1/n1 = 133.5/10 = 13.35 and r̄2 = r2/n2 = 76.5/10 = 7.65,

which show that, based on ranks, the responses on treatment 1 are larger than the responses on

treatment 2.

The next obvious step is that we define

v = r̄1 − r̄2 = r1/n1 − r2/n2,

to be the observed value of the test statistic V . I say that this step is obvious because it is analogous

to our definition of u = x̄ − ȳ; i.e., v is for ranks what u is for responses. Except we don’t do the

obvious. Here is why.

As the legend goes, as a child, Carl Friedrich Gauss (1777–1855), discovered that for any

positive integer n:
1 + 2 + 3 + . . .+ n = n(n + 1)/2.

In our current chapter, this says that the sum of the positions for the combined set of n responses

equals n(n + 1)/2. Because of the way ranks are defined above, it follows that the sum of the n
ranks also equals n(n + 1)/2. If this is a bit abstract, note that for n = 20 Gauss showed that the

sum of the ranks is 20(21)/2 = 210, which agrees with our findings for Dawn’s data:

r1 + r2 = 133.5 + 76.5 = 210.

As a result, given the values of n1 and n2—which the researcher will always know—knowledge

of the value of r1 immediately gives us the value of v. (If you like to see such things explicitly, for
Dawn’s study:

v = r1/n1 − (210− r1)/n2.)

Now, I don’t want to spend my time doing messy arithmetic, converting back-and-forth between v
and r1. Messy arithmetic is not my point! My point is that we are free to use either v or r1 as the
observed value of our test statistic. In these Course Notes, we will use r1 as the observed value of

the test statistic R1. There are several advantages to using r1 [R1] instead of v [V ]:
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1. The value of r1 is always a positive integer, whereas v will typically be a decimal and can be

negative.

2. If computing by hand, one can obtain r1 faster than one can obtain v.

3. For given values of n1 and n2, in the old days, it was more elegant to have tables of exact

P-values as a function of the positive integer r1 rather than the fraction v.

Admittedly, the last two of these advantages are less important in the computer age. On the other

hand, positive integers have been our friends since early childhood and we all have early bad

memories of decimals and negatives!

There are two main disadvantages of working with r1 rather than v:

1. The value of r1 alone does not tell us how the treatments compare descriptively.

2. Because r1 is always positive, when we have symmetry (see below) it is no longer around 0,

which makes our rule for the P-value for 6= a bit more difficult to remember.

I want to introduce you to the Mann Whitney (Wilcoxin) Rank Sum Test. (The tribute

to Wilcoxin, a chemist by training, is often suppressed because there is another test called the

Wilcoxin Signed Rank Test.) We will call it the sum of ranks test, or, occasionally, the Mann

Whitney test. The obvious reason for either name is: the observed value of the test statistic is

obtained by summing ranks.

We will not spend a great deal of time in these Course Notes on procedures based on ranks. A

big problem is interpretation. I can understand what u = 2.2 signifies: on average, Bob consumed

2.2 more chicken treats than tuna treats. I do not have a clear idea of how to interpret the difference

in mean ranks for Dawn’s data:

133.5/10− 76.5/10 = 13.35− 7.65 = 5.70.

For the—admittedly narrow—goal of deciding whether or not to reject the null hypothesis that the

Skeptic is correct, the sum of ranks test can be useful.

6.2 The Hypotheses for the Sum of Ranks Test

The Skeptic’s Argument is exactly the same as it was earlier for the difference of means test:

The treatment is irrelevant; the response to any unit would have remained the same if the other

treatment had been applied. The null hypothesis is, as before, that the Skeptic is correct.

In order to visualize the alternative, we need to remember the imaginary clone-enhanced study,

first introduced on page 87. There is a total of n = n1 + n2 units being studied. With the clone-

enhanced study, each of these units would yield two responses. Thus, the combined data for the

clone-enhanced study would consist of 2n observations, with n observations from each treatment.

Thus, note that even if the CRD is unbalanced the clone-enhanced study is balanced because each

unit gives a response to both treatments.
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Table 6.3: Case 2 of the clone-enhanced studies of Chapter 5: A constant treatment effect of c = 6..
The actual data are in bold-faced type.

Unit: 1 2 3 4 5 6 ρi
Response on Treatment 1: 18 9 24 18 12 15

Ranks: 10 3.5 12 10 6 8 8.25

Response on Treatment 2: 12 3 18 12 6 9

Ranks: 6 1 10 6 2 3.5 4.75

This presentation is getting quite abstract; thus, we will look at a numerical example. Table 6.3

reproduces Case 2 of Table 5.3 on page 90. In HS-1, n1 = n2 = 3 giving n = 6 and 2n = 12 total
responses in the clone-enhanced study. You may verify the ranks given in Table 6.3 for practice.

Or not; your choice.

Define ρ1 (pronounced ‘roh’) to be the mean of the ranks on treatment 1 in the clone-enhanced

study. Similarly, let ρ2 be the mean of the ranks on treatment 2 in the clone-enhanced study. If

the Skeptic is correct then the two sets of data in the clone-enhanced study will be identical, which

implies that ρ1 = ρ2. Although I won’t give you details (and, thus, don’t worry about it) it is

possible for the Skeptic to be incorrect and yet ρ1 = ρ2.
For the clone-enhanced data in Table 6.3 we see that ρ1 = 8.25 is larger than ρ2 = 4.75 which

is in the same direction as our earlier computation that for Case 2, µ1 = 16 is larger than µ2 = 10.
Thus, sometimes (often?) looking at ranks gives a similar answer to looking at means, but, as we

will see below, not always.

For the sum of ranks test, the three options for the alternative are given below:

• H1 : ρ1 > ρ2.

• H1 : ρ1 < ρ2.

• H1 : ρ1 6= ρ2.

As a practical matter, just remember that > [<] means that—in terms of ranks—treatment 1 tends

to give larger [smaller] responses than treatment 2; and that 6=means that treatment 1 tends to give

either larger or smaller responses than treatment 2.

Earlier in these notes I mentioned that x̄ [ȳ] can be viewed as our point estimate of µ1 [µ2].

The relationships between r1, r2, ρ1 and ρ2 are problematic. All that I can safely say is that

r1/n1 > r2/n2 provides evidence that ρ1 > ρ2.

I will defer further discussion of this issue until we examine population-based inference for the

sum of ranks test. (For example, performing the AT-1 study would give us the value of µ1. Thus,

even though we need to imagine the fanciful clone-enhanced study to obtain both µ1 and µ2, it is

always possible to determine one of these with a study. By contrast, with ranks, the AT-1 study

tells us nothing about ρ1; think about why this is true.)
Let’s stop and take a breath. We have completed Step 1 our sum of ranks test; we have specified

the null and alternative hypotheses. We can now move to Steps 2 and 3.
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Table 6.4: Cathy’s times, in seconds, to run one mile. HS means she ran at the high school and P

means she ran through the park. The responses and ranks of the high school data are in bold-face.

Trial: 1 2 3 4 5 6

Location: HS HS P P HS P

Time: 530 521 528 520 539 527

Rank: 5 2 4 1 6 3

6.3 Step 2: The Test Statistic and Its Sampling Distribution

The test statistic will beR1 with observed value r1. We have three options for finding the sampling

distribution and then using it to find our P-value. Two of these options are familiar and one is new.

The familiar ones are:

1. Determine the exact sampling distribution of R1. In these notes, this option is practical only

for very small studies.

2. Use a computer simulation experiment to approximate the sampling distribution of R1.

The third option is called the Normal curve approximation of the sampling distribution of R1; it

will be presented in Chapter 7.

I will begin by determining the exact sampling distribution of R1 for Cathy’s study of routes

for running. Table 6.4 is a reproduction of our earlier table of Cathy’s data, with ranks now added.

Again, make sure you are able to assign ranks correctly. You will need this skill for exams and

homework.

Note that if the Skeptic is correct, then trials 1–6 will always yield the responses (ranks) 5,

2, 4, 1, 6 and 3, respectively. We see that the actual observed value of R1 for Cathy’s study is

r1 = 5 + 2 + 6 = 13. Although we don’t need it, I note that the actual observed value of R2 is

r2 = 4 + 1 + 3 = 8. Thus, the mean of the ranks at the high school (r̄1 = 13/3) is larger than
the mean of the ranks through the park (r̄2 = 8/3) because, as a group, Cathy’s times were larger

(worse) at the high school.

Table 6.5 is analogous to Table 3.4 on page 63. In the earlier table, we determined the values

of x̄, ȳ and u = x̄− ȳ for each of the 20 possible assignments of trials to treatments. In the current

chapter, our task is much easier; for each assignment we need calculate only the value of r1. You
should make sure that you follow the reasoning behind Table 6.5. (A similar problem is on the

homework and might be on an exam.) For example, reading the first row of this table, we see that

we are interested in assignment 1,2,3. Reading from Table 6.4 we see that the ranks are 5, 2 and 4,

giving r1 = 5+2+4 = 11. The information in Table 6.5 is summarized in Table 6.6, the sampling

distribution of R1 for Cathy’s study. Again, make sure you can create this latter table from the

former.

In fact, any balanced CRD with n = 6 units and no tied responses will yield the sampling

distribution for R1 given in Table 6.6. This is easy to see because, without ties, the ranks will be 1,

122



Table 6.5: The values of r1 for all possible assignments for Cathy’s CRD.

Ranks for Ranks for

Assignment Treatment 1 r1 Assignment Treatment 1 r1
1, 2, 3 5, 2, 4 11 2, 3, 4 2, 4, 1 7
1, 2, 4 5, 2, 1 8 2, 3, 5 2, 4, 6 12
1, 2, 5 5, 2, 6 13 2, 3, 6 2, 4, 3 9
1, 2, 6 5, 2, 3 10 2, 4, 5 2, 1, 6 9
1, 3, 4 5, 4, 1 10 2, 4, 6 2, 1, 3 6
1, 3, 5 5, 4, 6 15 2, 5, 6 2, 6, 3 11
1, 3, 6 5, 4, 3 12 3, 4, 5 4, 1, 6 11
1, 4, 5 5, 1, 6 12 3, 4, 6 4, 1, 3 8
1, 4, 6 5, 1, 3 9 3, 5, 6 4, 6, 3 13
1, 5, 6 5, 6, 3 14 4, 5, 6 1, 6, 3 10

Table 6.6: The sampling distribution of R1 for Cathy’s CRD.

r1 P (R1 = r1) r1 P (R1 = r1)
6 0.05 11 0.15
7 0.05 12 0.15
8 0.10 13 0.10
9 0.15 14 0.05
10 0.15 15 0.05

2, 3, 4, 5 and 6. Thus, we have the following huge difference between the test based on U and the

test based on R1:

In the no-ties situation, for any given values of n1 and n2 there is only one sampling

distribution for R1, but, as we can imagine, there are an infinite number of sampling

distributions for U . (Just change any response and you will likely obtain a different

sampling distribution for U .)

I will followmy pattern of presentation that is becoming familiar to you. For Cathy’s very small

study—only 20 possible assignments—we are able to obtain the exact sampling distribution of our

test statistic quite easily; tedious perhaps, but easy. Next, we move to a larger study: Kymn’s study

of rowing with its 252 possible assignments. This number of assignments is easily manageable for

me (even though I am not particularly good at this), but I would never require you to examine so

many assignments.

As I did in Chapter 3—because I hate looking at the results from dividing by 252—Table 6.7 is

not quite the sampling distribution we want; to obtain the sampling distribution we need to divide

each of the table’s frequencies by 252.
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Table 6.7: Frequency table for the observed values r1 of R1 for the 252 possible assignments for

Kymn’s Study.

u Freq. u Freq. u Freq. u Freq. u Freq. u Freq.

15.0 1 20.5 2 24.0 6 28.0 5 31.5 10 35.0 5

16.0 1 21.0 6 24.5 10 28.5 14 32.0 6 35.5 2

17.0 2 21.5 4 25.0 6 29.0 5 32.5 6 36.0 4

18.0 3 22.0 6 25.5 14 29.5 14 33.0 6 37.0 3

19.0 4 22.5 6 26.0 5 30.0 6 33.5 4 38.0 2

19.5 2 23.0 6 26.5 14 30.5 10 34.0 6 39.0 1

20.0 5 23.5 10 27.0 5 31.0 6 34.5 2 40.0 1

27.5 16

Total 252

Dawn’s and Sara’s studies are too large for me to obtain the exact sampling distribution of R1.

Instead, for each study I performed a simulation experiment with 10,000 reps. I will report on the

results of these simulations in the next section.

6.4 Step 3: The Three Rules for Calculating the P-value

You will recall that in Chapter 5, I presented lengthy arguments in order to derive the three rules

(one for each alternative) for computing the P-value. I could type similar arguments below for the

sum of ranks test. I could, but I won’t. Why not?

1. If we go to the earlier arguments and replace references to the observed value of the test

statistic U by references to the observed value of the test statistic R1 the arguments—with

very minor modifications—remain valid.

2. In view of the item above, and the amount of material I want to cover in these notes, I have

made the executive decision that while there is substantial educational benefit to your seeing

the arguments once, seeing similar arguments repeatedly in these notes is not warranted.

Thus, without further ado, I give you the three rules for finding the P-value for our sum of ranks

test.
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Result 6.1 (The P-values for the sum of ranks test.) In the rules below, remember that r1 is the
sum of the ranks of treatment 1 data for the actual data.

• For the alternative >, the P-value is equal to:

P (R1 ≥ r1) (6.1)

• For the alternative <, the P-value is equal to:

P (R1 ≤ r1) (6.2)

• For the alternative 6=, compute

c = n1(n+ 1)/2.

– If r1 = c then the P-value equals 1.

– If r1 > c then the P-value equals:

P (R1 ≥ r1) + P (R1 ≤ 2c− r1) (6.3)

– If r1 < c then the P-value equals:

P (R1 ≤ r1) + P (R1 ≥ 2c− r1) (6.4)

Before I illustrate the use of these rules, let me make a brief comment about the value c (short for
center) in the rule for the alternative 6=. The value c plays the same role that 0 played in our rule

for the test statistic U . The appearance of c in the current rule is a direct result of my choosing to

have the test statistic be R1 rather than the difference of the mean ranks. If our test statistic was

the difference of the mean ranks, then c would be replaced by 0 in our rule. I made the executive

decision that it is better to make the test statistic simple and the rule—for the two-sided alternative

only—complicated.

I will illustrate these rules with our four studies from Chapters 1 and 2.

Example 6.1 (Cathy’s study.) In the answers below, please refer to the sampling distribution in

Table 6.6. Recall from above that Cathy’s actual r1=13. For the alternative 6= only, we also need

the values:

c = n1(n+ 1)/2 = 3(7)/2 = 10.5 and 2c− r1 = 2(10.5)− 13 = 8.

For the alternative > her P-value is:

P (R1 ≥ 13) = 0.10 + 0.05 + 0.05 = 0.20.

For the alternative < her P-value is:

P (R1 ≤ 13) = 1− 0.05− 0.05 = 0.90.
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For the alternative 6= her P-value is:

P (R1 ≥ 13) + P (R1 ≤ 8) = 0.20 + 0.20 = 0.40.

We found in Chapter 4 that with the test statistic equal to the difference of the means, Cathy’s

P-values are: 0.20 for >; 0.85 for <; and 0.40 for 6=. Thus, the two tests give the same P-values

for > and 6=.

Example 6.2 (Kymn’s study.) In the answers below, please refer to Table 6.7. It can be shown

that for Kymn’s actual data, r1 = 40. For the alternative 6= only, we also need the values:

c = n1(n + 1)/2 = 5(11)/2 = 27.5 and 2c− r1 = 2(27.5)− 40 = 15.

For the alternative > her P-value is:

P (R1 ≥ 40) = 1/252 = 0.0040.

For the alternative < her P-value is:

P (R1 ≤ 40) = 1.

For the alternative 6= her P-value is:

P (R1 ≥ 40) + P (R1 ≤ 15) = 2/252 = 0.0080.

All three of these P-values are exactly the same as the ones we found in Chapter 5 with the test

statistic equal to the difference of the means.

Example 6.3 (Dawn’s study.) For brevity, I will restrict attention to the alternative >. As shown

earlier in this chapter, the observed value of R1 is r1 = 133.5. Also, recall that for Dawn’s actual
data, u = x̄− ȳ = 5.1− 2.9 = 2.2. Thus, there are two possibilities for the P-value:

• P (R1 ≥ 133.5); and

• P (U ≥ 2.2).

With 184,756 possible assignments, I am not going to compute these exact probabilities! Instead, I

performed a simulation experiment with 10,000 reps. Each rep, of course, selected an assignment

at random from the possible assignments. Then, for the given assignment I computed both of the

values r1 and u. Below are the results I obtained:

• The relative frequency of (R1 ≥ 133.5) was 0.0127; thus, the approximate P-value using

ranks is 0.0127.

• The relative frequency of (U ≥ 2.2) was 0.0169; thus, the approximate P-value using the

difference of means is 0.0169.
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How should we interpret the fact that the two tests give different approximate P-values for Dawn’s

data? The two tests summarize the data differently, so it should be no surprise that they give

somewhat different answers. Also, in my opinion, the difference between an approximation of

0.0127 and 0.0169 is not very important. The difference does suggest, however, that the test based

on ranks is a bit better than the test based on comparing means. This is a tricky point, so don’t

worry if you don’t believe me; we will see a better way to look at this issue when I introduce you

to the technical concept of the power of a test.

I did something subtle in my computer simulation experiment. Did you spot it? I could have

performed separate simulations for each test statistic. Indeed, I previously showed you the results

from two different simulation experiments for Dawn’s data (a simulation with 10,000 reps and

then another with 100,000 reps). Thus, I could have used either (or both) of my earlier simulations

for U and combined that with a new simulation for R1. Instead, I performed one new simulation

experiment and in this new experiment for every assignment it selected I evaluated both test

statistics. As we will see later in these notes, the method I used gives much more precision for

comparing P-values than using two separate simulations.

Why is one simulation better than two? We will see the details later, but here is the intuition.

In CRDs we have been comparing treatments. It can be difficult to reach a conclusion because of

variation from unit-to-unit. For example, it seems that the appetite of Bob the cat varied a great deal

from day-to-day. This variation makes it difficult to see which treatment is preferred by Bob. A

common theme in science and Statistics is that we learn better (more validly and more efficiently)

if we can reduce variation.

In the context of computer simulations, the role of unit-to-unit variation in a CRD is played by

assignment-to-assignment variation. Thus, as we will see later in these notes, by comparing U to

R1 on the same assignments we obtain a much more precise comparison of the two tests. In the

vernacular, we avoid the possibility that one test gets lucky and is evaluated on better assignments.

Example 6.4 (Sara’s study.) For brevity, I will restrict attention to the alternative >. It can be

shown that for Sara’s actual data, the observed value of R1 is r1 = 1816. Also, recall that for

Sara’s actual data, u = x̄ − ȳ = 106.875 − 98.175 = 8.700. Thus, there are two possibilities for

the P-value:

• P (R1 ≥ 1816); and

• P (U ≥ 8.700).

I performed a simulation experiment with 10,000 reps. Each rep, of course, selected an assignment

at random from the possible assignments. Then, for the given assignment I computed both of the

values r1 and u. Below are the results I obtained:

• The relative frequency of (R1 ≥ 1816) was 0.0293; thus, the approximate P-value using

ranks is 0.0293.

• The relative frequency of (U ≥ 8.700) was 0.0960; thus, the approximate P-value using the

difference of means is 0.0960.
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Our P-values for Sara’s study are dramatically different than what we found earlier. For Cathy’s

study, U andR1 give exactly the same P-values for all but the alternative not supported by the data.

For Kymn’s study, the two tests give exactly the same P-values for all three possible alternatives.

For Dawn’s study the tests give different P-values for the alternative supported by the data (and

also for 6=, although I did not show you this), but the difference is not dramatic. For Sara’s study,

however, the two P-values for> are dramatically different. All scientists would agree that a P-value

of 0.0960 is importantly different than a P-value of 0.0293.

Why are the P-values so different for Sara’s data? Sadly, I must leave this question unanswered

until we learn about the power of a test.

6.5 Ordinal Data

Thus far in this chapter I have presented the sum of ranks test as an alternative to the test of means.

For example, for the studies of Dawn, Kymn, Sara, Cathy and others mentioned in the homework,

one could use either of these tests to investigate the Skeptic’s Argument. Later in these Course

Notes when we study power we will investigate the issue of when each test is better than the

other—alas, neither is universally better for all scientific problems—as well as why the idea of

doing both tests is tricky. In this section, I introduce you to a class of scientific problems for which

the sum of ranks test can be used, but the test of means should not be used.

I will introduce the ideas with a type of medical study. The data are artificial.

Example 6.5 (Artificial study of a serious disease.) A collection of hospitals serves many pa-

tients with a particular serious disease. There are two competing methods of treating these patients,

call them treatment 1 and treatment 2. One hundred patients are available for study and 50 are as-

signed to each treatment by randomization. Each patient is treated until a response is obtained and

after all 100 responses are obtained the data will be analyzed. The response is categorical with

three possibilities:

1. The patient is cured after a short period of treatment.

2. The patient is cured after a long period of treatment.

3. The patient dies.

The (artificial) data are presented in Table 6.8.

Before I proceed, I want to acknowledge that this example is a simplification that ignores some

serious issues of medical ethics. I am not qualified to discuss—or even identify—these issues, so

I won’t try. For the sake of this presentation let’s all agree to the following ideas.

1. The three response categories are naturally ordered: a fast cure is preferred to a slow cure

and any cure is preferred to death.

2. For convenience I will assign numbers to these categories: 1 for fast cure, 2 for slow cure

and 3 for death.
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Table 6.8: Data from an artificial study of a serious disease.

Response

Treatment Fast Cure Slow Cure Death Total

1 24 16 10 50

2 18 17 15 50

Total 42 33 25 100

3. We should never compute a mean for these responses. It would be outrageous to say that a

fast cure coupled with a death is the same as two slow cures. (The mean of 1 and 3 is 2.)

4. It is fine to compute medians, but with so few possible responses, medians are not very

helpful. For example, in our data, the median for each treatment is 2, which suggests they

are equivalent. but clearly treatment 1 is performing better than treatment 2 in these data.

5. As we will see below, positions and ranks make sense for these data, but there are a lot of

ties! (Forty-two patients respond 1; and so on.)

I will now proceed to perform the sum of ranks test on these data. Recall that first we combine

the 50 responses from treatment 1 with the 50 responses from treatment 2 to obtain a total of 100

responses. Next, we sort these 100 numbers and assign a rank to each response. It is quite easy

to assign these ranks because of the many ties necessitated by the presence of only three possible

responses. In particular, reading from the Total row of Table 6.8, we find:

• The same number, 1, appears in positions 1–42. Thus, each of these 42 numbers is assigned

a rank equal to the mean of these positions: (1 + 42)/2 = 21.5.

• The same number, 2, appears in positions 43–75. Thus, each of these 33 numbers is assigned

a rank equal to the mean of these positions: (43 + 75)/2 = 59.

• The same number, 3, appears in positions 76–100. Thus, each of these 25 numbers is as-

signed a rank equal to the mean of these positions: (76 + 100)/2 = 88.

From the above three bullets and reading from the treatment 1 row of Table 6.8, we find:

r1 = 24(21.5) + 16(59) + 10(88) = 2340.

We may now use Formulas 6.1–6.4 on page 125 to obtain the expressions for the P-values for the

three possible alternatives. They are:

• For the alternative >, the P-value equals

P (R1 ≥ 2340).
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• For the alternative <, the P-value equals

P (R1 ≤ 2340).

• For the alternative 6=, first we compute

c = n1(n+1)/2 = 50(101)/2 = 2525 and 2c−r1 = 2(2525)−2340 = 5050−2340 = 2710.

Thus, from Formula 6.4, the P-value equals

P (R1 ≤ 2340) + P (R1 ≥ 2710).

I do not know the exact sampling distribution forR1. Therefore, I performed a computer simulation

experiment with 10,000 reps on Minitab. The simulation gave me the following approximate P-

values.

• For the alternative >, the approximate P-value equals

Rel. Freq. (R1 ≥ 2340) = 0.9196.

• For the alternative <, the approximate P-value equals

Rel. Freq. (R1 ≤ 2340) = 0.0946.

• For the alternative 6=, the approximate P-value equals

Rel. Freq. (R1 ≤ 2340) + Rel. Freq. (R1 ≥ 2710) = 0.0946 + 0.0919 = 0.1865.

For this study, smaller responses are better. Thus, the smallest P-value is obtained for the alternative

<, which is the alternative supported by the data. (In the data treatment 1 performed better than

treatment 2.)

6.6 Computing

In Section 5.4, beginning on page 104, we learned how to use the vassarstats website,

http://vassarstats.net,

to obtain a simulation study for our test of means with test statistic given by U . I have very

good news for you! If we enter the ranks into the vassarstats website for comparing means, we

can obtain a valid simulation for the sum of ranks test, following the same steps you learned in

Chapter 5. Here is why, but you don’t need to know this: As I argued earlier in this chapter, a test

based on R1 is the same as a test based on the difference of the mean ranks; hence, if we enter

ranks into the vassarstats website, it works!

Below I give you examples of using the site for three of our studies. Note that if you replicate

what I do below, you will likely obtain different, but similar, approximate P-values. Also, be aware

that some of the examples below are fairly tedious because they involve typing lots of data values

into the site.
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1. I performed a 10,000 rep simulation of Dawn’s data on vassarstats and obtained an approx-

imate P-value of 0.0130 for the alternative >, which agrees quite well with the 0.0127 I

obtained with Minitab.

2. I performed a 10,000 rep simulation of Sara’s data on vassarstats and obtained an approxi-

mate P-value of 0.0253 for the alternative >, which agrees reasonably well with the 0.0293

I obtained with Minitab.

3. Finally, for the artificial ordinal data in Table 6.8, I performed a 10,000 rep simulation on

vassarstats and obtained an approximate P-value of 0.0927 for the alternative <, which

agrees quite well with the 0.0946 I obtained with Minitab.
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Table 6.9: An Example of how to obtain r1.

Data, by treatment:

Treatment 1: 11 14 11

Treatment 2: 14 15 12 14

Data combined, sorted, assigned ranks;

observations from treatment 1 are bold-faced:

Position: 1 2 3 4 5 6 7

Observation: 11 11 12 14 14 14 15

Rank: 1.5 1.5 3 5 5 5 7

r1 = 1.5 + 1.5 + 5 = 8

6.7 Summary

In Chapter 3 we learned about the Skeptic’s Argument which states that the treatment level in

a CRD is irrelevant. In Chapter 5 we learned how to investigate the validity of the Skeptic’s

Argument by using a statistical test of hypotheses. The test statistic in Chapter 5 is U , which

tells us to compare the two sets of data by comparing their means. In this chapter we propose an

alternative to test statistic U : the test statistic based on summing ranks, R1.

The obvious question is: What are ranks? In a CRD, combine the data from the two treatments

into one list. Next, sort the data (from smallest to largest, as we always do in Statistics). An

example of these ideas is presented in Table 6.9, artificial data for a CRD with n1 = 3 and n2 = 4.
In this table we have the sorted combined data, which consists of the seven numbers: 11, 11, 12,

14, 14, 14 and 15. We assign ranks to these seven numbers as follows:

• When a value is repeated (or tied; 11’s and 14’s in our list) all occurrences of the value

receive the same rank. This common rank is the mean of the positions of these values. Thus,

the 11’s reside in positions 1 and 2; hence, their ranks are both (1+2)/2 = 1.5. Also, the 14’s
reside in positions 4, 5 and 6; hence, their common rank is (4 + 5 + 6)/3 = (4 + 6)/2 = 5.

• For each non-repeated (non-tied) value, its rank equals its position; hence, rank 3 [7] for the

observation 12 [15].

The observed value, r1 of the test statistic R1 is obtained by summing the ranks of the data that

came from treatment 1. For our current table, this means that we sum the ranks in bold-faced type:

r1 = 1.5 + 1.5 + 5 = 8.

We can also obtain the sum of the ranks of the data from treatment 2:

r2 = 3 + 5 + 5 + 7 = 20.
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We can reduce the time we spend summing ranks if we remember that for a total of n units in a

CRD, the sum of all ranks is n(n + 1)/2. For our artificial data in Table 6.9, n = 7; thus, the sum
of all ranks is 7(8)/2 = 28 which agrees with our earlier r1 + r2 = 8 + 20 = 28.

For descriptive purposes, we should compare the mean ranks, which for our artificial data are:

r̄1 = r1/n1 = 8/3 = 2.67 and r̄2 = r2/n2 = 20/4 = 5.

In words, the data from treatment 2 tend to be larger than the data from treatment 1.

We are now ready to consider the sum of ranks test. The null hypothesis is that the Skeptic

is correct. There are three possible choices for the alternative: abbreviated by >, < and 6=. As a

practical matter, just remember that > [<] means that—in terms of ranks—treatment 1 tends to

give larger [smaller] responses than treatment 2; and that 6= means that treatment 1 tends to give

either larger or smaller responses than treatment 2.

In principle, the sampling distribution of R1 is obtained exactly like the sampling distribution

of U : for every possible assignment we calculate its value of r1, on the assumption, of course, that

the Skeptic is correct. For studies with a small number of possible assignments, we can obtain the

exact sampling distribution of R1. For studies with a large number of possible assignments, we

can use a computer simulation experiment to obtain an approximation to the sampling distribution

of R1. In addition, in Chapter 7 we will obtain a fancy math approximation to the sampling

distribution of R1. By fancy math I mean a result based on clever theorems that have been proven

by professional mathematicians.

For Sara’s data we found that the P-value for the test statistic U is very different from the P-

value for the test statistic R1. This issue will be explored later when we consider the power of a

test.

Finally, the sum of ranks test can be used for ordinal data. The test of means should not be

used for ordinal data because a mean is not an appropriate summary of ordinal data.
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6.8 Practice Problems

1. An unbalanced CRD with n1 = 4 and n2 = 5 yields the following data:

Treatment 1: 4 12 9 12

Treatment 2: 6 3 25 12 3

Use these data to answer the following questions.

(a) Assign ranks to these observations.

(b) Calculate the values of r1, r2 and the mean rank for each treatment. Briefly interpret

the two mean ranks.

(c) Calculate x̄ and ȳ for these data. Briefly interpret these means. Compare this interpre-

tation to your interpretation of the mean ranks in part(b). Comment.

2. The purpose of this problem is to give you practice at computing exact P-values. Suppose

that you conduct a balanced CRD with a total of n = 10 units and that your sampling

distribution is given by the frequencies (divided by 252) in Table 6.7.

(a) Find the exact P-values for the alternatives > and 6= for each of the following actual

values of r1: r1 = 37.0; r1 = 33.5; and r1 = 31.5.

(b) Find the exact P-values for the alternatives < and 6= for each of the following actual

values of r1: r1 = 19.0; r1 = 20.5; and r1 = 22.0.

3. A CRD is performed with an ordinal categorical response. The data are below.

Response

Treatment Low Middle Low Middle High High Total

1 10 6 5 4 25

2 4 7 7 7 25

Total 14 13 12 11 50

Assign numbers 1 (Low), 2 (Middle Low), 3 (Middle High) and 4 (High) to these categories.

(a) Assign ranks to the 50 observations.

(b) Calculate r1, r2 and the two mean ranks. Comment.

(c) Use the vassarstats website to obtain two approximate P-values based on a simulation

with 10,000 reps. Identify the alternative for each approximate P-value.

4. I reminded you of Doug’s study of the dart game 301 in Practice Problem 4 in Chapter 5, in

Section 5.6 on page 110.

Below are the ranks for Doug’s data on treatment 1 (personal darts):
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1.0 2.5 4.5 4.5 7.0 7.0 12.5 16.0 16.0 19.5

19.5 19.5 22.5 22.5 25.5 25.5 28.5 30.5 32.5 37.0

Below are the ranks for Doug’s data on treatment 2 (bar darts):

2.5 7.0 9.5 9.5 12.5 12.5 12.5 16.0 19.5 25.5

25.5 28.5 30.5 32.5 34.5 34.5 37.0 37.0 39.0 40.0

I entered these ranks into the vassarstats website and obtained the following output:

The mean for the first [second] set of ranks is 17.7 [23.3]. The approximate P-

values based on 10,000 reps are: 0.0623 for one-tailed and 0.1277 for two-tailed.

(a) We saw earlier that for Doug’s data, x̄ = 18.6 and ȳ = 21.2. Do the means of the ranks

tell a similar or different story than the means of the data? Explain.

(b) Match the two P-values given by vassarstats to their alternatives. Compare these two

P-values to the approximate P-values I presented in Practice Problem 4 in Chapter 5.

Comment.
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6.9 Solutions to Practice Problems

1. (a) I combine the data into one set of n = 9 numbers and sort them:

Position: 1 2 3 4 5 6 7 8 9

Data: 3 3 4 6 9 12 12 12 25

Ranks: 1.5 1.5 3 4 5 7 7 7 9

The two observations equal to 3 reside in positions 1 and 2; hence, they are both as-

signed the rank of (1 + 2)/2 = 1.5. The three observations equal to 12 reside in

positions 6–8; hence, they are all assigned the rank of (6 + 8)/2 = 7. There are no

other tied values. Thus, the rank of each remaining observation equals its position.

(b) The observations on the first treatment, 4, 12, 9 and 12, have ranks 3, 7, 5 and 7; thus,

r1 = 3 + 7 + 5 + 7 = 22. The sum of all nine ranks is 9(10)/2 = 45. Thus,

r2 = 45− r1 = 45− 22 = 23.

Note that we also could obtain r2 by summing ranks:

r2 = 1.5 + 1.5 + 4 + 7 + 9 = 23.

The mean ranks are:

r1/n1 = 22/4 = 5.5 and r2/n2 = 23/5 = 4.6.

The mean of the treatment 1 ranks is larger than the mean of the treatment 2 ranks. This

means, in terms of ranks, that the observations on treatment 1 tend to be larger than the

observations on treatment 2.

(c) The means are

x̄ = (4+9+12+12)/4 = 37/4 = 9.25 and ȳ = (3+3+6+12+25)/5 = 49/5 = 9.8.

In terms of the means, the observations on treatment 2 are larger than the observations

on treatment 1. This interpretation is the reverse of what we found for ranks.

Comment: The one unusually large observation, 25, has a pronounced effect on ȳ. In
terms of ranks, 25 has the same impact that it would if it were replaced by 13; it would

still be the largest observation and have rank of 9.

2. (a) First, note that c = n1(n + 1)/2 = 5(11)/2 = 27.5 is smaller than all of the values

of r1. Thus, in addition to using Formula 6.1 on page 125 for the alternative >, we

use Formula 6.3 for the alternative 6=. You should verify the numbers in the following

display. (I will verify one of them for you, immediately below this display.)

r1 P (R1 ≥ r1) 2c− r1 P (R1 ≤ 2c− r1)
37.0 7/252 = 0.0278 18.0 7/252 = 0.0278
33.5 30/252 = 0.1190 21.5 30/252 = 0.1190
31.5 58/252 = 0.2302 23.5 58/252 = 0.2302
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For the first entry in the ‘r1 = 37.0’ row: from Table 6.7 we find that

Frequency (R1 ≥ 37.0) = 3 + 2 + 1 + 1 = 7.

We now have the following P-values:

Alternative

r1 > 6=
37.0 0.0278 2(0.0278) = 0.0556
33.5 0.1190 2(0.1190) = 0.2380
31.5 0.2302 2(0.2302) = 0.4604

(b) As above, c = 27.5, which is larger than all of the values of r1. Thus, in addition to

using Formula 6.2 for the alternative <, we use Formula 6.4 for the alternative 6=. You

should verify the numbers in the following display:

r1 P (R1 ≤ r1) 2c− r1 P (R1 ≥ 2c− r1)
19.0 11/252 = 0.0437 36.0 11/252 = 0.0437
20.5 20/252 = 0.0794 34.5 20/252 = 0.0794
22.0 36/252 = 0.1429 33.0 36/252 = 0.1429

For the first entry in the ‘r1 = 19.0’ row: from Table 6.7 we find that

Frequency (R1 ≤ 19.0) = 4 + 3 + 2 + 1 + 1 = 11.

We now have the following P-values:

Alternative

r1 < 6=
19.0 0.0437 2(0.0437) = 0.0874
20.5 0.0794 2(0.0794) = 0.1588
22.0 0.1429 2(0.1429) = 0.2858

3. (a) In the combined list of 50 observations, positions 1–14 contain the response ‘1;’ hence,

each ‘1’ is assigned the rank of (1+14)/2 = 7.5. Positions 15–27 contain the response
‘2;’ hence, each ‘2’ is assigned the rank of (15 + 27)/2 = 21. Positions 28–39 contain
the response ‘3;’ hence, each ‘3’ is assigned the rank of (28 + 39)/2 = 33.5. Finally,
positions 40–50 contain the response ‘4;’ hence, each ‘4’ is assigned the rank of (40 +
50)/2 = 45.

(b) From part(a),

r1 = 10(7.5) + 6(21) + 5(33.5) + 4(45) = 548.5 and .

r2 = 4(7.5) + 7(21) + 7(33.5) + 7(45) = 726.5.

As a partial check, the sum of all ranks must be

50(51)/2 = 1275 and r1 + r2 = 548.5 + 726.5 = 1275.

137



The mean ranks are

r1/n1 = 548.5/25 = 21.94 and r2/n2 = 726.5/25 = 29.06.

The observations on treatment 2 tend to be larger than the observations on treatment 1.

(c) I enter 25 and 25 for the sample sizes. Then I enter the ranks as data and click on

Calculate. The site presents 21.94 and 29.06 as the means; this is a partial check that I

entered the ranks correctly! I click on Resample x 1000 ten times to obtain my 10,000

reps. The relative frequencies I obtained are 0.0354 for one-tailed and 0.0709 for two-

tailed. Thus, the approximate P-value for 6= is 0.0709. The mean ranks of the data

agree with the alternative <; hence, the approximate P-value for < is 0.0354. The site

does not give an approximate P-value for >.

4. (a) The mean of the ranks on treatment 1 is smaller than the mean of the ranks on treat-

ment 2; this means that, in terms of position, the data in treatment 1 tend to be smaller

than the data in treatment 2. The data support the alternative <, not >. Similarly, the

fact that x̄ < ȳ supports the alternative<, not>. Thus, unlike in Practice Problem 1 of

this section, looking at observations gives the same qualitative conclusion as looking at

ranks.

(b) For the sum of ranks test, the approximate P-value for < is 0.0623. In Chapter 4, I

analyzed these data using the test that compares means. I reported on two simulation

experiments, each with 10,000 reps (one usingMinitab, one using vassarstats). My two

approximate P-values for < were 0.0426 and 0.0433. Both of these are considerably

smaller than the value for the sum of ranks test. As we will learn when we study

power, this suggests that comparing means is better than comparing mean ranks for

Doug’s data. Recall that we had found the opposite pattern for Sara’s golfing data.

For the sum of ranks test, the approximate P-value for 6= is 0.1277. In Chapter 4, I

analyzed these data using the test that compares means. I reported on two simulation

experiments, each with 10,000 reps (one usingMinitab, one using vassarstats). My two

approximate P-values for 6= were 0.0844 and 0.0836. Both of these are considerably

smaller than the value for the sum of ranks test.
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Table 6.10: Artificial data for Homework Problem 1.

Treatment 1: 7 7 8 8 9 14 14 14

Treatment 2: 1 3 4 5 7 8 11 11

Table 6.11: Frequency table for the values r1 ofR1 for the 252 possible assignments for a balanced

CRD with n = 10 units and 10 distinct response values.

r1 Freq. r1 Freq. r1 Freq. r1 Freq. r1 Freq. r1 Freq.

15 1 19 5 23 14 28 20 33 11 37 3

16 1 20 7 24 16 29 19 34 9 38 2

17 2 21 9 25 18 30 18 35 7 39 1

18 3 22 11 26 19 31 16 36 5 40 1

27 20 32 14

Total 252

6.10 Homework Problems

1. Table 6.10 presents artificial data for a balanced CRD with a total of n = 16 units.

(a) Calculate the values of r1, r2 and the two mean ranks. Comment.

(b) Use the vassarstats website to perform a 10,000 rep simulation experiment. Use your

results to obtain two approximate P-values and identify the alternative corresponding

to each approximate P-value.

2. Table 6.11 presents frequencies for the sampling distribution of R1 for every balanced CRD

with n = 10 units and 10 distinct response values.

(a) Find the exact P-values for the alternatives > and 6= for each of the following actual

values of r1: r1 = 37; r1 = 33; and r1 = 31.

(b) Find the exact P-values for the alternatives < and 6= for each of the following actual

values of r1: r1 = 17; r1 = 21; and r1 = 26.

3. A CRD is performed with an ordinal categorical response. The data are below.

Response

Treatment Disagree Neutral Agree Total

1 8 7 5 20

2 3 5 7 15

Total 11 12 12 35

Assign numbers 1 (Disagree), 2 (Neutral) and 3 (Agree) to these categories.
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(a) Calculate r1, r2 and the two mean ranks. Comment.

(b) Use the vassarstats website to obtain two approximate P-values based on a simulation

with 10,000 reps. Identify the alternative for each approximate P-value.

4. In Homework Problem 4 of Chapter 5 (Section 5.8 on page 115) you performed a test of

means on Reggie’s dart study introduced in Chapter 1. Below are the ranks for Reggie’s data

on treatment 1.

6.0 7.0 9.0 13.5 15.5 15.5 18.5 18.5 23.5 23.5

25.5 27.0 28.5 28.5 30.0

Below are the ranks for Reggie’s data on treatment 2.

1.0 2.0 3.0 4.0 5.0 8.0 10.0 11.5 11.5 13.5

18.5 18.5 21.0 22.0 25.5

Enter these ranks into the vassarstatswebsite and obtain two approximate P-values based on

a simulation with 10,000 reps. Use the output to answer the following questions.

(a) What is the mean of the ranks on treatment 1? What is the mean of the ranks on

treatment 2? Compare these means and comment.

(b) Match each approximate P-value for the sum of ranks test obtained from vassarstats to

its alternative.

(c) Compare each sum of ranks test P-value to its corresponding P-value for a comparison

of means that you found in doing the Chapter 5 Homework.
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Chapter 7

Visualizing a Sampling Distribution

Let’s review what we have learned about sampling distributions. We have considered sampling

distributions for the test of means (test statistic is U) and the sum of ranks test (test statistic is

R1). We have learned, in principle, how to find an exact sampling distribution. I say in principle

because if the number of possible assignments is large, then it is impractical to attempt to obtain

an exact sampling distribution.

We have learned an excellent way to approximate a sampling distribution, namely a computer

simulation experiment with m = 10,000 reps. We can calculate a nearly certain interval to assess

the precision of any given approximation and, if we are not happy with the precision, we can obtain

better precision simply by increasing the value of m. Computer simulations are a powerful tool

and I am more than a bit sad that they were not easy to perform when I was a student many decades

ago. (We had to walk uphill, through the snow, just to get to the large building that housed the

computer and then we had to punch zillions of cards before we could submit our programs.)

Before computer simulations were practical, or even before computers existed, statisticians and

scientists obtained approximations to sampling distributions by using what I will call fancy math

techniques. We will be using several fancy math methods in these notes.

Fancy math methods have severe limitations. For many situations they give poor approxima-

tions and, unlike a computer simulation, you cannot improve a fancy math approximation simply

by increasing the value of m; there is nothing that plays the role of m in a fancy math approxima-

tion. Also, there is nothing like the nearly certain interval that will tell us the likely precision of a

fancy math approximation.

Nevertheless, fancy math approximations are very important and can be quite useful; here are

two reasons why:

1. Do not think of computer simulations and fancy math as an either/or situation. We can, and

often will, use them together in a problem. For example, a simple fancy math argument will

often show that one computer simulation experiment can be applied to many—sometimes

an infinite number of—situations. We will see many examples of this phenomenon later in

these Course Notes.

2. Being educated is not about acquiring lots and lots of facts. It is more about seeing how lots

and lots of facts relate to each other or reveal an elegant structure in the world. Computer
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Table 7.1: The sampling distribution of R1 for Cathy’s CRD.

r1 P (R1 = r1) r1 P (R1 = r1)
6 0.05 11 0.15
7 0.05 12 0.15
8 0.10 13 0.10
9 0.15 14 0.05
10 0.15 15 0.05

simulations are very good at helping us acquire facts, whereas fancy math helps us see how

these facts fit together.

Fancy math results can be very difficult to prove and these proofs are not appropriate for this

course. Many of these results, however, can be motivated with pictures. This begs the question:

Which pictures? The answer: Pictures of sampling distributions.

Thus, our first goal in this chapter is to learn how to draw a particular picture, called the

probability histogram, of a sampling distribution.

7.1 Probability Histograms

As the name suggest, a probability histogram is similar to the histograms we learned about in

Chapter 2. For example, just like a histogram for data, a probability histogram is comprised of

rectangles on the number line. There are some important differences, however. First, a motivation

for our histograms in Chapter 2 was to group data values in order to obtain a better picture. By

contrast, we never group values in a probability histogram. Second, without grouping, we don’t

need an endpoint convention for a probability histogram and, as a result, we will have a new way

to place/locate its rectangles.

The total area of the rectangles in a probability histogram equals 1, which is a feature shared

by density histograms of Chapter 2. The reason? Density histograms use area to represent relative

frequencies of data; hence, their total area is one. Probability histograms use area to represent

probabilities; hence, their total area equals the total probability, one.

Table 7.1 presents the sampling distribution of R1 for Cathy’s study of running. (Remember:

There were no ties in Cathy’s six response values.) This table was presented in Chapter 6. Its

probability histogram is presented in Figure 7.1. Look at it briefly and then read my description

below of how it was created.

First, some terminology. Thus far in these Course Notes our sampling distributions have been

for test statistics, either U or R1. In general, we talk about a sampling distribution for a random

variable X , with observed value x. Here is the idea behind the term random variable. We say

variable because we are interested in some feature that has the potential to vary. We say random

because the values that the feature might yield are described by probabilities. Both of our test
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Figure 7.1: The probability histogram for the sampling distribution in Table 7.1.
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statistics are special cases of random variables and, hence, are covered by the method described

below.

1. On a horizontal number line, mark all possible values, x, of the random variableX .

For the sampling distribution in Table 7.1 these values of x (r1) are 6, 7, 8, . . . 15 and they

are marked in Figure 7.1.

2. Determine the value of δ (lower case Greek delta) for the random variable of interest. The

number δ is the smallest distance between any two consecutive values of the random variable.

For the sampling distribution in Table 7.1, the distance between consecutive values is al-

ways 1; hence, δ = 1.

3. Above each value of x, draw a rectangle, with its center at x, its base equal to δ and its height
equal to P (X = x)/δ.

In the current example, δ = 1, making the height of each rectangle equal to the probability

of its center value.

For a probability histogram the area of a rectangle equals the probability of its center value, be-

cause:

Area of rectangle centered at x = Base × Height = δ × P (X = x)

δ
= P (X = x).

In the previous chapter we studied the sum of ranks test with test statistic R1. In all ways

mathematical, this test statistic is much easier to study if there are no ties in the data. I will now

show how the presence of one tie affects the probability histogram.

Example 7.1 (A small CRD with two values tied.) Table 7.2 presents the sampling distribution

of R1 for a balanced CRD with a total of n = 6 units with one particular pair of tied observations:
the two smallest observations are tied and the other four observations are not. Thus, the ranks

are: 1.5, 1.5, 3, 4, 5 and 6. If you feel a need to have more practice at determining sampling

distributions, you may verify the entries in this table. Otherwise, I suggest you trust me on it. The

probability histogram for this sampling distribution is presented in Figure 7.2. I will walk you

through the three steps to create this picture.
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Table 7.2: The sampling distribution of R1 for a balanced CRD with a total of n = 6 units with

ranks 1.5, 1.5, 3, 4, 5 and 6.

r1 P (R1 = r1) r1 P (R1 = r1) r1 P (R1 = r1)
6.0 0.05 9.5 0.10 12.5 0.10
7.0 0.05 10.5 0.20 13.0 0.05
8.0 0.05 11.5 0.10 14.0 0.05
8.5 0.10 12.0 0.05 15.0 0.05
9.0 0.05

1. On a horizontal number line, mark all possible values, x, of the random variableX .

The 13 possible values of R1 in Table 7.2 are marked, but not always labeled, in Figure 7.2.

2. Determine the value of δ for the random variable of interest. The number δ is the smallest

distance between any two consecutive values of the random variable.

This is trickier than it was in our first example. Sometimes the distance between consecutive

values is 1 and sometimes it is 0.5. Thus, δ = 0.5.

3. Above each value of x, draw a rectangle, with its center at x, its base equal to δ and its height
equal to the P (X = x)/δ.

In the current example, δ = 0.5, making the height of each rectangle equal to twice the

probability of its center value.

Now that we have the method of constructing a probability histogram for a random variable,

let’s look at the two pictures we have created, Figures 7.1 and 7.2. Both probability histograms are

symmetric with point of symmetry at 10.5. (It can be shown that the sampling distribution for R1

is symmetric if the CRD is balanced and/or there are no ties in the data set.)

Figure 7.1 is, in my opinion, much more well-behaved than Figure 7.2. Admittedly, well-

behaved sounds a bit subjective; here is what I mean. Figure 7.1 has one peak—four rectangles

wide, but still only one peak—and no gaps. By contrast, Figure 7.2 has one dominant peak (at

10.5), eight lesser peaks (at 6, 7, 8.5, 9.5, 11.5, 12.5, 14 and 15) and six gaps (at 6.5, 7.5, 10.0,

11.0, 13.5 and 14.5).

In general, for the sum of ranks test, if there are no ties in the combined data set, the probability

histogram for the sampling distribution of R1 is symmetric, with one peak and no gaps. If there

is as few as one pair of tied values in the combined data set, the probability histogram for the

sampling distribution of R1 might not be very nice! Or it might be, as our next example shows.

Example 7.2 (A small CRD with three values tied.) I have a balanced CRD with a total of six

units. My six ranks are: 2, 2, 2, 4, 5 and 6. (An exercise for you: create data that would yield

these ranks.) The sampling distribution for R1 is given in Table 7.3 and its probability histogram

is presented in Figure 7.3.
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Figure 7.2: The probability histogram for sampling distribution in Table 7.2.
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Table 7.3: The sampling distribution of R1 for a balanced CRD with ranks 2, 2, 2, 4, 5 and 6.

r1 P (R1 = r1) r1 P (R1 = r1)
6 0.05 11 0.15
8 0.15 12 0.15
9 0.15 13 0.15
10 0.15 15 0.05

If you compare this table and figure to the table and figure for Cathy’s no-ties data—Table 7.1

and Figure 7.1—you see that the effect of the three tied observations is quite minimal. Two of the

20 values of r1 in Cathy’s distribution, a 7 and a 14, are replaced by an 8 and a 13 in the current

study.

To summarize, when there are no ties in the combined data set, our probability histograms are of a

type: they are symmetric with one peak and no gaps. We have seen one such probability histogram

in Figure 7.1 and will see another one later in this chapter in Figure 7.5.

We have seen two probability histograms for the situation in which there is at least one tie in

the combined data set. The variety of such pictures (these two as well as other possible ones) is

too great for us to devote more time to the topic. Thus, I propose the following agreement between

you and me. I will focus on the no-ties pictures to motivate the fancy math approximate method I

present later in this chapter. The fancy math method can be used when there are ties; in fact, there

is an explicit adjustment term in the method that comes into play only if there are ties. As with all

approximation methods in Statistics, the method’s utility depends on how close the approximate
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Figure 7.3: The probability histogram for sampling distribution in Table 7.3.
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answers are to the exact answers; this utility does not depend on how cleverly—or clumsily—I

motivate it.

Before we proceed further, let me acknowledge a point. There is no unique way to draw a

picture of a sampling distribution. You might be able to create a picture that you prefer to the

probability histogram. Thus, I do not present a probability histogram as the correct picture for a

sampling distribution. You will see soon, however, that our probability histogram is very good at

motivating the fancy math approximation of this chapter. Indeed, our definition of a probability

histogram is very good at motivating many of the the fancy math approximations in these Course

Notes.

Look at the rectangle centered at r1 = 10 in Figure 7.1. Its area is its base times its height:

1×0.15 = 0.15. Thus, because area equals probability, P (R1 = 10) = 0.15. Here is my point: the

probability belongs to the value 10, but the probability histogram visually spreads the probability

over the entire base of the rectangle, from 10.5 to 11.5. This spreading has no real meaning, but,

as we will see, it does help motivate our fancy math approximation.

I have one more point to make before we move on to the next section. Knowing the sampling

distribution of a test statistic (more generally, a random variable) is mathematically equivalent to

knowing its probability histogram. Thus, approximating a sampling distribution is equivalent to

approximating its probability histogram. Thus, below we will learn how to approximate a proba-

bility histogram.

7.2 The Mean and Standard Deviation of R1

We learned in Chapter 1 that a set of numbers can be summarized—admittedly, sometimes poorly—

by its mean. We also learned that the mean of a set of numbers can be visualized as the center of

gravity of its dot plot. It is also possible to summarize the sampling distribution of a random vari-

able by its mean. For example, consider the sampling distribution for R1 given in Table 7.1. Recall

that there are 20 possible assignments for the CRD in question and that each assignment yields a

value of r1. From the sampling distribution, we can infer that these 20 values are, after sorting:

6, 7, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 14, 15.
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(For example, P (R1 = 8) = 0.10; thus, 10% of the 20 assignments—two— yield the value

r1 = 8.) If we sum these 20 values and divide by 20, we find that the mean of these 20 values is

10.5. For a sampling distribution, we refer to the mean by the Greek letter µ (pronounced ‘mu’

with a long ‘u’). Thus, µ = 10.5 for the sampling distribution in Table 7.1.

Technical Note: For a random variable, X , with observed value x, we have the following

formula for µ:
µ =

∑

x

xP (X = x), (7.1)

where the sum is taken over all possible values x of X . We won’t ever use Equation 7.1; thus, you

may safely ignore it. I have included it for completeness only.

For our method of creating a probability histogram, it can be shown that µ is equal to the

center of gravity of the probability histogram. (Remember: our probability histogram, unlike the

histograms for data introduced in Chapter 2, do not group values into categories.) Thus, we can

see immediately from Figures 7.1—7.3 that all three probability histograms—and, hence, all three

sampling distributions—have µ = 10.5.
The following mathematical result is quite useful later in this chapter. I will not prove it and

you need not be concerned with its proof.

Result 7.1 (Mean of R1.) Suppose that we have a CRDwith n1 units assigned to the first treatment

and a total of n units. The mean, µ, of the sampling distribution of R1 is given by the following

equation.

µ = n1(n+ 1)/2 (7.2)

Note that this result is true whether or not there are ties in the combined data set. For example,

suppose that n1 = 3 and n = 6 in Equation 7.2. We find that

µ = 3(6 + 1)/2 = 10.5,

in agreement with what we could see in Figures 7.1—7.3.

Here is the important feature in Equation 7.2. Even though—as we have seen repeatedly—it

can be difficult to obtain exact probabilities for R1, it is very easy to calculate the mean of its

sampling distribution.

In order to use our fancy math approximation, we also need to be able to calculate the variance

of a sampling distribution. You recall that the word variance was introduced in Chapter 1. For a

set of data, the variance measures the amount of spread, or variation, in the data. Let’s review how

we obtained the variance in Chapter 1.

In Chapter 1 we began by associating with each response value, e.g., xi for data from treat-

ment 1, its deviation: (xi − x̄). For a sampling distribution, the deviation associated with possible

value x is (x − µ). Next, in Chapter 1 we squared each deviation; we do so again, obtaining the

squared deviation (x−µ)2. Next, we sum the squared deviations over all possible assignments, and

finally, for sampling distributions, we follow the method mathematicians use for data and divide

the sum of squared deviations by the total number of possible assignments; i.e., unlike with data,

we do not subtract one. (Trust me, the reason for this is not worth the time needed to explain it.)

The result, the mean of these squared deviations, is called the variance of the sampling distribution
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and is denoted by σ2. (Note: σ is the lower case Greek letter sigma.) Following the ideas of Chap-

ter 1, the positive square root of the variance, σ, is called the standard deviation of the sampling

distribution.

Technical Note: For a random variable, X , with observed value x, we have the following

formula for the variance σ2:

σ2 =
∑

x

(x− µ)2P (X = x), (7.3)

where the sum is taken over all possible values x of X . We won’t ever use Equation 7.3; thus, you

may safely ignore it. I have included it for completeness only.

Statisticians prefer to focus on the formula for variance, as we do in Equation 7.3, rather than

a formula for the standard deviation because the latter will have that nasty square root symbol. In

our fancy math approximation, however, we will need to use the standard deviation. We always

calculate the variance first; then take its square root to obtain the standard deviation.

I will present two formulas for the variance of the sampling distribution of R1: the first is for

the situation when there are no ties in the combined data set. If there are ties, then the second

formula should be used.

Result 7.2 (Variance of R1 when there are no ties.) Suppose that we have a CRD with n1 units

assigned to the first treatment, n2 units assigned to the second treatment and a total of n units.

Suppose, in addition, that there are no tied values in our combined list of n observations. The

variance of the sampling distribution of R1 is given by the following equation.

σ2 =
n1n2(n + 1)

12
. (7.4)

For example, suppose we have a balanced CRD with n = 6 units and no ties; for example, Cathy’s

study. Using Equation 7.4 we see that the variance of R1 is

σ2 =
3(3)(7)

12
= 5.25 and σ =

√
5.25 = 2.291.

Next, suppose we have a balanced CRD with n = 10 units and no ties. Using Equation 7.4 we see

that the variance of R1 is

σ2 =
5(5)(11)

12
= 22.917 and σ =

√
22.917 = 4.787.

When there are ties in the combined data set, then we need to use the following more compli-

cated formula for the variance. Note that I will define the symbol ti below the Result.

Result 7.3 (Variance of R1 when there are ties.) Suppose that we have a CRD with n1 units as-

signed to the first treatment, n2 units assigned to the second treatment and a total of n units. Sup-

pose, in addition, that there is at least one pair of tied values in the combined list of n observations.

The variance of the sampling distribution of R1 is given by the following equation.

σ2 =
n1n2(n+ 1)

12
− n1n2

∑

(t3i − ti)

12n(n− 1)
. (7.5)
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In this equation, the ti’s require a bit of explanation. As we will see, each ti is a positive count.

Whenever a ti = 1 then the term in the sum, (t3i − ti) will equal 0. This fact has two important

consequences:

• All of the values of ti = 1 can (and should) be ignored when evaluating Equation 7.5.

• If all ti = 1 then Equation 7.5 is exactly the same as Equation 7.4. As we will see soon,

saying that all ti = 1 is equivalent to saying that there are no ties in the combined data set.

It will be easier for me to explain the ti’s with an example.

Recall Kymn’s study. She performed a balanced CRD with n = 10 trials. In her combined data

set she had nine distinct numbers: Eight of these numbers occurred once in her combined data set

and the remaining number occurred twice. This means that Kymn’s ti’s consisted of eight 1’s and

one 2. Thus, the variance of R1 for Kymn’s study is

σ2 =
5(5)(11)

12
− 5(5)(23 − 2)

12(10)(9)
= 22.917− 150

1080
= 22.778 and σ =

√
22.778 = 4.773.

For this example, the presence of one pair of tied values has very little impact on the value of the

variance. Indeed, the standard deviation for Kymn’s study is only 0.29% smaller than the standard

deviation when there are no ties (which, recall, is 4.787). You can well understand why many

statisticians ignore a small number of ties in a combined data set. When the response is ordinal

and categorical, however, ties can have a notable impact on the standard deviation, as our next

computation shows.

Recall the data in Table 6.8 on page 129. These artificial data come from a balanced CRD with

n = 100 subjects and only three response values (categories). Recall that 42 subjects gave the first
response, 33 subjects gave the second response and 25 subjects gave the third response. Thus, the

ti’s are 42, 33 and 25. I will plug these values into Equation 7.5. First, I will calculate the value of

the expression containing the ti’s:
∑

(t3i − ti) = (423− 42)+ (333− 33)+ (253− 25) = 74,046 + 35,904 + 15,600 = 125,550.

Thus, the variance is:

σ2 =
50(50)(101)

12
− 50(50)(125,550)

12(100)(99)
= 21,041.67 − 2,642.05 = 18,399.62.

The correct standard deviation—taking into account ties—is
√
18,399.62 = 135.65. It is smaller

than the answer one would obtain by ignoring the effect of ties:
√
21,041.67 = 145.06. The

former is 6.49% smaller than the latter and this difference has an important impact on our fancy

math approximation, as you will see later in this chapter.

7.3 The Family of Normal Curves

Do you recall π, the famous number from math? It is the ratio of the circumference to the diameter

of a circle. Another famous number from math is e, which is the limit as n goes to infinity of
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(1 + 1/n)n. As decimals, π = 3.1416 and e = 2.7183, both approximations. If you want to learn

more about π or e, go to Wikipedia. If you do not want to learn more about them, that is fine too.

Let µ denote any real number—positive, zero or negative. Let σ denote any positive real

number. In order to avoid really small type, when t represents a complicated expression, we write

et as exp(t). Consider the following function.

f(x) =
1√
2πσ

exp[
−(x− µ)2

2σ2
], for all real numbers x. (7.6)

The graph of the function f is called the Normal curve with parameters µ and σ; it is pictured in

Figure 7.4. By allowing µ and σ to vary, we generate the family of Normal curves. We use the

terminology:

the N(µ, σ) curve

to designate the Normal curve with parameters µ and σ. Thus, for example, the N(25,8) curve is

the Normal curve with mean µ = 25 and standard deviation σ = 8.

Below is a list of important properties of Normal curves.

1. The total area under a Normal curve is one.

2. A Normal curve is symmetric about the number µ. Clearly, µ is the center of gravity of the

curve, so we call it the mean of the Normal curve.

3. It is possible to talk about the spread in a Normal curve just as we talked about the spread

in a sampling distribution or its probability histogram. In fact, one can define the standard

deviation as a measure of spread for a curve and if one does, then the standard deviation for

a Normal curve equals its σ.

4. You can now see why we use the symbols µ and σ for the parameters of a Normal curve: µ
is the mean of the curve and σ is its standard deviation.

5. A Normal curve has points of inflection at µ+ σ and µ− σ. If you don’t know what a point

of inflection is, here goes: it is a point where the curve changes from ‘curving downward’ to

‘curving upward.’ I only mention this because: If you see a picture of a Normal curve you

can immediately see µ, its point of symmetry. You can also see its σ as the distance between

µ and either point of inflection.

6. The Normal curve with µ = 0 and σ = 1—that is, the N(0,1) curve—is called the Standard

Normal curve.

Statisticians often want to calculate areas under a Normal curve. Fortunately, there exists a website

that will calculate areas for us; I will present instructions on how to use this site in Section 7.4.
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Figure 7.4: The Normal curve with parameters µ and σ; i.e., the N(µ, σ) curve.
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7.3.1 Using a Normal Curve to obtain a fancy math approximation

Table 7.4 presents the exact sampling distribution for R1 for a balanced CRD with n = 10 units

and no tied values. (Trust me; it is no fun to verify this!) Figure 7.5 presents its probability

histogram. In this figure, I have shaded the rectangles centered at 35, 36, . . . , 40. If we remember

that in a probability histogram, area equals probability, we see that the total area of these six shaded

rectangles equals P (R1 ≥ 35). If, for example, we performed a CRD and the sampling distribution

is given by Table 7.4 and the actual value of r1 is 35, then P (R1 ≥ 35) would be the P-value for

the alternative >; i.e., the area of the shaded region in Figure 7.5 would be the P-value for the

alternative >.

Now look at Figures 7.5 and 7.4. Both pictures are symmetric with a single peak and are

bell-shaped. These similarities suggest that using a Normal curve to approximate the probability

histogram might work well. There is no reason to argue my visual interpretation; let’s try it and

see what happens.

The idea is to use one of the members of the family of Normal curves to approximate the

probability histogram in Figure 7.5. Which one? Because the probability histogram is symmetric

around 27.5, we know that its mean is 27.5. We could also obtain this answer by using Equation 7.2.

As we found on page 148, the standard deviation of this probability histogram is 4.787. It seems

sensible that we should use the Normal curve with µ = 27.5 and σ = 4.787; i.e., the Normal curve

with the same center and spread as the probability histogram.

I am almost ready to show you the fancy math approximation to P (R1 ≥ 35). Look at the

shaded rectangles in Figure 7.5. The left boundary of these rectangles is at 34.5 and the right

boundary is at 40.5. The approximation I advocate is to find the area to the right of 34.5 under the

Normal curve with µ = 27.5 and σ = 4.787. There are two things to note about my approximation:
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Table 7.4: The sampling distribution of R1 for the 252 possible assignments of a balanced CRD

with n = 10 units and 10 distinct response values.

r1 P (R1 = r1) r1 P (R1 = r1) r1 P (R1 = r1) r1 P (R1 = r1) r1 P (R1 = r1)
15 1/252 20 7/252 25 18/252 31 16/252 36 5/252
16 1/252 21 9/252 26 19/252 32 14/252 37 3/252
17 2/252 22 11/252 27 20/252 33 11/252 38 2/252
18 3/252 23 14/252 28 20/252 34 9/252 39 1/252
19 5/252 24 16/252 29 19/252 35 7/252 40 1/252

30 18/252 Total 1

• We begin at the value 34.5, not 35. This adjustment is called a continuity correction.

• Instead of ending the approximation at the value 40.5 (the right extreme of the rectangles),

we take the approximation all the way to the right. As Buzz Lightyear from Toy Story would

say, “To infinity and beyond.” Well, statisticians don’t attempt to go beyond infinity.

The area I seek: the area to the right of 34.5 under the Normal curve with µ = 27.5 and σ = 4.787
is 0.0718. When you read Section 7.4 you will learn how to obtain this area. I don’t show you now

because I don’t want to interrupt the flow of the narrative.

Is this approximation any good? Well, we can answer this question because it is possible to

compute the exact P (R1 ≥ 35) from Table 7.4. Reading from this table, we find:

P (R1 ≥ 35) = (7 + 5 + 3 + 2 + 1 + 1)/252 = 19/252 = 0.0754.

Let me make three comments about this approximation.

1. The approximation (0.0718) is pretty good; it is smaller than the exact probability (0.0754)

by 0.0036. Math theory tells us that this approximation tends to get better as the total number

of trials, n, becomes larger. This is a remarkably good approximation for an n that is so

small that we don’t really need an approximation (because it was ‘easy’ to find the exact

probability).

2. This example shows that the continuity correction is very important. If we find the area

under the Normal curve to the right of 35.0—i.e., if we do not adjust to 34.5— the area is

0.0586, a pretty bad approximation of 0.0754.

3. If we find the area between 34.5 and 40.5—the region suggested by the rectangles, instead

of simply the area to the right of 34.5 which I advocate—the answer is 0.0685; which is a

worse approximation than the one I advocate.

We have spent a great deal of effort looking at P (R1 ≥ 35). Table 7.5 looks at several other

examples. Again, after you read Section 7.4 you will be able to verify the approximations in this

table, if you desire to do so.
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Figure 7.5: The probability histogram for the sampling distribution in Table 7.4. The area of the

shaded rectangles equals P (R1 ≥ 35).

0.02

0.04

0.06

0.08

15 20 25 30 35 40

There is a huge amount of information in this table. I don’t want you to stare at it for 15 minutes

trying to absorb everything in it! Instead, please note the following features.

1. If you scan down the ‘Exact’ and ‘Normal’ columns, you see that the numbers side-by-side

are reasonably close to each other. Thus, the approximation is never terrible.

2. Interestingly, the best approximation is the value 0.0473 which differs from the exact answer,

0.0476, by only 0.0003. We know from the definition of statistical significance in Chapter 5

that statisticians are particularly interested in P-values that are close to 0.05. Thus, in a sense,

for this example the approximation is best when we especially want it to be good.

3. This table—and a bit additional work—illustrates how difficult it is to compare different

methods of approximating a probability. I am a big fan of the continuity correction and want

you to always use it. Intellectual honesty, however, requires me to note the following. From

our table we see that for the event (R1 ≥ 40) the exact probability is 1/252 = 0.0040. This
is considerably smaller (in terms of ratio) than the approximate probability of 0.0061. For

this event, we actually get a better approximation if we don’t use the continuity correction:

the area under the Normal curve to the right of 40 is 0.0045. This is a much better answer

than the one in the table.

This result reflects a general pattern. In the extremes of sampling distributions, the Nor-

mal curve approximation often is better without the continuity correction. The continuity

correction, however, tends to give much better approximations for probabilities in the neigh-

borhood of 0.05. Because statisticians care so much about 0.05 and its neighbors, I advocate

using the continuity correction. But I cannot say that it is always better to use the continuity

correction, because sometimes it is not.

I have two final extended comments before I leave this section.

1. I have focused on approximating ‘≥’ probabilities, such as P (R1 ≥ 35). In these situations

we obtain the continuity correction by subtracting 0.5 from the value of interest, in the

previous sentence, 35. The thing to remember is that our motivation for subtracting 0.5
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Table 7.5: Several Normal curve approximations for the sampling distribution in Table 7.4.

Exact Normal Exact Normal Exact Normal

Event Prob. Approx. Event Prob. Approx. Event Prob. Approx.

R1 ≥ 29 0.4206 0.4173 R1 ≥ 33 0.1548 0.1481 R1 ≥ 37 0.0278 0.0300

R1 ≥ 30 0.3452 0.3380 R1 ≥ 34 0.1111 0.1050 R1 ≥ 38 0.0159 0.0184

R1 ≥ 31 0.2738 0.2654 R1 ≥ 35 0.0754 0.0718 R1 ≥ 39 0.0079 0.0108

R1 ≥ 32 0.2103 0.2017 R1 ≥ 36 0.0476 0.0473 R1 ≥ 40 0.0040 0.0061

comes from the probability histogram in Figure 7.5. We see that the rectangle centered at 35

has a left boundary of 34.5. Thus, we subtract 0.5 to move from 35 to 34.5 and include all of

the rectangle. Note that we don’t need to actually draw the probability histogram; from its

definition we know that δ = 1 is the base of the rectangle. Hence, to move from the center,

35, to its left boundary, we move one-half of δ to the left.

Suppose, however, that we want to find an approximate P-value for the alternative< or 6=. In

either of these cases we would need to deal with a ‘≤’ probability, say P (R1 ≤ 21). Now we

want the rectangle centered at 21 and all rectangles to its left. Thus, the continuity correction

changes 21 to 21.5.

You have a choice as to how to remember these facts about continuity corrections: you may

memorize that ‘≥’ means subtract and that ‘≤’ means add. Personally, I think it is better to

think of the picture and deduce the direction by reasoning.

2. In many, but not all, of our Normal curve approximations in these Course Notes, δ = 1
and the size of the continuity correction is 0.5. But as we saw above, if there are ties in

our combined data set, then for R1 we could have δ = 0.5 or we could have δ = 1. In

addition, when there are ties, the probability histogram has gaps and it’s not clear (trust me

on this!) how, if at all, gaps should affect a continuity correction. For simplicity, I declare

that whenever we want to use a Normal curve to approximate the sampling distribution of

R1, we will always adjust by 0.5, whether δ equals 1 or 0.5.

7.4 Computing

7.4.1 Areas Under any Normal Curve

My objective in this subsection is to introduce you to a website that can be used to obtain areas

under any Normal curve.

Go the website:

http://davidmlane.com/hyperstat/z_table.html

Click on this site, please, and I will walk you through its use.
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As you visually scan down the page, the first thing you will see is a graph of the N(0,1) curve.

(I know this is the standard Normal curve—N(0,1)—because a bit farther down the page I see the

entries 0 forMean and 1 for SD.) For now, ignore the shaded region under the graph.

Immediately below the graph are two circles that let you choose the type of problem you wish

to solve. The options are:

• Area from a value; and

• Value from an area.

The site’s default is the first of these options. Do not change the default. (We will return to the

second option in Chapter 9.)

Next, the site allows you to specify the Normal curve of interest to you. The default values are

Mean (µ) equal to 0 and SD (σ) equal to 1. For now, let’s leave the default values unchanged.

Immediately below SD is a vertical display of four circles, labeled: Above, Below, Between and

Outside. To the right of each circle is a rectangle—or two—in which you may enter a number—or

numbers. The default selects the circle Above with the numerical entry 1.96.

The website author chose the word Above, whereas I would prefer either Greater than or To

the right of. Similarly, instead of Below I would prefer Less than or To the left of. Just so you don’t

think I am a Mr. Negative, I can’t think of any way to improve upon either of the labels Between

or Outside.

Now, move your eyes up a bit to the picture of the Standard Normal curve. You will note that

the area Above 1.96 (when in Rome . . . ) is shaded black. Finally, below the display of circles and

rectangles you will find the display: Results: Area (probability) 0.025. The norm in Statistics is

to report this area rounded to four digits; for the current problem the area is 0.0250, and the site

drops the trailing 0. (I would include it, but it’s not my site!)

Let’s do four quick examples of the use of this site.

1. In the rectangle next to Above, replace the value 1.96 by 2.34 and click on the Recalculate

box, which is located immediately below the word Area. I did this and obtained 0.0096 as

the answer from the site. Note that the site is behaving as I said; the answer is reported to

four digits after the decimal point. Also, note that the area to the right of 2.34 is shaded in

the site’s graph.

2. I enter 3.89 in the rectangle next to Above and click on Recalculate; the answer is 0.0001.

3. I enter 3.90 in the rectangle next to Above and click on Recalculate; the answer is 0. I don’t

like this answer. This is not zero as in, “My Detroit Lions have won zero Super Bowls.”

This 0 means that the area, rounded to the fourth digit after the decimal point (nearest ten-

thousandth, if you prefer), is 0.0000. If this were my site, it would definitely report the

answer as 0.0000.

4. Finally, click on the circle next to Below; place −0.53 in its box and click on Recalculate.

You should obtain the answer 0.2981.
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Next, I will use this site to obtain the Normal Approximation entries in Table 7.5. As explained

earlier, I want µ = 27.5 and σ = 4.787; thus, I enter these numbers inMean and SD, respectively.

Let’s begin with r1 = 29. I remember the continuity correction, which tells me to replace 29

by 28.5. I select the circle for Above and type 28.5 into its rectangle. I click on Recalculate and

obtain the answer 0.4173, as reported in Table 7.5.

Here is one more example. For r1 = 33 I entered 32.5 in the rectangle next to Above. The site

responds with 0.1481, as reported in Table 7.5.

7.4.2 Using a Website to Perform the Sum of Ranks Test

In Chapter 6 you learned how to obtain the exact P-value for the sum of ranks test provided I

give you the exact sampling distribution for R1. In the absence of the exact sampling distribution,

you learned how to use the vassarstats website to obtain an approximate P-value via a computer

simulation. The computer simulation gives us two P-values: for the two-sided alternative (6=) and

for the one-sided alternative that is supported by the data: > [<] if r1 > µ [r1 < µ], with µ given

by Equation 7.2. Also, if r1 = µ, then the website should not be used because: we know that the

exact P-value for the two-sided alternative must be one and the website is wrong for the one-sided

alternative.

The vassarstats site also gives two P-values based on the Normal curve approximation of this

chapter. First, go to

http://vassarstats.net

About one-half way down the list of topics in the left margin, click on Ordinal Data. This action

takes you to a page that offers you several options; click on the second option, the Mann-Whitney

Test. (Recall that Mann Whitney (Wilcoxin) is the official name of our sum of ranks test.)

The site asks you to enter your values of n1 and n2, which the site call na and nb, respectively.

Warning: The site says that if na 6= nb, then you must have na > nb; thus, you might need to

relabel your treatments in order to use the site. Remember: If you relabel your treatments, you

need to reverse any one-sided alternative.

After entering your sample sizes, vassarstats is ready to receive your data. A nice feature of

the Mann-Whitney Test site is that you can cut-and-paste your data. If you import your data—i.e.,

you cut-and-paste—then you must click on Import data to data cells or the site won’t work. The

effect of this clicking is that the site will move your data to the Raw Data for portion of the page.

Next, you click on Calculate from Raw Data. The site gives us some useful information and

a lot of information that you should ignore. We are given the mean ranks, from which we could

obtain the value r1 for our data. The site provides something called UA which is a function of r1
and I recommend that you ignore it. The site gives two proportions, labeled P(1) and P(2). The first

of these is the approximate P-value for the one-sided alternative that is supported by the data. The

second of these is the approximate P-value for the two-sided alternative. Both approximations are

based on using the Normal curve approximation of this chapter. As best I can tell, the site uses the

continuity correction with an adjustment of 0.5.

Warning: Whether or not there are ties in the data set, this Mann-Whitney Test site calculates

the variance of R1 using the no ties formula, Equation 7.4. For numerical data with a few ties (I
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know, this is vague), this variance oversight by vassarstats does not seriously affect the quality

of the approximation. (More on this topic in the Practice Problems.) Note, however, that this site

should not be used for ordinal categorical data. As we have seen, with ordinal categorical data

the value of the variance is changed substantially by the presence of (many) ties.

7.4.3 Reading Minitab Output; Comparing Approximation Methods

This is a new topic for the Computing sections of these Course Notes. I have previously told you

that I use Minitab to perform what I call full-blown simulation experiments. In those situations

I took the Minitab output—which isn’t pretty—and presented it to you in a more understandable

format. This subsection, however, is different.

Several times in these notes I will show you the output of a Minitab statistical analysis without

showing you how to create such output. In this subsection I will show you the output that Minitab

creates for our sum of ranks test. Finally, this subsection ends with a comparison of methods for

Dawn’s study of her cat, Sara’s study of golf and the data from an artificial study of a serious

disease presented in Table 6.8 on page 129.

Example 7.3 (Dawn’s study of her cat Bob.) Recall that Dawn’s sorted data are presented in Ta-

ble 1.3 on page 7. I will find the Normal curve approximate P-value for the sum of ranks test and

the alternative > for Dawn’s data. I will do this three ways: using Minitab; using the vassarstats

website; and by hand. These three methods better give the same answer!

I entered these data into Minitab and ran theMann command on it. The edited output is below.

(I eliminated output that we don’t use.)

Mann-Whitney Test: C1, C2

C1 N = 10 Median = 5.500

C2 N = 10 Median = 3.000

W = 133.5

Test of = vs > is significant at 0.0171

The test is significant at 0.0163 (adjusted for ties)

Let me walk you through this output, although it is fairly self-explanatory.

• Minitab reminds me that I have placed my data into Minitab columns C1 and C2.

• Minitab reminds me that the number of trials on both treatments is 10; and that the median

of the chicken [tuna] data is 5.5 [3.0].

• Minitab tells me that r1 = 133.5, but calls itW .

• I told Minitab that I wanted the alternative >. Minitab gives me two Normal curve ap-

proximation P-values: the better one—adjusting for ties—0.0163; and the inferior one—no

adjustment—0.0171. Even though it seems to me that there are a lot of ties in the data—the

values of ti’s are three 1’s, two 2’s, three 3’s and a 4—the presence of ties has very little

influence on the P-value.
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I ran these data through the vassarstats website and it gave me 0.017 for the approximate P-value

based on the Normal curve; i.e., the same answer—to three digits—as the Minitab answer that does

not adjust for ties.

Finally, by hand, I obtained µ = 105 and σ = 13.1089, adjusted for ties. As noted above,

Dawn’s data give r1 = 133.5. I went to

http://davidmlane.com/hyperstat/z_table.html

to find my approximate P-value. I entered the above values of µ and σ and asked for the area above

133.5 − 0.5 = 133 (remember the continuity correction). The site gave me 0.0163, which agrees

with Minitabs adjusted answer.

In Example 6.3 on page 126, I use a simulation experiment with 10,000 reps to obtain an

approximate P-value forR1 and the alternative>. I obtained the value 0.0127 which gives a nearly

certain interval of [0.0093, 0.0161]. (Details not shown.) The Normal approximation—adjusted

for ties—P-value, 0.0163, is very close to being in this interval. Thus, I conclude that the Normal

approximation—adjusted for ties—is a pretty good approximation for Dawn’s data, although it

appears to be a bit too large.

Example 7.4 (Sara’s study of golf.) Recall that Sara’s sorted data are presented in Table 2.2 on

page 29. I entered Sara’s data into Minitab and ran theMann command on it with the alternative>.

The edited output is below.

Mann-Whitney Test: C1, C2

C1 N = 40 Median = 112.00

C2 N = 40 Median = 99.50

W = 1816.0

Test of = vs > is significant at 0.0300

The test is significant at 0.0299 (adjusted for ties)

The sample sizes and treatment medians agree with our earlier work. We see that adjusting for ties

has only an unimportant impact on our approximate P-value. Thus, the vassarstats site would have

been fine for analyzing these data.

If you refer to Example 6.4 in Chapter 7, you will recall that our approximate P-value for >
based on a 10,000 rep simulation experiment is 0.0293, with nearly certain interval:

0.0293± 3

√

0.0293(0.9707)

10,000
= 0.0293± 0.0051 = [0.0242, 0.0344].

I know that I can trust computer simulations. Thus, I conclude that the Normal curve approximation—

0.0293—appears to be excellent for this data set.

Example 7.5 (An artificial study of a serious disease.) Example 6.5 on page 128 introduced an

artificial study with an ordinal categorical response. Its data are in Table 6.8 on page 129.

I entered these data into Minitab and ran the Mann command on it with the alternative <. The

edited output is below.
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Mann-Whitney Test: C4, C5

C4 N = 50 Median = 2.0000

C5 N = 50 Median = 2.0000

W = 2340.0

Test of = vs < is significant at 0.1017

The test is significant at 0.0869 (adjusted for ties)

As discussed earlier in these notes, computing medians for ordinal categorical data often is nearly

worthless, as it is for these data. We see that it is important to use the correct—adjusted for ties—

formula for the variance because the two P-values are quite different.

Finally, Example 6.5 reported the results of a simulation experiment with 10,000 reps. It gave

0.0946 as the approximate P-value for the alternative <. Its nearly certain interval is

0.0946± 3

√

0.0946(0.9054)

10,000
= 0.0946± 0.0088 = [0.0858, 0.1034].

The Normal approximation P-value, 0.0869, lies in this interval, but just barely.

In summary, the Normal curve approximation gives reasonably accurate P-values for each of

these three studies. If one has access to Minitab, the analysis is quite easy to obtain. For all but

ordinal categorical data, the vassarstatswebsite usually will give an accurate approximate P-value.
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7.5 Summary

A probability histogram is our picture of a sampling distribution. So far in these notes, we have

had sampling distributions for our two test statistics: U and R1. For more generality, we talk about

a random variable X with observed value denoted by x. The random variable X has a sampling

distribution and we obtain its probability histogram by following the three steps given on page 143.

We next turn to the question of finding an approximation of a probability histogram (which

also provides an approximation of the sampling distribution represented by the probability his-

togram). Earlier in these Course Notes we learned how to obtain an approximation of a sampling

distribution by using a computer simulation experiment. In the current chapter, we learn our first

example of what I call a fancy math approximation. To that end, we need to summarize a probabil-

ity histogram (equivalently, a sampling distribution) by determining its center (mean) and spread

(standard deviation).

There is a simple formula for the mean of the sampling distribution of R1 (Equation 7.2):

µ = n1(n+ 1)/2,

and two formulas for its variance. The first formula (Equation 7.4) is appropriate if the n observa-

tions in the combined data set are all distinct numbers (called the no-ties situation):

σ2 =
n1n2(n + 1)

12
.

The second formula (Equation 7.5) should be used whenever there are ties in the combined data

set:

σ2 =
n1n2(n+ 1)

12
− n1n2

∑

(t3i − ti)

12n(n− 1)
.

If you don’t recall the meaning of the ti’s in this formula, review the material in the text of this

chapter immediately following Equation 7.5 on page 148.

Next, we learned about the family of Normal curves, pictured in Figure 7.4. A particular

Normal curve is characterized by its center of gravity (mean) µ and its spread (standard deviation)

σ; it is sometimes denoted as the N(µ,σ) curve. The Standard Normal curve corresponds to µ = 0
and σ = 1.

There is a website that calculates areas under Normal curves and its use is demonstrated.

The main idea of this chapter is to use a Normal curve as an approximation of the probability

histogram of R1. We use the Normal curve that matches R1 on its values of µ and σ (whichever

version—ties or no ties—of σ is appropriate).

We always use the continuity correction when we obtain the Normal approximation to R1. If

we want to approximate P (R1 ≥ r1), we calculate the area under the Normal curve to the right of

(r1 − 0.5). If we want to approximate P (R1 ≤ r1), we calculate the area under the Normal curve

to the left of (r1 + 0.5).
Section 7.4 shows that the vassarstats website for the Mann-Whitney test will calculate the

Normal approximation P-value for us. The site use the no-ties formula for the variance, which

works reasonably well for a small number of ties. For a large number of ties—in particular, for an

ordinal categorical response—the Mann-Whitney test site yields P-values that are a bit too large.

Also, in Section 7.4, we learned how to read Minitab output for the sum of ranks test.
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7.6 Practice Problems

1. I have a balanced CRD with a total of six units. My six ranks are: 1, 2, 4, 4, 4 and 6.

(a) Find six response values that would yield these ranks. Note that because ranks are

obtained for the combined data set, you don’t need to match observations to treatments

to answer this question. Also note that there are an infinite number of correct answers.

(b) Determine the exact sampling distribution of R1 for these six ranks.

(c) Draw the probability histogram of the sampling distribution of R1 for these six ranks.

(d) Show that the µ = 10.5 with two different arguments.

(e) Compute σ2 and σ.

2. Refer to Practice Problem 3 on page 134 in Chapter 6; it presents a balanced CRD with

n = 50 units and a four-category ordinal response.

Using the same assignment of numbers to categories I used in Chapter 6, I entered my data

into Minitab and directed Minitab to perform the sum of ranks test for the alternative <. I

executed the Mann command and obtained the output below.

Mann-Whitney Test: C1, C2

C1 N = 25 Median = 2.000

C2 N = 25 Median = 3.000

W = 548.5

Test of = vs < is significant at 0.0430

The test is significant at 0.0380 (adjusted for ties)

In the Chapter 6 Practice Problems I reported that a 10,000 rep computer simulation exper-

iment gave 0.0354 as an approximate P-value for the alternative <. Use this relative fre-

quency to obtain the nearly certain interval (Formula 4.1 in Chapter 4) for the exact P-value.

Comment on the Minitab approximate P-values.

3. Imagine that we have a CRD with n1 = 15 units assigned to the first treatment and n2 = 20
units assigned to the second treatment. Also, assume that there are no ties in the combined

list of 35 response values.

(a) Calculate the mean, variance and standard deviation of the sampling distribution ofR1.

(b) Assume that the alternative is>. Use the Normal curve website to find the approximate

P-values for the following actual values of r1: 300, 330 and 370. Remember to use the

continuity correction.

(c) Assume that the alternative is 6=. Use the Normal curve website to find the approximate

P-values for the following actual values of r1: 300, 330 and 370. Remember to use the

continuity correction.
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(d) Assume that the alternative is<. Use the Normal curve website to find the approximate

P-values for the following actual values of r1: 250, 220 and 180. Remember to use the

continuity correction.

7.7 Solutions to Practice Problems

1. (a) There is an infinite number of possible response values. I will proceed as follows. The

three ranks equal to 4 mean that there are three tied values; call them 15, 15 and 15.

There must be one observation larger than 15, which will have the rank 6, and two

non-tied observations smaller than 15 to receive the ranks 1 and 2. I select observation

values of 11, 14 and 17. Thus, my combined data set consists of 11, 14, 15, 15, 15 and

17.

(b) There is one assignment that puts all three 4’s on treatment 1, giving r1 = 12.

There are three assignments that put two 4’s with one non-4 on treatment 1. The two

4’s can be matched with 1, 2 or 6. Thus, this gives us nine more values of r1: three
each of 9, 10 and 14.

There are three assignments that put one 4 with two non-4’s on treatment 1. The one 4

can be matched with: 1 and 2; 1 and 6; or 2 and 6. Thus, this gives us nine more values

of r1: three each of 7, 11 and 12.

Finally, there is one assignment that places all 4’s on treatment 2. This assignment

gives r1 = 1 + 2 + 6 = 9.

Combining the above, we see that three assignments each give the following values for

r1: 7, 10, 11 and 14. Also, four assignments each give the following values for r1: 9
and 12. Thus,

• P (R1 = r1) = 0.15 for r1 = 7, 10, 11, 14.

• P (R1 = r1) = 0.20 for r1 = 9, 12.

(c) The probability histogram is in Figure 7.6; I will explain its derivation.

The possible values of r1 are 7, 9, 10, 11, 12 and 14. They are marked and labeled

in my picture. The minimum distance between consecutive values is 1. Because δ =
1, the height of each rectangle equals the probability of its center’s location; these

probabilities are given in the answer above and presented in the probability histogram.

(d) First, the probability histogram in Figure 7.6 is symmetric. Thus, its mean equals its

point of symmetry, 10.5.

Second, we can use Equation 7.2 on page 147:

µ = n1(n+ 1)/2 = 3(6 + 1)/2 = 21/2 = 10.5.

(e) Because there are ties in the data set, we use Equation 7.5

σ2 =
n1n2(n + 1)

12
− n1n2

∑

(t3i − ti)

12n(n− 1)
.
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I will evaluate these terms individually and then subtract. The first term is:

n1n2(n + 1)

12
=

3(3)(7)

12
= 63/12 = 5.25.

For the second term, first note that only one ti is larger than 1; it is 3. The value of the

second term is:

n1n2
∑

(t3i − ti)

12n(n− 1)
=

3(3)(33 − 3)

12(6)(5)
= 216/360 = 0.60.

Thus,

σ2 = 5.25− 0.60 = 4.65 and σ =
√
4.65 = 2.1564.

2. For r̂ = 0.0354 and 10,000 reps, the nearly certain interval is:

0.0354± 3

√

0.0354(0.9646)

10000
= 0.0354± 0.0055 = [0.0299, 0.0409].

Minitab gives us two approximate P-values. Whenever our data set has ties, we should use

the adjusted (smaller) P-value. For some data sets, the two P-values are nearly identical,

but not in this case. Thus, our Normal approximation is 0.0380. This value falls within our

nearly certain interval; thus, the Normal approximation seems to be reasonable.

3. (a) From Equation 7.2,

µ = n1(n+ 1)/2 = 15(36)/2 = 270.

From Equation 7.4,

σ2 =
n1n2(n+ 1)

12
=

15(20)(36)

12
= 900 and σ =

√
900 = 30.

(b) We go to the website

http://davidmlane.com/hyperstat/z_table.html

Following the instructions given in Section 7.4, we enter 270 in the Mean box and 30

in the SD box. We select the option Above and enter 299.5 in its box. We obtain the

area 0.1627; this is the approximate P-value for r1 = 300.

For the other values of r1 we repeat the above, first typing 329.5 in the box and then

369.5. For 329.5, we get the area 0.02367, which is the approximate P-value for r1 =
330. Finally, for 369.5, we get the area 0.0005, which is the approximate P-value for

r1 = 370.

(c) Here is a useful trick. The approximating curve (Normal) is symmetric. As a result,

provided the one-sided approximate P-value does not exceed 0.5000, if you simply

double it you obtain the approximate P-value for 6=. Hence, our approximate P-values

are:
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Figure 7.6: The probability histogram for the sampling distribution in Practice Problem 1.
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• For r1 = 300: 2(0.1627) = 0.3254.

• For r1 = 330: 2(0.0237) = 0.0474.

• For r1 = 370: 2(0.0005) = 0.0010.

(d) We select the option Below and enter 250.5 in its box. We obtain the area 0.2578; this

is the approximate P-value for r1 = 250.

For the other values of r1 we repeat the above, first typing 220.5 in the box and then

180.5. For 220.5, we get the area 0.0495, which is the approximate P-value r1 = 220.
Finally, for 180.5, we get the area 0.0014, which is the approximate P-value for r1 =
180.
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7.8 Homework Problems

1. An unbalanced CRD has n1 = 2, n2 = 3 and n = 5. Thus, there are 10 possible assignments.

(You don’t need to verify this fact.) The sorted numbers in the combined data set are:

3, 8, 8, 8 and 20.

(a) Determine the ranks for the combined data set.

(b) Complete the following table, the sampling distribution for R1.

r1: 4 6 8

P (R1 = r1):

(c) Draw the probability histogram for your table in (b).

(d) Calculate the variance and standard deviation of the sampling distribution for R1.

2. Refer to Homework Problem 3 on page 139, an unbalanced CRD with an ordinal response.

Its data are reproduced below.

Response

Treatment Disagree Neutral Agree Total

1 8 7 5 20

2 3 5 7 15

Total 11 12 12 35

I assign numbers 1 (Disagree), 2 (Neutral) and 3 (Agree) to these categories. I placed these

data in Minitab and executed the Mann command. My output is below.

Mann-Whitney Test: C1, C2

C1 N = 20 Median = 2.000

C2 N = 15 Median = 2.000

W = 318.0

Test of = vs not = is significant at 0.1666

The test is significant at 0.1424 (adjusted for ties)

Use this output to answer the questions below.

(a) What is the observed value of R1?

(b) Which alternative (>, < or 6=) did Minitab use?

(c) Which P-value is better to use? Why?

3. Recall Reggie’s study of darts, first introduced in Homework Problems 5–7 in Chapter 1

(Section 1.8).

165



(a) Use the vassarstats website’s Mann-Whitney command to obtain the Normal approxi-

mation to the P-value for >. (Using Minitab, I found that ignoring ties, as vassarstats

website’s Mann-Whitney does, has no impact on the approximation. Well, it changes

the answer by 0.0001, which I am willing to ignore.)

(b) I performed a simulation with 10,000 reps and obtained 0.0075 for my approximate

P-value for the alternative>. Compute the nearly certain interval (Formula 4.1) for the

exact P-value for the alternative >.

(c) Compare your approximations from (a) and (b); comment.

4. Consider an unbalanced CRD with n1 = 36 and n2 = 27. Assume that the combined data

set contains no ties.

(a) Calculate the mean and standard deviation of the sampling distribution of R1.

(b) Use your answers from (a) and the website

http://davidmlane.com/hyperstat/z_table.html

to obtain the approximate P-values for the alternative > and each of the following

values of r1: 1200, 1250 and 1300.

(c) Use your answers from (a) and the website

http://davidmlane.com/hyperstat/z_table.html

to obtain the approximate P-values for the alternative < and each of the following

values of r1: 1120 and 1070.

(d) Use your answers from (a) and the website

http://davidmlane.com/hyperstat/z_table.html

to obtain the approximate P-values for the alternative 6= and each of the following

values of r1: 1300 and 1070.
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Chapter 8

Dichotomous Responses; Critical Regions

8.1 Introduction and Notation

In all previous studies in these notes, the response has been either a numerical variable or an

ordered categorical variable with at least three categories. For a numerical response we compared

the treatments by comparing the means or the ranks of their responses. For an ordered categorical

response we compared the treatments by comparing the ranks of their responses.

In this chapter we consider studies that have a dichotomous response—a categorical response

with two categories. We begin with four examples.

Example 8.1 (Therese’s infidelity study.) Therese studied 20 of her adult female friends. The

women were divided into two treatment groups, both of size 10, by randomization. Women as-

signed to the first treatment group read the following question:

• You are friends with a married couple and are equally fond of the man and the woman. You

discover that the husband is having an affair. The wife suspects that something is going on

and asks you if you know anything about her husband having an affair. Do you tell?

Women assigned to the second treatment group read the following question:

• You are friends with a married couple and are equally fond of the man and the woman. You

discover that the wife is having an affair. The husband suspects that something is going on

and asks you if you know anything about his wife having an affair. Do you tell?

Each subject was instructed to respond either yes or no.

Example 8.2 (Ruth’s prisoner study.) Ruth’s subjects were 50 male inmates at a minimum secu-

rity federal prison camp in Wisconsin. All of the men were first-time nonviolent criminal offenders

serving two or more years of prison time. The men were divided into two treatment groups of 25

each by randomization. Men assigned to the first treatment group were given the following ques-

tion:
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• The prison is beginning a program in which inmates have the opportunity to volunteer for

community service with developmentally disabled adults. Inmates who volunteer will re-

ceive a sentence reduction. Would you participate?

Men assigned to the second treatment group were given the following question:

• The prison is beginning a program in which inmates have the opportunity to volunteer for

community service with developmentally disabled adults. Would you participate?

Each subject responded either yes or no.

Example 8.3 (Thomas’s golf putting study.) Thomas wanted to investigate the difference in dif-

ficulty between four and eight foot putts in golf. He performed a balanced study with randomiza-

tion and a total of 50 putts. The first treatment was putting from four feet on a level surface and

the second treatment was putting from eight feet on a level surface. Each putt was either made or

missed.

Example 8.4 (The artificial Headache Study-2 (HS-2).) A researcher has 100 persons available

for study. Each person routinely suffers mild tension headaches (not migraines). The researcher

wants to compare two active drugs, call them A and B, for the treatment of mild headaches. The

100 subjects are divided into two groups of size 50 each by randomization. Each subject is given

the following instructions:

The next time you have a mild headache take the drug we have given you. Fifteen

minutes later answer the following question with a response of either yes or no: Has

your headache pain diminished?

When the response is a dichotomy, there are technical names for the two possible responses:

one is called a success and the other is called a failure. The methods we learn will focus on

counting successes. We use the following method for deciding which possible outcome gets the

distinction of being called a success.

1. If one of the possible responses is very rare (admittedly vague), then it is labeled the success.

2. If neither possible response is very rare, then the more desirable response is labeled the

success.

3. If neither of the previous two scenarios applies, then the researcher arbitrarily assigns the

label success to one of the possible responses.

Here is the idea behind the first rule. Every time I drive a car I have the potential to be involved

in a traffic accident. Fortunately, in my 47 years of driving I have been in only one accident and it

was very minor. When something occurs only rarely, it is much easier to keep track of how many

times it happens rather than how many times it fails to happen.

In our examples above, the researchers labeled as successes: telling, agreeing to volunteer,

making a putt and reporting that the pain has diminished. Tables 8.1–8.4 present and summarize

the data for each of our four studies.
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Table 8.1: The 2× 2 contingency table of observed counts for Therese’s infidelity study.

Row

Tell? Proportions

Cheater was: Yes No Total Yes No

The Husband 7 3 10 0.70 0.30

The Wife 4 6 10 0.40 0.60

Total 11 9 20

Table 8.2: The 2× 2 contingency table of observed counts for Ruth’s prisoner study.

Volunteer? Row Prop.

Version Read: Yes No Total Yes No

Sentence Reduction 18 7 25 0.72 0.28

No Sentence Reduction 23 2 25 0.92 0.08

Total 41 9 50

Table 8.3: 2× 2 Contingency table of observed counts for Thomas’s golf putting study.

Putt was Row Prop.

Distance: Made Missed Total Made Missed

Four feet 18 7 25 0.72 0.28

Eight feet 10 15 25 0.40 0.60

Total 28 22 50

Table 8.4: 2× 2 contingency table of observed counts for the artificial Headache Study-2 (HS-2).

Pain relieved? Row Prop.

Drug : Yes No Total Yes No

A 29 21 50 0.58 0.42

B 21 29 50 0.42 0.58

Total 50 50 100
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Table 8.5: General notation for a 2 × 2 contingency table of observed counts for a CRD with a

dichotomous response.

Row

Response Proportions

Treatment : S F Total S F
1 a b n1 p̂1 = a/n1 q̂1 = b/n1

2 c d n2 p̂2 = c/n2 q̂2 = d/n2

Total m1 m2 n

Table 8.5 presents our general notation for a CRD with a dichotomous response. When I

develop ideas below it will be convenient to use the general notation.

First, a few comments:

1. The orientation for these tables in these notes will follow the four examples above; namely,

the rows distinguish between treatments and the columns identify the possible responses.

Many materials (texts, research papers, etc.) reverse this orientation. Thus, when reading

other materials, be careful to identify which orientation is being used.

2. We summarize the table of counts by computing the row proportions: the p̂’s and q̂’s given
above. There is a great deal of redundancy in these; namely, in each row the sum of its p̂ and
q̂ is always one. Thus, after you get more familiar with these ideas I usually will suppress

the q̂’s.

3. In these tables, I do not calculate the row proportions for the Total row because in a CRD

these numbers typically are not of interest.

There is a very simple, but useful, connection between the treatment (row) proportions of

successes and the means (x̄ and ȳ) of our earlier work for a CRD with a numerical response. I

will illustrate the connection with Therese’s data; the interested reader can show easily that the

connection is also true for the general case.

Therese assigned 10 friends to her first treatment, the husband having an affair; seven responded

yes (success) and three responded no (failure) giving p̂1 = 7/10 = 0.70. Alternatively, we can

make Therese’s response a number: 1 for yes and 0 for no. With this latter viewpoint, Therese’s

data consist of seven 1’s and three 0’s. Clearly, the sum of her 10 numbers is 7–which is the total

number of successes. The mean of these 10 numbers, which we call x̄, is 7/10 = 0.70. In other

words,

p̂1 = x̄ and, similarly, p̂2 = ȳ.

This identification is important because:

It shows that the Skeptic’s Argument and all that follows from it—the Advocate, the

hypotheses, the test of hypotheses, the rules for computing the P-value and so on—can

be immediately adapted to a dichotomous response.
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For convenience, we will call the observed value of our test statistic x = p̂1 − p̂2 which implies

that we refer to our test statistic as X . We could, of course, call it U , but I fear that would create

confusion. Let’s keep U for comparing means andX for comparing proportions, even though they

coincide. By the way,X is also mathematically equivalent to R1, but you don’t need to understand

the details of the argument. You are welcome to ignore this latter connection or rejoice in it.

8.2 The Test of Hypotheses: Fisher’s Test

Let me be precise about the test of hypotheses in this chapter. Define p1 to be the proportion of

successes that would be obtained if all units were assigned to treatment 1. Similarly, p2 is the

proportion of successes that would be obtained if all units were assigned to treatment 2. If the

Skeptic is correct, then p1 = p2 because the treatment does not matter; i.e., some units will yield

successes and others will yield failures, regardless of the treatment they receive. For example,

if the Skeptic is correct for Therese’s study of infidelity, then some of her friends are tellers, no

matter the sex of the person having the affair, and the remaining friends keep quiet, again no matter

the sex of the person having the affair.

If we could perform the clone-enhanced study we would know whether the Skeptic is correct.

If the Skeptic is incorrect, the clone-enhanced study would reveal this fact as well as the values of

p1 and p2.
For testing, the null hypothesis is that the Skeptic is correct. As with our test based on compar-

ing means, there are three options for the alternative:

• H1 : p1 > p2;

• H1 : p1 < p2; and

• H1 : p1 6= p2.

As before, you may choose whichever alternative you like, provided you make your choice before

collecting data. Also as before, I recommend using the Inconceivable Paradigm to make this

choice.

In addition, when the response is a dichotomy there is a big bonus: On the assumption the

Skeptic is correct, we don’t need to perform a computer simulation experiment to approximate the

P-value; there is a simple mathematical formula that allows us to calculate the exact P-value.

When I say a simple mathematical formula in the previous sentence, I am being a bit tricky. It

is a simple formula to write down, but tedious to compute by hand. Fortunately, there is a website

that, with minimal effort from us, will produce the exact P-value for each of the three possible

alternative hypotheses. The website is

http://www.langsrud.com/fisher.htm

Note that I am deviating frommy usual method of presenting material. In the previous chapters,

the computational methods had their own section, named Computing. I believe that this chapter
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will be easier for you to follow if I incorporate the website now. (As always, let me know if you

think I am making a tactical or strategic error.)

The first thing I notice when I look at this website is the label Fisher’s Exact Test in large,

bold-faced type in its upper left corner. This test is named in honor of Sir Ronald A. Fisher

(1890–1962), the most famous statistician of the first half of the twentieth century. Fisher also did

well-respected work in genetics. Among Fisher’s many important works, he was a strong advocate

of the importance of randomization in scientific studies, which is part of the reason this test bears

his name.

Immediately below the name of the test, you will find:

1. A box labeled ‘COMPUTE.’

2. A rectangle containing four small windows. The windows contain the default data: 3, 1, 1

and 3.

3. A box labeled ‘CLEAR TABLE.’

4. A box labeled ‘CLEAR OUTPUT.’

I will now illustrate the use of this website for Ruth’s data (see Table 8.2). Just follow the steps

below.

1. Click on the box ‘CLEAR TABLE.’ This action will result in the default data disappearing

from the four small windows.

2. Enter Ruth’s counts, 18, 7, 23, and 2, in the four small windows in the same order that they

appear in the contingency table.

3. Click on the box labeled ‘COMPUTE.’ Three P-values will appear in the output window on

the right side of the screen. For Ruth’s data, your display should read:

• Left: p-value = 0.0691666077613616.

• Right: p-value = 0.9883922891274275.

• 2-Tail : p-value = 0.1383332155227232.

This website was not written by me; thus, unsurprisingly, it does not follow my notation. In

particular, note the following:

• Left on the website gives the P-value for our alternative <.

• Right on the website gives the P-value for our alternative >.

• 2-Tail on the website gives the P-value for our alternative 6=.
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Note that for Ruth’s data, the P-value for 6= is twice the smaller of the other two P-values. This

is no surprise. We know from our earlier work that whenever a study is balanced—i.e., whenever

n1 = n2—then the exact sampling distribution of U—and, hence, X—is symmetric about 0. If

X = 0, however, this doubling does not work. The P-value for 6= is 1 and the P-values for the

other two alternatives are equal and both exceed 0.5000.

Before we discuss the meaning of these P-values, I want you to get some additional practice

using this website. In particular,

1. Go to the website and enter the counts for Therese’s infidelity study: 7, 3, 4 and 6. You

should obtain the following P-values:

• Left: p-value = 0.9651107406525374.

• Right: p-value = 0.18492498213860464.

• 2-Tail : p-value = 0.3698499642772093.

2. Go to the website and enter the counts for Thomas’s golf putting study: 18, 7, 10 and 15.

You should obtain the following P-values:

• Left: p-value = 0.9952024757062247.

• Right: p-value = 0.02250227023961592.

• 2-Tail : p-value = 0.04500454047923211.

3. Go to the website and enter the counts for HS-2: 29, 21, 21 and 29. You should obtain the

following P-values:

• Left: p-value = 0.964328798255893.

• Right: p-value = 0.08060057614938207.

• 2-Tail : p-value = 0.16120115229876414.

Let’s look at one of these P-values, say, the ‘Right’ P-value for Thomas’s golf putting study:

0.02250227023961592. This is a pretty absurd answer. Correct and absurd. It is absurd because

it is so precise. Do I really care that the 17th digit after the decimal point is a 2? Would my

interpretation change if it were a 7? Of course not! As a result, in these notes I will report a Fisher’s

Exact Test P-value to four digits after the decimal, with the exception noted below. The exception

can be illustrated by what I will call the really big and phony golf putting study (RBPGP).

I don’t want to spend much time on the RBPGP study, because, as its name suggests, it is

make-believe. Consider the actual putting study performed by Thomas, but now suppose that his

counts are all multiplied by ten, becoming: 180, 70, 100 and 150. I entered these counts into the

Fisher website and obtained the following P-values:

• Left: p-value = 0.9999999999999133.

• Right: p-value = 3.4235675124234885e-13.
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• 2-Tail : p-value = 6.847135024846977e-13.

Look at the P-value for Right (>). Reading left-to-right we begin with a curious result: the P-value

equals 3.42 . . . which cannot be correct because it is larger than 1! This alerts us to keep reading.

We are rewarded for our persistence when we find the e-13 at the end of the P-value. This is the

website’s way of writing scientific notation. The correct way to interpret this P-value is that it

equals

3.424× 10−13, or, if you prefer, 0.0000000000003424,

a really small P-value!

To summarize the above, I usuallywill report my P-values to four digits after the decimal point

unless the result is close to 0.0000, in which case I usually will use scientific notation with four

significant digits. (As Oscar Wilde said, “Consistency is the last refuge of the unimaginative.”)

Let us now look at Ruth’s prisoner study again. Ruth’s data, as you may have noted, display

a remarkable pattern, which we will get to shortly. Let’s go through Ruth’s reasoning that led

to her choice of alternative. The Skeptic’s Argument for Ruth’s study is that some men would

volunteer to work with developmentally disabled adults and some would not, but that the treatment

was irrelevant. Ruth decided that the only conceivable alternative is that the offer of a sentence

reduction would increase the number of men who would volunteer. Thus, Ruth felt that the <
alternative was inconceivable and she opted for the alternative >. Now look again at Ruth’s data:

her p̂2 is larger than her p̂1 by 0.20, twenty percentage points. In words, her data support the

alternative she labeled as inconceivable!

You might be wondering why I have included Ruth’s study in these notes. Let me assure you,

my motive is not to ridicule Ruth. In fact, I admire Ruth quite a lot. Not many of my students

traveled to a prison to collect data! (Ruth’s major was Social Work.) If I had been asked to select

the alternative—remember, we do this before we collect data—I definitely would have made the

same choice that Ruth did.

Thus, why have I included Ruth’s somewhat embarrassing study? First, to illustrate that incon-

ceivable is not the same as impossible. Yes, it might be embarrassing, but I conjecture that every

scientist will occasionally obtain data that support the inconceivable.

When data support the inconceivable, it is natural to wonder: What went wrong? So, take

a minute and think about Ruth’s study. Can you think of any reason(s) why the mention of a

sentence reduction would lead to less participation in the volunteer program? Below, I have listed

some ideas of mine. Do any of these match your reason(s)? Do any of these seem particular clever

or stupid?

1. Perhaps the experience of being a prisoner makes the men not trust prison officials—or a

researcher—to the extent that the promise of a reward has a negative impact.

2. Prisons are very expensive to operate. Perhaps it is routine for first-time nonviolent criminal

offenders serving two or more years to receive a sentence reduction for good behavior. In

this case, the prisoner might feel like he is being tricked; being offered a reward that he

would likely obtain anyways. Thus, perhaps the question should have read,
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Inmates who volunteer will receive a sentence reduction in addition to any other

sentence reductions.

I am not going to obsess about possible explanations; my reason will become clear after we exam-

ine Ruth’s three P-values.

As we have seen earlier, Ruth’s exact P-value for her selected alternative > (Right) is 0.9884.

This incredibly large P-value—remember the maximum possible value is 1—reflects the fact that,

for her chosen alternative, Ruth obtained almost the weakest possible evidence. But look at her

other two P-values: 0.0692 for < and 0.1383 for 6=. Under the usual classical approach to tests

of hypotheses, neither of these P-values is small enough to reject the null hypothesis. Thus, the

pattern in Ruth’s data, while surprising, is within the usual bounds of chance behavior, computed,

of course, under the assumption the null hypothesis is correct. You might argue that 0.0692 is very

close to the magic threshold of 0.05; but I would respond that, in my opinion and experience, it

would be very difficult to convince many people that it is reasonable—before collecting data—to

argue that > is inconceivable for Ruth’s study.

For the golf putting study, Thomas chose the alternative>. (Why does this make sense, before

collecting the data?) Thus, his P-value is 0.0225 and the classical approach says to reject the null

in favor of the alternative. In words, his data convinced Thomas that he was better at making a four

foot putt rather than an eight foot putt.

Now, you might be thinking, “Of course, a shorter putt is easier. What a waste of time!” I have

two comments to make on this attitude:

1. Quite often, especially in hindsight, research confirms the obvious. For example, it might

seem obvious that smoking tobacco is harmful to a person’s health, but this conclusion was

not reached easily, in part because it would have been unethical to use randomization.

2. Don’t fall into the trap of thinking you know how the world works. Subtle issues can operate

in a study. For example, consider a highly skilled basketball player shooting baskets in a

practice setting. Let treatment 1 be shooting a free throw and let treatment 2 be shooting

from 12 inches in front of the free throw line. Now, you could argue that treatment 2 must

be easier than treatment 1 because it is a shorter shot. I am not sure about this. Treatment 2

is a shorter shot, but my guess is that the player has previously spent a huge amount of time

practicing treatment 1 and virtually no time practicing treatment 2. Thus, the player might

actually be better from the longer distance. I do admit that this basketball argument seems,

to me, not to apply to golf putts.

I will end this chapter with a few comments about the HS-2. I see three possible scenarios for

this study:

1. If drug A is an active drug and drug B is, in fact, a placebo, then the alternative > seems

obvious and the P-value is 0.0806.

2. If drug B is an active drug and drug A is, in fact, a placebo, then the alternative < seems

obvious and the P-value is 0.9643. This would be a strange and alarming result: drug B

seems worthless for headache relief and, indeed, is borderline contraindicated.
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3. If both drugs A and B are reasonable treatments for headaches (see the variety of products

available at a pharmacy) then 6= is likely the alternative of choice, giving a P-value of 0.1612,

Unless, for example, A was an extra strength version of B, in which case I would opt for the

alternative >.

8.3 The Critical Region of a Test

8.3.1 Motivation: Comparing P-values

Our focus on tests of hypotheses has been to find the P-value of a test. We can compare P-values

within tests and between tests. Let me explain what I mean by these two forms of comparison.

Consider Dawn’s study of her cat Bob with the alternative >. Recall that for the test of means,

the observed value of the test statistic is u = 2.2. Table 4.1 on page 76 presents an approximation

to the sampling distribution of U based on a simulation experiment with m = 10,000 reps. This

approximation yields 0.0198 as the approximate P-value for Dawn’s data and the alternative >.

Thus, the actual value of u, 2.2, provides fairly strong evidence in support of the alternative >.

I argued that a value of u that is larger than the actual 2.2 would yield even stronger evidence

for the alternative >. In particular, you can verify from Table 4.1 that if the observed value of the

test statistic had been u = 2.6, then the approximate P-value for the alternative>would have been:

Rel. Freq.(U ≥ 2.6) = 0.0023 + 0.0017 + 0.0008 + 0.0003 = 0.0051.

The above is what I mean by a within test comparison of P-values. The value of u which

provides stronger evidence for > (2.6 versus 2.2) yields the smaller P-value. This comparison is

pretty noncontroversial: Within a study, stronger evidence yields a smaller P-value. By contrast, a

between test comparison of P-values raises important issues.

Recall Sara’s study of golf, with data presented in Table 2.2 on page 29. For the alternative >
and the test based on means, I stated in Table 4.3 on page 77 that the approximate P-value—based

on a simulation experiment with 10,000 reps—is 0.0903. By contrast, in Example 6.4 on page 127

I stated that the approximate P-value for the alternative > and the sum of ranks test is 0.0293.

Thus, for Sara’s data and the alternative > the approximate P-value for the sum of ranks test is

much smaller than the approximate P-value for the test that compares means; this is what I mean

by a between test comparison of P-values.

I am tempted to say (and I have heard many scientists and statisticians in similar situations say)

that for Sara’s data the sum of ranks test is better than the test that compares means because its

P-value is much smaller. There are two reasons I resist saying this:

1. It is not literally true, even though arguably it is suggestive.

2. It sounds like I am cheating. (Perhaps) I prefer to reject the null hypothesis in favor of the

alternative; thus, I state that the test that does what I want is better than the test that doesn’t!

The difficulty is that we have not, as yet, developed the tools needed to compare tests. We will do

so in Chapter 9 when I introduce the notion of the power of a test. Power is a difficult topic and I

have chosen to begin, in this chapter, the journey to your understanding power.
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Table 8.6: A partial 2× 2 contingency table of observed counts for a balanced CRD.

Response

Treatment S F Total p̂
1 a b 27 a/27
2 c d 27 c/27
Total 31 23 54

8.3.2 From P-values to Critical Regions

If a researcher has a CRD with a dichotomous response, then

http://www.langsrud.com/fisher.htm

is an incredibly useful site because it provides exact P-values with almost no effort from the re-

searcher. As a teacher, however, the site is disappointing because it does not provide the entire

sampling distribution of X . With some work, however, the site can be used to obtain the entire

sampling distribution of X .

Example 8.5 (A balanced CRD on a total of 54 units that yields a total of 31 successes.) The

table of data described in the name of this example is given in Table 8.6. Note that I am not telling

you the actual cell counts, a, b, c and d. My goal is to examine the sampling distribution of X for

this table; for this goal, as you recall, we don’t need the actual data, just the marginal totals.

A natural question for you to have is:

Bob, why did you choose a balanced study with 27 units on each treatment? Twenty-

seven makes the arithmetic messy, to say the least.

My answer is twofold:

• We are going to avoid any arithmetic that involves dividing by 27; thus its messiness is

irrelevant; and

• These data give me a number for a particular P-value that I like; I will reveal why soon.

From Table 8.6 we see that, given the cell counts:

p̂1 = a/27 and p̂2 = c/27; thus, x = p̂1 − p̂2 = (a− c)/27

is the observed value of the test statisticX . Also, a+ c = 31 or a− 31 = −c. Thus,

x = (a− c)/27 = (a+ a− 31)/27 = (2a− 31)/27.

My point is that the value of a in Table 8.6 determines the value of x; as it must, because the value

of a, given the marginal totals, determines the values of b, c and d.
Let’s go to the site
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Table 8.7: The sampling distribution of X for the 2× 2 contingency table presented in Table 8.6.

P-values for:

< > 6=
a x P (X ≤ x) P (X ≥ x) P (|X| ≥ x)
8 −15/27 0.0000 1.0000 0.0001
9 −13/27 0.0004 1.0000 0.0008
10 −11/27 0.0027 0.9996 0.0054
11 −9/27 0.0133 0.9973 0.0267
12 −7/27 0.0489 0.9867 0.0978
13 −5/27 0.1355 0.9511 0.2709
14 −3/27 0.2913 0.8645 0.5826
15 −1/27 0.5000 0.7087 1.0000
16 1/27 0.7087 0.5000 1.0000
17 3/27 0.8645 0.2913 0.5826
18 5/27 0.9511 0.1355 0.2709
19 7/27 0.9867 0.0489 0.0978
20 9/27 0.9973 0.0133 0.0267
21 11/27 0.9996 0.0027 0.0054
22 13/27 1.0000 0.0004 0.0008
23 15/27 1.0000 0.0000 0.0001

http://www.langsrud.com/fisher.htm

and investigate what happens when I plug-in the value a = 21, which implies that b = 6, c = 10
and d = 17—otherwise, the margins in Table 8.6 would be wrong. The observed value of the test

statistic is

x = (a− c)/27 = (21− 10)/27 = 11/27.

I obtain the following three P-values, after rounding to four digits after the decimal point:

• Left (<): 0.9996; i.e., P (X ≤ 11/27) = 0.9996.

• Right (>): 0.0027; i.e., P (X ≥ 11/27) = 0.0027.

• 2-Tail(6=): 0.0054; i.e., by symmetry:

P (|X| ≥ 11/27) = 2P (X ≥ 11/27) = 2(0.0027) = 0.0054.

I repeated the above computation for all possible values of a in Table 8.6; my results are presented

in Table 8.7. There is a tremendous amount of information in this table; let me begin by making a

few comments about it.

178

http://www.langsrud.com/fisher.htm


1. Table 8.7 does not actually present all possible values of a as I claimed above. Why not?

Well, for a < 8, equivalently x < −15/27,

P (X ≤ x) = 0.0000, P (X ≥ x) = 1.0000 and P (|X| ≥ x) = 0.0000.

In words, for x < −15/27, the P-value is really small for both < and 6=. For my current

purposes, we won’t be concerned with how small.

Similarly, for a > 23, equivalently x > 15/27,

P (X ≤ x) = 1.0000, P (X ≥ x) = 0.0000 and P (|X| ≥ x) = 0.0000.

In words, for x > 15/27, the P-value is really small for both > and 6=.

2. For x < 0, the P-value for 6= is twice the P-value for <, except for possible round-off error.

Similarly, For x > 0, the P-value for 6= is twice the P-value for >, except for possible round-

off error. These relationships are no surprise; they follow from the fact that, because the

study is balanced, the sampling distribution of X is symmetric around zero.

Recall the classical approach to interpreting a P-value, given in Chapter 5 on page 99 and

reproduced below:

Reject the null hypothesis in favor of the alternative if, and only if, the P-value is less

than or equal to 0.05.

Let’s consider the alternative >. Look at Table 8.7 again and note that the P-value is 0.05 or

smaller, if, and only if, x ≥ 7/27 (a ≥ 19). As a result, if my primary interest is on whether or not

I reject the null hypothesis, then I have the rule

Reject the null hypothesis if, and only if, X ≥ 7/27.

Being lazy, statisticians summarize the above by saying that the critical region for the test is

(X ≥ 7/27).

(I will add parentheses, when deemed necessary, to set off the formula for a critical region from

its neighboring text.) Thus, the null hypothesis is rejected if, and only if, the observed value of the

test statistic falls in the critical region. The point being that it is easier to say the critical region is

(X ≥ 7/27) instead of the whole if, and only if, stuff.

By similar reasoning, the critical region for the alternative < is (X ≤ −7/27). Finally, the

critical region for the alternative 6= is (|X| ≥ 9/27).
Let’s pause for a moment. You might be wondering, “Why are we learning about critical

regions?” This is a fair question. Sadly, you won’t see the answer until we have finished Chapter 9.

Thus, please be patient. As Andre Gide said:

One does not discover new lands without consenting to lose sight of the shore for a

very long time.
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Table 8.8: Types 1 and 2 errors in a test of hypotheses.

Action Truth (Only Nature knows)

(by researcher) H0 is correct H1 is correct

Fails to reject H0 Correct action Type 2 Error

Rejects H0 Type 1 Error Correct action

8.3.3 Two Types of Errors

Please look at Table 8.8. Statisticians find Table 8.8 to be a very useful way to think about a test of

hypotheses. I will attempt to explain it to you.

The table consists of two rows and two columns, but unlike such tables earlier in this chapter,

this table is not for data presentation.

1. The two rows of the table correspond to the two possible actions, or conclusions, available

to the researcher:

• The researcher can fail to reject the null hypothesis; or

• The researcher can reject the null hypothesis.

2. The two columns correspond to the two possibilities for reality:

• The null hypothesis can be correct; or

• The alternative can be correct.

We see that the columns are an idealization; as we saw in Chapter 5, it is possible for the Skeptic

(null hypothesis) to be incorrect and also for every alternative—even 6=—to be incorrect. For

the current purposes, we are not concerned with this possibility. Thus, for example, for ease of

exposition, I will sometimes refer to the second column as corresponding to the null hypothesis

being false.

The four cells in the table represent all possible combinations of the two rows with the two

columns.

1. The cells on themain diagonal correspond to correct actions, or conclusions:

• The researcher fails to reject a correct null hypothesis; or

• The researcher rejects a false null hypothesis.

2. The cells on the off diagonal correspond to incorrect actions, or conclusions:

• The researcher rejects a true null hypothesis, called a Type 1 error; or

• The researcher fails to reject a false null hypothesis, called a Type 2 error.
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Rather obviously, an honest researcher prefers to take a correct action and to avoid our two types

of errors.

Before data are collected, the researcher is uncertain about which action will be taken (which

row will occur). In addition the researcher is always uncertain about the truth. The uncertainty in

the rows (actions) will be dealt with using the ideas of probability, as you will see. The uncertainty

in the columns, however, is a different matter. I will explain the popular method and then make a

few comments about a different possible approach.

The popular approach is to condition on one of the columns being true. This, indeed, is what

I did in Chapters 3–5 and, in fact, what I will do for all of the tests in these Course Notes. In

particular, all of our analyses to date have been conditional on the assumption that the Skeptic is

correct; i.e., that the null hypothesis is true. (In Chapter 9 we will consider what happens if we

condition on the second column being correct.)

Look at the first column in Table 8.8 again. Conditional on the null hypothesis being correct,

there are only two possible actions: the correct action—failing to reject the null hypothesis—and

the incorrect action—rejecting the null hypothesis and making a Type 1 error. Thus, if you read that

a test has, say, an 8% chance of making a Type 1 error, literally this means that on the assumption

that the null hypothesis is true there is an 8% probability that the test will mistakenly reject the

null hypothesis. The usually unstated implication is, of course, that there is a 92% probability that

the test will correctly fail to reject the null hypothesis. Note that we know nothing about how the

test performs if the null hypothesis is false—this will be the topic of Chapter 9.

There is another approach which I will briefly describe; view the material in the remainder of

this subsection as optional enrichment. If you have heard of Bayesian analysis or the Bayesian

approach and are curious about it, then you might want to continue reading.

The other approach is called the Bayesian approach. Before collecting data, the researcher

specifies his/her personal probability that the null hypothesis is true. For example, Bert the re-

searcher might state, “The probability that the null hypothesis is true is equal to 10%.” After the

data are collected, Bert can update his personal probability. Updating is achieved by applying

something called Bayes’ formula, which you will learn about later in these Course Notes. As a

result of the updating, after analyzing the data, Bert might say, “My new probability that the null

hypothesis is true is equal to 20%.”

Bayes’ formula for updating probabilities is great, but I don’t like applying it to test of hy-

potheses. There are two reasons I feel this way.

1. It can be difficult to obtain widespread acceptance of personal probabilities. For example,

suppose that another researcher—call her Sally—is investigating the same phenomenon as

Bert. She states, “The probability that the null hypothesis is true is equal to 90%.” Without

going into details, you will likely agree that it seems reasonable that Bert and Sally could

draw wildly different conclusions from the same data.

2. This is my stronger reason. I feel that, to a certain extent, the probability that the null

hypothesis is correct is not that interesting. Why? Because I believe in Occam’s razor. A

main idea of tests of hypotheses is to discard a simpler explanation only if it appears to be

inadequate; whether the simpler explanation is likely to be true, to me, is largely irrelevant.
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8.3.4 The Significance Level of a Test

Let’s return to my earlier example of Fisher’s test with margins n1 = n2 = 27, m1 = 31 and

m2 = 23. I proposed the following critical regions for the three possible alternatives:

• For the alternative>, the critical region is (X ≥ 7/27)which gives 0.0489 as the probability
that the test will make a Type 1 error.

• For the alternative <, the critical region is (X ≤ −7/27) which gives 0.0489 as the proba-

bility that the test will make a Type 1 error.

• For the alternative 6=, the critical region is (|X| ≥ 9/27) which gives 0.0267 as the proba-

bility that the test will make a Type 1 error.

The probability of a Type 1 also is called the significance level of a test and is denoted by α (the

lower case Greek letter ‘alpha’). Thus, for the critical regions given above, α = 0.0489 for the

alternatives > or < and α = 0.0267 for the alternative 6=.

Many textbooks state, “Researchers usually take α = 0.05,” which begs the question, “Why

didn’t I use α = 0.05?” This is an easy question to answer: It is impossible to have α = 0.05
for the margins that I have given you. Indeed, there are only a finite number of possible choices

for α for this study; in particular, the possible values of α for the alternative > coincide with

the entries in the ‘>’ column in Table 8.7; e.g., α could be 0.0133 or 0.0489 or 0.1355 to name

three possibilities, but it cannot be 0.05. (In fact, my strange choice of margins—27, 27, 31 and

23—reflected my desire to have a significance level that is close to 0.05; I discovered these happy

margins by trial-and-error.)

8.4 Two Final Remarks

In this section I will examine two issues that frequently arise while using Statistics in scientific

problems. In my experience, there is a great deal of confusion about these issues, but both may be

resolved quite easily, thanks to the concept of critical regions.

8.4.1 Choosing the Alternative after Looking at the Data: Is it Really Cheat-

ing?

Yes, it is cheating, as I will now demonstrate. To keep this presentation brief, I will illustrate my

conclusion with only one example. I hope that you will see that this example can be generalized;

if not, I hope that you will trust me on this.

Refer to Example 8.5 on page 177 and its marginal counts, presented in Table 8.7 on page 178.

Recall that we found critical regions and significance levels (α’s) for the three possible alternatives:

• For the alternative >, the critical region is (X ≥ 7/27) and the significance level is α =
0.0489.
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• For the alternative <, the critical region is (X ≤ −7/27) and the significance level is α =
0.0489.

• For the alternative 6=, the critical region is (|X| ≥ 9/27) and the significance level is α =
0.0267.

Next, consider a hypothetical researcher who I will call Hindsight Hank (Hank, for short). Hank

wants to have α smaller than 0.05, but as close to 0.05 as possible. Thus, once Hank chooses his

alternative, he should use one of the critical regions listed above.

Hank, however, refuses to select his alternative before collecting data and, instead, proceeds as

follows.

• If the observed value of the test statistic, x, is greater than 0, then Hank says, “Well, obvi-

ously, < is inconceivable. Thus, my alternative is >, my critical region is (X ≥ 7/27) and
α = 0.0489.”

• If the observed value of the test statistic, x, is smaller than 0, then Hank says, “Well, obvi-

ously,> is inconceivable. Thus, my alternative is <, my critical region is (X ≤ −7/27) and
α = 0.0489.”

(Note that for the sampling distribution given in Table 8.7, the observed value of the test

statistic cannot equal zero. For situations in which zero is a possible value of the test

statistic, the argument below needs to be modified, but the basic important idea remains the

same.)

We see that Hank’s actual critical region is (|X| ≥ 7/27); i.e., if the observed value x satisfies:

x ≥ 7/27 or x ≤ −7/27,

then Hank will reject the null hypothesis. From Table 8.7 we can see that Hank’s actual α is equal

to 0.0978.

In summary, I label Hank’s behavior to be cheating because he claims to have α =
0.0489, but his actual α is twice as large!

8.4.2 The Two-Sided Alternative Revisited

Suppose that you choose the alternative 6= and have the sampling distribution given in Table 8.7.

You choose the critical region (|X| ≥ 9/27), which gives α = 0.0267. After data are collected,
your observed value of the test statistic, x, equals or exceeds 9/27. Thus, the action is to reject the
null hypothesis. Here is the question I address in this subsection:

Which of the following is correct?

1. The scientific conclusion is that p1 > p2.

2. The scientific conclusion is that p1 6= p2.
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(If the answer seems obvious, please bear with me.) This can be an important issue for a scientist.

For example, if the treatments are different medical protocols and a success is preferred to a failure,

then the first conclusion indicates that that treatment 1 is preferred to treatment 2, whereas the

second conclusion simply indicates that the treatments differ.

I have witnessed rather heated discussions over which conclusion is correct. Thus, I will spend

a few minutes explaining why the first conclusion is correct; i.e., it is proper to conclude that

treatment 1 is better than treatment 2. (Remember that successes are preferred. Also, remember

that our conclusions in Part I of these notes are quite limited; I am saying that the proper conclusion

is that for the units being studied treatment 1 is superior to treatment 2.)

My argument is actually quite simple, once I reveal a fact to you.

You have noted, no doubt, that I allow only two hypotheses in our tests of hypotheses. There

are two reasons that all introductory statistics texts make this restriction.

1. Having exactly two hypotheses is the norm in scientific work.

2. Allowing for three or more hypotheses will result, for the most part, in more work for you

with little benefit.

The current situation, however, is an exception to the for the most part disclaimer.

To a professional statistician, the pair of hypothesis:

H0: The Skeptic is correct; andH1: p1 6= p2,

is shorthand for the three hypothesis problem:

H0: The Skeptic is correct; H1: p1 > p2; and H2: p1 < p2.

The critical region is actually:

If X ≥ 9/27, then reject H0 in favor ofH1; and if X ≤ −9/27, then reject H0 in favor of H2.

We can see that the probability of a Type 1 error (rejecting a true null hypothesis for either conclu-

sion) is:

P (X ≥ 9/27) + P (X ≤ −9/27) = P (|X| ≥ 9/27) = 0.0267.

In summary, if one selects the two-sided alternative and rejects the null hypothesis, then the

proper scientific conclusion is:

• p1 > p2 if x > 0; or

• p1 < p2 if x < 0.

Although the example of this subsection is for a dichotomous response and Fisher’s test, the

conclusion remains the same for the other two tests of Part I of these notes and, indeed, for analo-

gous situations in population-based inference in Part II of these Course Notes.
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8.5 Summary

In this chapter we consider CRDs with a dichotomous response. When the response is dichoto-

mous, one possible response is labeled a success and the other a failure. Our suggested three rules

for assigning these labels are given on page 168. We summarize our data by computing p̂1 [p̂2],
which is the proportion of successes on treatment 1 [2] in the data. Often, we also compute the

(redundant) q̂1 [q̂2], which is the proportion of failures on treatment 1 [treatment 2] in the data.

Note that I say redundant because:

p̂1 + q̂1 = 1 and p̂2 + q̂2 = 1.

If we identify the number ‘1’ with a success and the number ‘0’ with a failure, we see that we

can match our current notation with our earlier notation for a numerical response, namely:

p̂1 = x̄ and p̂2 = ȳ.

This identification is very helpful because it implies that all of our earlier work on:

the Skeptic’s argument; specify the hypotheses; the test statistic U ; sampling distribu-

tions; and the rules for computing P-values

apply immediately to the studies of this chapter. In particular, we define p1 [p2] (note, no hat) to be
the proportion of successes the researcher would have obtained if the All Treatment-1 [2] study

had been performed. If the clone-enhanced study could be performed, then we would know the

values of both p1 and p2.
As before, the null hypothesis is that the Skeptic is correct. The three options for the alternative

are given on page 171. With a dichotomous response, our test is called Fisher’s test.

Finally, there is a wonderful website,

http://www.langsrud.com/fisher.htm,

that is easy to use and gives us the exact P-value for Fisher’s test for every choice of alternative.

When using this website, recall that:

• Left represents the alternative <;

• Right represents the alternative >; and

• 2-Tail represents the alternative 6=.

It is convenient to use the symbolX to represent the test statistic for Fisher’s test, with observed

value

x = p̂1 − p̂2. (8.1)

We don’t actually compute x to obtain our P-value; the website above takes the counts a, b, c and
d as input, saving us from the tedium of the dividing and subtracting needed to obtain x.

The critical region of a test consists of the collection of all values of the test statistic that would

result in the rejection of the null hypothesis.

Table 8.8 displays the four possible combinations of action (by the researcher) and truth (known

only to Nature) that could occur in a test of hypotheses. It is reproduced below:
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Action Truth (Only Nature knows)

(by researcher) H0 is correct H1 is correct

Fails to reject H0 Correct action Type 2 Error

Rejects H0 Type 1 Error Correct action

After data are collected, the researcher rejects the null hypothesis if, and only if, the observed value

of the test statistic lies in the critical region. Thus, the data determine which action and, hence, row

of the table is relevant. The columns of the table are more problematic. The standard approach—

which we will follow in these Course Notes—is to study the columns one-at-a-time. In particular,

first we condition on the null hypothesis being true. You are familiar with this idea; we used it to

obtain the sampling distributions for our three tests to date, comparisons of: means, mean ranks

and proportions.

When statisticians talk about the probability of a Type 1 error, they really mean the probability

of making a Type 1 error conditional on the assumption that the null hypothesis is true. (Condi-

tional probabilities will be discussed more carefully in Chapter 16.) The probability of a Type 1

error is called the significance level of the test and is denoted by α.
Typically, before collecting data a researcher selects a target value for α; usually—but not

exclusively— the target is 0.05. After the exact or approximate sampling distribution is obtained,

using trial-and-error the researcher determines a critical region which gives a value of α which is

close to the target value. I have shown you one example of this search for a critical region and will

show you others in the Practice Problems below.

Sometimes a researcher specifies that the actual α should be as close as possible to the target,

without exceeding the target. Thus, for example, if the target is 0.05, such a researcher would

prefer α = 0.0450 over, say, α = 0.0520, even though the latter is closer to the target. I call this

approach The Price is Right paradigm, but this name is unlikely to become widely used. (See

also Practice Problem 4.)

Section 8.4 shows why it is considered to be cheating to look at one’s data before selecting the

alternative hypothesis. Also, Section 8.4 shows that if one rejects the null hypothesis after selecting

a two-sided alternative, the proper scientific conclusion is the one-sided alternative supported by

the data.

Finally, Chapter 9 will address the issue of determining the probability of a Type 2 error of a

test.
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Table 8.9: The 2 × 2 contingency table of observed counts for Sara’s golf study. A response is a

success if, and only if, it equals or exceeds 100 yards.

Row

Response Proportions

Club: S F Total S F
3-Wood 31 9 40 0.775 0.225

3-Iron 20 20 40 0.500 0.500

Total 51 29 80

Table 8.10: The 2× 2 contingency table of observed counts for Reggie’s dart study. A response is

a success if, and only if, it equals or exceeds 200 points.

Row

Response Proportions

Distance: S F Total S F
10 Feet 9 6 15 0.60 0.40

12 Feet 5 10 15 0.33 0.33

Total 14 16 30

8.6 Practice Problems

1. Refer to Sara’s golf data that are presented in Table 2.2 on page 29. Suppose that, being a

novice golfer, Sara is mostly interested in not embarrassing herself. Thus, she decides that a

response of 100 yards or more is a success and a response of less than 100 yards is a failure.

With this definition, Sara’s data are presented in Table 8.9. (I recommend that you verify the

counts in this table.)

(a) Suppose that Sara chooses the alternative >. Explain what this means in terms of the

Inconceivable Paradigm.

(b) Find the exact P-value for Sara’s data for Fisher’s test and the alternative >.

(c) Recall that, based on simulation experiments, approximate P-values for Sara’s data and

the alternative > are:

• 0.0293 for the sum of ranks test; and

• 0.0903 for the test that compares means.

Compare these P-values to the answer you obtained in (b) and comment.

2. Refer to Reggie’s dart data that are presented in the Chapter 1 Homework Problems on

page 25. Suppose that Reggie decided that a response of 200 or more points is a success
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and a response of fewer than 200 points is a failure. With this definition, Reggie’s data are

presented in Table 8.10. (I recommend that you verify the counts in this table.)

(a) Suppose that Reggie chooses the alternative >. Explain what this means in terms of

the Inconceivable Paradigm.

(b) Find the exact P-value for Reggie’s data for Fisher’s test and the alternative >.

(c) Based on simulation experiments, approximate P-value for Reggie’s data and the alter-

native > are:

• 0.0074 for the sum of ranks test; and

• 0.0050 for the test that compares means.

Compare these P-values to the answer you obtained in (b) and comment.

3. In this problem I want to reinforce the ideas of finding a critical region for Fisher’s test.

Suppose that you want to perform a Fisher’s test for a table with the following marginal

totals:

n1 = n2 = m1 = m2 = 20.

(a) Use trial-and-error to find the critical region for the alternative> and α as close to 0.05

as possible.

(b) Use trial-and-error to find the critical region for the alternative> and α as close to 0.10

as possible.

(c) Use trial-and-error to find the critical region for the alternative< and α as close to 0.05

as possible.

(d) Use trial-and-error to find the critical region for the alternative 6= and α as close to 0.05

as possible.

4. This problem introduces the idea of finding the critical region for the test that compares

means. In this problem I will use an exact sampling distribution. In Chapter 9 we will

consider using an approximate sampling distribution.

Table 8.11 presents the frequency distribution of u for the 252 possible assignments for

Kymn’s study of rowing. (If this table seems familiar to you it’s because you saw it in

Table 3.7 on page 65.)

(a) Find the critical region for the alternative > for α as close to the target value 0.05 as

possible.

(b) Many statisticians are fans of the television show The Price is Right. (I don’t actually

know this; it’s just my segue to the following idea.) In particular, they want α to be as

close to the target as possible without exceeding it. Repeat part (a) with this The Price

is Right paradigm.

(c) Find the critical region for the alternative < for α as close to the target value 0.05 as

possible.
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Table 8.11: Frequency table for u for the 252 possible assignments for Kymn’s study.

u Freq. u Freq. u Freq. u Freq. u Freq. u Freq.

−7.2 1 −4.8 3 −2.4 10 0.4 12 2.8 10 5.2 4

−6.8 1 −4.4 5 −2.0 8 0.8 10 3.2 8 5.6 3

−6.4 1 −4.0 8 −1.6 14 1.2 13 3.6 6 6.0 1

−6.0 1 −3.6 6 −1.2 13 1.6 14 4.0 8 6.4 1

−5.6 3 −3.2 8 −0.8 10 2.0 8 4.4 5 6.8 1

−5.2 4 −2.8 10 −0.4 12 2.4 10 4.8 3 7.2 1

0.0 16 Total 252

(d) Find the critical region for the alternative 6= for α as close to the target value 0.05 as

possible.

5. Refer to the sampling distribution given in the previous problem, see Table 8.11. Recall

Hindsight Hank, who was introduced in Section 8.4. Hank decides to proceed as follows:

• If x ≥ 0, he declares > to be his alternative and (U ≥ 4.8) to be his critical region.

• If x < 0, he declares < to be his alternative and (U ≤ −4.8) to be his critical region.

(a) According to Hank, what is his value of α?

(b) What is Hank’s actual value of α?

6. Recall that in Kymn’s actual study, u = 7.2. Suppose that she had chosen the alternative 6=;

what would be her appropriate scientific conclusion?

8.7 Solutions to Practice Problem

1. (a) Sara decided that the alternative < was inconceivable. This inconceivable alternative

states that if Sara could have performed the clone-enhanced study, then there would

have been more successes with the 3-Iron than with the 3-Wood.

(b) I entered the values 31, 9, 20 and 20 in the Fisher’s test website and obtained 0.0096 as

the P-value for the alternative >.

(c) The sum of ranks test gives a much smaller P-value than the test that compares means.

In addition, Fisher’s test gives a much smaller P-value than the sum of ranks test.

2. (a) Reggie decided that the alternative<was inconceivable. This inconceivable alternative

states that if Reggie could have performed the clone-enhanced study, then there would

have been more successes from 12 feet than from 10 feet. In short, Reggie felt that it

was inconceivable for the greater distance to result in better accuracy.
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(b) I entered the values 9, 6, 5 and 10 in the Fisher’s test website and obtained 0.1362 as

the P-value for the alternative >.

(c) The sum of ranks test and the test that compares means give similar and very small

approximate P-values. The P-value from Fisher’s test is much larger than the other two

P-values.

3. (a) My first guess is a = 13, which implies b = c = 7 and d = 13. The site gives me

0.0564 for the exact P-value for >. This is a good start!

I next try a = d = 14 and b = c = 6, which yields 0.0128 for the exact P-value for >.

Next, a = 13 gives x = 13/20 − 7/20 = 6/20 = 0.30. Thus, the critical region is

(X ≥ 0.30) which has significance level α = 0.0564.

(b) Building on my answer to (a), I next try a = d = 12 and b = c = 8, which yields

0.1715 for the exact P-value for >. Thus, the critical region in part (a) yields the value

of α closest to 0.10.

(c) By symmetry, the critical region is (X ≤ −0.30) which gives α = 0.0564 for the

alternative <.

(d) By symmetry and the work above, the critical region (|X| ≥ 0.30) givesα = 2(0.0564) =
0.1128 for the alternative 6=; and the critical region (|X| ≥ 0.40) givesα = 2(0.0128) =
0.0256 for the alternative 6=. Thus, the latter of these is the answer I seek.

4. (a) Because there are 252 equally likely possible assignments, all probabilities for U will

be of the form k/252, for some value of k. My target is to obtain the probability 0.05.

Thus, I begin by setting

k/252 = 0.05 and solving for k : k = 0.05(252) = 12.6.

By trial-and-error in Table 8.11, I find:

P (U ≥ 4.8) = 14/252 = 0.0556 and P (U ≥ 5.2) = 11/252 = 0.0437.

Thus, the critical region is (U ≥ 4.8) and α = 0.0556.

(b) The critical region chosen in part (a) violates The Price is Right paradigm because its

α exceeds the target, 0.05. Instead, we use the critical region (U ≥ 5.2) which gives

α = 0.0437.

(c) By symmetry, the critical region is (U ≤ −4.8) and α = 0.0556.

(d) By symmetry, I want to find the number c such that P (U ≥ c) is as close as possible to
0.025, one-half of the target value. I begin by setting

k/252 = 0.025 and solving for k : k = 0.025(252) = 6.3.

By trial-and-error in Table 8.11, I find:

P (U ≥ 5.6) = 7/252 = 0.0278

is the closest value to 0.025. Thus, the critical region is (|U | ≥ 5.6) and α = 2(0.0278) =
0.0556.
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5. (a) According to Hank, if his x ≥ 0, he would say:

α = P (U ≥ 4.8) = 14/252 = 0.0556.

Alternatively, if his x < 0, he would say:

α = P (U ≤ −4.8) = 14/252 = 0.0556.

(b) Actually,

α = P (U ≥ 4.8) + P (U ≤ −4.8) = 28/252 = 0.1111.

6. Kymnwould reject the null hypothesis and, because x = 7.2 > 0, her appropriate conclusion
is that µ1 > µ2.

8.8 Homework Problems

1. Mary, a student in my class, conducted a study that she called Is Pearl Ambidextrous? The

balanced study consisted of a total of 50 trials. Treatment 1 [2] was a canter depart on a left

[right] lead. According to Mary—I don’t know about these things—a canter can be executed

successfully or not. Pearl, a seven year-old mare, obtained a total of 42 successes, with 22

successes coming on treatment 1.

(a) Present Mary’s data in a 2 × 2 table; calculate the proportions of successes; and com-

ment.

(b) Find Mary’s exact P-value for each of the three possible alternatives. Comment.

2. Robert, a student in my class, enjoyed target shooting with his rifle. He performed a balanced

study on a total of 100 trials. Treatment 1 [2] was shooting from the prone [kneeling] posi-

tion. A shot was labeled a success if it hit a specified region of the target. Robert obtained a

total of 67 successes, with 25 coming from the kneeling position.

(a) Present Robert’s data in a 2 × 2 table; calculate the proportions of successes; and

comment.

(b) In his report, Robert stated:

Everyone believes that shooting from the prone position is more accurate than

shooting from the kneeling position.

Given this belief, what should Robert use for his alternative hypothesis?

(c) Find Robert’s exact P-value for each of the three possible alternatives. Comment on

the P-value for your answer in part (b).

3. Suppose that you want to perform a Fisher’s test for a table with the following marginal

totals:

n1 = n2 = m1 = m2 = 25.

(If you have difficulty answering the questions below, refer to Practice Problem 3.)
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Table 8.12: Frequency table for the values r1 ofR1 for the 252 possible assignments for a balanced

CRD with n = 10 units and 10 distinct response values.

r1 Freq. r1 Freq. r1 Freq. r1 Freq. r1 Freq. r1 Freq.

15 1 19 5 23 14 28 20 33 11 37 3

16 1 20 7 24 16 29 19 34 9 38 2

17 2 21 9 25 18 30 18 35 7 39 1

18 3 22 11 26 19 31 16 36 5 40 1

27 20 32 14

Total 252

(a) Use trial-and-error to find the critical region for the alternative> and α as close to 0.05

as possible.

(b) Use trial-and-error to find the critical region for the alternative< and α as close to 0.05

as possible.

(c) Use trial-and-error to find the critical region for the alternative 6= and α as close to 0.05

as possible.

4. Table 8.12 presents the frequency distribution of the values of r1 for the sum of ranks test

for a balanced CRD with a total of n = 10 units and no tied values. (You saw this table

previously in Table 6.11.) If you have difficulty with the questions below, refer to Practice

Problem 4.

Find the critical region for the test statistic R1 and the alternative > that gives α as close as

possible to my target value 0.05, without exceeding the target.
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Chapter 9

Statistical Power

9.1 Type 2 Errors and Power

Table 9.1 is a reproduction of Table 8.8 in Section 8.3 that presented the ideas of Type 1 and Type 2

errors. In Chapter 8 we focused on the first column of this table, the column which states that the

null hypothesis is correct. In particular, by assuming that the null hypothesis is correct, we are able

to obtain the exact or an approximate sampling distribution for a test statistic. This work led to

the new notion of a critical region and its associated significance level for a test. For most of the

current chapter we will examine what happens when we assume that the alternative hypothesis is

true.

There are two things to remember about assuming that the alternative hypothesis is true:

1. As demonstrated in Chapter 5, whereas there is only one way for the null hypothesis to be

true—namely, that the Skeptic is correct—there are figuratively, and sometimes literally, an

infinite number of ways for the alternative hypothesis to be true. As a result, we will be able

to obtain probabilistic results only by assuming that the alternative is true in a particular

way.

2. The first step to focusing on the second column—i.e., seeing what happens if one assumes

the alternative hypothesis is correct—is to obtain the critical region of a test. In other words,

we must study what happens when the null hypothesis is correct before we can hope to study

what happens when the alternative is correct.

Table 9.1: Types 1 and 2 errors in a test of hypotheses.

Action Truth (Only Nature knows)

(by researcher) H0 is correct H1 is correct

Fails to reject H0 Correct action Type 2 Error

Rejects H0 Type 1 Error Correct action
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As you might suspect, the ideas behind this chapter are pretty complicated. As a result, in the

next section I will present an extended complete analysis of a very simple and familiar study. First,

however, let me present a few basic ideas.

We are in a situation in which we have a sampling distribution for a test statistic (exact or

approximate) and a target value for α, the significance level of the test. We have found a critical

region which has significance level which is close to the target. (You have had practice doing this,

in the Practice Problems and Homework of Chapter 8.)

The critical region serves the following purpose. After the data are collected, the observed

value of the test statistic is found either to lie in the critical region or not to lie in the critical region;

in the former case, the null hypothesis is rejected and in the latter case the researcher fails to reject

the null hypothesis. In other words, by comparing the critical region to the data—as summarized

by the observed value of the test statistic—we find out which row of Table 9.1 is occurring.

When we focused on the first column of Table 9.1, the possible actions were: fail to reject the

null hypothesis (the correct action for column 1); and reject the null hypothesis (a Type 1 error).

Each of these actions has a probability of occurring and because there are only two possible actions,

the two probabilities must sum to one. I mentioned that we denote the probability of a Type 1 error

by the symbol α. Obviously, the probability of correctly failing to reject a true null hypothesis

is equal to (1 − α). I have never witnessed anybody referring to this latter probability—let alone

giving it a name—either verbally or in writing. So, why do I mention it? You will see very soon.

As mentioned above, when we attempt to calculate probabilities on the assumption that the

alternative hypothesis is correct, we must specify exactly how it is correct. Once that specification

is made, it is sensible to seek the probability of a Type 2 error. The probability of a Type 2 error

typically is denoted by β (get it? Type 1: α; Type 2: β; the first two letters of the Greek alphabet).

In column 2, however, unlike in column 1, we give a name to (1− β); it is called the power of the
test for the particular alternative being considered.

The idea is that we would like to have a test that has a low probability of making a Type 2 error;

in other words, we would like to have a test that has a large power.

9.2 An Extended Example: Cathy’s Study of Running

Cathy’s study of her running was introduced near the end of Chapter 2. I am guessing that you

remember the general motivation of the study, but have not memorized Cathy’s data. If I am wrong

about the former, please read about it again (Section 2.4 on page 40); if I am correct about the

latter, you will appreciate my reproduction of Cathy’s data in Table 9.2.

For the purpose of this section, we will suppose that Cathy chose the alternative >; i.e., that

her times on treatment 1 (the high school) would be larger (i.e., she would run slower) than her

times on treatment 2 (the park). This is not a ridiculous choice; Cathy might have believed that the

natural beauty of the park energized her, resulting in faster times.

In any event, the sampling distribution of U for Cathy’s study is given in Table 9.3; it is easy to

see that the critical region

(U ≥ 9.67) gives α = 0.05, exactly.
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Table 9.2: Cathy’s times, in seconds, to run one mile. HS means she ran at the high school and P

means she ran through the park.

Trial: 1 2 3 4 5 6

Location: HS HS P P HS P

Time: 530 521 528 520 539 527

Table 9.3: The sampling distribution of U for Cathy’s CRD.

u P (U = u) u P (U = u) u P (U = u)
−9.67 0.05 −3.00 0.10 3.67 0.05
−9.00 0.05 −2.33 0.05 4.33 0.05
−7.67 0.05 −1.67 0.05 5.00 0.05
−5.00 0.05 1.67 0.05 7.67 0.05
−4.33 0.05 2.33 0.05 9.00 0.05
−3.67 0.05 3.00 0.10 9.67 0.05

Cathy’s actual value of u is 5.00. This value is not in the critical region; thus, the action is

that Cathy fails to reject the null hypothesis. (Earlier, when we were focusing on P-values, we

found that the P-value for Cathy’s data and the alternative > is equal to 0.20. Then, as now, the

conclusion/action was to fail to reject.)

At this point a student might be tempted to ask: Tell me, Bob, did Cathy take the correct action?

My answer, of course, is: Who do you think I am, Nature?

We are now approaching the tricky part of this story.

I am now going to focus on the idea that the alternative hypothesis is correct. I need to specify

exactly how it is correct. I make this executive decision in two steps:

1. I assume that there is a constant treatment effect, as given in Definition 5.1 on page 91.

Because the alternative is >, this constant treatment effect must be a positive number.

2. Having decided on the form of the alternative—i.e., a constant treatment effect—I must

decide on its size. To get this started, I will explore the idea that there is a constant treatment

effect of seven seconds.

These two points might seem to be a bit abstract. Let’s get more specific.

Cathy’s sorted times are:

• 521, 530 and 539 on treatment 1; and

• 520, 527 and 528 on treatment 2.
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Table 9.4: The sampling distribution of U for Cathy’s CRD on the assumption that there is a

constant treatment effect of seven seconds.

u P (U = u) u P (U = u) u P (U = u)
−3.00 0.05 5.00 0.10 11.00 0.05
−0.33 0.05 5.67 0.05 11.67 0.05
0.33 0.05 6.33 0.05 12.33 0.05
1.67 0.05 7.67 0.05 13.67 0.05
2.33 0.05 8.33 0.05 14.33 0.05
3.00 0.05 9.00 0.10 17.00 0.05

The assumption of a constant treatment effect of seven seconds means that the trials that gave

times 521, 530 and 539 on treatment 1 would have given times 521− 7 = 514, 530− 7 = 523 and
539 − 7 = 532, respectively, if they had been assigned to treatment 2. Similarly, the times 520,

527 and 528 that were actually obtained on treatment 2, would have given times 520 + 7 = 527,
527 + 7 = 534 and 528 + 7 = 535, respectively, if they had been assigned to treatment 1.

Now, the details get messy and I won’t ever ask you to produce them, but I hope you can see

that the current situation is much like assuming the Skeptic is correct; namely, we have a theory that

tells us exactly what responses would have been obtained for any particular assignment. Because

there are only 20 assignments to consider, it is easy for me to determine the exact distribution of U
on the assumption that there is a constant treatment effect of seven seconds.

The distribution of U for Cathy’s study on the assumption that the alternative hypothesis is

correct in that there is a constant treatment of seven seconds is given in Table 9.4. I want to make

a few comments about the distribution in Table 9.4:

1. If you examine the entries carefully, you will see that the distribution is symmetric about the

number 7. This means that both the values of u and the probabilities are symmetric around 7.

Let’s first look at the values of u. The mean of the smallest possible value of u (−3.00) and
the largest possible value of u (17.00) is 7.00. Thus, they are equal distance from 7.00. This

pattern continues for all such pairs: the mean of −0.33 and 14.33; the mean of 0.33 and

13.67; and so on, are all equal to 7. Next, note that all probabilities, except for two, are equal

to 0.05. The other two, both equal to 0.10, belong to the values u = 5.00 and u = 9.00
which are symmetric around 7.

2. Based on the previous remark, the mean of the sampling distribution in Table 9.4—being

equal to its center of gravity—is 7. This is hardly surprising because the assumption is that

there is a constant treatment effect of seven seconds for each trial.

3. Sadly, the distribution in Table 9.4 is not obtained by simply shifting the distribution in

Table 9.3 to the right by seven seconds. (For one of many possible examples of this fact: if

you add 7 to the smallest value in the latter table, u = −9.67, you do not obtain the smallest

value in the former table, u = −3.00.)
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Table 9.5: The sampling distribution of U for Cathy’s CRD on the assumption that there is a

constant treatment effect of 15 seconds.

u P (U = u) u P (U = u) u P (U = u)
2.33 0.05 13.00 0.05 19.67 0.05
5.00 0.05 13.67 0.05 21.67 0.05
7.00 0.05 14.33 0.05 22.33 0.05
7.67 0.05 15.67 0.05 23.00 0.05
8.33 0.05 16.33 0.05 25.00 0.05
10.33 0.05 17.00 0.05 27.67 0.05
11.00 0.05 19.00 0.05

In fact, there is no simple relationship between the null sampling distribution ofU (computed

by assuming that the Skeptic is correct) and the numerous sampling distributions that can be

obtained by varying the size of the constant treatment effect. (See the next example with

a constant treatment effect of 15 seconds.) As a result, studying power for randomization-

based inference is a frustrating and tedious process. By contrast, population-based inference

(Part II of these notes) is more amenable to studies of power.

Finally, I am ready to say something useful about power and Cathy’s study. Remember the

critical region for α = 0.05 is (U ≥ 9.67). In words, the null hypothesis is rejected if, and only

if, the observed value of U equals or exceeds 9.67. We see from Table 9.4, that, on the assumption

there is a constant treatment effect of seven seconds,

P (U ≥ 9.67) = 6(0.05) = 0.30.

Thus, the power for our chosen alternative is (only) 30%. In words, if it is true that running at the

high school adds seven seconds (compared to running through the park) to Cathy’s time, there was

only a 30% chance that Cathy’s study would detect it and correctly reject the null hypothesis.

I repeated the above analysis—details, thankfully, suppressed—for a constant treatment effect

of 15 seconds. My results are presented in Table 9.5. From this table, we can calculate the power,

based on the assumption of a constant treatment effect of 15 seconds:

P (U ≥ 9.67) = 1− P (U < 9.67) = 1− 5(0.05) = 0.75.

As above, if it is true that running at the high school adds 15 seconds (compared to running through

the park) to Cathy’s time, there was a 75% chance that Cathy’s study would detect it and correctly

reject the null hypothesis. I consider 75% to be a pretty large value for power. On the other hand,

to me—never much of a distance runner—15 seconds seems to be a huge treatment effect. Thus,

I am not convinced that my computations are very useful scientifically. Of course, Cathy’s study

was very small and it is impressive that it has any power!

The above two sampling distributions reflect a general fact that you can rely upon: For the

alternative > and the test statistic U , if we increase the size of the treatment effect, then the

power will increase or stay the same.
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Table 9.6: The effect of the choice of α on the power of the test statistic U for Cathy’s data.

Power for a constant

Critical treatment effect of:

α Region 7 seconds 15 seconds
0.05 U ≥ 9.67 0.30 0.75
0.10 U ≥ 9.00 0.40 0.75
0.15 U ≥ 7.67 0.50 0.85
0.20 U ≥ 5.00 0.70 0.95

I end this section by looking at what happens if we change the value of α. My results are

summarized in Table 9.6. Let me make a few comments about this table.

1. The table has four rows, corresponding to four choices for α: 0.05, 0.10, 0.15 and 0.20. In

my experience, it is rare for a researcher to choose an α that is larger than 0.10, but with such

a small study (only 20 possible assignments) please grant me some latitude.

2. The first row of the table is a restatement of the earlier work in this subsection. Namely, for

α = 0.05, from Table 9.3 the critical region is (U ≥ 9.67) and the powers, 0.30 and 0.75,

were found by examining Tables 9.4 and 9.5, respectively.

3. In a similar manner, for α = 0.10, we can see from Table 9.3 that

P (U ≥ 9.00) = 0.10;

thus, we have our critical region for α = 0.10. For power, from Table 9.4 we find

P (U ≥ 9.00) = 0.40,

and from Table 9.5 we find

P (U ≥ 9.00) = 0.75.

4. In similar manners, you can verify the remaining entries in Table 9.6.

The obvious conclusion from Table 9.6 is: if we increase the value of α, then the power will

increase or stay the same. (For population-based inference, it will increase.)

9.3 Simulation Results: Sara’s Golfing Study

In this section I will use Sara’s study, first introduced in Chapter 2, to examine several problems,

listed below. Note that throughout this section, I will use the alternative >.

1. How to find the critical region for the test that compares means.
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2. How to calculate power for the test that compares means.

3. How to find the critical region for the sum of ranks test.

4. How to calculate power for the sum of ranks test.

5. How to decide which test is better for Sara’s data: the test that compares means or the sum

of ranks test.

In the previous section, I was able to obtain and present exact results on the significance level

and power for Cathy’s running study because there were only 20 possible assignments, a very

manageable number. By contrast, for Sara’s study, the number of possible assignments is

1.075× 1023 (see page 57).

Because this number is so huge, we will opt for an approximation based on a computer simulation

experiment withm = 10,000 reps.

You might recall that in Chapter 4 I performed a computer simulation experiment on Sara’s

data and the test statistic U . With 10,000 reps, I obtained 723 distinct observed values of U , far

too many for an analysis in which I show you all of the details! As a result, I will provide you with

only the necessary summaries of my simulation results. Thus, I am leaving you in the dark in two

ways:

1. I am not going to explain the computer code needed for my simulation experiments; and

2. I am not going to show you the raw results of my simulation experiments; they are just too

cumbersome and tedious!

Recall that in earlier simulation studies, the P-value I obtained for the test that compares means

was much larger than the P-value I obtained for the sum of ranks test (0.0903 for the former and

0.0293 for the latter). As a result, I am particularly interested in determining which test is better—

i.e., more powerful—for Sara’s data.

It would be possible to perform my analysis with two different simulation experiments: one

for the test statistic U and another for the test statistic R1. It turns out to be a superior strategy,

however, to investigate the two test statistics simultaneously. (The sense in which this new strategy

is better will be discussed much later in these Course Notes; sorry.)

The obvious question is: What do I mean by investigating the two test statistics simultaneously?

It is easiest to see what I mean if we look back at Cathy’s study. Please refer to her actual study

results, presented in Table 9.2 on page 195. I would never, of course, use a computer simulation

experiment to approximate the sampling distribution of either U orR1 for Cathy’s study; with only

20 possible assignments the exact sampling distributions are easily obtained. (I am reminded of

former President Richard Nixon who reportedly said, “I would never bribe everyone who knows

the truth about Watergate, but how much would it cost?”) Suppose, for example, that on the first

rep, my simulation experiment selects the assignment 3,4,5. With this choice, the sorted data

become:
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• Treatment 1: 520, 528, 539; with ranks 1, 4, 6; and

• Treatment 2: 521, 527, 530; with ranks 2, 3, 5.

Thus,

u = x̄− ȳ =
520 + 528 + 539

3
− 521 + 527 + 530

3
= 529− 526 = 3; and r1 = 1 + 4 + 6 = 11.

In words, every rep yields observed values for both U and R1. By performing 10,000 reps, we

can build up a joint distribution of values of U and R1. This is what I did for Sara’s data; I will

describe my findings below.

First, I need to determine my approximate critical region for each test. By the way, I hate to

keep typing approximate; can we agree to remember that all answers from computer simulation

experiments are necessarily approximations? Assuming your answer is yes, I will dispense with

the typing of the word approximate.

I choose to have a target of 0.05 for α for both tests. Why? Two reasons:

1. Why 0.05? Because in my experience, it is the most popular choice among statisticians and

researchers.

2. Why the same target for both tests? So that the comparison will be fair. As shown in

Table 9.6, as the value of α increases, a test becomes more powerful. If I were to show, for

example, that the test statistic U with α = 0.10 is more powerful than the test statistic R1

with α = 0.01, what would I have accomplished? (My answer: Nothing of value.)

My simulation experiment was quite successful in achieving an α close to my target value of

0.05:

• For the test that compares means,

Rel. Freq. (U ≥ 10.65) = 0.0499; and

• For the sum of ranks test,

Rel. Freq. (R1 ≥ 1788.0) = 0.0499.

Thus, my two critical regions are:

(U ≥ 10.65) and (R1 ≥ 1788.0),

both yielding α = 0.0499.
In the previous paragraph, I consider the tests separately; i.e., I don’t describe how U and R1

vary together. For the latter, please refer to the results in Table 9.7. I will take a few minutes to

describe the information displayed in this table.
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Table 9.7: Decisions made by U andR1 for the 10,000 data sets that were obtained in the computer

simulation experiment on Sara’s data under the assumption that the Skeptic is correct. The critical

regions are (U ≥ 10.65) and (R1 ≥ 1788.0).

R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 a = 9,374 b = 127 a+ b = 9,501

Reject H0 c = 127 d = 372 c + d = 499

Total a + c = 9,501 b+ d = 499 m = 10,000

1. Literally, Table 9.7 has two rows and two columns of numbers—along with various totals—

but it is importantly different from our data tables for a CRD in Chapter 8. (We will see

tables like this again in Chapter 16.)

• The two rows correspond to the two possible actions—fail to reject and reject—possible

with test statistic U ; and

• The two columns correspond to the two possible actions—again, fail to reject and

reject—possible with test statistic R1.

2. The table’s cells correspond to the four possible combinations of the tests’ joint actions. For

example, the upper left cell corresponds to both tests failing to reject and the lower right cell

corresponds to both tests rejecting.

3. I use the Chapter 8 notation for the cell counts: a, b, c and d. I do not use the Chapter 8

notation for the marginal totals. For example, following Chapter 8, if I denoted the first

row total, 9,501, by n1, this would be wrong because, in Sara’s study, the symbols n1 and

n2, both 40, have already been claimed.

4. It is extremely important for you to remember that Table 9.7 was generated under the as-

sumption that the null hypothesis is true. Dating back to Chapters 3–5, we obtain P-values

and critical regions by assuming the Skeptic is correct. Soon we will see what happens if we

assume that the Skeptic is wrong.

5. Let’s look at the counts in the four cells in Table 9.7. The largest count, by far, is a = 9,374.

This tells us that for 9,374 of the assignments, the tests correctly agreed that the true null

hypothesis should not be rejected.

The next largest count, d = 372 tells us that for 372 of the assignments, the tests incorrectly

agreed to reject the true null hypothesis.

The remaining counts are equal, b = c = 127. The equality is no surprise; they must be

equal because the two tests have the same α. What is interesting is the relative sizes of 372

and 127: these give us a rough idea on how much the tests agree in what they see in the data.

For example, if d had been 499 and both b and c had been 0, then the two tests would be in
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total agreement on when to reject; in short, there would seem to be no reason to compare

the two tests. At the other extreme, if d = 0 and b = c = 499, then the tests would never

agree on when to reject the null hypothesis. Because the two tests are looking at the same

data (remember, we analyze each assignment—each data set—with both tests), if I obtained

d = 0, I would be quite sure that I had made a serious error in my computer program!

It the explanation of this item seems incomplete, note that I will return to this topic later.

9.3.1 A Simulation Study of Power

In this subsection we will focus on what happens in Sara’s study if we assume that the alternative

hypothesis is true. As discussed previously in these notes, there is figuratively, perhaps even liter-

ally, an infinite number of ways for the alternative hypothesis to be correct. As I argued earlier with

Cathy’s study of running, I will focus on alternatives that correspond to the notion of a constant

treatment effect. The alternative hypothesis> implies that that constant treatment effect must be a

positive number.

I performed six simulation experiments on Sara’s data. Each simulation consisted of 10,000

reps in which each rep evaluated the decisions made by both test statistics, U and R1. I used the

critical regions presented above, namely

(U ≥ 10.65) and (R1 ≥ 1788.0),

because with these choices, both tests have the same value for α, 0.0499. The six simulations

examined six possible values of the constant treatment effect: 3, 6, 9, 12, 15 and 18 yards. The

results of these six simulation experiments are presented in Table 9.8. There is a huge amount of

information in this table; thus, I will spend a large amount of time explaining it.

1. Let’s begin by looking at the first 2 × 2 table within the larger Table 9.8. We will begin by

focusing on the marginal totals.

The rows of the table correspond to the possible actions taken by test statistic U . We see that

for 8,711 assignments, the test fails to reject the null hypothesis (because the assignment

yielded u < 10.65). For the remaining 1,289 assignments the test rejects the null hypothesis

(because the assignment yielded u ≥ 10.65).

The simulation was performed on the assumption that there is a constant treatment effect of

3 yards; thus, the Skeptic is wrong, the alternative > is correct, and the correct action by the

researcher would be to reject the null hypothesis. The power of the test U for this constant

treatment effect of 3 yards is 1,289/10,000 = 0.1289, just under 13 percent.

The columns of the table correspond to the possible actions taken by test statisticR1. We see

that for 8,466 assignments, the test fails to reject the null hypothesis (because the assignment

yielded r1 < 1788.0). For the remaining 1,534 assignments the test rejects the null hypothe-

sis (because the assignment yielded r1 ≥ 1788.0). The power of the test R1 for this constant

treatment effect of 3 yards is 1,534/10,000 = 0.1534, just over 15 percent.
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Table 9.8: (Approximate) Power for U and R1 from repeated simulation experiments for Sara’s

golf study. ‘CTE’ stands for the size, in yards, of the constant treatment effect in each simulation.

The critical regions for the tests are (U ≥ 10.65) and (R1 ≥ 1788.0).

CTE= 3 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 8,313 398 8,711

Reject H0 153 1,136 1,289

Total 8,466 1,534 10,000

CTE= 6 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 6,934 682 7,616

Reject H0 209 2,175 2,384

Total 7,143 2,857 10,000

CTE= 9 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 5,006 987 5,993

Reject H0 174 3,833 4,007

Total 5,180 4,820 10,000

CTE= 12 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 2,973 1,216 4,189

Reject H0 97 5,714 5,811

Total 3,070 6,930 10,000

CTE= 15 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 1,614 856 2,470

Reject H0 78 7,452 7,530

Total 1,692 8,308 10,000

CTE= 18 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 737 582 1319

Reject H0 35 8646 8681

Total 772 9228 10,000
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We see that for a constant treatment effect of 3 yards, the test based on R1 is more powerful

than the test based on U ; in words, of the two tests, R1 is more likely to correctly reject the

null hypothesis when there is a constant treatment effect of 3 yards.

This would be a good time to remember that these powers are approximations based on a

simulation experiment. As you will see later in this section (see the nearly certain interval),

this difference seems to be real; i.e., too large to be attributed to chance.

At this time, we will ignore the cell counts (a–d) in this table.

2. We did all the heavy lifting in the above consideration of a constant treatment effect of 3

yards. The remaining small tables in the large Table 9.8 are now easy to understand. This

stated ease, however, will not dissuade me from discussing these small tables.

3. For a constant treatment effect of 6 yards, the power of R1, 0.2857, exceeds the power of U ,

0.2384.

4. For a constant treatment effect of 9 yards, the power of R1, 0.4820, exceeds the power of U ,

0.4007.

5. For a constant treatment effect of 12 yards, the power of R1, 0.6930, exceeds the power of

U , 0.5811.

6. For a constant treatment effect of 15 yards, the power of R1, 0.8308, exceeds the power of

U , 0.7530.

7. Finally, for a constant treatment effect of 18 yards, the power of R1, 0.9228, exceeds the

power of U , 0.8681.

Summarizing the above comments:

• For both tests, an increase in the size of the constant treatment effect leads to an increase in

the power.

• For every constant treatment effect considered, R1 is more powerful than U . I will summa-

rize this fact by saying—with a level of generalization that seems excessive—thatR1 is more

powerful than U . More colorfully, I will say that for Sara’s data, R1 is a better test than U .

Let me return to something I typed in Chapter 8. I noted that for Sara’s data, the P-value for the

sum of ranks test (using R1) was 0.0293, but the P-value for the test that compares means (using

U) was much larger, 0.0903. I stated that the smaller P-value for R1 was suggestive that R1 was

the better test, but not conclusive.

Based on my above remarks, we have decided that, indeed, R1 is more powerful than U ; well,

it is for the six alternatives I examined. Thus, it is reasonable to wonder why we can’t somehow

reach the same conclusion by looking at P-values. I will now explain why we cannot do so.

Look at any of the smaller tables within Table 9.8 and focus on the number in the lower left

cell—the cell whose count is denoted by c. For example, for the table for a constant treatment
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Figure 9.1: Two nearly certain intervals (NCI’s) for the true power of two tests when there is a

constant treatment effect of 3 yards.

0.1000 0.1200 0.1400 0.1600 0.1800 0.2000
r̂U

The NCI for rU

r̂R

The NCI for rR

effect of 3 yards, c = 153. This means that for 153 of the assignments the test based on R1 failed

to reject the null hypothesis while the test based on U correctly rejected the null hypothesis. In

particular, this implies that for these 153 assignments, the P-value for U is less than or equal to

0.0499 and the P-value for R1 is greater than 0.0499. In other words, for these 153 assignments—

admittedly only 1.5% of the assignments examined, but not 0%—the test with the smaller P-value

was the test with less power. The moral is: If you want to decide which test is better, you need to

perform an analysis of power, as we have done in this section.

9.3.2 A New Nearly Certain Interval

Let’s return to our earlier consideration of a comparison of power for our two test statistics, U and

R1. In particular, let’s look at the approximate power obtained when the constant treatment effect

is equal to 3 yards.

The approximate power using R1 is 0.1534. Using the ideas of Chapter 4, we can obtain the

nearly certain interval for the exact power. In particular, let rR denote the exact (unknown) power

and let r̂R = 0.1534 denote its approximation. The nearly certain interval for rR is

0.1534± 3

√

0.1534(0.8466)

10,000
= 0.1534± 0.0108.

Similarly, the approximate power using U is 0.1289. Let rU denote the exact (unknown) power

and let r̂U = 0.1289 denote its approximation. The nearly certain interval for rU is

0.1289± 3

√

0.1289(0.8711)

10,000
= 0.1289± 0.0101.

These two nearly certain intervals are presented in Figure 9.1. The two intervals do not overlap;

thus, we can safely say that R1 is more powerful than U . Their boundaries, however, are close and

this figure suggests a great deal of uncertainty in the difference in the values of the power. If we

want to have an idea of how much more powerful R1 is, we need to introduce a new nearly certain

interval.

In particular, my goal is to approximate the value of rR − rU . In the formula below, I will use

our standard notation of (a)–(d) for the counts in the appropriate 2× 2 table. Thus, in particular,

(r̂R − r̂U) = (b+ d)/m− (c+ d)/m = (b− c)/m,
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where m is the number of reps in the simulation experiment. (Note that m = 10,000 for all

examples in this chapter.)

Result 9.1 (The Nearly Certain Interval for the Difference in Power.) Following the notation given

above, the nearly certain interval for rR − rU is given by:

(
b− c

m
)± (3/m)

√

m(b+ c)− (b− c)2

m− 1
(9.1)

Also, the nearly certain interval for rU − rR is given by:

(
c− b

m
)± (3/m)

√

m(b+ c)− (c− b)2

m− 1
(9.2)

I will illustrate the use of Equation 9.1 for our discussion of power for the constant treatment effect

of 3 yards. From Table 9.8, we have

b = 398 and c = 153, which give (b+ c) = 551 and (b− c) = 245.

Thus, the nearly certain interval is

0.0245± 0.0003

√

5510000− (245)2

9999
= 0.0245± 0.0070.

9.4 Simulation Results: Doug’s Study of 301

Practice Problem 1 in Section 4.6 introduced Doug’s study of the dart game 301. To summarize:

Doug’s response was the number of rounds he required to complete a game of 301; his study factor

was type of dart, with treatment 1 being his personal darts and treatment 2 being bar darts. For

Doug’s study, the smaller the value of the response, the better. Doug labeled the alternative >
inconceivable because he believed that, if the Skeptic was wrong, then he played better with his

personal darts. Thus, his choice of alternative was <.

In this section I will use Doug’s data to reinforce the ideas presented above for Sara’s study. I

could, of course, make the current problem more similar to Sara’s by renumbering the treatments:

If I made treatment 1 [2] the bar [personal] darts, then the alternative would be reversed. Instead, I

prefer to give you experience dealing with the alternative <.

Recall that the following summary statistics were given in Chapter 4:

n1 = n2 = 20; x̄ = 18.60 and ȳ = 21.20, giving u = 18.60− 21.20 = −2.60.

Thus, the data are consistent with Doug’s choice of alternative—his x̄ being smaller than his ȳ is

in the same direction as the alternative µ1 < µ2.

In addition, in a Practice Problem beginning on page 134 in Chapter 6, we found that:

r1 = 354, r1/20 = 17.7, r2 = 466.0 and r2/20 = 23.3.
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Table 9.9: Decisions made by U andR1 for the 10,000 data sets that were obtained in the computer

simulation experiment on Doug’s data under the assumption that the Skeptic is correct. The critical

regions are (U ≤ −2.50) and (R1 ≤ 348.5).

R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 9,416 60 9,476

Reject H0 54 470 524

Total a + c = 9,470 b+ d = 530 m = 10,000

Finally, I performed two simulation studies, each with 10,000 reps, to obtain approximate P-values

for the two tests. My results were: 0.0426 for the test statistic U ; and 0.0623 for the test statistic

R1. These P-values suggest that, for Doug’s study, the test that compares means is better than

the sum of ranks test. As we will see in this section, a test of power confirms the validity of this

suggestion.

Our first task, of course, is to determine the critical regions for both tests. This begins with a

specification of our target, which I will take to be 0.05. Unfortunately, the sampling distribution of

U is pretty clumpy and the closest I could get to the target is revealed in Table 9.9.

First, note that the critical regions for the two tests are:

(U ≤ −2.50) and (R1 ≤ 348.5).

For Doug’s actual data, his u = −2.60 falls in the critical region; thus, the test U rejects the null

hypothesis. Also for Doug’s actual data, his r1 = 354 does not fall in the critical region; thus,

the test R1 fails to reject the null hypothesis. The significance levels corresponding to these two

critical regions are: α = 0.0530 for the sum of ranks test; and α = 0.0524 for the test that compares

means. As a result, when we discover below that U is more powerful than R1 for the alternatives I

examine, the superiority of U will be a bit more impressive because it has the disadvantage of its

significance level being a bit smaller than the significance level for R1.

There is one other feature of Table 9.9 that should be noted. Its values of b = 60 and c = 54 are
much smaller than the values b = c = 127 in Table 9.7. This shows that in the current situation—

Doug’s data—the two tests have a greater agreement in how they assess the evidence in the data.

It is my experience (this is not a theorem) that the better the tests agree, the better the relative

performance of the test statistic U .

Next, we turn to the study of power for Doug’s data via simulation experiments. Not surpris-

ingly, I will concentrate on alternatives that reflect a constant treatment effect. Note that because

Doug’s alternative is <, the constant treatment effects I study must all be negative. In Table 9.10 I

present the results of four simulation experiments, each withm = 10,000 reps.

I will ask you to interpret the numbers in this table in Practice and Homework Problems below.

For now, let me draw your attention to two obvious features revealed in this table.

1. For every constant treatment effect considered, the test that compares means is more power-

ful than the sum of ranks test.
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Table 9.10: (Approximate) Power for U and R1 from repeated simulation experiments for Doug’s

data. ‘CTE’ stands for the number, in rounds, of the constant treatment effect in each simulation.

The critical regions for the tests are (U ≤ −2.50) and (R1 ≤ 348.5).

CTE= −1 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 8,443 18 8,461

Reject H0 211 1,328 1,539

Total 8,654 1,346 10,000

CTE= −2 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 6,193 33 6,226

Reject H0 401 3,373 3,774

Total 6,594 3,406 10,000

CTE= −3 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 3,539 6 3,545

Reject H0 758 5,697 6,455

Total 4,297 5,703 10,000

CTE= −4 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 1,490 2 1,492

Reject H0 651 7,857 8,508

Total 2,141 7,859 10,000

2. As the constant treatment effect moves farther from 0, the power increases for both tests.

9.5 The Curious Incident . . .

Inspector Gregory (IG): You consider that to be important?

Sherlock Holmes (SH): Exceedingly so.

IG: Is there any point to which you would wish to draw my attention?

SH: To the curious incident of the dog in the night-time.

IG: The dog did nothing in the night-time.

SH: That was the curious incident.
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The above exchange, from the short story Silver Blaze by Sir Arthur Conan Doyle, is one of the

most famous passages in detective fiction. (It also led to the title of the excellent novel, The Curious

Incident of the Dog in the Night-Time by Mark Haddon, published in 2003.)

So, why am I mentioning this bit of literary trivia? Two reasons.

First, I have always found this passage to be extremely important in Statistics. Instead of

despairing over the lack of data (the dog not barking), it is important to focus on what it means to

have no data (why didn’t the dog bark?). In the story, the dog’s failure to bark suggests, to Holmes,

that the dog knew the villain.

One obvious way this idea manifests itself in science is in medical studies: Why do people

drop out of studies? Instead of viewing such subjects as contributing no data, one should seek to

learn why they dropped out.

Second, after typing the last section (reminding me of my favorite literary quote: When asked

to comment on Jack Kerouac’s On the Road, Truman Capote reportedly said, “That’s not writing,

it’s typing.”) I was ready to proceed to the section immediately below, Computing. Then I thought:

There are several obvious applications of power that I have not presented. Perhaps I should tell the

reader why. I have three comments, which I will list below. Note that all of the comments below,

indeed all of the material in this section, is optional enrichment; you will be tested on none of

this material!

1. I make no mention of power for a dichotomous response because there is no natural analogue

to the idea of a constant treatment effect alternative. The situation is better for population-

based inference, covered in Part II of these Course Notes, but still troublesome.

2. I have not mentioned power for the alternative 6=. The reason for this omission can be seen

most easily and most clearly if we reexamine Cathy’s study of running. For the alternative

6=, the smallest possible value for α is 0.10 which is obtained by using the critical region

(|U | ≥ 9.67). Next, consider the power for the alternative of a constant treatment effect of

seven seconds; namely, the following probability, using Table 9.4:

Power = P (|U | ≥ 9.67) = P (U ≥ 9.67) + P (U ≤ −9.67) = 0.30 + 0 = 0.30.

In words, for a constant treatment effect that is a positive number, the power for the alterna-

tive 6= and α = 0.10 is equal to—or well approximated by—the power for the alternative >
and α = 0.05.

Why is this so? The mean of the sampling distribution of U will equal the value of the

constant treatment effect—we saw this twice earlier for Cathy’s data. As a result, the proba-

bility that the test statistic will be negative and far enough from 0 to be in the critical region

is zero—as above—or very close to zero.

Because of the above, if I want the power for the alternative 6= for a given α and a positive

[negative] value of a constant treatment effect, I simply obtain the the power for the alterna-

tive > [<] and significance level equal to α/2. This procedure usually provides me with a

good approximation to the desired exact power.
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3. The idea of a constant treatment effect is most natural for a measurement response. It can

be of use for a count—see Doug’s study above—but sometimes does not work well for

counts—see the Homework Problem below concerning Dawn’s study of her cat Bob.

9.6 Computing

I have found no websites that will perform the simulations we require for determining a critical

region. And, given a critical region, I have found no websites that will perform the simulations

we require for determining power. Thus, I am not expecting you to recreate any of the results

presented in this chapter.

9.7 Summary

In the previous chapter, you learned how to find the critical region for a test for a dichotomous

response. In the previous chapter and this chapter, you learned how to find the critical region for a

numerical response for which the exact sampling distribution is available. This chapter also looks

at approximate sampling distributions obtained by simulation experiments for two data sets and

obtains critical regions for both U and R1 for both sets of data, a total of four critical regions.

Once critical regions are obtained, we turn our attention to situations in which the alternative

hypothesis is correct. Our investigation is quite limited, but it reveals some interesting results.

The most striking limitation is that we restrict attention to the constant treatment effect alter-

natives. Also, we limit attention to one-sided alternatives and the response being a number.

Make sure you are able to understand the information in Tables 9.8 and 9.10; see the Practice

and Homework Problems if you need more experience with tables like these.
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9.8 Practice Problems

1. Look at the power table—Table 9.8—for Sara’s data. Consider the 2× 2 table for a constant
treatment effect of 12 yards. Match each of the nine counts in the table with its description

below.

(a) The total number of assignments examined.

(b) The number of assignments for which: U failed to reject and R1 rejected.

(c) The number of assignments for which: R1 rejected.

(d) The number of assignments for which: U failed to reject.

(e) The number of assignments for which: both U and R1 failed to reject.

(f) The number of assignments for which: U rejected.

(g) The number of assignments for which: R1 failed to reject.

(h) The number of assignments for which: both U and R1 rejected.

(i) The number of assignments for which: R1 failed to reject and U rejected.

2. Consider the 2× 2 table for a constant treatment effect of 9 yards in Table 9.8.

Calculate the nearly certain interval for rR − rU . (See Result 9.1.)

9.9 Solutions to Practice Problems

1. The answers to (a)–(i), respectively are: 10,000; 1,216; 6,930; 4,189; 2,973; 5,811; 3,070;

5,714; and 97.

2. From the table, we identify b = 987 and c = 174. These give us:

b+ c = 987 + 174 = 1,161 and b− c = 987− 174 = 813.

Thus, the nearly certain interval (Formula 9.1) is

(
b− c

m
)± (3/m)

√

m(b+ c)− (b− c)2

m− 1
= 0.0813± 0.0003

√

11,610,000− (813)2

9,999
=

0.0813± 0.0099.
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Table 9.11: Decisions made by U and R1 for the 10,000 data sets that were obtained in the

computer simulation experiment on Dawn’s data. The critical regions are (U ≥ 1.80) and

(R1 ≥ 127.0).

Skeptic Correct R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 9,470 7 9,477

Reject H0 10 513 523

Total 9,480 520 m = 10,000

CTE= 1 R1

U Fail to Reject H0 Reject H0 Total

Fail to reject H0 7,620 0 7,620

Reject H0 287 2,093 2,380

Total 7,907 2,093 10,000

9.10 Homework Problems

1. I decided to perform a power comparison of U and R1 for Dawn’s study of her cat Bob with

the alternative>. My results are presented Table 9.11. Use this table to answer the following

questions.

(a) I was unable to achieve the same value of α for both tests. Find my two α’s and com-

ment. The test with the larger value of α will have an advantage when the power study

is performed. Do you think the advantage will invalidate the power study? Explain

your answer briefly.

(b) My lone simulation experiment on power is for a constant treatment effect of 1; why

didn’t I use other other values besides 1? (Hint: The answer, “You are lazy,” is in-

correct. Well, at least in the current case.) Here is a hint: The sorted data for each

treatment is below. Think about what would happen for a fixed treatment effect of 2.

Chicken: 1 3 4 5 5 6 6 6 7 8

Tuna: 0 1 1 2 3 3 3 4 5 7

2. Refer to problem 1.

(a) What is the power for U for a constant treatment effect of 1? What is the power for R1

for a constant treatment effect of 1? Which test is better?

(b) Calculate the nearly certain interval for for rU − rR.
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Part II

Population-Based Inference
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Chapter 10

Populations: Getting Started

You have now completed Part 1 of these notes, consisting of nine chapters. What have you learned?

On the one hand, you could say that you have learned many things about the discipline of Statistics.

I am quite sure that you have expended a great deal of time and effort to learn, perhaps master, the

material in the first nine chapters. On the other hand, however, you could say, “I have learned more

than I ever wanted to know about the Skeptic’s Argument and not much else.” I hope that you feel

differently, but I cannot say this comment is totally lacking in merit.

So, why have we spent so much time on the Skeptic’s Argument? First, because the idea of

Occam’s Razor is very important in science. It is important to be skeptical and not just jump on the

bandwagon of the newest idea. For data-based conclusions, we should give the benefit of the doubt

to the notion that nothing is happening and only conclude that, indeed, something is happening if

the data tell us that the nothing is happening hypothesis is inadequate. The Skeptic’s Argument is,

in my opinion, the purest way to introduce you to how to use Statistics in science.

The analyses you have learned in the first nine chapters require you to make decisions: the

choice of the components of a CRD; the choice of the alternative for a test of hypotheses; for

numerical data, the choice of test statistic; for a power study, the choice of an alternative of interest.

The analyses require you to take an action: you must randomize. But, and this is the key point,

the analyses make no assumptions. The remainder of these notes will focus on population-based

inference. Assumptions are always necessary in order to reach a conclusion on a population-based

inference. The two most basic of these assumptions involve:

1. How do the units actually studied relate to the entire population of units?

2. What structure is assumed for the population?

By the way, if either (or both) of these questions makes no sense to you that is fine. We will learn

about these questions and more later in these notes.

As we will see, in population-based inference, we never (some might say rarely; I don’t want

to quibble about this) know with certainty whether our assumptions are true. Indeed, we usually

know that they are not true; in this situation, we spend time investigating how much it matters that

our assumptions are not true. (In my experience, the reason why many—certainly not all, perhaps

not even most—math teachers have so much trouble teaching Statistics is because they just don’t
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get the idea that an assumption can be wrong. If a mathematician says, “Assume we have a triangle

or a rectangle or a continuous function” and I say, “How do you know the assumption is true,” the

mathematician will look at me and say, “Bob, you are hopeless!”)

The above discussion raises an obvious question: If population-based inference techniques rely

on assumptions that are not true, why learn them? Why not limit ourselves to studies for which

we can examine the Skeptic’s Argument? Well, as much as I love the Skeptic’s Argument, I must

acknowledge its fundamental weakness: It is concerned only with the units in the study; it has no

opinion on the units that are not in the study. Here is an example of what I mean.

Suppose that a balanced CRD is performed on n = 200 persons suffering from colon cancer.

There are two competing treatments, 1 and 2, and the data give a P-value of 0.0100 for the alter-

native 6= with the data supporting the notion that treatment 1 is better. The Skeptic’s Argument is,

literally, concerned only with the n = 200 persons in the study. The Skeptic’s Argument makes

no claim as to how the treatments would work on any of the thousands of people with colon can-

cer who are not in the study. If you are a physician caring for one of these thousands you will

need to decide which treatment you recommend. The Skeptic cannot tell you what to do. By

contrast, with population-based inference a P-value equal to 0.0100 allows one to conclude that

overall treatment 1 is better than treatment 2 for the entire population. By making more assump-

tions, population-based inference obtains a stronger conclusion. The difficulty, of course, is that

the assumptions of the population-based inference might not be true and, if not true, might give a

misleading conclusion.

Of course, there is another difficulty in my colon cancer example. As we saw in Case 3 in

Table 5.3 on page 90 in Chapter 5, even if we conclude that treatment 1 is better than treatment 2

overall, this does not imply that treatment 1 is better than treatment 2 for every subject; this is

true for the Skeptic’s argument and it’s true for population-based inference.

There is, of course, a second weakness of the methods we covered in Part 1 of these notes:

They require the assignment of units to study factor levels by randomization. For many studies

in science, randomization is either impossible or, if possible, highly unethical. For an example

of the former, consider any study that compares the responses given by men and women. For an

example of the latter, imagine a study that assigns persons, by randomization, to the smokes three

packs of cigarettes per day treatment. As we will discuss often in the remainder of these notes,

studies with randomization yield greater scientific validity—in a carefully explained way—than

studies without randomization. This does not mean, however, that studies without randomization

are inherently bad or are to be avoided.

One of the greatest strengths of population-based inference is that it allows a scientist to make

predictions about future uncertain outcomes. The Skeptic’s Argument cannot be made to do this.

Predictions are important in real life and they give us a real-world measure of whether the answers

we get from a statistical analysis have any validity.

Anyways, I have gotten very far ahead of myself. Thus, don’t worry if much of the above is

confusing. By the end of these notes, these issues will make sense to you.

In the next section we will begin a long and careful development of various ideas and methods

of population-based inference.
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10.1 The Population Box

In Chapter 1, we learned that there are two types of units in a study: trials and subjects. When

the units are subjects, often the subjects are different people. The subjects could be anything

from different automobiles to different aardvarks, but in my experience, my students are more

comfortable with examples that have subjects that are people. Therefore, most of my examples of

units as subjects will have the subjects be people.

When you are interested in subjects, you quickly realize that there are the subjects who are

included in the study—i.e., subjects from whom we collect data—as well as potential subjects

who are not included in the study. A key to population-based inference is that we care about

all of these subjects; those actually studied and those not studied. Indeed, many statisticians

describe their work as primarily using data from subjects in a study to draw conclusions about all

subjects. For example, I might collect data from students in my class with the goal of drawing

conclusions about all students at my university. The first term we need to do this is the idea of a

finite population. In fact, let me give you four definitions at once:

Definition 10.1 Below are four definitions we need to get started.

1. A finite population is a well-defined collection of individuals of interest to the researcher.

Implicit in this definition is that each individual in the population has one or more features

that are of interest to the researcher.

2. A census consists of the researcher obtaining the values of all features of interest from all

members of the finite population.

3. Usually, it is not possible (for reasons of cost, logistics, authority) for a researcher to obtain

a census of a finite population. A survey consists of the researcher obtaining the values of

all features of interest from part, but not all, of the finite population.

4. The sample is comprised of the members of the population that are included in the survey.

Here is a very quick—although not very interesting—example of the above ideas.

Bert teaches at a small college with an enrollment of exactly 1,000 students. These 1,000

students form the finite population of interest to Bert. For simplicity, suppose that Bert is interested

in only one dichotomous feature per student—sex—which, of course, has possible values female

and male. If Bert examined student records of all 1,000 members of his population he would be

conducting a census and would know howmany (what proportion; what percentage) of the students

are female. If Bert did not have the authority to access student records, he could choose to conduct

a survey of the population. If Bert were a lazy researcher, he might sample the 20 students enrolled

in his Statistics class. With this choice of survey, Bert’s sample would be the 20 students in his

class. Such a sample is an example of what is called a convenience sample; the reason behind this

name is rather obvious: the subjects selected for study were convenient to the researcher.

A convenience sample is an example of a non-probability sample. In the example of Bert’s

population above, undoubtedly, there were many chance occurrences that led to his particular

20 students being in his class. The point is that even though the sample is the result of chance,

217



it is not the result of chance that the researcher controls or understands in a way that can lead

to a mathematical model. Hence, we call it a non-probability sample. Other examples of non-

probability samples include: volunteer samples and judgment samples. I will not talk about

non-probability samples in these notes; if you are interested in this topic, there are references on

the internet.

Statisticians and scientists are more interested in probability samples. As you might guess,

these are sampling procedures for which probabilities can be calculated. Examples of probability

samples include: systematic random samples; stratified random samples; and (simple) ran-

dom samples. In these notes we will consider only the last of these and the closely related notion

of i.i.d. random variables. When we study units that are trials instead of subjects, we will see that

assuming we have i.i.d. trials is equivalent to having i.i.d. random variables. (The abbreviation

i.i.d. will be explained soon.)

The ideal for any (honest) researcher is to obtain a representative sample. A representative

sample is a sample that exactly matches the population on all features of interest. With more than

one feature of interest, this notion becomes complicated; we won’t need the complication and for

simplicity I will stick to my example above with Bert and one feature of interest—sex.

Suppose that Bert’s class is comprised of 12 women and eight men. In other words, his sample

is 60% women. If the population has exactly 60% women, then his sample is representative.

If the population percentage of women is any number other than 60%, then his sample is not

representative.

Being representative is a strange feature, for a number of reasons. First, a researcher will

never know whether the sample at hand is representative; only one with perfect knowledge of the

population can determine this. Second, a really lousy way of sampling (in some situations, I think

convenience samples are the worst; in other situations, volunteer samples seem to be the worst)

sometimes will yield a representative sample whereas a really good way of sampling might not.

This brings us to the number one reason statisticians and scientists prefer probability samples, in

particular simple random samples and i.i.d. random variables:

We can calculate the probability, b, that a probability sample will be within c of being
representative.

I admit, saying that we are within c of being representative is quite vague; keep working through

these notes and this notion will become clear. Here is my point: If b is large—remember, saying

that a probability is large means it is close to one—and c is small, then we can say—before data

are actually collected—that it is very likely that we will obtain a sample that is close to being

representative.

We will now begin a long exploration of probability samples. The obvious starting point is

to tell you what a (simple) random sample is and show you how to calculate probabilities for a

random sample.

It will be convenient to visualize a finite population as consisting of a box of cards. Each

member of the population has exactly one card in this box, called the population box, and on its

card is the value of the feature of interest. If there is more than one feature of interest, then the

member’s values of all features are on its card, but I will restrict attention now to one feature per

population member. For example, if Lisa—a female—is a student at Bert’s college, then one of
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the 1,000 cards in the population box corresponds to her. On Lisa’s card will be the word female,

perhaps coded; for example, 1 for female and 0 for male. If Lisa is also in Bert’s class then her

card will be in his sample.

Suppose that we have a population box with one card for each member of the population. I will

show you how to calculate probabilities if 1, 2, 3, . . . cards are selected at random from the box.

Now, however, we must face an important practical issue. In my experience, scientists usually are

interested in large populations, sometimes populations that consist of millions of members; hence,

the population box will have millions of cards in it. But I don’t want to introduce you to this subject

with a problem like the following one.

I want to select three cards at random from a box containing 123,000,000 cards. Help

me by writing down everything that could possibly happen.

As you can see, this problem would be no fun at all!

Therefore, I will introduce (several) important ideas with a population box that contains a very

small number of cards. To that end, let N denote the number of cards in a population box. This

means, of course, that the number of members of the population is N .

10.1.1 An Extended Example on a Very Small N

Consider a population box with N = 5 cards. The cards are numbered 1, 2, 3, 4 and 5, with

one number per card. Consider the chance mechanism of selecting one card at random from this

box. The expression selecting one card at random from this box is meant to imply that before the

chance mechanism is operated, each card has the same likelihood of being selected.

It is necessary for me to introduce some notation. I do this with mixed feelings; as Robert

DeNiro said in Analyze This, I am conflicted about it. Why am I conflicted? In my experience,

few non-math majors say, “Wonderful! More notation!” Sadly, however, I can’t figure out how to

present this material without the notation below.

It is very important to think about the following time line when we talk about probabilities.

Chance mechanism
is operated

Before After

In all of our time lines, time advances from left to right. There is a point in time at which the chance

mechanism is operated, yielding its outcome; in our case the identity of the selected card. To the

left of that point is before the chance mechanism is operated. To the right of that point is after the

chance mechanism is operated. Stating the obvious, before the chance mechanism is operated we

don’t know what the outcome will be; and after the chance mechanism is operated we know the

outcome. It is appropriate to calculate probabilities before the chance mechanism is operated; it

is not appropriate to calculate probabilities after the chance mechanism is operated. For example,

once we have selected the card ‘3’ from the box it is ridiculous to talk about the probability that

the card will be ‘3’ or ‘4’ or any other number.
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Define the random variable X1 to denote the number on the card that will be selected. I say

“will be” because you should think of X1 as linked to the future; i.e., I am positioned, in time,

before the chance mechanism is operated. There are five possibilities for the value of X1: 1, 2, 3,

4 and 5. These five possibilities are equally likely to occur (which is the consequence of selecting

one card at random), so we assign probability of 1/5 = 0.2 to each of them, giving us the following

five equations:

P (X1 = 1) = 0.2, P (X1 = 2) = 0.2, P (X1 = 3) = 0.2, P (X1 = 4) = 0.2, P (X1 = 5) = 0.2.

We can write these equations more briefly as:

P (X1 = x1) = 0.2, for x1 = 1, 2, 3, 4, 5.

Note that, analogous to our notation for a test statistic, we use the lower case letter to denote the

numerical possibilities for the upper case random variable. Either representation (a listing or the

formula) of these five equations is referred to as the sampling (or probability) distribution of the

random variableX1. By the way, as you may have surmised, I put the subscript onX in anticipation

of eventually sampling more than one card from the population box.

If we decide to select a random sample of size 1 from our population, then the sampling dis-

tribution of X1 is all that we have. Obviously, a scientist will want to sample many members of

a population, not just one. Well, the trip from one to many is easiest if we first visit two. Thus,

suppose we want to have a random sample of size two from a population box. For the box of this

subsection this means we select two cards at random from the cards 1, 2, 3, 4 and 5.

First I note that this problem is still manageable. With only five cards in the box, there are 10

possible samples of size two; they are:

1,2; 1,3; 1,4; 1,5; 2,3; 2,4; 2,5; 3,4; 3,5; and 4,5,

where, for example, by ‘2,4’ I mean that the two cards selected are the cards numbered 2 and 4.

Some of you have no doubt studied probability. If so, you might remember that for many

problems, a first step in the solution is to decide whether or not order matters. In the current

problem, order does not matter. Let me be careful about this. If I reach into the box of five cards

and simultaneously grab two cards at random, then, indeed, there is no notion of order. As we will

see below, however, it is useful to reframe the notion of selecting two cards at random. Namely, it

is mathematically equivalent to select one card at random, set it aside, and then select one card at

random from the remaining cards. Literally, by introducing the idea of selecting the cards one-at-

a-time I am introducing order into a problem in which order is not needed. I do this, as you will

see below, because by making the problem apparently more difficult—by introducing order—I am,

in fact, making it easier for us to study.

Henceforth, when I talk about a random sample I will refer to the first card selected and the

second card selected and so on. I have previously defined X1 to be the number on the first card

selected. Not surprisingly, I defineX2 to be the number on the second card selected. My immediate

goal is to show you how to calculate probabilities for the pair (X1, X2). Please refer to Table 10.1.

The first feature of Table 10.1 to note is that it consists of three Tables: A, B and C. Five rows
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Table 10.1: Three displays for the possible outcomes when selecting two cards at random, without

replacement, from a box containing cards 1, 2, 3, 4 and 5.

Table A: All possible pairs of values

on the two cards:

X2

X1 1 2 3 4 5

1 — (1,2) (1,3) (1,4) (1,5)

2 (2,1) — (2,3) (2,4) (2,5)

3 (3,1) (3,2) — (3,4) (3,5)

4 (4,1) (4,2) (4,3) — (4,5)

5 (5,1) (5,2) (5,3) (5,4) —

Table B: Joint probabilities for the

values on the two cards:

X2

X1 1 2 3 4 5

1 0.00 0.05 0.05 0.05 0.05

2 0.05 0.00 0.05 0.05 0.05

3 0.05 0.05 0.00 0.05 0.05

4 0.05 0.05 0.05 0.00 0.05

5 0.05 0.05 0.05 0.05 0.00

Table C: Table B with marginal

probabilities added:

X2

X1 1 2 3 4 5 Total

1 0.00 0.05 0.05 0.05 0.05 0.20

2 0.05 0.00 0.05 0.05 0.05 0.20

3 0.05 0.05 0.00 0.05 0.05 0.20

4 0.05 0.05 0.05 0.00 0.05 0.20

5 0.05 0.05 0.05 0.05 0.00 0.20

Total 0.20 0.20 0.20 0.20 0.20 1.00
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[columns] of each of these three tables denote the five possible values for X1 [X2]. Five of the

5 × 5 = 25 cells in Table A are marked with ‘—,’ denoting that they are impossible; if you select

two cards at random from the box then you must obtain two different cards. In my experience

people forget this feature of a random sample. Thus, henceforth, I will sometimes refer to

a random sample as selecting cards at random from the box without replacement. Thus,

for example, if the first card selected is ‘4’ then the second card is selected at random from the

remaining cards: 1, 2, 3 and 5.

Staying with Table A, the remaining 20 entries (excluding the ‘—’ ones) correspond to the 20

possible outcomes. These are written as pairs, for example (3,5), the members of which denote

the value of X1 and then the value of X2. Thus, for example, the pair (3,5) means that card 3 is

selected first and card 5 is selected second. This might seem curious to you. The pairs (5,3) and

(3,5) correspond to the same random sample, which is listed twice in each of the three tables in

Table 10.1. This seems like extra work: our table has 20 possible cells for the 10 possible samples,

with each sample appearing twice. It is extra work, but as we will see shortly, it will help us

develop the material.

The idea of selecting a random sample of size two; or, equivalently, selecting two cards at

random without replacement; or, equivalently, selecting one card at random, setting it aside and

then selecting one card at random from the remaining cards; all of these ideas imply that the 20

possible cells—excluding the five impossible cells on the main diagonal—in Table A are equally

likely to occur and, hence, each cell has probability 1/20 = 0.05. (You can see why I selected

a box with five cards; I like simple, short, nonrepeating decimals for my probabilities.) Table B

presents the probabilities written within each of the 25 cells. Note that each of the five impossible

cells has probability 0 and that each of the twenty possible cells has probability 0.05.

Finally, Table C supplements Table B by summing the probabilities across the rows and down

the columns. The resulting probabilities are written in the margins (right and bottom) of the table;

hence, they often are referred to as marginal probabilities. If we look at the entries in the extreme

left and extreme right columns, we find the familiar sampling distribution for X1:

P (X1 = x1) = 0.20, for x1 = 1, 2, 3, 4, 5.

If we look at the uppermost and lowermost rows, we find the sampling distribution for X2:

P (X2 = x2) = 0.20, for x2 = 1, 2, 3, 4, 5.

Note that X1 and X2 have the same distributions: they both have possible values 1, 2, 3, 4 and

5, and their possible values are equally likely. The technical term for this is we say that X1 and

X2 are identically distributed, abbreviated i.d. (Two-thirds of the initials in i.i.d.; one-half of the

ideas, as we soon will learn.)

The 20 non-zero probabilities in the cells give us the joint sampling distribution of X1 and

X2. We have the adjective joint to remind us that these probabilities are concerned with how X1

and X2 behave together. To avoid possible confusion, the distributions of either X1 or X2 alone

are sometimes called their marginal sampling distributions. Marginal because they appear in the

margins of our table above and because they are for a single random variable, ignoring the other.
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There is another way of sampling, other than random sampling without replacement, that will

be very important to us. I mentioned above that for a random sample of size two we may select

the two cards at once or select the cards one-at-a-time, without replacement. The obvious question

is: May we sample cards one-at-a-time with replacement? The obvious answer: Of course we

may, we live in a free society! A more interesting question is: What happens if we select cards at

random with replacement?

Before I turn to a computation of probabilities, I want you to develop some feel for what we are

doing. First, I have good news for those of you who do not currently possess thousands of cards

and a box to hold them. Our population box is simply an instructional device; a way to visualize

the process of selecting a sample from a population. As a practicing statistician I always use an

electronic device to select my sample, be it with or without replacement. In particular, recall the

website:

http://www.randomizer.org/form.htm

that we introduced in Chapter 3 for the purpose of obtaining an assignment for a CRD. In Sec-

tion 10.5 you will learn how this website can be used to select a sample from a population at

random, either with or without replacement.

I used the website to obtain 10 random samples of size two, with replacement, from the box of

this section. Below are the 10 samples I obtained:

Sample Number: 1 2 3 4 5 6 7 8 9 10

Sample Obtained: 1,1 3,2 1,4 5,1 2,1 4,5 4,3 2,3 4,4 3,5

In the above listing I am reporting the cards in the order in which they were selected. Thus, my

second sample—3,2— consists of the same cards as my eight sample—2,3. Two samples consist

of the same card being selected twice: the first—1,1—and the ninth—4,4.

Researchers do not select cards from a box because it is a fun activity; they do it to investigate

what is in the box. For the purpose of learning, it is clearly a waste to sample the same card

more than once. Sampling with replacement makes such a waste possible, while sampling without

replacement makes such a waste impossible. For this reason, I sometimes refer to sampling with

replacement as the dumb way to sample and sampling without replacement as the smart way to

sample. The former is dumb because it is a waste (that is, dumb) to allow for the possibility of

sampling the same card more than once. The latter is smart, well, because it isn’t dumb!

Now I am going to do something strange, although perhaps—you be the judge—not out of

character. I am going to give you several reasons why the dumb method of sampling is not such a

bad thing.

First, as my 10 samples above suggest, sampling with replacement is potentially wasteful,

not necessarily wasteful. Eight out of the 10 samples select two different cards; thus, they —

speaking both practically and mathematically—provide the same information as would be obtained

by sampling the smart way.

Second, selecting the same card more than once, while wasteful of effort, does not actually bias

our results in any way. This fact is not obvious, but you will see why I say this later.

Additional reasons that dumb sampling can be good, beyond these two, will appear soon.
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Table 10.2: Two displays for the possible outcomes when selecting two cards at random, with

replacement, from a box containing cards 1, 2, 3, 4 and 5.

Table A: All possible pairs of values

on the two cards:

X2

X1 1 2 3 4 5

1 (1,1) (1,2) (1,3) (1,4) (1,5)

2 (2,1) (2,2) (2,3) (2,4) (2,5)

3 (3,1) (3,2) (3,3) (3,4) (3,5)

4 (4,1) (4,2) (4,3) (4,4) (4,5)

5 (5,1) (5,2) (5,3) (5,4) (5,5)

Table B: Joint and marginal probabilities

for the values on the two cards:

X2

X1 1 2 3 4 5 Total

1 0.04 0.04 0.04 0.04 0.04 0.20

2 0.04 0.04 0.04 0.04 0.04 0.20

3 0.04 0.04 0.04 0.04 0.04 0.20

4 0.04 0.04 0.04 0.04 0.04 0.20

5 0.04 0.04 0.04 0.04 0.04 0.20

Total 0.20 0.20 0.20 0.20 0.20 1.00

Table 10.2 addresses the issue of finding probabilities for X1 and X2 for selecting cards at

random with replacement, the dumb way of sampling. As with our earlier table (Table 10.1), the

current table is comprised of other tables, in this case two: Tables A and B. Table A presents the

5× 5 = 25 possible outcomes from selecting two cards at random with replacement from our box.

All 25 outcomes are equally likely to occur; thus, they all have the same probability: 1/25 = 0.04,
as presented in Table B. Table B also presents the marginal probabilities for both random variables.

The first thing to note about Table 10.2 is that, just as with the smart way of sampling,X1 and

X2 have identical sampling distributions and, indeed, the same sampling distributions they had

for the smart way of sampling. The difference between the smart and dumb methods of sampling

appears in the joint distribution of X1 and X2.

Often we will be interested computing a probability that looks like:

P (X1 = 3 and X2 = 5).

It is very tedious to write and inside a probability statement; thus, we adopt the following shorthand

notation. We will write, for example,

P (X1 = 3 and X2 = 5) as P (X1 = 3, X2 = 5).
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In words, a comma inside a probability statement is read as and.

The next thing to note is incredibly important. Look at the 25 joint probabilities in Table B of

Table 10.2. Every one of the joint probabilities has the property that it is equal to the product of

its row and column (marginals) probabilities. In particular, for every cell:

0.04 = 0.20× 0.20.

A similar equality is never true for Table C in Table 10.1. The product of the margins is again

0.20 × 0.20 = 0.04 which never appears as a joint probability. This observation leads us to the

following definition.

Definition 10.2 (Two Independent Random Variables.) Suppose that we have two random vari-

ables, denoted byX and Y . These random variables are said to be independent if, and only if, the

following equation is true for all numbers x and y that are possible values ofX and Y , respectively.

P (X = x, Y = y) = P (X = x)P (Y = y). (10.1)

Note: the restriction that x and y must be possible values of X and Y is not really needed, though

some people find it comforting. It is not needed because if, say, x = 2.5 is not a possible value of

X , then both sides of Equation 10.1 are 0 and, hence, equal.

In words, Equation 10.1 tells us that for independent random variables, the word and tells us

to multiply. Hence, it is often referred to as the multiplication rule for independent random

variables.

Let me carefully summarize what we have learned for the box of this section. If we select

n = 2 cards at random:

• Without replacement—also called a (simple) random sample; also called (by me) the smart

way to sample—thenX1 and X2 are identically distributed, but are not independent.

• With replacement—also called (by me) the dumb way to sample—thenX1 andX2 are inde-

pendent as well as identically distributed.

We have spent a great deal of effort studying a very small and particular problem. This endeavor

would be a waste of your time if it weren’t for the fact that the above results generalize in a

huge way! I will go through the important generalizations now. I won’t prove these, although I

will sometimes give an illustration. If you were working on a degree in Statistics, then we should

spend more time on these matters, but you aren’t, so we won’t.

Still with two cards selected, the multiplication rule can be extended as follows. Let A1 [A2]

be any event defined in terms of X1 [X2]. Then the probability that both A1 and A2 occur equals

the product of their (individual or marginal) probabilities of occurring. For example, suppose that

A1 is the event thatX1 ≥ 3 and suppose that A2 is the event thatX2 is an even number (either 2 or

4). We can draw a picture of both of these events occurring:
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X2

X1 1 2 3 4 5

1

2

3 X X

4 X X

5 X X

In the above display, the six cells marked with ‘X’ are the six cells for which bothA1 andA2 occur.

Each of these cells has probability of occurring equal to 0.04. Summing these we find that the

probability that both A1 and A2 will occur is equal to 6(0.04) = 0.24. Individually, P (A1) = 0.60
and P (A2) = 0.40. The product of these individual probabilities does, indeed, equal 0.24, the

probability that both occur.

Here is our next generalization. The results about independence and identical distributions are

true for any box, not just our favorite box with cards 1, 2, 3, 4 and 5.

Here is our next generalization. The results about independence and identical distributions are

true for any number of cards selected at random, not just for two. For completeness, I will state

these results below.

Result 10.1 (A summary of results on smart and dumb random sampling.) For any population

box, define the random variables

X1, X2, X3, . . . , Xn,

as above. Namely, X1 is the number on the first card selected; X2 is the number on the second

card selected; and so on. The following results are true.

1. For both methods of sampling cards at random—smart and dumb—the random variables

X1, X2, X3, . . . , Xn

are identically distributed. The common distribution is the same for dumb and smart sam-

pling; moreover—because it does not depend on the method of random sampling—the com-

mon distribution is sometimes called the population probability distribution.

2. For the dumb way of sampling, the random variables

X1, X2, X3, . . . , Xn

are independent; for the smart way of sampling they are not independent, also called depen-

dent.

I am afraid that I have made this material seem more difficult than necessary. Let me end this

section with a brief example that, perhaps, will help.

I plan to select two cards at random from a population box withN = 10 cards. Six of the cards
are marked ‘1’ and four are marked ‘0.’ Clearly,

P (X1 = 0) = 0.40 and P (X1 = 1) = 0.60,
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is the population distribution. I want to compute two probabilities:

P (X1 = 1, X2 = 1) and P (X1 = 0, X2 = 1)

For the dumb method of random sampling, we use the multiplication rule and obtain:

P (X1 = 1, X2 = 1) = P (X1 = 1)P (X2 = 1) = 0.6(0.6) = 0.36 and

P (X1 = 0, X2 = 1) = P (X1 = 0)P (X2 = 1) = 0.4(0.6) = 0.24.

These answers are incorrect for the smart way of sampling.

The correct answers for smart sampling, however, can be found using another version of the

multiplication rule, which is called themultiplication rule for dependent random variables. For

the smart way of sampling, I write P (X1 = 1, X2 = 1) as

P (X1 = 1)P (X2 = 1|X1 = 1),

where, the vertical line segment within a probability statement is short for given that. In particular,

when I write

P (X2 = 1|X1 = 1),

I mean the probability that the second card selected will be a 1, given that the first card selected is

a 1. Given this particular information, the box available when the second card is selected contains

five cards marked ‘1’ and four cards marked ‘0.’ Thus,

P (X1 = 1)P (X2 = 1|X1 = 1) = (6/10)(5/9) = 0.333, and, similarly,

P (X1 = 0, X2 = 1) = P (X1 = 0)P (X2 = 1|(X1 = 0) = (4/10)(6/9) = 0.267.

Thus, the great thing about independence is not that we have a multiplication rule, but rather that

the things we multiply don’t change based on what happened earlier!

10.2 Horseshoes . . .Meaning of Probability

I conjecture that most of you have heard the expression, close counts in horseshoes and hand

grenades. In my experience, this is presented as a humorous statement, even though there is

nothing funny about being close to a hand grenade! I will occasionally expand this homily in these

notes; now I expand it to

Close counts in horseshoes, hand grenades and probabilities.

I will explain what this means.

Consider a population box with 1,000 cards, numbered serially, 1, 2, 3, . . . , 1,000. This is an

obvious generalization of our earlier box with N = 5 cards to a box with N = 1,000 cards. Next,

suppose that we plan to select two cards at random from this box, either the dumb or the smart

way. I am interested in calculating marginal and joint probabilities. Obviously, actually drawing
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a table with 1,000 rows, 1,000 columns and 1,000,000 cells is not realistic. But because we are

clever we can analyze this situation without drawing such huge tables.

Both marginal distributions are that each of the numbers 1, 2, 3, . . . , 1,000, has probability

0.001 of occurring. With independence (dumb sampling) the probability of each of the one million

cells is the product of its margins:

0.001× 0.001 = 0.000001.

With the smart method of sampling, the 1,000 cells on the main diagonal, where the row number

equals the column number, are impossible and the remaining 1,000,000 − 1,000 = 999,000 cells

are equally likely to occur. Thus, the probability of each of these cells is:

1

999,000
= 0.000001001,

rounded off to the nearest billionth. In other words, the joint probabilities are very close to the

product of the marginal probabilities for all one million cells. Thus, with two cards selected from

this box of 1,000 cards, if one is primarily interested in calculating probabilities then it does

not matter (approximately) whether one samples the smart way or the dumb way.

The above fact about our very specific box generalizes to all boxes, as follows. Let N denote

the number of cards in the box. Let n denote the number of cards that will be selected at random—

dumb or smart is open at this point—from the box. Let A be any event that is a function of some or

all of the n cards selected. Let P (A|dumb) [P (A|smart)] denote the probability that A will occur

given the dumb [smart] way of sampling. We have the following result:

Provided that the ratio n/N is small,

P (A|dumb) ≈ P (A|smart). (10.2)

The above is, of course, a qualitative result: If the ratio is small, then the two probabilities are

close. What do the words small and close signify? (It’s a bit like the following statement, which is

true and qualitative: If you stand really far away from us, I look like Brad Pitt. More accurately, if

Brad and I are standing next to each other and you are very far away from us, you won’t be able to

tell who is who.) As we will see repeatedly in these notes, close is always tricky, so people focus

on the small.

A popular general guideline is that if n/N ≤ 0.05 (many people use 0.10 instead of 0.05 for

the threshold to smallness) then the approximation is good. It’s actually a bit funny that people

argue about whether the threshold should be 0.05 or 0.10 or some other number. Here is why. I

am typing this draft of Chapter 10 on October 4, 2012. It seems as if every day I read about a new

poll concerned with who will win the presidential election in Wisconsin. I don’t know how many

people will vote next month, but in 2008, nearly 3 million people voted for president in Wisconsin.

Even 1% (much smaller than either popular threshold) of 3 million is n = 30,000. I am quite

certain that the polls I read about have sample sizes smaller than 30,000. In other words, in most

surveys that I see in daily life, the ratio n/N is much smaller than 0.05.
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Here is an important practical consequence of the above. Whether we sample the smart or

the dumb way, when we calculate probabilities we may pretend that we sampled the dumb way

because it makes computations easier. Our computations will be exactly correct if we sampled the

dumb way and approximately correct if we sampled the smart way and n/N is small. Actually,

as we shall see later with several examples, the biggest problem in sampling is not whether n/N
is “small enough;” it is: What are the consequences of a sample that is not obtained by selecting

cards at random from a box?

As I stated earlier, whenever we select cards from a box at random, with replacement (the

dumb way), we end up with what we call independent random variables. Since each selection

can be viewed as a trial (as we introduced these in Chapter 1) we sometimes say that we have

i.i.d. trials. With the help of i.i.d. random variables (trials) I can now give an interpretation to

probability.

10.2.1 The Law of Large Numbers

The level of mathematics in this subsection is much higher than anywhere else in these notes and,

indeed, is higher than the prerequisite for taking this course. Therefore, please do not worry if you

cannot follow all of the steps presented below.

I will give you a specific example and then state the result in somewhat general terms. Our

result is called the Law of Large Numbers or the long-run-relative-frequency interpretation

of probability.

Let’s revisit my box with N = 5 cards numbered 1, 2, 3, 4 and 5. I plan to select n cards at

random, with replacement, from this box, where n is going to be a really large number. Suppose

that my favorite number is 5 and I will be really happy every time I draw the card marked ‘5’ from

the box. I define X1, X2, X3, . . . as before (i.e., Xi is the number on the card selected on draw

number i, for all i). I know that theXi’s are identically distributed and that P (X1 = 5) is equal to
0.20. The question I pose is: How exactly should we interpret the statement: “The probability of

selecting ‘5’ is 0.20?”

Define fn(5) to be the frequency (f is for frequency) of occurrence of 5 in the first n draws.

The Law of Large Numbers states that the limit, as n tends to infinity, of

fn(5)

n
is 0.20.

Let me say a few words about this limiting result. First, if you have never studied calculus, the

mathematical idea of limits can be strange and confusing. If you have studied calculus you might

remember what has always seemed to me to be the simplest example of a limit:

The limit as n tends to infinity of (1/n) = 0.

Let me make a couple of comments about this limiting result. First, n does not, literally, become

infinity, nor does (1/n) literally become zero. The real meaning (and usefulness) of the above

limiting result is that it means that for n really large the value of 1/n becomes really close to 0.

As a result, whenever n is really large it is a good approximation to say that 1/n is 0. This is such
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a simple example because we can make precise the connection between n being really large and

1/n being really close to 0. For example, if n exceeds one billion, then 1/n is less than 1 divided

by one billion and its distance from the limiting value, 0, is at most one in one billion. By contrast,

in many applications of calculus the relationship between being really large and really close is not

so easy to see. We won’t be concerned with this issue.

In probability theory, limits—by necessity—have an extra layer of complexity. In particular,

look at my limiting result above:

The limit as n tends to infinity of
fn(5)

n
= 0.20.

The object of our limiting, fn(5)/n is much more complicated than the object in my calculus

example, 1/n, because fn(5) is a random variable. For example, if n = 1000 we know that 1/n =
0.001 but we don’t know the value of fn(5); conceivably, it could be any integer value between 0

and 1000, inclusive. As a result, the Law of Large Numbers is, indeed, a very complicated math

result. Here is what it means: For any specified (small) value of closeness and any specified (large,

i.e., close to 1) value of probability, eventually for n large enough, the value of fn(5)/n will be

within the specified closeness to 0.20 with probability equal to our greater than the specified target.

This last sentence is quite complicated! Here is a concrete example.

I will specify closeness to being within 0.001 of 0.20. I specify my large probability to be

0.9999. Whereas we can never be certain about what the value of fn(5)/n will turn out to be, the

Law of Large Numbers tells me that for n sufficiently large, the event

0.199 ≤ fn(5)/n ≤ 0.201,

has probability of occurring of 0.9999 or more. How large must n be? We will not address this

issue directly in these notes. (After we learn about confidence intervals, the interested reader will

be able to investigate this issue, but the topic is not important in this course; it’s more of a topic

for a course in probability theory.) I will remark that the Law of Large Numbers is responsible for

the thousands of gambling casinos in the world being profitable. (See my roulette example later in

this chapter.)

I will now give a general version of the Law of Large Numbers. Here are the ingredients we

need:

• We need a sequence of i.i.d. random variablesX1, X2, X3, . . . .

• We need a sequence of events A1, A2, A3, . . . , with the following properties:

1. Whether or not the event Ai occurs depends only on the value ofXi, for all values of i.

2. P (Ai) = p is the same number for all values of i.

For our use, the Ai’s will all be the ‘same’ event. By this I mean they will be something like

out example above where Ai was that (Xi = 5).

• Define fn(Ai) to be the frequency of occurrence of the events Ai in opportunities i =
1, 2, . . . , n.
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The Law of Large Numbers states:

The limit as n tends to infinity of
fn(Ai)

n
= p.

The above presentation of the Law of Large Numbers is much more complicated (mathemati-

cally) than anything else in these notes. I made the above presentation in the spirit of intellectual

honesty. Here is what you really need to know about the Law of Large Numbers. The prob-

ability of an event is equal to its long-run-relative-frequency of occurrence under the assumption

that we have i.i.d. operations of the chance mechanism. As a result, if we have a large number of

i.i.d. operations of a chance mechanism, then the relative frequency of occurrence of the event is

approximately equal to its probability:

Relative frequency of A in n trials ≈ P (A). (10.3)

This approximation is actually twice as exciting as most people realize! I say this because it can

be used in two very different situations.

1. If the numerical value of P (A) is known, then before we observe the trials we can accu-

rately predict the value of the relative frequency of occurrence of the event A for a large

number of trials.

2. If the numerical value of P (A) is unknown, then we cannot predict, in advance, the relative
frequency of occurrence ofA. We can, however, do the following. We can go ahead and per-

form or observe a large number of trials and then calculate the observed relative frequency

of occurrence of A. This number is a reasonable approximation to the unknown P (A).

10.3 Independent and Identically Distributed Trials

Chapter 1 introduced the idea of a unit, the entity from which we obtain a response. I said that

sometimes a unit is a trial and sometimes it is a subject. Earlier in this chapter I introduced you to

the population box as a model for a finite population of subjects. In this section I will argue that

sometimes a box of cards can be used as part of a model for the outcomes of trials. In this chapter

we will consider trials for which the response is either:

• a category, usually with two possible values; i.e., a dichotomy; or

• a count, for example, as in the example of Dawn’s study of Bob’s preferences for treats.

Trials with responses that are measurements (examples: time to run one mile; time to complete an

ergometer workout; distance a hit golf ball travels) present special difficulties and will be handled

later in these notes.

In my experience, in the current context of populations, students find trials to be conceptually

more difficult than subjects. As a result, I am going to introduce this topic to you slowly with an

extended familiar (I hope) example.

Beginning in my early childhood and extending well into my adulthood, I have played games

that involved the throwing of one or more dice:
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• Monopoly, Parchesi, Yahtzee, Skunk, and Risk, to name a few.

In these notes, unless otherwise stated, a die will be a cube with the numbers 1, 2, 3, 4, 5 and 6 on

its faces, one number per face. The arrangement of the numbers on the faces follows a standard

pattern (for example, opposite faces sum to 7), but we won’t be interested in such features. If you

want to learn about dice that possess some number of faces other than six, see the internet.

Suppose that I have a particular die that interests me. Define the chance mechanism to be a

single cast of the die. The possible outcomes of this cast are the numbers: 1, 2, 3, 4, 5 and 6. The

first issue I face is my answer to the question:

Am I willing to assume that the six outcomes are equally likely to occur? Or, in the

vernacular, is the die balanced and fair? (Not in the sense of Fox News.)

As we will see later in these notes, there have been dice in my life for which I am willing to assume

balance, but there also have been dice in my life for which I am not willing to assume balance.

For now, in order to proceed, let’s assume that my answer is, “Yes, I am willing to assume that my

die is balanced.”

Now consider a box containing N = 6 cards numbered 1, 2, 3, 4, 5 and 6. Next, consider the

chance mechanism of selecting one of these cards at random. Clearly, in terms of probabilities,

selecting one card from this box is equivalent to one cast of a balanced die. What about repeated

casts of a balanced die?

I argue that repeated casts of a balanced die is equivalent to repeatedly sampling of cards at

random with replacement—the dumb method—from the above box. Why? At each draw (cast)

the six possible outcomes are equally likely. Also, the result of any draw (cast) cannot possibly

influence the outcome of some other draw (cast).

To be more precise, define Xi to be the number obtained on cast i of the die. The random

variables X1, X2, X3, . . . , are i.i.d. random variables; as such, the Law of Large Numbers is true.

Thus, for example, in the long run, the relative frequency of each of the six possible outcomes of a

cast will equal one-sixth.

Here is another example. This example helps explain a claim I made earlier about why casinos

do so well financially.

An American roulette wheel has 38 slots, each slot with a number and a color. For this example,

I will focus on the color. Two slots are colored green, 18 are red and 18 are black. Red is a popular

bet and the casino pays ‘even money’ to a winner.

If we assume that the 38 slots are equally likely to occur (i.e., that the wheel is fair), then the

probability that a red bet wins is 18/38 = 0.4737. But a gambler is primarily concerned with

his/her relative frequency of winning. Suppose that the trials are independent—i.e., the wheel has

no memory—and that a gambler places a very large number, n, of one dollar bets on red. By the

Law of Large Numbers, the relative frequency of winning bets will be very close to 0.4737 and

the relative frequency of losing bets will be very close to 1 − 0.4737 = 0.5263. In simpler terms,

in the long run, for every $100 bet on red, the casino pays out 2(47.37) = 94.74 dollars, for a net

profit of $5.26 for every $100 bet.

As a side note, when a person goes to a casino, he/she can see that every table game has a

range of allowable bets. For example, there might be a roulette wheel that states that the minimum
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bet allowed is $1 and the maximum is $500. Well, a regular person likely pays no attention to

the maximum, but it is very important to the casino. As a silly and extreme example, suppose

Bill Gates or Warren Buffett or one of the Koch brothers walks into a casino and wants to place

a $1 billion bet on red. No casino could/would accept the bet. (Why?) And, of course, I have no

evidence that any of these men would want to place such a bet.

10.3.1 An Application to Genetics

A man with type AB blood and a woman with type AB blood will have a child. What will be the

blood type of the child? This question cannot be answered with certainty; there are three possible

blood types for the child: A, B and AB. These three types, however, are not equally likely to occur,

as I will now argue. According to Mendelian inheritance (see the internet for more information)

both the father and mother donate an allele to the child, with each parent donating either an A or a

B, as displayed below:

The Child’s Bloodtype:

Allele

Allele from Mom:

from Dad: A B

A A AB

B AB B

If we make three assumptions:

• The allele from Dad is equally likely to be A or B;

• The allele from Mom is equally likely to be A or B; and

• Mom’s contribution is independent of Dad’s contribution;

then the four cells above are equally likely to occur and, in the long run, the blood types A, AB

and B will occur in the ratio 1:2:1.

If you have studied biology in the last 10 years your knowledge of Mendelian inheritance is,

no doubt, greater than mine. The above ratio, 1:2:1, arises for traits other than human blood type.

Other ratios that arise in Mendelian inheritance include: 1:1; 3:1; and 9:3:3:1. See the internet or

a modern textbook on biology for more information.

10.3.2 Matryoshka (Matrushka) Dolls, Onions and Probabilities

Please excuse my uncertainty in spelling. Users of the English language seem to have difficulty

making conversions from the Cyrillic alphabet. For example, the czar and the tsar were the same

man. (Based on my two years of studying Russian, tsar is correct. Others may disagree with me.)

Anyways, a matryoshka doll is also called a Russian nesting doll. I conjecture that most of

you have seen them or, at the very least, seen pictures of them. As you know, frequently in these

notes I have referred you to the internet and, sometimes, more specifically, to Wikipedia. This, of
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course, is risky because there is no guarantee that Wikipedia is, or will remain, accurate. I always

overcome my nature to be lazy and actually check Wikipedia before typing my suggestion to visit

the site. Imagine my happiness (delight is too strong) when I went to the matryoshka doll entry on

Wikipedia and found exactly what I wanted to find:

Matryoshkas are also used metaphorically, as a design paradigm, known as the ma-

tryoshka principle or nested doll principle. It denotes a recognizable relationship of

object-within-similar-object that appears in the design of many other natural and man-

made objects. . . .

The onion metaphor is of similar character. If the outer layer is peeled off an onion,

a similar onion exists within. This structure is employed by designers in applications

such as the layering of clothes or the design of tables, where a smaller table sits within

a larger table and a yet smaller one within that.

My goal in this subsection is for you to realize thatmany (two or more) operations of a chance

mechanism can be viewed as one operation of some different chance mechanism. A simple enough

idea, but one that will be of great utility to us in these notes. Let me begin with a simple example.

The following description is taken from Wikipedia.

The game of craps involves the simultaneous casting of two dice. It is easier to study if we

imagine the dice being tossed one-at-a-time or somehow being distinguishable from each other.

Each round of a game begins with the come-out. Three things can happen as a result of the come-

out:

• An immediate pass line win if the dice total 7 or 11.

• An immediate pass line loss if the dice total 2, 3 or 12 (called craps or crapping out).

• No immediate win or loss, but the establishment of a point if the dice total 4, 5, 6, 8, 9 or 10.

My goal is to determine the probability of each of these three possible outcomes: win, loss and

point.

I determine these probabilities by consider two operations of the chance mechanism of i.i.d.

casts of a balanced die. To this end, I create the following table:

X2

X1 1 2 3 4 5 6

1 Loss Loss Point Point Point Win

2 Loss Point Point Point Win Point

3 Point Point Point Win Point Point

4 Point Point Win Point Point Point

5 Point Win Point Point Point Win

6 Win Point Point Point Win Loss

Based on my assumptions, the 36 cells in this table are equally likely to occur. Thus, by counting,

I obtain the following probabilities:

P (Win) = 8/36 = 2/9;P (Loss) = 4/36 = 1/9;P (Point) = 24/36 = 2/3.
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Now, define a new box containingN = 9 cards of which two are marked ‘Win;’ one is marked

‘Loss;’ and the remaining six are marked ‘Point.’ The chance mechanism is selecting one card at

random from this new box. Clearly, selecting one card at random from this new box is equivalent

to my two operations of the balanced die box. Admittedly, this example is easier because I don’t

care what the point is. If you are playing craps, you would prefer a point of 6 or 8 to a point of 4

or 10; i.e., not all points have the same consequences. I won’t show you the details, but if you are

interested in the point obtained, the probabilities become:

P (Win) = 8/36 = 2/9;P (Loss) = 4/36 = 1/9;P (Point = 4) = 3/36 = 1/12;

P (Point = 5) = 4/36 = 1/9;P (Point = 6) = 5/36;P (Point = 8) = 5/36;

P (Point = 9) = 4/36 = 1/9; and P (Point = 10) = 3/36 = 1/12,

10.3.3 In Praise of Dumb Sampling

Suppose that I have a population of N = 40 college students and I want explore the question of

how many of them are female. In addition, my resources allow me to select n = 20 students at

random for my sample. Clearly, the smart way of sampling—which guarantees information from

20 different populationmembers—is greatly preferred to the dumbway of sampling—which likely,

it seems, will lead to my obtaining information from fewer than 20 distinct population members.

If I replace my population size of 40 by 40,000 and keep my sample size at 20, then, as argued

earlier, the distinction between dumb and smart sampling becomes negligible. But even so, smart

seems better; after all, it would be embarrassing to ask a student twice to state his/her sex. In this

subsection I will show you a situation in which dumb sampling is actually much better than smart

sampling. Indeed, we have made use of this fact many times in these notes.

Let’s return to Dawn’s study of Bob’s eating habits, introduced in Chapter 1. In order to

perform her study, Dawn needed an assignment: she needed to select 10 cards at random without

replacement from a box containing 20 cards. Similar to my example on craps above, we could view

Dawn’s selection of 10 cards from her box as equivalent to selecting one card from a different

box. Which different box? The box that contains all 184,756 possible assignments. Of course, for

Dawn’s purpose of performing her study, it was easier to create a box with 20 cards and then select

10 of them. (If the randomizer website had existed when she performed her study, it would have

been easier still for Dawn to use it and not bother with locating a box and 20 cards.)

Let’s now turn our attention to analyzing Dawn’s data. Following our methodology, we wanted

to know the sampling distribution of the test statistic, be it the difference of means, U , or the sum

of ranks, R1. To this end we prefer the box with 184,756 cards, one for each assignment. On each

card is written the value of the test statistic of interest.

I did not give you the details (computer code) of our computer simulation experiment, but now I

need to tell you a little bit about it. Each rep of the simulation consists of the computer selecting an

assignment at random from the population of 184,756 possible assignments and recording the value

of the test statistic for the selected assignment. In the language of this and the previous chapter,

the program selected assignments at random with replacement; i.e., the program sampled in the

dumb way. Why did I write a program that samples the dumb way?
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The answer lies in our imagining what would be necessary to sample the smart way. As we

will see very soon, the smart way would be a programming nightmare! It is important to remem-

ber/realize that, in reality, there is no box with 184,756 cards in it. If there were, we could pull

out a card, look at it, and set it aside. This would make the smart way of sampling easy and,

consequently, preferred to the dumb way. But there is no such box of assignments! Here is how

the program operates. I tell the computer to select 10 trials (days) from the 20 trials (days) of

Dawn’s study. This selection tells the computer which responses are on treatment 1 and which are

on treatment 2 and then the observed value of the test statistic is calculated. Here is the key point:

There is no way to tell the computer, “Don’t pick the same assignment again.” (If you disagree, I

challenge you to write the code; if you succeed, send it to me.) What I could tell the computer is,

Write down the assignment you just used in file A. Every time you select a new as-

signment, before using it check to see whether it is in file A. If it is, don’t use it; if not;

use it and add it to file A.

I don’t mean to be rude, but this would be one of the worst programs ever written! As we approach

10,000 reps, computer space would be wasted on storing file A and a huge amount of computer

time would be spent checking the ‘new’ assignment against the ones previously used. Thus, we

sample the dumb way.

Recall that in Part 1, I advocated using the relative frequencies from a computer simulation

experiment as approximations to the unknown exact probabilities. According to the Law of Large

Numbers, this is good advice; for a large number of reps, we can say that with large probability,

the relative frequencies are close to the exact probabilities of interest. Indeed, our nearly certain

interval did this. By nearly certain, I conveyed a large probability, which, as we will see, is ap-

proximately 99.74%. The nearly certain interval allowed us to compute how close, namely within

3

√

r̂(1− r̂)

m
,

where r̂ is our relative frequency approximation and m is our number of reps in the simulation

experiment.

10.4 Some Practical Issues

We have learned about finite populations and two ways to sample from them: a random sample

without replacement (smart method of sampling) and a random sample with replacement (dumb

method of sampling). We have learned that sometimes I am willing to assume I have i.i.d. trials;

my two examples of this were: repeated casts of a balanced die and the alleles contributed from

two parents to child. With either i.i.d. trials or the dumb method of sampling, we have i.i.d. random

variables.

All of the population-based methods presented in the remainder of these notes assume that we

have some type of i.i.d. random variables. The same can be said of every introductory Statistics

textbook that I have ever seen. Now I am going to surprise you. These various texts pay little or
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no attention to the practical issues that result from such an assumption. They just repeatedly state

the mantra: Assume we have i.i.d. random variables (or, in some books, assume we have a random

sample). But let me be clear. I am not criticizing teachers of introductory Statistics; I suspect that

many of them discuss this issue. Publishers want to keep textbooks short—to increase the profit

margin, no doubt—and it takes time to present this material in lecture. Our medium—an online

course—seems ideal for exploring this topic. I can make these notes longer without increasing any

production costs—as my time is free—and I don’t need to devote lecture time to this, because we

have no lectures!

In any event, let me move away from these general comments and talk specific issues.

Let me begin with trials. Think of the studies of Part I that had units equal to trials. For

example, let’s consider Dawn’s study of her cat Bob. Dawn concluded that Bob’s consumption

of chicken treats exceeded his consumption of tuna treats. Now let’s consider the time right after

Dawn concluded her analysis. Suppose that she decided to concentrate on chicken treats because

she interpreted Bob’s greater consumption of chicken as reflecting his preference for its taste. (One

could argue that Bob ate more chicken because he required more of them to be satisfied, but I don’t

want to go down that road at this time.)

Thus, Dawn decided to offer Bob ten chicken treats every day for a large number of days,

denoted by n. This gives rise to n random variables:

X1, X2, X3, . . . , Xn,

which correspond, naturally, to the number of treats he eats each day. Are these i.i.d. trials? Who

knows? A better question is: Are we willing to assume that these are i.i.d. trials? According to

Wikipedia, in 1966, psychologist Abraham Maslow wrote:

I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if

it were a nail.

Maslow’s Hammer is sometimes shortened to:

If the only tool you have is a hammer, then everything looks like a nail.

Following Maslow, if one knows how to analyze data only under the assumption of i.i.d. trials,

then one is very likely to make such an assumption.

Indeed, in my career as a statistician I have frequently begun an analysis by saying that I assume

that I have i.i.d. trials. I comfort myself with the following facts.

• I state explicitly that my answers are dependent on my assumption; if my assumption is

wrong, my answers might be misleading.

• I do a mind experiment. I think about the science involved and consider whether the assump-

tion of i.i.d. trials seems reasonable. This is what I did for the die example: Does it make

sense to think that a die remembers? Does it make sense to think that a die will change over

time? Because my answer to both of these questions is no, my mind experiment tells me that

I have i.i.d. trials.
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• After collecting data, it is possible to critically examine the assumption of i.i.d. trials. This

topic is explored briefly later in these notes.

I admit that the above list is unsatisfactory; the description of the mind experiment is particularly

vague. Rather than try to expand on these vague notions, in the examples that follow in these

Course Notes I will discuss the assumption of i.i.d. trials on a study-by-study basis.

For finite populations, all the methods we will learn in these Course Notes assume that the

members of the sample have been selected at random from the population box, either with (dumb)

or without (smart) replacement. In my experience, when the population is a well-defined collection

of people, this assumption of random sampling is rarely, almost never, literally true. I will expand

on this statement by telling you a number of stories based on my work as a statistician.

10.4.1 The Issue of Nonresponse

Many years ago I was helping a pharmacy professor analyze some of her data. I asked her if she

had any other projects on which I might help. She replied, “No, my next project involves taking a

census. Thus, I won’t need a statistician.” A few months later she called and asked for my help on

this census project; what had gone wrong?

She had attended a national conference of all—numbering 1,000—members of some section

of a professional association. She felt that 1,000 was a sufficiently small population size N to

allow her to perform a census. She gave each of the 1,000 members a questionnaire to complete.

A difficulty arose when only 300 questionnaires were returned to her. Her next plan was to treat

her sample of 300 as a random sample from her population and was asking my advice because her

ratio of n/N was 300/1000 = 0.30 which is larger than the threshold of 0.05. I pointed out that

she had a volunteer sample, not a random sample. Without making this story too long, I suggested

that her best plan of action was to contact, say, 70 people—I can’t remember the exact number—

who had not respond and to politely and persistently—if needed—encourage them to respond.

After obtaining the data from these 70, she could do various statistical analyses to see whether the

responses from the original non-responders (she now has a smart random sample of 70 of these)

were importantly different from the responses from the original 300 responders.

In my experience, expecting to complete a census is hopelessly naive. A better plan for the

professor would have been to select, say, 200 people at random and understand that the 140 or so

who chose not to respond would need to be tracked down and encouraged, to the extent possible

and reasonable, to participate. If in the end, say, 20% of the original 200 absolutely refused to

participate, then the analysis should highlight this fact, for example, by writing,

Here is what we can say about the approximately 80% of the population that is willing

to be surveyed. For the other 20% we have no idea what they think. Except, of course,

that they didn’t want to participate in my survey!

10.4.2 Drinking and Driving in Wisconsin

In 1981, the legislature in the State of Wisconsin enacted a comprehensive law that sharply in-

creased the penalties for drinking and driving. Part of the law directed the State’s Department of
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Transportation (DOT) to:

• Educate the public about the new law and the dangers of driving after drinking.

• Measure the effectiveness of its educational programs as well as the drivers’ attitudes and

behavior concerning drinking and driving.

Eventually, the Wisconsin DOT conducted four large surveys of the population of licensed drivers

in 1982, 1983, 1984 and 1986. After the data had been collected in 1983, DOT researchers con-

tacted me for help in analyzing their data. I continued to work with the DOT and eventually

analyzed all four surveys and submitted written reports on my findings.

Let me begin by describing how the DOT selected the samples for its surveys. (The same

method was used each year.) First, the people at the DOT had the good sense not to attempt to

obtain a random sample of licensed drivers. To see why I say this, let’s imagine the steps involved

in obtaining a random sample.

Even in the ancient days of 1982, I understand that the DOT had a computer file with the names

of all one million licensed drivers in Wisconsin. (I will say one million drivers; I don’t recall the

actual number, but one million seems reasonable and, I suspect, a bit too small.) It would be easy

enough to randomly select (smart method; they didn’t want to question anyone twice), say, 1,500

names from the computer file and survey those selected. Two immediate difficulties come to mind:

1. How to contact the 1,500 members of the sample. Send them a questionnaire through the

mail? Contact them by telephone? Have a researcher visit the home? All of these meth-

ods would be very time-consuming and expensive and all would suffer from the following

difficulty.

2. What should be done about the drivers who choose not to respond? Any solution would

be time-consuming and expensive and, in the end, in our society you cannot force people to

respond to a survey.

Instead of selecting drivers at random, the DOT hit upon the following plan. I was not involved in

selecting this plan, but I believe that it was a good plan.

First, judgment was used to select a variety of driver’s license exam stations around the state.

The goal was to obtain a mix of stations that reflect the rural/urban mix of Wisconsin as well as

other demographic features of interest. (I can’t remember what other features they considered.)

Each selected station was sent a batch of questionnaires and told that over a specified period in

late March and early April, every person who applied for a license renewal or a new license was

required to complete the questionnaire and submit it before being served. Despite this rather

draconian requirement, I understand that no complaints were reported and nobody left a station to

avoid responding. (I guess that people in the 1980s really wanted their driver’s licenses!)

The completed questionnaires—1,589 in 1982 and 1,072 in 1983—were sent to Madison and I

was given the task of analyzing them. One of my main directives was to search for changes from

the 1982 survey—conducted before the law took effect later in 1982—to the 1983 survey. Later in

these notes I will report some of my findings; at this time, I am more concerned with the method

of sampling that was used.
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Let me state the obvious. Many of you are not very interested in these surveys that were

conducted some 30 years ago. That is fair. Therefore, I will not use these data extensively, but

rather I will use them primarily when they illustrate some timeless difficulty with survey research.

In addition, because I was intimately involved in this research, I have the inside story on what

happened. In my experience, it is difficult to convince a researcher to share all about the conduct

of any research study.

Let me reiterate an important point. None of the driver surveys conducted by the Wisconsin

DOT consisted of a random sample of drivers. Thus, a research purist could say, “Don’t use any of

the population-based inference methods on these data.” I don’t mean to be blunt, but if you totally

agree with the purist’s argument, then you have no future in research, unless you can carve out a

niche as a professional contrarian! The purist ignores the sage comment by Voltaire:

The perfect is the enemy of the good.

Admittedly, the DOT’s samples were not random—hence, not perfect to a statistician—but were

they good? I see the following advantages to the DOT’s method (these were alluded to above):

1. A large amount of data was obtained at a very low cost of collection.

2. The issue of nonresponse was minor.

Regarding nonresponse, yes everyone did complete and submit a questionnaire, but some of the

items on the questionnaire were ignored by some respondents. My recollection was that all or

nearly all respondents took the activity seriously; i.e., I spent a great deal of time looking at the raw

data and I don’t recall any completely blank questionnaires. Rather, roughly 12% [6%] chose not

to report their age [sex]; otherwise, subjects would occasionally leave an item blank, presumably

because they were not sure about their knowledge, behavior or opinion. I reported the nonresponse

rate on each questionnaire item, allowing the reader to make his or her own assessment of its

importance.

The DOT’s sampling method is an example of a convenience sample; it was convenient for

the DOT to survey people who visited one of the stations selected for the study. A small change in

procedure would have changed this convenience sample into a volunteer sample; can you think

of what this change is? Well, there are several possible changes, but here is the one I am con-

templating: Instead of forcing everyone who visits to complete a questionnaire, the questionnaires

could have been placed on a table with a sign, “Please complete this questionnaire; there are no

consequences for participating or not.”

In the scenario described above, I think that the actual convenience sample is superior to my

proposed volunteer sample, but we don’t have time to spend on this topic. There is a more impor-

tant point to consider.

As the analyst of the DOT data, I decided to make the WTP assumption, which I will now

state.

Definition 10.3 (The Willing to Pretend (WTP) Assumption.) Consider a survey for which the

sample was selected in any manner other than a (smart or dumb) random sample. The WTP as-

sumption means that, for the purpose of analyzing and interpreting the data, the data are assumed
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to be the result of selecting a random sample. In other words, a person who makes the WTP

assumption is willing to pretend that the data came from a random sample.

In my experience the WTP assumption often is made only tacitly. For example—and this was not

my finest hour—in my 1983 report for the DOT, I explained how the data were collected and then,

without comment, proceeded to use various analysis methods that are based on the assumption of a

random sample. In retrospect, I would feel better if I had explicitly stated my adoption of the WTP

assumption. In my defense—a variation on the all my friends have a later curfew argument that

you might know—it is common for researchers to suppress any mention of the WTP assumption.

As I hope is obvious, I cannot make general pronouncements about the validity of the WTP as-

sumption, other than saying that the purist never makes the assumption and, alas, some researchers

appear to always make the assumption.

For the DOT surveys, I cannot imagine any reason why people who visit a DOT station in

late March to early April are different—in terms of attitudes, knowledge or behavior related to

drinking and driving—than people who visit at other times of the year. Also, I cannot imagine any

reason why people who visit the stations selected for study are different than those who visit other

stations. I might, of course, be totally mistaken in my beliefs; thus, feel free to disagree. I believe

in the principle that I should—to the extent possible—make all of my assumptions explicit for two

reasons:

1. In my experience the act of making my assumptions explicit often has led to my making an

important discovery about what is actually reasonable to believe; and

2. If I want other people to consider my work seriously, I should pay them the respect of being

honest and explicit about my methods.

In the next subsection I will give additional examples of when I am willing to make the WTP

assumption and when I am not.

10.4.3 Presidents and Birthdays

In 1968, I was 19 years-old and was not allowed to vote for President because the age requirement

at that time was 21. In 1972, I voted in my first presidential election and have voted in every one

of the subsequent ten presidential elections. In 1972, I was standing in line to vote, in a cold rain

in Ann Arbor, Michigan. Next to me in line was Liv, a good friend of my wife. I commented on

how miserable the weather was. Liv replied that she agreed, but it would be worth it once George

McGovern was elected President. I was dumbfounded. “You don’t really believe that McGovern

will win, do you?”

“Of course I do,” she replied, “Everyone I know is voting for him.”

In the language of this chapter, Liv was willing to pretend that her circle of acquaintances could

be viewed as a random sample from the population of voters. The fact that she would not have

worded her process in this way, does not make it any less true.

Obviously, I remember this conversation well, even though it occurred 40 years ago. I remem-

ber it because I have seen variations on it many times over the years. The WTP assumption I held
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and hold on the drivers’ surveys, rarely holds for a a sample that consists of the following groups

of people:

• family;

• friends and acquaintances;

• co-workers; or

• students in a class.

Regarding the last item in this list. Students in my classes: belong to a very narrow and young

age group; are hard-workers; don’t have much money; are smart; are highly educated; and so on.

Several of these features are likely to be associated with many responses of interest to a researcher.

This brings us to birthdays. As I will argue below, I am willing to pretend that for the response

of birth date, the students in my class can be viewed as a random sample from a population that is

described below.

One of the most famous results in elementary probability theory is the birthday problem,

also called the birthday paradox. I don’t want to spend much time on it; interested readers are

encouraged to use the internet or contact me. Among its probability calculations, the birthday

problem shows that in a room with n = 23 [n = 80] persons, there is a 50.6% [99.99%] chance

that at least two people will have the same date of birth—month and day; year is ignored by the

birthday problem. This result is sometimes called a paradox because it seems surprising that with

only 23 people, at least one match is more likely than no matches and that with only 80 people, at

least one match is virtually certain.

As so often occurs in practice, a probability result is presented as an iron-clad fact when,

indeed, it is based on assumptions. All probabilities are based on assumptions and the assumptions

might be true, almost true or outrageously false. Let me describe the assumptions underlying the

answers of 50.6% and 99.99% in the birthday problem.

Definition 10.4 (The Assumptions Needed for the Birthday Problem.) There is population con-

sisting of a large number of people. In the population box, a person’s card contains the date of the

person’s birthday. All 366 days of the year (don’t forget February 29) are equally represented in

the box; i.e., if one card is selected from the box at random, then all 366 possible dates are equally

likely to be selected. Twenty-three [Eighty] persons are selected at random, without replacement,

from the population box.

Let’s look at the main ideas in these assumptions, including what happens if any assumption fails

to be met.

1. We require the smart method of sampling because, frankly, it would not be noteworthy if

we selected, say, Bert twice and found that his birthdays matched! The math argument,

however, is much easier if we were to sample the dumb way. We get around this difficulty

by assuming that the population box contains a large number of cards.
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For example, suppose that the population consisted of 366,000 people with each of the 366

dates being the birthday of exactly 1,000 people. As I discuss earlier in this chapter, imagine

that the 23—or 80 or, indeed, any number of—persons in the sample are selected one-at-a-

time. By assumption, all 366 dates are equally likely to be the birthday of the first person

selected. The exact probability that the second date selected matches the first date selected

is:

999/365,999 = 1/366, approximately.

This is the exact probability because after removing the first date selected, there are 999

cards (out of the 365,999 remaining cards) in the box that match the first date selected.

Thus, by having a large number of cards in the box—as well as being interested in a rela-

tively small number of selections, 23 or 80—we can use the ideas of i.i.d. trials to simplify

probability calculations, even though the smart method of sampling is used.

2. We assume that all 366 days are equally represented in the population box. This assumption

is obviously false because February 29 occurs, at most, once every four years. (A little known

fact and of even less importance to birthdays during our era: the years 1900, 2100, 2200, and

others—xy00 where xy is not divisible by four—are not leap years.) This difficultly has

been handled two ways:

• Ignore the existence of February 29 and replace the 366 days in the computation by

365. The result is that the probability of at least one match for n = 23 increases from

50.6% to 50.7%; not even worthy of notice!

• Use public health records of relative frequencies of dates of birth instead of the as-

sumption of equally likely. If you do this, you find that 365 of the relative frequencies

are very similar and one is a lot smaller. Using these numbers the probability of at least

one match becomes slightly larger than 50.6% for n = 23 and even slightly larger than
99.99% for n = 80, but not enough to get excited.

3. I have been saving the big assumption for the last; namely, that the 23 or 80 persons are

selected at random from the population box. First, it has never been the case that students

are in my class because they were randomly selected from some population and forced to

be in my class, although they are, in some ways, forced to take my class. A purist would

say, “Bob, don’t ever use the birthday problem in your class.” I don’t particularly mind

this admonition because, frankly, the purist never does anything, except solve problems

in textbooks. I am, however, very willing to adopt the WTP assumption. Indeed, I can’t

imagine any reason for date of birth being associated with taking my class.

Regarding the last assumption, for years I would survey my class to determine their dates of birth.

The result of the birthday problem worked remarkably well; with samples of 80 students or more,

I never failed to find at least one match on birthdays. When I subdivided my class into subgroups

of size 23, about one-half of the groups had at least one match and about one-half of the groups

had no match. (Sorry, I don’t have exact data.)

I would challenge my class to think of a situation in which the WTP assumption would be

unreasonable. They always quickly suggested the following three possibilities:
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1. Twenty-three persons at a particular Madison bar that is well-known for giving free drinks

to customers on their birthday.

2. Twenty-three persons in line to renew their driver’s licenses. (In Wisconsin, licenses expire

on one’s birthday; hence, a person is likely to be in line because of the proximity of the

current date with his/her birthday.)

And, finally, the best possibility:

3. Twenty-three (brand new) persons in the new babies section of a hospital!

For each of these three possibilities, I am convinced that if one collected such data repeatedly, the

relative frequency of occurrence of at least one match would be much larger than the 50.6% of the

birthday problem. Indeed, for the last possibility, I would be amazed if the relative frequency was

smaller than one!

10.5 Computing

This chapter is mostly about ideas and very little about computing answers. The main computing

tool is the use of the randomizer website:

http://www.randomizer.org/form.htm

to generate a random sample of cards selected from a population box. I will illustrate the use of

this website for a random sample (either smart or dumb) of size n = 2 from the box with N = 5
cards, numbered 1, 2, 3, 4 and 5. Homework Problem 3 will illustrate ways to use this site for a

number of topics covered in this chapter.

Recall that in order to use the randomizer website, the user must respond to seven prompts.

Below are the responses—in bold-face—we need for the above problem and the smart—without

replacement—method of sampling. Note that I am asking the site to report the order of selection;

sometimes, of course, we don’t care about the order. Also, I am asking the site to give me six—my

response to the first prompt—simulated samples of size n = 2.

6; 2; From 1 To 5; Yes; No; and Place Markers Off.

After specifying my options, I clicked on Randomize Now! and obtained the following output:

1,3; 1,2; 1,2; 3,5; 2,3; and 5,4.

Next, I repeated the above to obtain six simulated dumb samples of size n = 2. Only one of my

responses—the fifth one—to the prompts was changed to shift from the smart to the dumb method.

For completeness, my responses were:

6; 2; From 1 To 5; No; No; and Place Markers Off.

After specifying my options, I clicked on Randomize Now! and obtained the following output:
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3,4; 3,5; 5,5; 1,4; 2,1; and 4,3.

Note that only once—the third sample—did the dumb method of sampling result in the same card

being selected twice. As we saw in the notes, the probability of a repeat is 0.20; thus, a relative

frequency of one out of six is hardly surprising.

10.6 Summary

In Part I of these notes you learned a great deal about the Skeptic’s Argument. While it is obvious

that I am a big fan of the Skeptic’s Argument, I do acknowledge its main limitation: it is concerned

only with the units in the study. It many studies, the researcher wants to generalize the findings

beyond the units actually studied. Statisticians invent populations as the main instrument for

generalizations. It is important to begin with a careful discussion of populations.

We begin with populations for subjects. The subjects could be automobiles or aardvarks, but in

most of our examples, I will take subjects to be people or, sometimes, a family or a married couple

or some other well-defined collection of people. As you will see a number of times in these notes,

in population-based inference it is important to carefully define our subjects.

Whenever units are subjects, the finite population is a well-defined collection of all subjects

of interest to the researcher. To lessen confusion, we say that the finite population is comprised

of a finite number of members. The members from whom information is obtained are called the

subjects in the study. It is convenient to visualize each member of the population having a card in

the population box.

For a finite population, the goal of the researcher is to look at some of the cards in the population

box and infer features of the population. These inferences will involve uncertainty; thus, we want

to be able to use the discipline of probability to quantify the uncertainty. To this end, the researcher

needs to assume a probability sample has been selected from the population, as opposed to a non-

probability sample such as a judgment, convenience or volunteer sample. To this end, we study

two types of probability samples:

• Selecting cards from the population box at random, without replacement—referred to as

the smart random sample.

• Selecting cards from the population box at random, with replacement—referred to as the

dumb random sample.

For a random sample of size n—smart or dumb; I will explicitly mention it whenever my results

are true for one of these, but not the other—define n random variables, as follows:

• X1 is the number on the first card selected;

• X2 is the number on the second card selected;

• X3 is the number on the third card selected; and so on until we get to

• Xn is the number on the nth (last) card selected.
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Following our earlier work with test statistics, the observed value of any of these random variables

is denoted by the same letter and subscript, but lower case; e.g., x3 is the observed value ofX3 and

more generally xi is the observed value ofXi, for any i that makes sense (i.e., any positive integer

i for which i ≤ n). Section 10.1.1 presents an extended example of computing probabilities for

these random samples. The highlights of our findings are:

1. For both methods of random sampling, the random variables

X1, X2, X3, . . .Xn,

all have the same sampling/probability distribution; we say they are identically distributed,

abbreviated i.d. Thus, for example P (X1 = 5) = P (X3 = 5), and so on. This common

distribution is called the population distribution and is the same regardless of whether the

sampling is smart or dumb.

2. For the dumb method of random sampling, the random variables

X1, X2, X3, . . .Xn,

are statistically independent. This means we can use the multiplication rule; for example,

P (X1 = 5, X2 = 7, X3 = 9) = P (X1 = 5)P (X2 = 7)P (X3 = 9).

Thus, for the dumb method of sampling, the random variables

X1, X2, X3, . . .Xn,

are independent and identically distributed, abbreviated i.i.d..

3. There is also a multiplication rule for the smartmethod of random sampling, but it is messier

than the one above. For example, suppose we want to select three cards from a box with

N = 5 cards, numbered 1, 2, 3, 4 and 5. Suppose further that I am interested in the event:

(X1 = 3, X2 = 2, X3 = 5). Using the multiplication rule for conditional probabilities, I

obtain:

P (X1 = 3, X2 = 2, X3 = 5) = P (X1 = 3)P (X2 = 2|X1 = 3)P (X3 = 5|X1 = 3, X2 = 2).

This equation is intimidating in appearance, but quite easy to use. Indeed, you may use it, as

I now describe, without thinking about how horrible it looks. We begin with

P (X1 = 3) = 1/5 = 0.20.

So far, this is easy. Next, we tackle

P (X2 = 2|X1 = 3).

Given that the first card selected is the ‘3;’ the remaining cards are 1, 2, 4 and 5. Thus,

P (X2 = 2|X1 = 3) = 1/4 = 0.25.
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Finally, given that the first two cards selected are ‘3’ followed by ‘2,’

P (X3 = 5|X1 = 3, X2 = 2) = 1/3 = 0.33.

Thus, we find

P (X1 = 3, X2 = 2, X3 = 5) = (1/5)(1/4)(1/3) = (1/60) = 0.0167.

4. As illustrated in the previous two items in this list, it is much easier to calculate probabilities

if we have independence. Thus, it often happens that a researcher samples the smart way,

but computes probabilities as if the sample had been collected the dumb way. This is not

cheating; it is an approximation. If the population size is N—known or unknown to the

researcher—and the value of n/N is 0.05 or smaller, then the approximation is good.

Next, we consider the situation in which the units are trials. For example, suppose that each

trial consists of my casting a die. It makes no sense to represent this activity as a finite population;

for example, it makes no sense to say that I could cast a die N = 9,342 times, but not 9,343

times. As a result, for trials, some probabilists say that we have an infinite population. Sadly, this

terminology can be confusing for the non-probabilist; because I am not an immortal, there is some

limit to the number of times I could cast a die. It’s just that there turns out to be no point in trying

to specify that limit.

In fact, for a trial our attention is focused on the process that generates the outcomes of the

trials. In particular, there are two main questions:

1. Is the process stable over time or does it change?

2. Is the process such that the particular outcome(s) of some trial(s) influence the outcome(s)

of some different trial(s).

If we are willing to assume that the process is stable over time and there is no influence then we

can model the process as being the same as dumb random sampling from a box. Because dumb

sampling gives us i.i.d. random variables, we refer to this situation as having i.i.d. trials.

When we have i.i.d. random variables or trials, we have the Law of Large Numbers (LLN).

The Law of Large Numbers gives us a qualitative link between the probability of an event and its

long-run-relative-frequency of occurrence. In later chapters we will see how to make the Law of

Large Numbers more quantitative.

After a number of topics: an application to Mendelian inheritance; the role of matryoshka

dolls; and a homage to dumb sampling; Section 10.4 presents some important practical issues.

This section does not settle the issue of how to deal with practical issues; rather, its ideas will

be revisited throughout the remainder of the Course Notes. In particular, the Willing to Pretend

(WTP) assumption, Definition 10.3, will be discussed many times.
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10.7 Practice Problems

1. Consider a random sample without replacement (i.e., smart sampling) of size n = 2 from a

population box with N = 5 cards, numbered 1, 2, 3, 5 and 5. Note that, unlike our example

earlier in this chapter, two of the cards have the same response value. In order to calculate

probabilities, it is helpful to pretend that we can distinguish between the two 5’s in the box.

To this end, I will represent one of the 5’s by 5a and the other by 5b. With this set-up, we can

immediately rewrite Table B in Table 10.1 as below:

X2

X1 1 2 3 5a 5b Total

1 — 0.05 0.05 0.05 0.05 0.20

2 0.05 — 0.05 0.05 0.05 0.20

3 0.05 0.05 — 0.05 0.05 0.20

5a 0.05 0.05 0.05 — 0.05 0.20

5b 0.05 0.05 0.05 0.05 — 0.20

Total 0.20 0.20 0.20 0.20 0.20 1.00

Next, we combine the two rows [columns] corresponding to our two versions of 5 to obtain

the following joint probability distribution for the two cards selected at random, without

replacement, from our box.

X2

X1 1 2 3 5 Total

1 — 0.05 0.05 0.10 0.20

2 0.05 — 0.05 0.10 0.20

3 0.05 0.05 — 0.10 0.20

5 0.10 0.10 0.10 0.10 0.40

Total 0.20 0.20 0.20 0.40 1.00

(a) Calculate

P (X1 is an odd number and X2 < 3),

and compare it to:

P (X1 is an odd number)P (X2 < 3).

(b) Define Y to equal the maximum of X1 and X2. Determine the sampling distribution

of Y .

2. Refer to the previous problem. An alternative to creating a table to present the joint distri-

bution of X1 and X2 is to use the multiplication rule for dependent random variables. For

example,

P (X1 = 1, X2 = 5) = 0.10
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from the table in problem 1. Alternatively,

P (X1 = 1, X2 = 5) = P (X1 = 1)P (X2 = 5|X1 = 1) = (1/5)(2/4) = 0.10.

Use the multiplication rule for dependent random variables to calculate the following.

(a) P (X1 = 5, X2 = 5).

(b) P (X1 = 2, X2 = 3).

3. With the help of Minitab I performed the following simulation 10 times:

Simulate 100,000 i.i.d. trials with P (X1 = 1) = 0.50 and P (X1 = 0) = 0.50.

Let Ti denote the sum of the 100,000 numbers obtained on simulation i, for i = 1, 2, 3, . . . , 10;
Ti can also be interpreted as the number of trials in simulation i that yielded the value 1. My

observed value of T1 is t1 = 50,080. For all ten simulations, the sum of the observed values

of the Ti’s equals 500,372.

Walt states, “The Law of Large Numbersstates that t1 should be close to 50,000. It’s not; it

misses 50,000 by 80. Worse yet, for all 1,000,000 trials, the sum of the ti should be close to
500,000. It’s not and it misses 500,000 by 372 which is worse than it did for 100,000 trials!

Explain why Walt is wrong.

4. Suppose that I am interested in the population of all married couples in Wisconsin. that have

exactly two children. (I know; units other than married couples can have babies; but this is

my pretend study, so I will choose the terms of it. Truly, there is no implied disrespect—

or respect, for that matter—towards any of the myriad of other units that can and do have

babies.) LetX denote the number of female children in a family chosen at random from this

population. Possible values for X are, of course, 0, 1 and 2. I want to know the probability

distribution for X .

It is unlikely that I can find a listing of my population, all married couples in Wisconsin with

exactly two children. In part, this is because babies have a way of just showing up; thus, a

list of all married couples with exactly two children on any given date, will be inaccurate a

few months later.

Let’s suppose, instead, that I have access to a listing of all married couples in Wisconsin. If

resources were no issue, I would take a random sample of, say, 1,000 population members

and ask each two questions:

(a) As of today, right now, do you have exactly two children? If your answer is yes, please

answer question (b); if your answer is no, you are finished.

(b) How many of your two children are girls?

This is a common technique. Take a random sample from a population that includes your

population of interest and then disregard all subjects that are not in your population of inter-

est. This is legitimate, but you won’t know your sample size in advance. For example, above
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all I know for sure is that my sample size of interest will be 1,000 or smaller; possibly a lot

smaller.

My guess is that the best I could do in practice is to obtain a sample—not random—from

the population of married couples and feel ok about making the WTP assumption, Defini-

tion 10.3.

I apologize for the lengthy narrative. I have included it for two reasons.

(a) To give you more exposure to my thought process when I plan a survey.

(b) To convince you that it really is a lot of work to learn about the composition of families

of married couples with two children.

Please excuse a bit of a digression; it is important. I watched every episode of the television

series House. If you are not familiar with the show, Dr. House is a brilliant diagnostician.

Frequently, however, in addition to his vast store of medical knowledge, House must refer

to his oft stated belief that “Everybody lies,” in order to solve a particularly difficult medical

problem. He does not believe, of course, that everybody lies all the time or even that every-

body deserves the pejorative of liar; he simply believes that, on occasion, people lie and a

diagnostician must take this into account.

So, why the digression to one of my favorite television shows? To transition to my belief

about researchers: Everybody is lazy. I urge you to remember this in your roles as both

consumer and creator of research results. As a consumer, so that you will possess a reason-

able skepticism. Always saying, “You can prove anything with statistics,” does not exhibit

a reasonable skepticism. You need reasons for being skeptical; otherwise, you simply are

exhibiting another form of laziness. As a researcher, so that you will not waste effort on

flawed studies and not mislead the public.

I have seen many textbooks that claim that it is easy to determine the probability distribution

ofX , the number of female children in families of married couples with exactly two children.

Their reasoning is quite simple. They refer to my table on blood types on page 233. Relabel

what I call the Dad’s [Mom’s] allele as the sex of the first [second] child. Each child is

equally likely to be female or male and the sexes of the two children are independent. While

these assumptions might not be exactly true—identical twins will violate independence—

they seem close enough to obtain reasonable answers. From this point of view, we get:

P (Y = 0) = 0.25, P (Y = 1) = 0.50 and P (Y = 0) = 0.25.

I have actually seen the following statement in many texts:

Of all families—marriage is really not an issue here— with two children, 25%

have no girls, 25% have no boys and 50% have one boy and one girl.

Before you continue reading, stop and think about the above answer. Do you see anything

wrong with it?
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Immediately after giving the above 25%/50%/25% answer as the probability distribution

for all families with two children, one textbook then had the following example, which I

will call the Jess model.

Suppose that in a city every married couple behaves as follows: They keep having

children until they have a girl and then they stop. What is the distribution of the

number of children per family?

Well, in this new scenario every couple that stops with exactly two children will have one boy

(born first) and one girl. Not the 50% that just moments earlier had been proclaimed

to be the answer! We also see a new difficulty, that perhaps you have noticed already.

Selecting a couple that currently has two children is not the same as selecting a couple that

eventually has a total of two children. This is a general difficulty, which we will return to

later in these notes when we learn the difference between cross-sectional and longitudinal

studies. Thus, even if the Jess model was true in a city—and it is, of course, ridiculous to

assume that every couple has the same reproduction strategy—then with a cross-sectional

study—which is what I describe above—in addition to sampling couples that have their one

boy and one girl and have stopped reproducing, we would no doubt get quite a few families

with two boys that are waiting for their next baby.

Thus, in conclusion, the 25%/50%/25% answer is wrong because it assumes that the choice

of the number of children is unrelated to the sexes of the children. This assumption might

be true, but in my experience, I don’t believe it is even close to being true. We should not

build a probabilistic model because we are too lazy to collect data!

10.8 Solutions to Practice Problems

1. (a) First, I identify the cells—by V’s below—that satisfy the event of interest:

(X1 is an odd number andX2 < 3).

X2

X1 1 2 3 5

1 V V

2

3 V V

5 V V

To obtain our answer, we sum the probabilities of the six cells V-ed above:

0.00 + 0.05 + 0.05 + 0.05 + 0.10 + 0.10 = 0.35.

Looking at the margins, I find:

P (X1 is an odd number) = 0.80, P (X2 < 3) = 0.40 and 0.80(0.40) = 0.32.
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(b) By inspecting the joint distribution table, we see that the possible values of Y are: 2, 3

and 5. There is no easy way to get the answer, we simply must plow through the table’s

information. The event (Y = 2) will occur if the sample is (1,2) or (2,1). Thus,

P (Y = 2) = 0.05 + 0.05 = 0.10.

Similarly, the event (Y = 3) is comprised of the samples (1,3), (2,3), (3,1) and (3,2).

Thus,

P (Y = 3) = 4(0.05) = 0.20.

Finally, the total probability is 1; thus,

1 = P (Y = 2)+P (Y = 3)+P (Y = 5) = 0.10+0.20+P (Y = 5) = 0.30+P (Y = 5).

Thus, P (Y = 5) = 1− 0.30 = 0.70.

2. (a) Write

P (X1 = 5, X2 = 5) = P (X1 = 5)P (X2 = 5|X1 = 5) = (2/5)(1/4) = 0.10.

(b) Write

P (X1 = 2, X2 = 3) = P (X1 = 2)P (X2 = 3|X1 = 2) = (1/5)(1/4) = 0.05.

3. For 100,000 trials the Law of Large Numbers states that T1/100,000 will, with high proba-

bility, be close to 0.500000. Well, t1/100,000 equals 0.500800. For 1,000,000 trials, the Law
of Large Numbers states that the total of the Ti’s divided by 1,000,000 will, with high prob-

ability, be close to 0.500000. For my simulations, the sum of the ti’s divided by 1,000,000

is 0.500372. Note also that 0.500372 is closer than 0.500800 to one-half by more than a

factor of two. Thus, Walt’s worse yet comment is a misinterpretation of the Law of Large

Numbers. Remember: The Law of Large Numbers is about the relative frequency, not

the frequency!
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10.9 Homework Problems

1. Refer to Practice Problem 1. Consider random sample without replacement (i.e., smart sam-

pling) of size n = 2 from a population box with N = 5 cards, numbered 2, 2, 3, 4 and

4.

(a) Determine the correct probabilities for the table below.

X2

X1 2 3 4 Total

2

3

4

Total 1.00

(b) Use your answer from (a) to compute the following probability:

P (X1 is an even number and X2 ≥ 3).

(c) Use your answer from (a) to compute the following probability:

P (X1 is an odd number or X2 = 2).

Recall that in math, or means and/or.

2. Consider random sample with replacement (i.e., dumb sampling) of size n = 2 from a

population box with N = 10 cards, numbered 1, 2, 2, 3, 3, 3, 4, 4, 4 and 4.

(a) Determine the correct probabilities for the table below.

X2

X1 1 2 3 4 Total

1

2

3

4

Total 1.00

(b) Use your answer from (a) to compute the following probability:

P (X1 ≥ 3 and X2 < 4).

(c) Use your answer from (a) to compute the following probability:

P (X1 = 4 orX2 ≤ 3).

Recall that in math, or means and/or.
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3. I have a population box with n = 100 cards, numbered 1, 2, . . . , 100. A twist on this

problem is that cards numbered 1, 2, . . . , 60 are females and cards numbered 61, 62, . . . , 100

are males. With the help of our website randomizer, I select 10 smart random samples, each

with n = 5. The samples I obtained are listed below:

Sample Cards Selected Sample Cards Selected

1: 6, 30, 31, 48, 70 2: 3, 21, 28, 37, 48

3: 15, 39, 52, 91, 95 4: 11, 34, 36, 56, 86

5: 71, 72, 76, 83, 84 6: 29, 37, 42, 75, 93

7: 27, 30, 34, 53, 89 8: 20, 44, 61, 72, 83

9: 13, 24, 65, 85, 99 10: 6, 21, 28, 66, 88

(a) What seven choices did I make on the randomizer website?

(b) Which sample(s) yielded zero females? One female? Two females? Three females?

Four females? Five females?

(c) In regards to the feature sex, which samples are representative of the population?
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Chapter 11

Bernoulli Trials

11.1 The Binomial Distribution

In the previous chapter, we learned about i.i.d. trials. Recall that there are three ways we can have

i.i.d. trials:

1. Our units are trials and we have decided to assume that they are i.i.d.

2. We have a finite population and we will select our sample of its members at random with

replacement—the dumb form of random sampling. The result is that we have i.i.d. random

variables which means the same thing as having i.i.d. trials.

3. We have a finite population and we have selected our sample of its members at random

without replacement—the smart form of random sampling. If n/N—the ratio of sample

size to population size—is 0.05 or smaller, then we get a good approximation if we treat our

random variables as i.i.d.

In this chapter, we study a very important special case of i.i.d. trials, called Bernoulli trials. If each

trial has exactly two possible outcomes, then we have Bernoulli trials. For convenient reference, I

will now explicitly state the assumptions of Bernoulli trials.

Definition 11.1 (The assumptions of Bernoulli trials.) If we have a collection of trials that sat-

isfy the three conditions below, then we say that we have Bernoulli trials.

1. Each trial results in one of two possible outcomes, denoted success (S) or failure (F ).

2. The probability of a success remains constant from trial-to-trial and is denoted by p. Write

q = 1− p for the constant probability of a failure.

3. The trials are independent.

We will use the method described on page 168 of Chapter 8 to assign the labels success and failure.

When we are involved in mathematical arguments, it will be convenient to represent a success by

the number 1 and a failure by the number 0. Finally,
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We are not interested in either of the trivial cases in which p = 0 or p = 1. Thus, we
restrict attention to situations in which 0 < p < 1.

One reason that Bernoulli trials are so important, is that if we have Bernoulli trials, we can calculate

probabilities of a great many events. Our first tool for calculation is the multiplication rule that we

learned in Chapter 10. For example, suppose that we have n = 5 Bernoulli trials with p = 0.70.
The probability that the Bernoulli trials yield four successes followed by a failure is:

P (SSSSF ) = ppppq = (0.70)4(0.30) = 0.0720.

Our next tool is extremely powerful and very useful in science. It is the binomial probability

distribution. Suppose that we plan to perform/observe n Bernoulli trials. Let X denote the total

number of successes in the n trials. The probability distribution of X is given by the following

equation.

P (X = x) =
n!

x!(n− x)!
pxqn−x, for x = 0, 1, . . . , n. (11.1)

Equation 11.1 is called the binomial probability distribution with parameters n and p; it is
denoted by the Bin(n, p) distribution. I will illustrate the use of this equation below, a compilation

of the Bin(5,0.60) distribution. I replace n with 5, p with 0.60 and q with (1 − p) = 0.40. Below,
I will evaluate Equation 11.1 six times, for x = 0, 1, . . . , 5: You should check a couple of the

following computations to make sure you are comfortable using Equation 11.1, but you don’t need

to verify all of them.

P (X = 0) =
5!

0!5!
(0.60)0(0.40)5 = 1(1)(0.01024) = 0.01024.

P (X = 1) =
5!

1!4!
(0.60)1(0.40)4 = 5(0.60)(0.0256) = 0.07680.

P (X = 2) =
5!

2!3!
(0.60)2(0.40)3 = 10(0.36)(0.064) = 0.23040.

P (X = 3) =
5!

3!2!
(0.60)3(0.40)2 = 10(0.216)(0.16) = 0.34560.

P (X = 4) =
5!

4!1!
(0.60)4(0.40)1 = 5(0.1296)(0.40) = 0.25920.

P (X = 5) =
5!

5!0!
(0.60)5(0.40)0 = 1(0.07776)(1) = 0.07776.

Whenever probabilities for a random variable X are given by Equation 11.1 we say that X
has a binomial probability (sampling) distribution with parameters n and p and write this as X ∼
Bin(n, p).

There are a number of difficulties that arise when one attempts to use the binomial probability

distribution. The most obvious is that each trial needs to give a dichotomous response. Sometimes

it is obvious that we have a dichotomy: For example, if my trials are shooting free throws or

attempting golf putts, then the natural response is that a trial results in a make or miss. Other
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times, the natural responsemight not be a dichotomy, but the response of interest is. For example,

in my example of the American roulette wheel in Chapter 10, the natural response is the winning

number, but if I like to bet on red, then the response of interest has possible values red and not

red. Similarly, in the game of craps, I might be primarily interested in whether or not my come out

results in a pass line win, a dichotomy.

Thus, let’s suppose that we have a dichotomous response. The next difficulty is that in order

to calculate probabilities, we need to know the numerical values of n and p. Almost always, n is

known to the researcher and if it is unknown, we might be able to salvage something by using the

Poisson distribution, which you will learn about in Chapter 13. There are situations in which p is

known, including the following:

• Mendelian inheritance; my roulette example above, assuming the wheel is fair; and my craps

example, assuming both dice are fair and they behave independently.

In other words, sometimes I feel that the phenomenon under study is sufficiently well understood

that I feel comfortable in my belief that I know the numerical value of p. Obviously, in many

situations I won’t know the numerical value of p. For shooting free throws or attempting golf

putts I usually won’t know exactly how skilled the player/golfer is. When my interest is in a finite

population, typically I won’t know the composition of the population; hence, I won’t know the

value of p.
Before I explore how to deal with the difficulty of p being unknown, let’s perform a few com-

putations when p is known.

Example 11.1 (Mendelian inheritance with the 3:1 ratio.) If you are unfamiliar with Mendelian

inheritance, you can find an explanation of the 1:2:1, 3:1 and 9:3:3:1 ratios at:

http://en.wikipedia.org/wiki/Mendelian_inheritance.

Each trial—offspring—will possess either the dominant (success) or recessive (failure) phenotype.

Mendelian inheritance tells us that these will occur in the ratio 3:1, which means that p = 3q =
3(1− p). Solving for p, this equation becomes 4p = 3 and, finally, p = 0.75. Suppose that we will
observe n = 8 independent trials, each with p = 0.75. LetX denote the total number of these eight

offspring who will possess the dominant phenotype. We can calculate probabilities forX by using

Equation 11.1 with n = 8 and p = 0.75; i.e., by using the Bin(8,0.75) probability distribution.

Suppose, for example, that I want to calculate P (X ≥ 6) forX having the Bin(8,0.75) distribution.

If I want to do this by hand, I must first rewrite my event of interest:

P (X ≥ 6) = P (X = 6) + P (X = 7) + P (X = 8).

Next, I must evaluate Equation 11.1 three times; for x = 6, x = 7 and x = 8. Sorry, but this does
not sound like fun!

Fortunately, there is a website that can help. Go to:

http://stattrek.com/Tables/Binomial.aspx
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Table 11.1: The output, after rounding, from the binomial website for p = 0.75, n = 8 and x = 6.

Binomial Probability: P (X = 6) = 0.3115
Cumulative Probability: P (X < 6) = 0.3215
Cumulative Probability: P (X ≤ 6) = 0.6329
Cumulative Probability: P (X > 6) = 0.3671
Cumulative Probability: P (X ≥ 6) = 0.6785

I will now show you how to use this website. The website requires you to enter three numbers:

• Probability of success on a single trial: Enter the value of p; for our current problem, I

enter p = 0.75.

• Number of trials: Enter the value of n; for our current problem, I enter n = 8.

• Number of successes (x): This is a bit tricky to explain explicitly, but once you see one

example, you will understand how to do it. Because my event of interest, (X ≥ 6), involves
the number 6, I enter x = 6.

After entering my values for p, n and x, I click on the Calculate box and obtain the output, rounded
to four digits, printed in Table 11.1. The answer I want is the fifth entry in the list:

P (X ≥ 6) = 0.6785.

Note that there is a great deal of redundancy in five answers in this list. Make sure you understand

why the following identities are true:

• The third probability is the sum of the first two.

• The fifth probability is the sum of the first and the fourth.

• The sum of the second and the fifth probabilities equals 1.

• The sum of the third and the fourth probabilities equals 1.

For example, the third probability P (X ≤ 6) can be written as P (X < 6) + P (X = 6). In the

listing above, this becomes 0.6329 = 0.3115 + 0.3215 which is correct except for round-off error.

The website is good for computing individual probabilities, but it is tedious to use it to generate

an entire binomial distribution. For the latter objective, I use Minitab. In particular, with the help

of Minitab, I obtained the Bin(8,0.75) distribution, displayed in Table 11.2. Literally, the first two

columns of this table present the sampling distribution. It’s easy to have the computer create the

cumulative sums in the third and fourth columns, so I have included them. From the table we can

find the five probabilities given by the website. For example,

P (X > 6) = P (X ≥ 7) = 0.3671, from the fourth column.
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Table 11.2: The binomial distribution with n = 8 and p = 0.75.

x P (X = x) P (X ≤ x) P (X ≥ x)
0 0.0000 0.0000 1.0000
1 0.0004 0.0004 1.0000
2 0.0038 0.0042 0.9996
3 0.0231 0.0273 0.9958
4 0.0865 0.1138 0.9727
5 0.2076 0.3215 0.8862
6 0.3115 0.6329 0.6785
7 0.2670 0.8999 0.3671
8 0.1001 1.0000 0.1001

Total 1.0000 — —

11.1.1 Computational Difficulties

By trial-and-error, I discovered that if I go to Minitab and ask for the Bin(n,0.50) distribution with
n ≥ 1023, then I am given the following message:

* ERROR * Completion of computation impossible.

If, however, p = 0.50 and n ≤ 1022, then Minitab gives an answer. Similarly, Minitab reports its

error message for Bin(n,0.60) if, and only if, n ≥ 1388. The people who wrote Minitab are good

programmers. I am not a very good programmer, but I could write a program that would handle at

least some of the situations Minitab does not. How can this be? Well, as we will learn later, if n is

large enough, then we can use a either a Normal curve or the Poisson distribution (see Chapter 13)

to obtain good approximations to binomial probabilities. Thus, my inference is that the Minitab

programmers were somewhat casual in writing their code because they knew that their users could

opt for an approximation.

If you read through the exposition on the website

http://stattrek.com/Tables/Binomial.aspx,

near the bottom you will find the following:

When the number of trials is greater than 1,000, the Binomial Calculator uses a Normal

distribution to estimate the binomial probabilities.

Very soon I will give you the details of the Normal curve approximation.

Here is my advice for this course. You can trust the website’s answers provided n ≤ 1000. Do
not use it for n > 1000 until you have read my discussion of the Normal approximation in the next

section.
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Figure 11.1: The Bin(100, 0.5) Distribution.
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Figure 11.2: The Bin(100, 0.2) Distribution.
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Figure 11.3: The Bin(25, 0.5) Distribution.
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Figure 11.4: The Bin(50, 0.1) Distribution.
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11.2 The Normal Curve Approximation to the Binomial

Recall that we learned how to draw a probability histogram on page 143 in Chapter 7. Figures

11.1–11.4 present probability histograms for several binomial probability distributions. Because

δ = 1 the area of each rectangle equals its height; thus, the probability of any integer value of x is

the height of the rectangle centered at x.
As discussed in Chapter 7, a probability histogram allows us to ‘see’ a probability distribution.

For example, for the four probability histograms that are presented above, the twowith p = 0.50 are
symmetric; the one with n = 100 and p = 0.2 is almost symmetric; and the one with n = 50 and

p = 0.1 deviates a great deal from symmetry. Indeed, it can be shown that a binomial distribution

is symmetric if, and only if, p = 0.50. Moreover, for p 6= 0.5, if both np and nq are far from 0 then

the binomial distribution is almost symmetric. A common guideline for far from 0 is for both to be

at least 25. We will return to this topic soon.

Below is a list of some other facts about binomial distributions.

1. The probability histogram for a binomial always has exactly one peak. The peak can be one

or two rectangles wide, but never wider.

2. If np is an integer, then there is a one-rectangle wide peak located above np.

3. If np is not an integer, then the peak will occur either at the integer immediately below or

above np; or, in some cases, at both of these integers.

4. If you move away from the peak in either direction, the heights of the rectangles become

shorter. If the peak occurs at either 0 or n this fact is true in the one direction away from the
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peak.

The following result is similar to Results 7.1–7.3 for the sum of ranks test in Chapter 7.

Result 11.1 (Mean and standard deviation of the binomial distribution.) The mean and stan-

dard deviation of the Bin(n, p) distribution are:

µ = np (11.2)

σ =
√
npq (11.3)

Let’s consider the Bin(100,0.50) distribution, pictured in Figure 11.1. From the above result, its

mean and standard deviation are

µ = np = 100(0.50) = 50 and σ =
√
npq =

√

100(0.50)(0.50) = 5.

Suppose now that I want to compute P (X ≥ 55). I have three methods for obtaining this proba-

bility:

1. Because n ≤ 1000 I can use the website

http://stattrek.com/Tables/Binomial.aspx

I go to the site, enter p = 0.50, n = 100 and x = 55; then I click on Compute and obtain the

answer:

P (X ≥ 55) = 0.1841.

2. Because n ≤ 1022, I can use Minitab. I did and obtained the answer 0.1841.

3. I can follow the method of Chapter 7 and obtain a Normal curve approximation. I go to the

website:

http://davidmlane.com/hyperstat/z_table.html

I enter Mean = 50 and Sd = 5. Next to the option Above I enter 54.5—remember the

continuity correction. The site tells me that the area under the N(50,5) curve to the right of

54.5 is 0.1841. To the nearest 0.0001, this approximation is exact!

Let me do another computational example. Consider the Bin(1200,0.60) distribution. I am

interested in P (X ≤ 690). Again, I will try three methods for finding this probability.

1. Because n ≤ 1387, I can use Minitab to find the exact probability. I did and obtained the

answer 0.0414.

2. I calculate

µ = np = 1200(0.60) = 720 and σ =
√
npq =

√

1200(0.60)(0.40) = 16.971.

I go to the website:
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http://davidmlane.com/hyperstat/z_table.html

I enter Mean = 720 and Sd = 16.971. Next to the option Below I enter 690.5—remember

the continuity correction. The site tells me that the area under the N(720,16.971) curve to

the left of 690.5 is 0.0411. If I trust Minitab, my approximate answer is too small by 0.0003.

This is a very good approximation!

3. I can use the binomial website:

http://stattrek.com/Tables/Binomial.aspx

Because n > 1000, the website will give me an answer based on the Normal curve approx-

imation. I entered p = 0.60, n = 1200, x = 690 and clicked on Calculate. The site gave

me the answer 0.041. I would prefer the site to give me more digits of precision, but to the

nearest 0.001, this answer agrees with my Normal curve approximation. And, of course, the

binomial website is less work for me.

You might be wondering:

Is the Normal curve approximation always good?

I will give you a dramatic example of why the answer is no!

Let’s consider the Bin(1001,0.001) distribution. I am choosing n = 1,001 because this is the

smallest value of n for which the binomial website uses the Normal curve to obtain approximate

binomial probabilities. I am interested in P (X = 0). Again, I will show you three methods.

1. Minitab gives me the exact probability, 0.3673.

2. I can calculate the exact probability using Equation 11.1:

P (X = 0) =
1001!

0!1001!
(0.001)0(0.999)1001.

After canceling the factorials and noting that (0.001)0 = 1, this answer reduces to

(0.999)1001.

Even the calculator on my cell phone can evaluate this! It obtains the correct answer, 0.3673.

3. I went to the binomial website, entered p = 0.001, n = 1,001, x = 0 and clicked on

Calculate. The website did not calculate an answer; instead, it printed the message:

PROCESSING ERROR: Cannot complete computation.

This is good; the program is smart enough not to use the Normal approximation. Sadly,

however, I have bad news to report. Staying on the site, I calculated probabilities for n =
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1,001 and p = 0.5; the site worked fine. Then I reentered p = 0.001 x = 0 and n = 1,001;

this time, the site gave me:

P (X = 0) = 0.025 and P (X < 0) = 0.217.

Because X counts successes, it cannot be negative!

Thus, the kindest thing I can say is that for n > 1000 the site’s behavior is erratic; do not use
it unless you check that both np and nq equal or exceed 25.

In summary, here are two general guidelines I recommend you use.

1. For the purpose of computing probabilities: If n ≤ 1000 use the binomial website. If

n > 1000, np ≥ 25 and nq ≥ 25: you may use the binomial website or obtain the Normal

curve approximation by hand.

2. For the development of estimation and prediction intervals: Use the Normal approxima-

tion to the binomial only if both np and nq are greater than or equal to 25.

Let me make a few comments on these guidelines. First, all statisticians agree that we need to

consider the values of np and nq; not all would agree on my magic threshold of 25. Second, if

n > 1000 and, say, np < 25 we can use the Poisson distribution to approximate the binomial; this

material will be presented in Chapter 13.

Third, the second guideline is a bit odd. It implies, for example, that for n = 50 and p =
q = 0.50 wemay use the Normal curve approximation even though exact probabilities are readily

available from the website. As you will learn in Chapter 12, being able to use the Normal curve

approximation is very helpful for the development of general formulas.

11.3 Calculating Binomial Probabilities When p is Unknown

I could make this a very short section by simply remarking that if p is unknown then obviously

neither the website, Minitab nor I can evaluate Equation 11.1. In addition, if p is unknown then we
can calculate neither the mean nor standard deviation of the binomial, both of which are needed

for the Normal curve approximation.

We do have this section, however, because I want to explore the idea of what if means to

know the value of p. I am typing this in October, 2013. To date in his NBA (National Basketball

Association) career, during the regular season Kobe Bryant has made 7,932 free throws out of

9,468 attempts. What can we do with these data in the context of what we have learned in this

chapter?

I am always interested in computing probabilities; thus, when faced with a new situation I ask

myself whether it is reasonable to assume a structure that will allow me to do so. Well, each free

throw attempted by Bryant can be viewed as a trial, so I might assume that his 9,468 attempts were

observations of i.i.d. trials. As a side note, let me state that years ago I was active in the Statistics in

Sports section of the American Statistical Association. We had many vigorous debates—and many

papers have been written—on the issue of whether the assumption of i.i.d. trials is reasonable in

264



sports in general, not just for free throws in basketball. In order to avoid a digression that could

consume months, if not years, let’s tentatively assume that we have i.i.d. trials for Bryant shooting

free throws.

The next issue is the value of p for Bryant’s trials. Bryant shooting a free throw was not as

simplistic as, say, tossing a fair coin or casting a balanced die; nor was it as well-behaved as

Mendelian inheritance. In short, there is no reason to believe that we know the value of p for

Bryant or, indeed, any basketball player. But what do I mean by know? We know that p is strictly

between 0 and 1. As any mathematician will tell you, there are a lot of numbers between 0 and

1! (The technical term is that there are an uncountable infinity of numbers between 0 and 1.) But

we need to think more like a scientist and less like a mathematician. In particular, by scientist I

mean someone who is—or strives to be—knowledgeable about basketball. A mathematician will

(correctly) state that 0.7630948 and 0.7634392 are different numbers, but as a basketball fan, I

don’t see any practical difference between p equaling one or the other of these. In either situation,

I would round to three digits and say, “The player’s true ability, p, is that in the long-run he/she

makes 76.3% of attempted free throws.”

Bryant’s data give us

p̂ = 7932/9468 = 0.838;

in words, during his career, to date, Bryant has made 83.8% of his free throws. As might be clear—

and if not, we will revisit the topic in the next chapter—we may calculate the nearly certain interval

(Formula 4.1 in Chapter 4) for p:

0.838± 3

√

0.838(0.162)

9468
= 0.838± 0.011 = [0.827, 0.849].

Thus, given our assumption of i.i.d. trials, we don’t know Bryant’s p exactly, but every number in

its nearly certain interval is quite close to his value of p̂.
Thus, if I wanted to compute a probability for Bryant, I would be willing to use p = 0.838.
Let’s consider the first n = 50 free throws that Bryant will attempt during the 2013–2014 NBA

season. I am interested in the number of these free throws that he will make; call it X . Based on

my discussion above I viewX as having the Bin(50,0.838) distribution.

For example, I go to the website

http://stattrek.com/Tables/Binomial.aspx,

and enter p = 0.838, n = 50 and x = 38. I click on Calculate and obtain

P (X ≥ 38) = 0.9482.

Thus, I believe that the probability that Kobe Bryant will make at least 38 of his first 50 free throws

this season is just under 95%.

(Optional enrichment for basketball fans. It can be shown that the probability of the event I

examine above, (X ≥ 38) is an increasing function of p. I found that for p = 0.838, this probability
is 0.9482. If I use the lower bound of my nearly certain interval, p = 0.827, the website gives me

0.9201 for the probability of this event. If I use the upper bound of my nearly certain interval,
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Table 11.3: The conference of the Super Bowl winner, by year. Year 1 denotes the 1966 season

(game played in 1967) and year 47 denotes the 2012 season (game played in 2013). An NFC

winner is labeled a success, denoted by 1, and an AFC winner is denoted by 0.

Year: 1 2 3 4 5 6 7 8 9 10 11 12

Winner: 1 1 0 0 0 1 0 0 0 0 0 1

Year: 13 14 15 16 17 18 19 20 21 22 23 24

Winner: 0 0 0 1 1 0 1 1 1 1 1 1

Year: 25 26 27 28 29 30 31 32 33 34 35 36

Winner: 1 1 1 1 1 1 1 0 0 1 0 0

Year: 37 38 39 40 41 42 43 44 45 46 47

Winner: 1 0 0 0 0 1 0 1 1 1 0

p = 0.849, the website gives me 0.9684 for the probability of this event. Thus, another approach is

for me to say that I am nearly certain that the probability of the event (X ≥ 38) is between 0.9201
and 0.9684.)

11.4 Runs in Dichotomous Trials

There have been 47 Super Bowls played. Each game resulted in a winner from (using current

names) the National Football Conference (NFC), which I will call a success, or the American Foot-

ball Conference (AFC), which I will call a failure. The 47 outcomes, in time-order, are presented

in Table 11.3. The outcome, conference of the Super Bowl winner is a dichotomous response. I am

not assuming that they are the outcomes of 47 Bernoulli trials. In fact, later in this section I will

conclude that they don’t seem to be the result of observing Bernoulli trials. I am getting ahead of

myself.

Our Super Bowl data contains 18 runs which are detailed (and implicitly defined) in Table 11.4.

There is a great deal of information in this table. You don’t need to study it exhaustively, but you

should understand how it was constructed, which I will now explain.

The responses for years 1 and 2 are successes, but year 3 is a failure. Thus, the data begins

with a run of successes of length 2 covering years 1 and 2. Next, the data has a run of failures of

length 3 covering years 3–5. And so on.

In addition to noting that there are 18 runs in the Super Bowl data, it’s difficult to miss the

existence of the very long run of successes, 13, spanning years 19–31.

In general, any or all of of the following statistics may be used to investigate the issue of

whether the data are the result of observing Bernoulli trials.

• The number of runs;

266



Table 11.4: The 18 runs for the data in Table 11.3.

Run: 1 2 3 4 5 6 7 8 9

Year(s): 1–2 3–5 6 7–11 12 13–15 16–17 18 19–31

Length: 2 3 1 5 1 3 2 1 13

Type: S F S F S F S F S

Run: 10 11 12 13 14 15 16 17 18

Year(s): 32–33 34 35-36 37 38–41 42 43 44–46 47

Length: 2 1 2 1 4 1 1 3 1

Type: F S F S F S F S F

• The length of the longest run of successes; and

• The length of the longest run of failures.

In particular:

• Does it appear that there is a constant probability of success from trial-to-trial?

• Do the trials appear to be independent?

This topic is frustrating for a number of reasons. In part because it is so frustrating, this topic

typically is not presented in an introductory Statistics class. I will, however, discuss these issues in

this section briefly for the following reasons.

1. I feel that I am doing you a disservice if I state assumptions without giving any idea of how

to investigate their validity.

2. I feel that I am doing you a disservice if I present you with a sanitized view of Statistics; a

view in which there are no controversies and no confusion about how to analyze data.

3. In my experience, this is one of the topics in Statistics that non-statisticians find very inter-

esting. Especially the occurrence of long runs of successes (or failures) are interesting to

people.

Let me now define some ideas rather formally. I plan to observe a total of n dichotomous trials.

I want to investigate whether the dichotomous trials satisfy the assumptions of Bernoulli trials. I

decide to pursue this by conducting a test of hypotheses. My null hypothesis is that the trials are

Bernoulli trials. This is in line with the principle of Occam’s Razor. Also, usually a researcher

wants to have Bernoulli trials because Bernoulli trials allow the computation of many answers.

Of course, there are some researchers—and I often find myself in this camp—who sometimes are

hoping not to have Bernoulli trials because sometimes it is nice to live in a world that is a bit more

complicated.
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Please allow me a brief digression. Many textbooks state that the alternative always represents

what the researcher is trying to prove. Often times, this is a valid view of the hypotheses, but not

always. For example, in this current section, I must assume that the null is Bernoulli trials because

otherwise there is no way to find a sampling distribution and so on; it doesn’t really matter what I

prefer to be true!

Wait a minute. You might be thinking—even though we don’t yet have a test statistic:

We need to be able to determine the sampling distribution of the test statistic under the

assumption that the null hypothesis is true. This is hopeless! The null hypothesis

does not specify the value of p for the Bernoulli trials; thus, it will be impossible to

calculate a unique set of probabilities!

If these are your thoughts, then you are correct. Well, almost correct. The trick is that we use a

conditional test statistic. Let me explain.

Let’s look at the Super Bowl example again. The total number of trials in the data set is n = 47.
Before collecting data I didn’t know what the value of X , the total number of successes in the 47

trials, would be. After I collect the data I know that the observed value of X is x = 25. The trick
is that I condition on X eventually being 25. Let me make the following points.

1. Most (nearly all?) statisticians feel fine about this conditioning; here is why. Given that

X = 25—and therefore that the number of failures, n − X = 47 − X is 22—what have I

learned? I have learned that over the course of the data collection, neither conference had a

huge advantage over the other. But, and this is the key point, knowing thatX = 25 gives me

no information about whether p is changing or whether the trials are independent. In other

words, knowing that X = 25 gives me no information about whether the assumptions of

Bernoulli trials are reasonable.

2. This point is a little more esoteric. I have always extolled you to remember: probabili-

ties are calculated before we collect data. Conditioning on X = 25 and then calculating

probabilities—as I will soon do—looks a lot like I am violating my directive. But I am not.

Actually, before collecting data I can imagine 48 different computations, one for each of the

48 possible values ofX (0, 1, 2, . . . , 47). If I were to perform all of these computations, after

I collect data I would find that my computations conditional on X = x would be irrelevant

for all x 6= 25. Why should I perform computations that I won’t use?

I will now explain why conditioning is so useful mathematically for our problem. Consider the

Super Bowl data again. Conditional on knowingX = 25, we know that the data will consist of an

arrangement of 25 1’s and 22 0’s. The number of such arrangements is:

47!

25!22!
= 1.483× 1013,

almost 15 trillion. It can be shown that, on the assumption that the null hypothesis is true, these

arrangements are equally likely to occur, regardless of the value of p! Thus, if we choose our

test statistic to be a function of the arrangement of 1’s and 0’s, then we can compute its sampling

distribution without knowing the value of p.
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Table 11.5: All possible arrangements of three 1’s and two 0’s. For each arrangement, the observed

values of R, V andW are given, where R is the number of runs, V is the longest run of successes,

and W is the longest run of failures. On the assumption that the data come from Bernoulli trials,

conditional on obtaining three successes, the 10 arrangements are equally likely to occur.

Arrangement r v w Arrangement r v w
11100 2 3 2 10011 3 2 2

11010 4 2 1 01110 3 3 1

11001 3 2 2 01101 4 2 1

10110 4 2 1 01011 4 2 1

10101 5 1 1 00111 2 3 2

Table 11.6: The sampling distributions of R, V and W for the 10 equally likely arrangements in

Table 11.5.

r: 2 3 4 5 Total

P (R = r): 0.2 0.3 0.4 0.1 1.0

v: 1 2 3 Total

P (V = v) 0.1 0.6 0.3 1.0

w: 1 2 Total

P (W = w) 0.6 0.4 1.0

Admittedly, 15 trillion is a lot of arrangements to visualize! To help make this result more

concrete, I will do a quick example with n = 5 and conditioning on X = 3; see Table 11.5. I will
now explain the information in this table.

With five trials, conditional on a total of three successes and two failures, the number of possi-

ble arrangements is:
5!

3!2!
=

5(4)

2(1)
= 10;

the 10 arrangements are listed in the table. For each arrangement I determine the observed values

of: the number of runs; the length of the longest run of successes; and the length of the longest run

of failures. These test statistics are denoted by R, V and W , respectively. (I am sorry that V and

W are not evocative of the successes and failures, but I feared confusion if I used S and F .) Once

we have the results in Table 11.5, it is easy to obtain the sampling distributions of R, V and W .

These sampling distributions are shown in Table 11.6.

We have seen that for a small number of trials it is possible to find the exact sampling distribu-

tion of any of the test statistics R, V and W . We will not find exact distributions for any practical

example because there are too many arrangements to consider. It is quite easy to perform a sim-
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ulation experiment for any of these test statistics; indeed, you might have noticed how similar the

current situation is to selecting assignments for a CRD at random. (If you don’t see the connection,

no worries.)

There is a fancy math approximation for the sampling distribution of R and I will discuss it

briefly in the following subsection.

11.4.1 The Runs Test

The null hypothesis is that the trials are Bernoulli trials. The test statistic isR. Pause for a moment.

What is missing? Correct; I have not specified the alternative hypothesis. For the math level I want

to maintain in this course, a careful presentation of the alternative is not possible. Instead, I will

proceed by examples.

But first, I want to give you the formulas for the mean and standard deviation of the sampling

distribution of R.

Result 11.2 (The mean and standard deviation of the sampling distribution of R.) Conditional

on the number of successes, x, and number of failures, n − x, in a sequence of n Bernoulli trials,

the mean and standard deviation of the number of runs, R, are given by the equations below. First

compute

c = 2x(n− x); then (11.4)

µ = 1 +
c

n
; and (11.5)

σ =

√

√

√

√

c(c− n)

n2(n− 1)
. (11.6)

Recall my artificial small example—with n = 5, x = 3 and n − x = 2. First, I calculate c =
2(3)(2) = 12. The mean and standard deviation are:

µ = 1 + 12/5 = 3.4 and σ =

√

√

√

√

12(7)

52(4)
=

√
0.84 = 0.916.

(If you look at the 10 possible arrangements in Table 11.5, and sum the corresponding 10 values

of r, you will find that the sum is 34 and the mean is 34/10 = 3.4, in agreement with the above

use of Equation 11.5.)

For my Super Bowl data, n = 47, x = 25 and n− x = 22. Thus, c = 2(25)(22) = 1100. The
mean and standard deviation are:

µ = 1 + 1100/47 = 24.404 and σ =

√

√

√

√

1100(1053)

472(46)
=

√
11.399 = 3.376.

Note that the observed number of runs, 18, is smaller than the mean number under the null hypoth-

esis. This will be relevant very soon.
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I need to talk about the alternative, but first I need to present an artificial example. Imagine that

I have n = 50 dichotomous trials with x = n− x = 25. From Result 11.2, c = 2(25)(25) = 1250.
The mean and standard deviation are:

µ = 1 + 1250/50 = 26 and σ =

√

√

√

√

1250(1200)

502(49)
=

√
12.245 = 3.499.

Based on my intuition, there are two arrangements that clearly provide very strong evidence against

Bernoulli trials. (I know. We are not supposed to talk about evidence against the null; please bear

with me.) The first is a perfect alternating arrangement:

10101 01010 10101 01010 10101 01010 10101 01010 10101 01010

The second is 25 successes followed by 25 failures:

11111 11111 11111 11111 11111 00000 00000 00000 00000 00000

For the first of these arrangements, R = 50 and V = W = 1. For the second arrangement,

R = 2 and V = W = 25. It is easy to see that the first arrangement gives the largest possible

value for R—after all, there cannot be more runs than trials! Similarly, the first arrangement gives

the smallest possible value for both V and W . Also, the second arrangement gives the smallest

possible value of R and the largest possible value for both V and W . If we consider all possible

arrangements it makes sense that large [small] values of R tend to be matched with small [large]

values of both V and W . The important consequence of this tendency is that when I do talk about

alternatives, the < alternative for R will correspond to the > alternative for V orW .

Note that everything I say about the first arrangement is also true for the arrangement:

01010 10101 01010 10101 01010 10101 01010 10101 01010 10101

Similarly, everything I say about the second arrangement is also true for the arrangement:

00000 00000 00000 00000 00000 11111 11111 11111 11111 11111

Let’s suppose that I have convinced you that both of these arrangements—or, if you prefer all

four—provide convincing evidence that we do not have Bernoulli trials. I now look at the question:

Which assumption of Bernoulli trials is being violated? Here are two possible interpretations of

the data in the second arrangement which, recall, consists of 25 successes followed by 25 failures:

1. There is almost—but not quite—perfect positive dependence. A success [failure] is almost

always followed by a success [failure]. In fact, the only wrong prediction in the predict the

response to remain the same paradigm occurs at trials 25 to 26.

2. The value of p is 1 for the first 25 trials and is 0 for last 25 trials.

Thus, we don’t have Bernoulli trials, but is it because of dependence or because p changes? Note

that I am talking aboutwhat we know from the data; it’s possible that your knowledge of the science

behind the study will lead you to discard one of my two explanations.
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I will not give a careful statement of the alternative for the test based on R. Instead I will say

that by < I mean that the true model tends to give fewer runs than the (null) Bernoulli trials model.

By > I mean that the true model tends to give more runs than the (null) Bernoulli trials model. As

usual, by 6= I mean that the true model tends to give either fewer or more runs than the the (null)

Bernoulli trials model. Below are the rules for finding the P-value.

Result 11.3 (The P-value for the runs test.) In each of the equations below, r denotes the ob-

served value of the test statistic R.

1. For the alternative >, the P-value equals

P (R ≥ r) (11.7)

2. For the alternative <, the P-value equals

P (R ≤ r) (11.8)

3. For the alternative 6=, the P-value is the smallest of the following three numbers: 1; twice

the P-value for >; and twice the P-value for <.

In the interest of intellectual honesty, I mention that there is some minor controversy over my rule

for the P-value for 6=. But—as best I can tell—only a small proportion of professional statisticians

care about it. In general, for many tests of hypotheses, the math arguments for the alternative 6=
can be messy. Also, in the examples in this course, we will use a Normal curve approximation,

with the continuity correction of 0.5, to obtain approximate P-values for the runs test. I have not

been able to locate a good general guideline for using the Normal curve approximation. Thus, I

will (somewhat, ok, quite) arbitrarily state that you should use the Normal curve approximation

only if the null standard deviation of R is 3 or larger. Thus, we would not use the Normal curve

approximation if n = 5 and x = 3, because its standard deviation is 0.916. We can, however, use

the Normal curve approximation for the Super Bowl data because its standard deviation, 3.376, is

larger than 3.

I will now illustrate the use of Result 11.3 with the Super Bowl data. Recall that r = 18,
µ = 24.404 and σ = 3.376. Because R takes on integer values only, I will use the continuity

correction. I go to the Normal curve website:

http://davidmlane.com/hyperstat/z_table.html,

enter 24.404 for theMean and 3.376 for the Sd.

1. For >, I want P (R ≥ 18). I find that the area above 17.5 is 0.9796.

2. For <, I want P (R ≤ 18). I find that the area below 18.5 is 0.0402.

3. For 6=, the approximate P-value is 2(0.0402) = 0.0804.
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Table 11.7: The partial approximate sampling distribution of V , the longest run of successes, in 47

Bernoulli trials, conditional on a total of 25 successes.

v: 9 10 11 12 13 14

Rel. Freq. (V ≥ v) 0.0355 0.0134 0.0049 0.0017 0.0004 0.0001

Let me note that I have been unable to find a website that allows us to enter our data for a runs

test. As always, please let me know if you find one. Minitab will perform a runs test. It uses the

Normal curve approximation, but it has two curious features:

1. Minitab does not use the continuity correction. Thus, its P-value for 6= is 0.0578, substan-

tially smaller than the answer—0.0804—obtained with the continuity correction.

2. Minitab gives the P-value only for the alternative 6=.

Regarding this second item; one could, of course, halve Minitab’s answer—0.0578—to obtain

0.0289 as the approximate P-value for the alternative supported by the data, in this case <. I

suspect that Minitab’s creators are expressing the belief—which has merit—that when we check

assumptions we should not be overly restrictive in our choice of alternative.

11.4.2 The Test Statistics V and W

The presentation in this section will be very brief. The null hypothesis is that the trials are Bernoulli

trials. I will consider two possible test statistics: V [W ] the length of the longest run of successes

[failures]. The only alternative I will explore is>, that the true model tends to give larger values of

V [W ] than the (null) Bernoulli trials model. The P-value for the alternative> and the test statistic

V is

P (V ≥ v), (11.9)

where v is the observed value of V . The P-value for the alternative > and the test statisticW is

P (W ≥ w), (11.10)

where w is the observed value ofW .

I can obtain the exact sampling distributions of V and W only for very small values of n. I

am unaware of the existence of any accurate fancy math approximation to either of these sampling

distributions. Therefore, we will obtain approximations to these sampling distributions by using a

computer simulation experiment.

I performed a simulation experiment with 10,000 reps on the Super Bowl data; my approximate

distribution for V is in Table 11.7. Recall that the observed value of V for the Super Bowl data is

v = 13. Thus, the approximate P-value for the alternative > is 0.0004, a very small number. I am

quite convinced that the Super Bowl data did not come from Bernoulli trials.

The observed value of W is 5 for the Super Bowl data; the AFC’s longest run of victories

occurred in years 7–11. I anticipated that the P-value forW would not be small; thus, I performed
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Table 11.8: Katie’s data on day 7. She obtained a total of 68 successes and 32 failures. The

observed values of the various test statistics are r = 42, v = 19 and w = 4.

SS F SS F S FFF SSSSS FF SSSSSSSS F S F SS F SS F SS FF SSSSS FF SS FF SS

F SSS F S FFFF SSSSSSSSSSSSSSSSSSS FF SSS F SS FF S F SS F SS F S F

a simulation experiment with only 1,000 reps. The relative frequency of occurrence ofW ≥ 5 was
0.422; thus, this is my approximate P-value.

I end this section with a small piece of a large study. Katie Voigt was a starting shooting guard

on the women’s basketball team at the University of Wisconsin–Madison. A few years later she

was kind enough to collect a large amount of data and allow me to analyze it. For each of 20 days,

after warming-up, Katie would attempt 100 shots from a favorite spot behind the three-point line.

In the following example I will tell you about Katie’s data on day 7. The last Practice Problem will

look at her data from day 3 and the last Homework Problem will look at her data from day 8.

Example 11.2 (Day 7 of Katie’s Study of Shooting.) On day 7, Katie made 68 of her 100 at-

tempts. The data are presented in Table 11.8. I do not want you to verify any of the numbers in

the caption of the table. Indeed, the table’s construction is not conducive to verifying calculations.

Rather, I want you to look at the data and form an impression of it.

I will now find the approximate P-values for Katie’s day 7 data, for each of our three test statistics.

I will use the alternative < for R for illustration because a small value of R tends to go with large

values of V and W , as I discussed earlier.

First, I need to use Result 11.2 to find the (null) mean and standard deviation of R. First,

c = 2x(n− x) = 2(68)(32) = 4,352. The mean and the standard deviation are:

µ = 1 + c/n = 1 + (4352/100) = 44.52 and σ =

√

√

√

√

c(c− n)

n2(n− 1)
=

√

√

√

√

4352(4252)

1002(99)
= 4.323.

For the alternative < the P-value equals P (R ≤ r) = P (R ≤ 42). I go to the website:

http://davidmlane.com/hyperstat/z_table.html

I enter Mean = 44.52 and Sd = 4.323. Next to the option Below I enter 42.5—remember the

continuity correction. The site tells me that the approximate P-value is 0.3202. Thus, the runs test

detects only weak evidence in support of the alternative.

I performed two simulation experiments; with 10,000 reps for V and 1,000 reps for W . I

obtained the following relative frequencies:

Rel. Freq. (V ≥ 19) = 0.0074 and Rel. Freq. (W ≥ 4) = 0.525

Thus, V is very sensitive to the evidence in the data, whileW is not.
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11.5 Summary

If the response is a dichotomy, then i.i.d. trials are called Bernoulli trials. One possible response is

denoted a success and the other is a failure. The probability of a success on any particular trial is

denoted by p and the probability of a failure on any particular trial is denoted by q = 1 − p. We

restrict attention to p’s that satisfy 0 < p < 1; i.e., we are not interested in the cases in which p = 0
or p = 1.

Let X denote the total number of successes in n Bernoulli trials. The sampling (probability)

distribution of X is given by Equation 11.1:

P (X = x) =
n!

x!(n− x)!
pxqn−x, for x = 0, 1, . . . , n.

The above is really a family of equations, because we get a different equation by changing n and/or

p. It is referred to as a binomial distribution with parameters n and p and a particular member of

this family is denoted by the Bin(n, p) distribution.
Except for very small values of n it is tedious to calculate a binomial probability by hand. If

n ≤ 1,000 the website:

http://stattrek.com/Tables/Binomial.aspx

provides exact probabilities. If n > 1,000 and both np and nq are 25 or larger, then we can obtain

good approximations to the binomial by using the Normal curve with

µ = np and σ =
√
npq.

As you learned in Chapter 7, the website:

http://davidmlane.com/hyperstat/z_table.html

can be used to obtain areas under a Normal curve—remember to use the continuity correction.

Instead of obtaining the Normal approximation by hand—by which I mean calculating the

values of µ and σ by hand—if n > 1,000 and both np and nq are 25 or larger, then the website

http://stattrek.com/Tables/Binomial.aspx

will do the work for you. But be careful! This website does not always check the values of np
and nq and if either of these is small, then the approximate answer from the website can be very

bad.

Stating the obvious, we cannot compute a binomial probability—exact or approximate—without

knowledge of the numerical value of p. In Section 11.3, I argue that if I have data from a huge

number of Bernoulli trials—huge in this context means, to me, approximately 10,000 or more,

provided p is not too close to either 0 or 1—then I am willing to replace p by the proportion of

successes in the data, p̂. I will return to this topic in the next chapter.

It is more than a bit unsatisfactory to be forced to simply assume or fail to assume that one has

Bernoulli trials. One might, for example, want to perform a test of hypotheses with the null hy-

pothesis that the assumptions of Bernoulli trials are correct. In Section 11.4, I provide an approach
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to this test of hypotheses with three possible test statistics: the number or runs, R; the length of the

longest run of successes, V ; and the length of the longest run of failures, W .

Apart from the issue of a test of hypotheses, sports fans have long been interested in long runs

of successes; for example, Joe DiMaggio’s record of hitting safely in 56 consecutive major league

baseball games and Micheal Williams’s record of 97 consecutive free throws made during NBA

games. Knowing the sampling distribution of V—in addition to its use in finding a P-value—can

be used to gauge how remarkable a record might be.
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11.6 Practice Problems

1. Suppose that we have Bernoulli trials with p = 0.8.

(a) Calculate the probability that the first four trials yield: two successes, then a failure and

then a success.

(b) Calculate, by hand, the probability that the first six trials yield a total of five or more

successes.

(c) Use the website:

http://stattrek.com/Tables/Binomial.aspx

to verify your answer to (b).

2. Let X denote the total number of successes in n = 900 Bernoulli trials for which p = 0.7.

(a) Use the website

http://stattrek.com/Tables/Binomial.aspx

to find the exact value of: P (X ≥ 600); and P (X ≤ 645).

(b) Calculate the mean and standard deviation of X .

(c) Find the Normal curve approximation of: P (X ≥ 600); and P (X ≤ 645); remember

to use the continuity correction.

(d) Compare your answers in (a) and (c)

3. I programmedMinitab to generate 40 Bernoulli trials with p = 0.6. Below is the result I was

given. (The spaces have no meaning; I typed them to make the counting in part (a) easier.)

1 00 1111 00 1 00 1 0 1 0 1111111 00 1 00 1 00 111111 0 1 0

(a) Determine the observed values ofX , n−X , R, V and W .

(b) Conditional on the observed value ofX calculate the mean and standard deviation ofR

(c) Use the Normal approximation to compute the P-value for the test statistic R and the

alternative 6=.

(d) I performed a simulation experiment with 1,000 reps and obtained the following fre-

quencies:

Frequency (V ≥ v) = 305 and Frequency (W ≥ w) = 887,

where the values of v and w were determined in part (a). Comment on these results.

4. I examined the outcomes of the last 100 World Series in baseball, for the years 1912–2012—

there was no Series in 1994. The American League team won (a success) 58 Series. The

observed values of our three test statistics are r = 58, v = 7 and w = 4.
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Table 11.9: The partial approximate sampling distribution of V , the longest run of successes, in

100 Bernoulli trials, conditional on a total of 66 successes.

v: 11 12 13 14

Relative Freq. (V ≥ v) 0.2491 0.1536 0.0951 0.0587

Table 11.10: The partial approximate sampling distribution of W , the longest run of failures, in

100 Bernoulli trials, conditional on a total of 34 failures.

w: 7 8 9 10

Relative Freq. (W ≥ w) 0.0219 0.0072 0.0019 0.0008

(a) Calculate the mean and standard deviation of R, conditional on X = 58 successes.

(b) Use the Normal curve approximation to find an approximate P-value for the runs test

with alternative >.

(c) A simulation experiment with 1,000 reps yielded:

Frequency (V ≥ 7) = 595 and Frequency (W ≥ 4) = 875.

Comment on the meaning of these results.

5. Recall day 7 of Katie’s study of shooting, Example 11.2 and the description immediately

before it. In this problem we will analyze Katie’s data from day 3.

Here are some important statistics from Katie’s 100 trials on day 3:

x = 66, r = 31, v = 12 and w = 9.

(a) Use the Normal curve approximation to obtain the P-value for the runs test and the

alternative <. Comment.

(b) I performed a simulation study with 10,000 reps. Partial results for the test statistic

V are in Table 11.9. Use this information to find the approximate P-value for the test

statistic V and the alternative >.

(c) I performed a simulation study with 10,000 reps. Partial results for the test statisticW
are in Table 11.10. Use this information to find the approximate P-value for the test

statisticW and the alternative >.

278



11.7 Solutions to Practice Problems

1. (a) The probability of the sequence SSFS is obtained by using the multiplication rule:

P (SSFS) = ppqp = (0.8)3(0.2) = 0.1024.

(b) The probability of interest is

P (X ≥ 5) = P (X = 5) + P (X = 6) =
6!

5!1!
(0.8)5(0.2) + (0.8)6 =

0.3932 + 0.2621 = 0.6553.

(c) I entered the values p = 0.8, n = 6 and x = 5; then I clicked on Calculate and obtained
the answer:

P (X ≥ 5) = 0.6554,

which equals my answer, except for (my) round-off error.

2. (a) I entered the values p = 0.7, n = 900 and x = 600; then I clicked on Calculate and

obtained the answer:

P (X ≥ 600) = 0.9861.

I changed my x to 645, then I clicked on Calculate and obtained the answer:

P (X ≤ 645) = 0.8705.

(b) The values are:

µ = 900(0.7) = 630 and σ =
√

900(0.7)(0.3) = 13.75.

(c) For P (X ≥ 600): The area under the N(630,13.75) curve to the right of 599.5 is

0.9867.

For P (X ≤ 645): The area under the N(630,13.75) curve to the left of 645.5 is 0.8702.

(d) The first approximation is too large by 0.0006; the second is too small by 0.0003. Both

approximations are quite good.

3. (a) By counting, I obtain:

X = 24, n−X = 16, R = 20, V = 7 and W = 2.

(b) First, c = 2(24)(16) = 768. Thus,

µ = 1 + 768/40 = 20.2 and σ =

√

√

√

√

768(728)

402(39)
= 2.993.
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(c) Note that the approximating Normal curve has mean equal to 20.2. For the alternative

<, we need the area under the Normal curve to the left of 20.5. This area must be larger

than 0.5 because 20.5 > 20.2. For the alternative>, we need the area under the Normal

curve to the right of 19.5. This area must be larger than 0.5 because 19.5 < 20.2. The
P-value for 6= is the minimum of three numbers: 1 and two numbers that are both larger

than 1. Hence, the P-value is 1.

(d) The smallest possible value of W is 1 and we obtained W = 2. Thus, it is no surprise

that its approximate P-value is huge, 0.887. A run of seven successes seems, to my

intuition, to be pretty long, but the relatively large approximate P-value, 0.305, means

that the data’s support for > is not very strong.

4. (a) First, c = 2(58)(42) = 4,872. Thus,

µ = 1 + 4872/100 = 49.72 and σ =

√

√

√

√

4872(4772)

1002(99)
= 4.846.

(b) I need the area under the N(49.72,4.846) curve to the right of 57.5. This area equals

0.0542. The large number of runs is not quite statistically significant, but it indicates

that the data set includes a great deal of switching between 0’s and 1’s.

(c) Because of the large amount of switching back-and-forth noted in part (b), I don’t

expect the lengths of runs will be very noteworthy. Indeed, my approximate P-value

for > for V [W ] is 0.595 [0.875]. Thus, neither test statistic provides much evidence

in support of the alternative.

5. (a) I need to obtain the values of µ and σ. First, c = 2(66)(34) = 4,488. Thus,

µ = 1 + 4488/100 = 45.88 and σ =

√

√

√

√

4488(4388)

1002(99)
= 4.460.

I need the area under the N(45.88,4.460) curve to the left of 31.5. This area is 0.0006,

a very small P-value. Katie obtained many fewer runs than expected under the null

hypothesis.

(b) The approximate P-value for the alternative > and the test statistic V is 0.1536. There

is evidence in support of the alternative, but it is not convincing.

(c) The approximate P-value for the alternative > and the test statisticW is 0.0019. There

is very strong evidence in support of the alternative; nine is a very long run of failures

in a sequence of 100 trials, of which 66 are successes.
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Table 11.11: The partial approximate sampling distribution of V , the longest run of successes, in

100 Bernoulli trials, conditional on a total of 59 successes.

v: 12 13 14 15

Relative Freq. (V ≥ v) 0.0457 0.0242 0.0134 0.0064

Table 11.12: The partial approximate sampling distribution of W , the longest run of failures, in

100 Bernoulli trials, conditional on a total of 41 failures.

w: 3 4 5 6 7 8

Relative Freq. (W ≥ w) 0.9982 0.8559 0.4890 0.2062 0.0770 0.0274

11.8 Homework Problems

1. We plan to observe n = 600 Bernoulli trials with p = 0.40. Let X denote the total number

of successes in the 600 trials.

(a) Calculate the probability that the first four trials yield: a success, two failures and a

success, in that order.

(b) Calculate the probability that the first four trials yield a total of exactly two successes.

(c) Use the website

http://stattrek.com/Tables/Binomial.aspx

To obtain:

P (X ≤ 255), P (X ≤ 230) and P (231 ≤ X ≤ 255).

(d) Use the Normal curve to obtain approximate answers for the three probabilities of

interest in part (c).

2. Mimic what I did in Tables 11.5 and 11.6 for the 15 possible arrangements of four 1’s and

two 0’s.

3. Recall day 7 of Katie’s study of shooting, Example 11.2 and the description immediately

before it. In this problem we will analyze Katie’s data from day 8.

Here are some important statistics from Katie’s 100 trials on day 8:

x = 59, r = 42, v = 13 and w = 4.

(a) Use the Normal curve approximation to obtain the P-value for the runs test and the

alternative <. Comment.
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(b) I performed a simulation study with 10,000 reps. Partial results for the test statistic V
are in Table 11.11. Use this information to find the approximate P-value for the test

statistic V and the alternative >.

(c) I performed a simulation study with 10,000 reps. Partial results for the test statisticW
are in Table 11.12. Use this information to find the approximate P-value for the test

statisticW and the alternative >.
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Chapter 12

Inference for a Binomial p

In Part 1 of these Course Notes you learned a great deal about statistical tests of hypotheses.

These tests explore the unknowable; in particular, whether or not the Skeptic’s Argument is true.

In Section 11.4, I briefly introduced you to three tests that explore whether or not a sequence of

dichotomous trials are Bernoulli trials. In this chapter, we will assume that we have Bernoulli

trials and turn our attention to the value of the parameter p. Later in this chapter we will explore

a statistical test of hypotheses concerning the value of p. First, however, I will introduce you to

the inference procedure called estimation. I will point out that for Bernoulli trials, estimation is

inherently much more interesting than testing.

The estimation methods in this chapter are relatively straightforward. This does not mean,

however, that the material will be easy; you will be exposed to several new ways of thinking about

things and this will prove challenging.

After you complete this chapter, however, you will have a solid understanding of the two types

of inference that are used by scientists and statisticians: testing and estimation. Most of the remain-

der of the material in these Course Notes will focus on introducing you to new scientific scenarios,

and then learning how to test and estimate in these scenarios. (In some scenarios you also will

learn about the closely related topic of prediction.) Thus, for the most part, after this chapter you

will have been exposed to the major ideas of this course, and your remaining work, being familiar,

should be easier to master.

12.1 Point and Interval Estimates of p

Suppose that we plan to observe n Bernoulli Trials. More accurately, we plan to observe n di-

chotomous trials and we are willing to assume—for the moment, at least—that the assumptions of

Bernoulli trials are met. Throughout these Course Notes, unless I state otherwise, we always will

assume that the researcher knows the value of n.

Before we observe the n Bernoulli trials, if we know the numerical value of p, then we can

compute probabilities for X , the total number of successes that will be observed. If we do not

know that numerical value of p, then we cannot compute probabilities forX . I would argue—not

everyone agrees with me—that there is a gray area between these extremes; refer to my example
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concerning basketball player Kobe Bryant on page 264 of Chapter 11; i.e., if I have a massive

amount of previous data from the process that generates my future Bernoulli trials, then I might be

willing to use the proportion of successes in the massive data set as an approximate value of p.

Still assuming that the numerical value of p is unknown to the researcher, after n Bernoulli

trials are observed, if one is willing to condition on the total number of successes, then one can

critically examine the assumption of Bernoulli trials using the methods presented in Section 11.4.

Alternatively, we can use the data we collect—the observed value x of X—to make an inference

about the unknown numerical value of p. Such inferences will always involve some uncertainty. To

summarize, if the value of p is unknown a researcher will attempt to infer its value by looking at the

data. It is convenient to create Nature—introduced in Chapter 8 in the discussion of Table 8.8—

who knows the value of p.

The simplest inference possible involves the idea of a point estimate/estimator, as defined be-

low.

Definition 12.1 (Point estimate/estimator.) A researcher observes n Bernoulli trials, counts the

number of successes, x and calculates p̂ = x/n. This proportion, p̂, is called the point estimate of

p. It is the observed value of the random variable P̂ = X/n, which is called the point estimator of

p. For convenience, we write q̂ = 1− p̂, for the proportion of failures in the data; q̂ is the observed
value of the random variable Q̂ = 1− P̂ .

Before we collect data, we focus on the random variable, the point estimator. After we collect

data, we compute the value of the point estimate, which is, of course, the observed value of the

point estimator.

I don’t like the technical term, point estimate/estimator. More precisely, I don’t like half of it.

I like the word point because we are talking about a single number. (I recall the lesson I learned

in math years ago, “Every number is a point on the number line and every point on the number

line is a number.”) I don’t particularly like the use of the word estimate/estimator. If I become

tsar of the Statistics world, I might change the terminology. I say might instead of will because,

frankly, I can’t actually suggest an improvement on estimate/estimator. I recommend that you

simply remember that estimate/estimator is a word statisticians use whenever they take observed

data and try to infer a feature of a population.

It is trivially easy to calculate p̂ = x/n; thus, based on experiences in previous math courses,

you might expect that we will move along to the next topic. But we won’t. In a Statistics course

we evaluate the behavior of a procedure. What does this mean? Statisticians evaluate procedures

by seeing how they perform in the long run.

We say that the point estimate p̂ is correct if, and only if, p̂ = p. Obviously, any honest

researcher wants the point estimate to be correct. As we will see now, whereas having a correct

point estimate is desirable, the concept has some serious difficulties.

Let’s suppose that a researcher observes n = 100 Bernoulli trials and counts a total of x = 55
successes. Thus, p̂ = 55/100 = 0.55 and this point estimate is correct if, and only if, p = 0.55.
This leads us to the first difficulty with the concept of being correct.

• Nature knows whether p̂ is correct; the researcher never knows.
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The above example takes place after the data have been collected. We can see this because we

are told that a total of x = 55 successes were counted. Now let’s go back in time to before the data

are collected and let’s take on the role of Nature. I will change the scenario a bit to avoid confusing

this current example with what I just did. As Nature, I am aware that a researcher plans to observe

n = 200 Bernoulli trials. I also know that p = 0.600, but the researcher does not know this. In

addition, after collecting the data, the researcher will calculate the point estimate of p. What will

happen? I don’t know what will happen—I don’t make Nature omniscient; it just knows the value

of p! When I don’t know what will happen, I resort to calculating probabilities. In particular, as

Nature, I know that p̂ will be correct if, and only if, the total number of successes turns out to

be 120—making p̂ = 120/200 = 0.600. Thus, back in time before data are collected, I want to

calculate

P (X = 120) given that X ∼ Bin(200, 0.600).

I can obtain this exact probability quite easily from the website

http://stattrek.com/Tables/Binomial.aspx.

I used this website and obtained P (X = 120) = 0.0575. Thus, in addition to the fact that only

Nature knows whether a point estimate is correct, we see that

• The probability that the point estimator will be correct can be very small and, indeed, can be

calculated by Nature, but not the researcher.

I don’t want to dwell on this too much, but we need something better than point estimation!

In Section 10.2 I extended the saying,

Close counts in horseshoes and hand grenades

to

Close counts in horseshoes, hand grenades and probabilities.

I want to extend it again; this time to

Close counts in horse shoes, hand grenades, probabilities and estimation.

Let’s revisit my last example: a researcher plans to observe n = 200 Bernoulli trials; the

researcher does not know the value of p; and Nature knows that p = 0.600. The researcher plans
to compute the point estimate of p. We saw above that the probability that the point estimator will

be correct—i.e., that p̂ will be exactly equal to p = 0.600 is small; indeed only 0.0575. Suppose

now that the researcher thinks, “In order for me to be happy, I don’t really need to have my point

estimate be exactly equal to p; all I need is for p̂ to be close to p.” In order to proceed, the researcher
needs to specify how close is required for happiness. I will look at two examples.

1. The researcher decides that within 0.04 is close enough for happiness. Thus, Nature knows

that the event (0.560 ≤ P̂ ≤ 0.640) is the event that the researcher will be happy. (Paradox-
ically, of course, the researcher won’t know that this is the happiness event!) Nature, being

good at algebra, writes

P (0.560 ≤ P̂ ≤ 0.640) = P (112 ≤ X ≤ 128), for X ∼ Bin(200, 0.600).
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Next,

P (112 ≤ X ≤ 128) = P (X ≤ 128)− P (X ≤ 111).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

this probability equals

0.8906− 0.1103 = 0.7803.

2. The researcher decides that within 0.07 is close enough for happiness. Thus, Nature knows

that the event (0.530 ≤ P̂ ≤ 0.670) is the event that the researcher will be happy. Nature
writes

P (0.530 ≤ P̂ ≤ 0.670) = P (106 ≤ X ≤ 134), for X ∼ Bin(200, 0.600).

Next,

P (106 ≤ X ≤ 134) = P (X ≤ 134)− P (X ≤ 105).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

this probability equals

0.9827− 0.0188 = 0.9639.

The above ideas lead to the following definition.

Definition 12.2 (Interval estimate/estimator.) A researcher observes n Bernoulli trials and counts

the number of successes, x. An interval estimate of p is a closed interval with endpoints l (for lower
bound) and u (for upper bound), written [l, u]. Although the dependence is often suppressed, both l
and u are functions of x. Thus, more properly, an interval estimate should be written as [l(x), u(x)].
An interval estimate is the observed value of the interval estimator: [l(X), u(X)].

Below is an example of an interval estimate of p. It is called a fixed-width interval estimate

because, as you will see, its width is constant; i.e., its width is not a function of the random

variableX .

• Define the interval estimate to be [p̂− 0.04, p̂+ 0.04]. Note that

l(x) = p̂− 0.04 = x/n− 0.04 and u(x) = p̂+ 0.04 = x/n+ 0.04;

thus, this is a bona fide interval estimate. The width of this interval is

u− l = x/n + 0.04− (x/n− 0.04) = 0.08.

Thus, this is a fixed-width interval estimate with width equal to 0.08. Usually, however,

statisticians refer to this as a fixed-width interval estimate with half-width equal to 0.04.
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Recall, we say that the point estimate p̂ is correct if, and only if, p is equal to p̂. Similarly, we

say that an interval estimate is correct if, and only if, p lies in the interval; i.e., if, and only if,

l ≤ p ≤ u.
Let’s look at this notion of correctness with our fixed-width interval estimate with half-width

equal to 0.04. The interval estimate is correct if, and only if,

p̂− 0.04 ≤ p ≤ p̂+ 0.04.

I will need to rearrange the terms in this expression which contains two inequality signs. If you

are good at this activity, you will find my efforts below to be a bit tedious because I will break

the above into two pieces; analyze the pieces separately; and then put the pieces back together. In

particular, let’s start with

p ≤ p̂+ 0.04 which becomes p− 0.04 ≤ p̂.

Similarly,

p̂− 0.04 ≤ p becomes p̂ ≤ p+ 0.04.

Combining these inequalities, we obtain

p− 0.04 ≤ p̂ ≤ p+ 0.04.

This last expression, in words, means that p̂ is within 0.04 of p. This implies that a researcher

who would be happy to have the point estimate be within 0.04 of p, should estimate p with interval
estimate with half-width equal to 0.04; the interval is correct if, and only if, the researcher is happy.

Sadly, fixed-width interval estimates have a serious weakness for statistical inference; details

will be given in one of the Practice Problems for this chapter. At this time we turn our attention to

the type of interval estimate that is very useful in inference and science.

12.2 The (Approximate) 95% Confidence Interval Estimate

In this section you will be introduced to a particular type of interval estimate of p, called a confi-

dence interval estimate.

This is a tricky topic. I want to derive the confidence interval for you, but experience has taught

me that the topic is very confusing if I begin with the derivation. Thus, instead I will give you the

formula and use it twice before I derive it.

Recall the definition of an interval estimate presented in Definition 12.2. In order to specify an

interval estimate, I must give you formulas for l and u, the lower and upper bounds of the interval.

Result 12.1 (The (approximate) 95% confidence interval estimate of p.) The lower and upper

bounds of the (approximate) 95% confidence interval estimate of p are

l(x) = p̂− 1.96

√

p̂q̂

n
and u(x) = p̂+ 1.96

√

p̂q̂

n
. (12.1)
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Because of the similarity between the formulas for l and u, we usually combine the above into one
formula. The (approximate) 95% confidence interval estimate of p is

p̂± 1.96

√

p̂q̂

n
(12.2)

Let me make a few comments about this definition.

1. It will be convenient to give a symbol for the half-width of an interval estimate. We will

use h. With this notation, the half-width of the (approximate) 95% confidence interval esti-

mate of p is

h = 1.96

√

p̂q̂

n
.

Note that this is not a constant half-width; the value of h depends on x through the value

of p̂ (remembering that q̂ = 1− p̂).

2. The confidence interval is centered at p̂. It is correct—includes p—if, and only if, p̂ is

within h of p.

3. The formula for the confidence interval is mysterious. The derivation I give later will clear up

the mystery, especially the presence of the magic number 1.96. As you might have guessed,

the appearance of 1.96 in the formula is tied to the specification of 95% confidence. Note

that if I replace 1.96 in Formula 12.2 by the number 3, we get the nearly certain interval

introduced in Chapter 4.

I will now illustrate the computation of the 95% confidence interval for two data sets similar to my

earlier example with Kobe Bryant.

1. In his NBA career, Karl Malone attempted 13,188 free throws during games and made 9,787

of them. On the assumption that Malone’s game free throws were Bernoulli trials, calculate

the 95% confidence interval for his p.

Solution: Note that unless p̂ is close to zero, my convention in these Course Notes is to

round p̂ to three digits. We compute p̂ = 9,787/13,188= 0.742 and q̂ = 1− 0.742 = 0.258.
Thus,

h = 1.96

√

0.742(0.258)

13,188
= 0.007.

Thus, the approximate 95% confidence interval estimate of p is

0.742± 0.007 = [0.735, 0.749].

This interval is very narrow. If it is indeed correct, then we have a very precise notion of the

value of p.

288



2. In his NBA career, Shaquille O’Neal attempted 11,252 free throws during games and made

5,935 of them. On the assumption that O’Neal’s game free throws were Bernoulli trials,

calculate the 95% confidence interval for his p.

Solution: We compute p̂ = 5,935/11,252= 0.527 and q̂ = 1− 0.527 = 0.473. Thus,

h = 1.96

√

0.527(0.473)

11,252
= 0.009.

Thus, the approximate 95% confidence interval estimate of p is

0.527± 0.009 = [0.518, 0.536].

This interval is very narrow. If it is indeed correct, then we have a very precise notion of the

value of p. Note that O’Neal’s interval is a bit wider than Malone’s; as we will see later, this

difference is due to: O’Neal’s n is smaller than Malone’s; and O’Neal’s p̂ is closer to 0.5

than Malone’s.

12.2.1 Derivation of the Approximate 95% Confidence Interval Estimate

of p

Our derivation involves the computation of probabilities; thus, we go back in time to before data

are collected. Our basic random variable of interest is X , the number of successes that will be

obtained in the n future Bernoulli trials. We know that the sampling distribution ofX is Bin(n, p).
Of course, we don’t know the value of p, but let’s not worry about that. Much of algebra, as you

no doubt remember, involves manipulating unknown quantities!

The reason our confidence interval includes the modifier approximate is that we are not going

to work with exact binomial probabilities; instead, we will approximate the Bin(n, p) distribution
by using the Normal curve with µ = np and σ =

√
npq. I want to obtain an answer that is true for

a variety of values of n and p; as a result, it will prove messy to constantly have our approximating

curve change; e.g., if I change from n = 100 to n = 200, then the µ and σ of the approximating

Normal curve will change. It is more convenient to instead standardize the random variable X ,

as now described. Define a new random variable, denoted by Z, which we call the standardized

version of X . For a general X—i.e., not just binomial—we define

Z =
X − µ

σ
, (12.3)

where µ is the mean and σ is the standard deviation of the random variableX . In this chapter—i.e.,

because X has a binomial distribution—Equation 12.3 becomes

Z =
X − np√

npq
. (12.4)

It can be shown mathematically—although I won’t demonstrate it—that the Normal curve with

µ = np and σ =
√
npq approximates the binomial distribution ofX exactly the same as the N(0,1)
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curve approximates the distribution of Z. In other words, the conditions for the first approximation

to be good are exactly the conditions for the second approximation to be good. Recall also that the

general guideline I gave you for using a Normal curve to approximate a binomial is that both np
and nq should equal or exceed 25. Finally, recall that whereas everybody agrees that the values of

np and nq are critical, not everybody agrees with my threshold of 25.

It turns out that for the goal of interval estimation, the unknown p (and q = 1 − p) in the

denominator of Z creates a major difficulty. Thanks, however, to an important result of Eugen

Slutsky (1925) (called Slutsky’s Theorem) probabilities for Z ′,

Z ′ =
(X − np)
√

nP̂ Q̂
,

can be well approximated by the N(0,1) curve, provided n is reasonably large; p is not too close to
0 or 1; and 0 < P̂ < 1 (we don’t want to divide by zero). Note that Z ′ is obtained by replacing the

unknown p and q in the denominator of Z with the random variables P̂ and Q̂, both of which will

be replaced by their observed values once the data are collected.

Here is the derivation. Suppose that we want to calculate P (−1.96 ≤ Z ′ ≤ 1.96). Because of
Slutsky’s result, we can approximate this probability with the area under the N(0,1) curve between

−1.96 and 1.96. Using the website,

http://davidmlane.com/hyperstat/z_table.html

you can verify that this area equals 0.95. Next, dividing the numerator and denominator of Z ′ by

n gives

Z ′ =
P̂ − p

√

P̂ Q̂/n
.

Thus,

−1.96 ≤ Z ′ ≤ 1.96 becomes − 1.96 ≤ P̂ − p
√

P̂ Q̂/n
≤ 1.96;

rearranging terms, this last inequality becomes

P̂ − 1.96
√

P̂ Q̂/n ≤ p ≤ P̂ + 1.96
√

P̂ Q̂/n.

Examine this last expression. Once we replace the random variables P̂ and Q̂ by their observed

values p̂ and q̂, the above inequality becomes

p̂− 1.96
√

p̂q̂/n ≤ p ≤ p̂+ 1.96
√

p̂q̂/n.

In other words,

l ≤ p ≤ u.

Thus, we have shown that, before we collect data, the probability that we will obtain a correct

confidence interval estimate is (approximately) 95% and that this is true for all values of p! Well,
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all values of p for which the Normal curve and Slutsky approximations are good. We will return to

the question of the quality of the approximation soon.

Let me say a bit about the use of the word confidence in the technical expression confidence

interval. First and foremost, remember that I use confidence as a technical term. Thus, whatever

the word confidence means to you in every day life is not necessarily relevant. Let’s look at

the 95% confidence interval I calculated for Karl Malone’s p for free throw shooting. I am 95%

confident that

0.735 ≤ p ≤ 0.749.

Literally, this is a statement about the value of p. This statement might be correct or it might

be incorrect; only my imaginary creature Nature knows. Here is the key point. I assign 95%

confidence to this statement because of the method I used to derive it. Before I collected Malone’s

data I knew that I would calculate the 95% confidence interval for p. Before I collected data I

knew that the probability I would obtain a correct confidence interval is (approximately) 95%.

By appealing to the Law of Large Numbers (Subsection 10.2.1), I know that as I go through life,

observing Bernoulli trials and calculating the approximate 95% confidence interval from each set

of said data, in the long run approximately 95% of these intervals will be correct. Thus, a particular

interval—such as mine for Malone—might be correct or it might be incorrect. Because, in the long

run, 95% of such intervals will be correct, I am 95% confident that my particular interval is correct.

12.2.2 The Accuracy of the 95% Approximation

Later, I will give you a specific general guideline for when to use the approximate confidence

interval as well as an alternative method to be used if the guideline is not satisfied. In the current

subsection I will focus on how we assess the accuracy of the approximation. I will do this with

several examples. Essentially, we must specify values of both n and p and then see how the formula

performs.

Before I get to my first example, it is convenient to have a not-so-brief digression. I want to

introduce you to what I call the Goldilocks metaphor, a device that repeatedly will prove useful

in these notes.

According to Wikipedia,

The Story of the Three Bears (sometimes known as The Three Bears, Goldilocks and

the Three Bears or, simply,Goldilocks) is a fairy tale first recorded in narrative form by

British author and poet Robert Southey, and first published anonymously in a volume

of his writings in 1837. The same year, British writer George Nicol published a version

in rhyme based upon Southey’s prose tale, with Southey approving the attempt to bring

the story more exposure. Both versions tell of three bears and an old woman who

trespasses upon their property. . . . Southey’s intrusive old woman became an intrusive

little girl in 1849, who was given various names referring to her hair until Goldilocks

was settled upon in the early 20th century. Southey’s three bachelor bears evolved into

Father, Mother, and Baby Bear over the course of several years. What was originally

a fearsome oral tale became a cozy family story with only a hint of menace.
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Figure 12.1: The Goldilocks metaphor for confidence intervals.

pl u

The CI is too small, u < p:

p l u

The CI is too large, p < l:

pl u

The CI is correct, l ≤ p ≤ u:

In my opinion, Goldilocks, a juvenile delinquent specializing in home invasion, gets her come-

uppance when she stumbles into the wrong house. In any event, Goldilocks is well-known for

complaining that something was too hot or too cold, before setting on something that was just

right.

So, what does any of this have to do with confidence intervals? Only that it is useful to realize

that a confidence interval can be too small, too large or correct (just right!). Perhaps a picture will

help. Figure 12.1 presents the three possibilities for the relationship between a confidence interval

and the p it is estimating. Let’s look at the three pictured possibilities.

1. The confidence interval could be too small. This means that p is larger than every number in

the confidence interval. It will be convenient to note that a confidence interval is too small

if, and only if, u < p.

2. The confidence interval could be too large. This means that p is smaller than every number

in the confidence interval. It will be convenient to note that a confidence interval is too large

if, and only if, p < l.

3. The confidence interval could be correct. This means that l ≤ p ≤ u.

The main message of these three observations is: In general, it is easier to determine whether a

confidence interval is too small or too large rather than correct. This is because determining either

of the former requires checking one inequality, whereas determining the latter requires checking

two inequalities.
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For my first example, I will take n = 200 and p = 0.500. I anticipate that the interval should
perform well, because both np = 200(0.5) = 100 and nq = 200(0.5) = 100 are much larger

than our Chapter 11 guideline threshold of 25 for using a Normal curve to approximate binomial

probabilities. We have a very specific criterion that we want to examine. We want to determine the

exact probability that the 95% confidence interval will be correct. If you desire, you may verify

the following facts, but you don’t need to; i.e., I will never ask you to perform such an activity on

an exam.

• The event the confidence interval is too small is the event (X ≤ 86); i.e., for any x ≤ 86,
the value of u is less than 0.500.

• The event the confidence interval is too large is the event (X ≥ 114); i.e., for any x ≥ 114,
the value of l is greater than 0.500.

• In view of the previous two items, the event the confidence interval is correct is the event

(87 ≤ X ≤ 113).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

we find

P (X ≤ 86) = 0.0280 and P (X ≥ 114) = 0.0280; thus,

P (87 ≤ X ≤ 113) = 1− 2(0.0280) = 1− 0.0560 = 0.9440.

Actually, I am a bit disappointed in this approximation. In the limit (long run), 94.4%, not the

advertised 95.0%, of the confidence intervals will be correct.

For my second example, I will take n = 1,000 and p = 0.600. For this example, np =
1000(0.6) = 600 and nq = 1000(0.4) = 400 are both substantially larger than the threshold value

of 25. If you desire, you may verify the following facts:

• The event the confidence interval is too small is the event (X ≤ 568); i.e., for any x ≤ 568,
the value of u is less than 0.600.

• The event the confidence interval is too large is the event (X ≥ 631); i.e., for any x ≥ 631,
the value of l is greater than 0.600.

• In view of the previous two items, the event the confidence interval is correct is the event

(569 ≤ X ≤ 630).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,
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we find

P (X ≤ 568) = 0.0213 and P (X ≥ 631) = 0.0241; thus,

P (569 ≤ X ≤ 630) = 1− (0.0213 + 0.0241) = 1− 0.0454 = 0.9546.

In this example, in the limit (long run), the nominal 95% confidence interval is correct a bit more

often than promised.

For my third and final example, I will take n = 100 and p = 0.020. For this example, np =
100(0.02) = 2, which is far below the threshold value of 25. Thus, I anticipate that our approximate

confidence interval will not perform as advertised. If you desire, you may verify the following

facts:

• The event the confidence interval is too small is the event (X = 0); i.e., for x = 0, the
value of u is less than 0.02. In fact, for x = 0 the confidence interval is [0, 0], a single point!
Also, for (1 ≤ x ≤ 3) the lower bound, l, of the confidence interval is a negative number!

Whenever an interval reduces to a single number or a nonnegative quantity (in the current

set-up p) is stated to be possibly negative, it’s a good indication that the formula being used

can’t be trusted!

• The event the confidence interval is too large is the event (X ≥ 9); i.e., for any x ≥ 9, the
value of l is greater than 0.020.

• In view of the previous two items, the event the confidence interval is correct is the event

(1 ≤ X ≤ 8).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

we find

P (X = 0) = 0.1326 and P (X ≥ 9) = 0.0001; thus,

P (1 ≤ X ≤ 8) = 1− (0.1326 + 0.0001) = 1− 0.1327 = 0.8673.

In this example, in the limit (long run), the nominal 95% gives way too many incorrect intervals.

We will revisit my third example in Section 12.3 and you will learn a method that performs as

it promises.

In summary, the approximate 95% confidence interval for p (Formula 12.2) is one of the most

useful results in Statistics. For its computation, we don’t need access to the internet; we don’t need

a fancy calculator; all we need is a calculator that can compute square roots. If both np and nq
are 25 or larger, then the actual probability that the confidence interval will be correct is indeed

reasonably close to the advertised (nominal) value of 95%. Admittedly, this last sentence is quite

vague, but it will suffice for a first course in introductory Statistics.

You may have noticed a flaw in the part of my advice that requires both np and nq to be 25 or

larger. Do you see it? The whole point of estimation is that we don’t know the value of p or q and,
thus, we can’t actually check the values of np and nq. There are two ways we handle this.
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1. Sometimes n is so large that even though I can’t literally check the values of np and nq I

am quite sure that they both exceed 25. For example, I don’t know who will be running for

President of the United States in 2016, but if I have a random sample of n = 1,000 voters,

and the dichotomy is vote Democrat or Republican, I am quite sure that both np = 1000p
and nq = 1000q will be much larger than 25.

2. If you aren’t sure that the above item applies, a popular—and valuable—guideline is to use

Formula 12.2 provided that both x and (n − x) equal or exceed 35. Note that 35 is my

personal choice; other statisticians might consider me to be too cautious (they advocate a

smaller threshold) or too reckless (they advocate a larger threshold).

12.2.3 Other Confidence Levels

In our 95% confidence interval, the number 95% is called the confidence level of the interval. The

obvious question is: Can we use some other confidence level? The answer is “Yes, and I will show

you how in this short subsection.”

If you think back to my derivation of the 95% confidence interval formula, you will recall that

my choice of 95% gave us the magic number of 1.96. In particular, the Normal curve website told

us that the area under the N(0,1) curve between the numbers −1.96 and +1.96 is equal to 0.95.

You can verify that the area under the N(0,1) curve between the numbers −1.645 and +1.645 is

equal to 0.90. Thus, we immediately know that the approximate 90% confidence interval estimate

of p is

p̂± 1.645

√

p̂q̂

n
.

We can summarize our two confidence intervals—95% and 90%—by writing them as

p̂± z∗
√

p̂q̂

n
, (12.5)

with the understanding that for 95% [90%] confidence we substitute 1.96 [1.645] for z∗. Let me

make two comments on Formula 12.5.

1. There is no need to restrict ourselves to 95% or 90%. The most popular choices for confi-

dence level—and their corresponding values of z∗ are provided in Table 12.1. Note that you

now know that the nearly certain interval for p is, indeed, the 99.73% confidence interval

estimate of p.

2. Many texts—I hate to be rude, but frankly— are sadistic in their presentation of the general

confidence interval, Formula 12.5. In particular, instead of our user-friendly z∗, they write

something like

z∗α/2

(usually without the asterisk) and refer to the result as the 100(1− α)% confidence interval

estimate of p. I prefer my method; seeing z∗ reminds you that you need to make a choice of

confidence level and that the number you use, z∗, depends on your choice.
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Table 12.1: Popular choices for the confidence level and their corresponding values of z∗ for the
general approximate confidence interval estimate of p, Formula 12.5.

Confidence Level 80% 90% 95% 98% 99% 99.73%

z∗: 1.282 1.645 1.960 2.326 2.576 3.000

I will discuss the choice of confidence level in Section 12.4. Let me just state that earlier I

examined the quality of the approximation and gave guidelines on whether or not to use the 95%

confidence interval formula. All of my results are qualitatively the same for other confidence levels.

In particular, my guideline for using Formula 12.5 is the same as it was for the 95% confidence

level: if both x and (n−x) equal or exceed 35, I recommend using it. This will be a general pattern

in our ongoing studies of confidence intervals. When I explore properties of the intervals, I will

focus on 95% and the results will always be qualitatively the same for other confidence levels.

12.3 The Clopper and Pearson “Exact” Confidence Interval

Estimate of p

In Section 12.4, I will explain why I put the word Exact in quotes in the title of this section.

In line with the last paragraph of the previous section, let me summarize the facts about the

approximate 95% confidence interval estimate of p; remembering that similar comments are true

for other choices of the confidence level.

Formula 12.2 has the following property. For every possible value of p the probability that

the researcher will obtain a correct confidence interval is approximately 95%. The fact that the

formula works for every possible p is pretty amazing; there are, after all, an infinite number of

possibilities for p! The word approximately is, however, troublesome. We saw by example, that

sometimes the approximation can be bad. In particular, if either np or nq is smaller than 25 then

I recommend that you do not use Formula 12.2. Because the values of p and q are unknown, my

more useful recommendation is that if, after you collect data, you notice that either x or (n− x) is
smaller than 35, then I recommend that you do not use Formula 12.2.

Let’s look at the origin of Formula 12.2 again. The approach was as follows. For any fixed

value of p, we found numbers b and c such that P (b ≤ X ≤ c) is approximately 95%, where

the approximation is based on using a Normal curve. Next, because both b and c are functions of
p we were able to manipulate the event (b ≤ X ≤ c) into a confidence interval for p. This last

part, recall, required help from Slutsky’s theorem too. Thus, our confidence interval is based on

two approximations: using a Normal curve to approximate binomial probabilities and then using

Slutsky’s theorem.

There is an obvious alternative approach. Let’s find the numbers b and c without using an

approximating Normal curve; obtain them by using exact binomial probabilities. If we can invert

this collection of inequalities—a big if because there are an infinite number of inequalities—then

we will have a confidence interval for p that does not involve any approximations. In 1934, Clopper
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Table 12.2: The Clopper and Pearson (CP) 95% confidence intervals for n = 20.

x [l(x), u(x)] x [l(x), u(x)] x [l(x), u(x)] x [l(x), u(x)]
0: [0, 0.168] 6: [0.119, 0.543] 11: [0.315, 0.769] 16: [0.563, 0.943]
1: [0.001, 0.249] 7: [0.154, 0.592] 12: [0.360, 0.809] 17: [0.621, 0.968]
2: [0.012, 0.317] 8: [0.191, 0.640] 13: [0.408, 0.846] 18: [0.683, 0.988]
3: [0.032, 0.379] 9: [0.231, 0.685] 14: [0.457, 0.881] 19: [0.751, 0.999]
4: [0.057, 0.437] 10: [0.272, 0.728] 15: [0.509, 0.913] 20: [0.832, 1]
5: [0.087, 0.491]

and Pearson managed to make this alternative approach work. (See Binomial proportion confidence

interval in Wikipedia for more information.) Well, it almost works. The main sticking problem is

that because of the discrete nature of the binomial distribution, for a given p we cannot, in general,
find numbers b and c so that the binomial P (b ≤ X ≤ c) is exactly equal to 0.95. Instead, they

settled on finding numbers b and c so that

P (b ≤ X ≤ c) ≥ 0.95, for every value of p.

(Historical note: Working prior to the computer-age, the accomplishment of Clopper and Pearson

was quite amazing. Their work has been improved in recent years because while their choices of b
and c were good for inverting the infinite number of inequalities, for many values of p, their exact
P (b ≤ X ≤ c) is much larger than 0.95. As we will see later, this means that their intervals were

wider—and, hence, less informative—than necessary. I won’t show you the modern improvement

on Clopper and Pearson because it is not easily accessible computationally.)

As you probably know, there was no internet in 1934; in fact, as best I can tell there were no

computers in 1934. Thus, Clopper and Pearson distributed their work by creating lots of tables.

An example of a Clopper and Pearson table is given in Table 12.2. This table presents all of the

Clopper and Pearson (CP) 95% confidence intervals for n = 20. Let’s look at a few of the entries

in Table 12.2.

If we observe a total of x = 7 successes in 20 Bernoulli trials, then the CP 95% confidence

interval estimate of p is: [0.154, 0.592]. If x = 15, the confidence interval is [0.509, 0.913]. Note
that for all 21 possible values of x, the CP 95% confidence intervals are very wide; in short, we

don’t learn much about the value of p with only 20 Bernoulli trials.
Next, let’s do a couple of computations to verify that the probability that a CP 95% confidence

interval will be correct is at least 95%. Let’s consider p = 0.500. From Table 12.2, we can quickly

ascertain the following facts and you should be able to verify these.

• The CP confidence interval is too small (u < 0.500) if, and only if, (X ≤ 5).

• The CP confidence interval is too large (0.500 < l) if, and only if, (X ≥ 15).

• The CP confidence interval is correct (l ≤ 0.500 ≤ u) if, and only if, (6 ≤ X ≤ 14).
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With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

we find that for n = 20 and p = 0.500,

P (X ≤ 5) = 0.0207, P (X ≥ 15) = 0.0207 and, thus, P (6 ≤ X ≤ 14) = 1−2(0.0207) = 0.9586.

The probability that the CP interval will be correct does, indeed, achieve the promised minimum

of 0.95.

Let’s do one more example, for n = 20 and p = 0.200. From Table 12.2, we can quickly

ascertain the following facts:

• The CP confidence interval is too small (u < 0.200) if, and only if, (X = 0).

• The CP confidence interval is too large (0.200 < l) if, and only if, (X ≥ 9).

• The CP confidence interval is correct (l ≤ 0.200 ≤ u) if, and only if, (1 ≤ X ≤ 8).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

we find that for n = 20 and p = 0.200,

P (X = 0) = 0.0115, P (X ≥ 9) = 0.0100 and, thus,

P (1 ≤ X ≤ 8) = 1− (0.0115 + 0.0100) = 0.9785.

The probability that the CP interval will be correct does, indeed, achieve the promised minimum

of 0.95. In fact, the probability of being correct is quite a bit larger than the nominal 95%.

The obvious question is: Suppose you want to obtain a CP confidence interval for p, but your
number of trials n is not 20. Before the internet you would have needed to find a CP table for your

value of n. The method we use now is introduced after the next example.

Example 12.1 (Mahjong solitaire online.) My friend Bert loves to play mahjong solitaire online.

(See Wikipedia if you want details of the game.) Each game ends with Bert winning or losing. He

played n = 100 games, winning a total of 29 of the games.

Let’s analyze Bert’s data. Clearly, the trials yield a dichotomous response: a win (success) or a

loss (failure). Are we willing to assume that they are Bernoulli trials? I have two remarks to make

on this issue:

1. The game claims that it randomly selects an arrangement of tiles for each game. (Pieces in

mahjong are called tiles; they look like dominoes. Well, more accurately, online tiles look

like pictures of dominoes.) Of course, there might be something about the way Bert performs

that violates the assumptions of Bernoulli trials: perhaps he improved with practice; perhaps

his skills declined from boredom; perhaps he had streaks of better or worse skill.

298

http://stattrek.com/Tables/Binomial.aspx
http://stattrek.com/Tables/Binomial.aspx


2. I looked for patterns in Bert’s data: his 100 trials contained 41 runs; his longest run of

successes [failures] had length 3 [14]. In the first [last] 50 games he won 16 [13] times. We

will examine these statistics together in a Practice Problem. For now, let’s assume that we

have Bernoulli trials.

There exists a website that will give us the CP 95% confidence interval estimate of p; it is:

http://statpages.org/confint.html

I will now explain how to use this site.

First of all, do not scroll down this page. A bit later we will learn the benefits of scrolling

down, but don’t do it yet! You will see a box next to Numerator (x); enter the total number of

successes in this box—for Bert’s data, enter 29. Next, you will se a box next to Denominator (N);

enter the value of n in this box—for Bert’s data, enter 100. Click on the box labeled Compute.

The site produces three numbers for us, the value of p̂ and the lower and upper bounds of the CP

interval:

• Proportion (x/N): For Bert’s data, we get p̂ = 29/100 = 0.29.

• Exact Confidence Interval around Proportion: For Bert’s data we get 0.2036 to 0.3893.

For comparison, let’s see the answer we obtain if we use the 95% confidence interval based on the

Normal curve approximation and Slutsky’s theorem:

0.2900± 1.96

√

0.29(0.71)

100
= 0.2900± 0.0889 = [0.2011, 0.3789].

These two confidence intervals are very similar. As a practical matter, I cannot think of a scientific

problem in which I would find these answers to be importantly different.

Recall that on page 294 we looked at an example with n = 100 and p = 0.020. We found

that the approximate 95% confidence interval was correct—included p = 0.020—if, and only if,

(1 ≤ x ≤ 8). We further found that

P (1 ≤ X ≤ 8|p = 0.020) = 0.8673,

which is much smaller than the target of 0.95. Thus, for this combination of n and p the approxi-

mate 95% confidence interval performs poorly and should not be used. Let’s see what happens if

we use the CP 95% confidence interval.

The long answer is for me to create a table of all CP 95% confidence intervals for n = 100, as
I reported in Table 12.2 for n = 20. If I do that, I obtain the following results. The CP interval is

never too small; it is too large if, and only if, x ≥ 6; and it is correct if, and only if, x ≤ 5. With

the help of

http://stattrek.com/Tables/Binomial.aspx,

I find that

P (X ≤ 5|n = 100 and p = 0.020) = 0.9845.

Thus, the CP interval performs as advertised—this probability actually exceeds the target 0.95—in

the same situation in which the approximate confidence interval performs very poorly.
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12.3.1 Other Confidence Levels for the CP Intervals

Let’s return to the site

http://statpages.org/confint.html

and now let’s scroll down. Scroll past the section headed Poisson Confidence Intervals all the

way to the section headed Setting Confidence Levels, below which you will see the following

display:

Confidence Level: 95

% Area in Upper Tail: 2.5

% Area in Lower Tail: 2.5

The three numbers above—95, 2.5 and 2.5—are the default values for the confidence level. The

first number, 95, tells us that the default confidence level for the site is 95%. It is important to note

that the site does not want the % sign, nor does it want 95% written as a decimal. It wants 95.

Similarly, the complement of 95% is 5%; equally divided 5 gives 2.5 twice; these numbers appear

in the Upper and Lower rows.

If you want, say, 90% confidence instead of the default 95%, no worries. The easiest way to

accomplish this is to replace the default 95 by 90 (not 90%, not 0.90) and click on the compute box.

When you do this you will note that the site automatically changes both the Upper and Lower rows

entries to 5. If you now scroll back up the page to the Binomial Confidence Intervals section, you

will see that your entries 29 and 100 have not changed. If you now click on the box Compute you

will be given a new confidence interval: 0.2159 to 0.3737—this is the CP 90% confidence interval

estimate of p.

12.3.2 The One-sided CP Confidence Intervals

Both the approximate and CP confidence intervals of this chapter are two-sided. They provide both

an upper and a lower bound on the value of p. Sometimes a scientist wants only one bound; the

bound can be either upper or lower and there are approximate methods as well as methods derived

from the work of Clopper and Pearson. A one-semester class cannot possibly present an exhaustive

view of introductory Statistics; thus, I will limit the presentation to the upper confidence bound that

can be obtained using the Clopper and Pearson method.

Before I turn to a website for answers, I want to create a table that is analogous to our Ta-

ble 12.2, the two-sided CP confidence intervals for n = 20. Table 12.3 presents the Clopper and

Pearson 95% upper confidence bounds for p for n = 20. Let’s compare the one- and two-sided

95% intervals for p for n = 20 and a couple of values of x.

• For x = 19, the two-sided interval states 0.751 ≤ p ≤ 0.999; and the one-sided interval

states p ≤ 0.997

• For x = 1, the two-sided interval states 0.001 ≤ p ≤ 0.249; and the one-sided interval states
p ≤ 0.216
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Table 12.3: The Clopper and Pearson (CP) 95% upper confidence bounds for p for n = 20.

x [l(x), u(x)] x [l(x), u(x)] x [l(x), u(x)] x [l(x), u(x)]
0: [0, 0.139] 6: [0, 0.508] 11: [0, 0.741] 16: [0, 0.929]
1: [0, 0.216] 7: [0, 0.558] 12: [0, 0.783] 17: [0, 0.958]
2: [0, 0.283] 8: [0, 0.606] 13: [0, 0.823] 18: [0, 0.982]
3: [0, 0.344] 9: [0, 0.653] 14: [0, 0.860] 19: [0, 0.997]
4: [0, 0.401] 10: [0, 0.698] 15: [0, 0.896] 20: [0, 1]
5: [0, 0.456]

The most obvious thing to note is that for x = 19—which is fairly likely to occur if p is close to

1—then computing a one-sided upper bound for p is ridiculous. For x = 1, however, the one-sided
upper bound might well be preferred to the two-sided interval. The two-side interval rules out the

possibility that p < 0.001, but at the cost of having an upper bound that is 0.249/0.216 = 1.15
times as large as the upper bound for the one-sided interval.

The computations above are insightful, but what does science tell me to do? In my experience,

sometimes what we call a success can be a very nasty outcome. For example, a success might be

that a biological item is infected; that a patient dies; or that an asteroid crashes into the Earth. In

such situations, we are really hoping that p—if not zero—will be very small. When we estimate p
it might well be more important to have a sharp upper bound on p rather than have a scientifically
rather uninteresting lower bound on p.

In any event, I will now show you how to use the website

http://statpages.org/confint.html

to obtain the CP one-sided 95% upper confidence bound for p. Scroll down to the Setting Confi-

dence Levels section. Enter 5 in the Upper box and 0 in the Lower box and click on Compute. The

entries in the Upper and Lower boxes—i.e., 5 and 0, respectively—will remain unchanged, but the

entry in the Confidence Level box will become 95. Similarly, if you want the one-sided 90% upper

confidence bound for p, repeat the steps above, but put 10 in the Upper box.

After you have made your entries in the Setting Confidence Levels section, scroll back up to

the top, enter your data and click on compute. You should practice this activity a few times by

making sure you can obtain my answers in Table 12.3.

12.4 Which Should You Use? Approximate or CP?

In this section I will tie-up various loose ends related to confidence interval estimation and even-

tually give you my answer to the question in its title.

The obvious question is:

Given that the probability of obtaining a correct interval when using the CP 95% con-

fidence interval always equals or exceeds 0.95. Given that the approximate method

301

http://statpages.org/confint.html


cannot make this claim, why do people ever use the approximate method?

The CP method is a black box, as discussed in Chapter 3; it gives us answers, but little or

no insight into the answers. In a particular problem, the CP interval we obtain is a function of

three values: n; x or p̂; and the confidence level. We could, literally, vary these values and obtain

hundreds of CP intervals and not see how the answers are related. As I stated in Chapter 7, when

introducing you to fancy math approximations:

Being educated is not about acquiring lots and lots of facts. It is more about seeing

how lots and lots of facts relate to each other or reveal an elegant structure in the

world. Computer simulations are very good at helping us acquire facts, whereas fancy

math helps us see how these facts fit together.

The above sentiment is relevant in this chapter, if we replace computer simulations by CP intervals.

Indeed, the approximate confidence intervals of this chapter are fancy math solutions. Thus, I will

now turn to a discussion of what the approximate confidence intervals reveal.

The approximate confidence intervals are centered at the value of p̂. Another way to say this

is that these intervals are symmetric around p̂. This symmetry is a direct result of the fact that

the approximating curve we use—a Normal curve—is symmetric. By contrast, if you look at the

95% CP intervals for n = 20 that are presented in Table 12.2, you see that they are not symmetric

around p̂ = x/20 except when x = 10, giving p̂ = 0.50. In fact, as x moves away from 10, in

either direction, the CP intervals become more asymmetrical. This is a direct result of the fact that

for p 6= 0.50 the binomial distribution is not symmetric and it becomes more skewed as p moves

farther away from 0.50.

Because the approximate confidence intervals are symmetric around the value p̂, we learn how

they behave by looking at the half-width,

h = z∗
√

p̂q̂

n
. (12.6)

There are three numbers in this formula for h that we can vary: z∗, which is determined by the

choice of confidence level; n; and p̂, remembering that q̂ = 1 − p̂. My first effort is to fix the

confidence level at 95%—i.e. z∗ = 1.96—and see how h varies as a function of n and p̂. We

can—and will—investigate this issue analytically—i.e., by doing algebra—but it is helpful to first

draw a picture, which I have done in Figure 12.2, and which I will now discuss.

There are two curves in this figure; one for n = 1,000 and one for n = 4,000. I will begin by

focusing on either of these curves; i.e., by fixing the value of n and looking at the effect of p̂ on h.
Analytically, I note that p̂ affects h through the term

√

p̂q̂ which I will write as
√

p̂(1− p̂).

Visually, the figure shows me that the curve of h values to the right of 0.50 is the mirror image of

the curve of h values to the left of 0.50; i.e., the curve of h values is symmetric around 0.50. This

fact is obvious analytically because whether we replace p̂ by b, 0 < b < 1 or by (1 − b), the value

of
√

p̂(1− p̂) is the same.

302



Figure 12.2: Plot of the half-width, h in Equation 12.6, versus p̂ for the approximate 95% confi-

dence interval estimate of p for n = 1,000 and n = 4,000.
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The figure does a good job of showing us that the curve of h values is rather flat for p̂ close to

0.50. For example, we have the following values:
√

p̂(1− p̂) 0.458 0.490 0.500 0.490 0.458

p̂ 0.30 0.40 0.50 0.60 0.70

This table—and the figure—indicates that for p̂ between 0.40 and 0.60, the actual value of p̂ will

affect h by at most 2% (0.490 is 2% smaller than 0.500). This fact is very useful for most sample

surveys—there is not much interest in asking questions unless there is a good controversy; i.e.,

unless there is a roughly equal split in the population between the possible responses. Thus, before

performing a survey, for a large n a researcher might be quite sure that p̂ will take on a value be-

tween 0.40 and 0.60; if the surety comes to pass it means that before collecting data the researcher

has a good idea what the half-width—and, hence, the usefulness—of the interval will be.

In science, we are often interested in estimating p’s that are very different from 0.500 and,

hence, we often obtain values for p̂ that are outside the range of 0.400 to 0.600. Thus, the central

flatness of the curve of h values is not as interesting.

Next, let’s look at the effect of n on the half-width.

• For any fixed value of p̂, changing n from 1,000 to 4,000 results in h being halved.

This fact is true for any n, as can be seen analytically. In general, consider two possibilities for n:
m and 4m; i.e., the smaller sample size can be anything and the larger is four times as large. For

n = 4m, we find

h = 1.96

√

p̂q̂

4m
=

1.96

2

√

p̂q̂

m
,
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because when we factor a 4 out of a square root sign we get
√
4 = 2. We can see that this argument

remains true for any fixed value of z∗, not just z∗ = 1.96. I am tempted to say,

If we quadruple the amount of data we collect, the half-width of the approximate

confidence interval is halved.

I cannot literally say this because if I quadruple the amount of data collected, the value of p̂ will

likely change. If, however, I believe that both of my p̂’s will be in the interval [0.400, 0.600], then,
from our earlier work, we know that a change in p̂ will have only a minor affect on h. Thus, the
statement

If we quadruple the amount of data we collect, the half-width of the approximate

confidence interval is halved

will be reasonably accurate.

Finally, let’s look at the effect of changing the confidence level, i.e., changing the value of z∗

in the formula for the half-width. Our guidance for this issue is contained in our table relating

confidence level to z∗, namely Table 12.1 on page 296. First, we see that as the confidence level

increases, z∗ increases and, thus, the half-width h increases. This makes sense: In order to increase

the probability of obtaining a correct confidence interval, we must make the interval wider; i.e.,

a more general statement about p has a better chance of being correct. There is a striking feature

about this relationship that can be overlooked. Namely, if we take the ratio of two h’s; one for 99%
confidence and the other for 80% confidence, we get

2.576/1.282 = 2.01,

because the other terms in h cancel. Thus, in words, the price we pay for increasing confidence

from 80% to 99% is that the half-width increases by a factor of approximately 2. This can be

counteracted—sort of, see above—by quadrupling the sample size.

I want to end this section with a comment about the label Exact that is popularly affixed to

the CP confidence intervals. This label is actually quite misleading. The CP 95% intervals are

usually referred to as the exact 95% confidence intervals for p. Indeed, the title across the top of

the website we use claims that it provides Exact Binomial and Poisson Confidence Intervals.

Based on everything we did in Part I of this book, indeed also based on all that we have done so

far in Part II, exact should mean that the probability that the researcher will obtain a correct

confidence interval is exactly equal to 0.95. What is weird about these being called exact intervals

is that statisticians have a perfectly good technical term to describe the truth about the CP intervals:

We say that the CP 95% intervals are conservative. By conservative I don’t mean that these are

the preferred intervals of Michele Bachman—although they might be, I am not familiar with Ms.

Bachman’s views on Statistics—nor am I trying to conjure up memories of Ronald Reagan. Saying

that the CP 95% intervals are conservative conveys that the target probability is 95% and, no matter

what the value of p, the true probability will be at least 95%. We saw, by example, that even when

an approximate confidence interval performs well, its performance is not necessarily conservative.

For example, if the approximate method gives an actual probability of 94.9% for a particular p,
then in my opinion the approximation is very good, but not conservative. Similarly, if a CP 95%
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interval has true probability of 99% I would not be happy, but it is conservative. I would not be

happy because if the true probability is 99%, the interval must be wider than if we could somehow

make the true probability closer to 95%.

Here is the idea I would like you to remember. We might choose 95% confidence because

everybody else does, but we should remember what it means. When we select 95% confidence, we

are telling the world that we have decided that we are happy with intervals that are incorrect about

one time in every 20 intervals. If, instead, the intervals are incorrect about one time for every 100

intervals, then we are seriously out-of-touch with the actual performance of our conclusions; this

cannot be a good thing!

Finally, the intervals are called exact not because they give exact probabilities (or confidence

levels) but because they use exact binomial probabilities for their derivation.

12.5 A Test of Hypotheses for a Binomial p

.

We immediately have a problem. How do we specify the null hypothesis? Let me explain why

this is a problem. In Part I of these notes we had an obvious choice for the null hypothesis: the

Skeptic is correct. I say that this choice was obvious for two reasons.

1. If a scientist is comparing two treatments by performing a CRD, it is natural to at least

wonder whether the Skeptic is correct.

2. Following the principle of Occam’s Razor, given that we wonder about the Skeptic being

correct, it should be the null hypothesis.

I cannot create a similar argument for a study of a binomial p. Here is what I can do. Suppose

that out of all the possible values of p—i.e., all numbers between 0 and 1 exclusive—there is one

possible value for p for which I have a special interest. I will denote this special value of interest

by the symbol p0. (The reason for a subscript of zero will soon be apparent.)

Let’s be clear about this. The symbol p with no subscript represents the true probability of

success for the Bernoulli trials. It is unknown to the researcher, but known to Nature. By contrast,

p0 is a known number; indeed, it is specified by the researcher as being the singular value of p that
is special. How does a researcher decide on this specialness? Be patient, please.

The null hypothesis specifies that p is equal to the special value of interest; i.e.,

H0 : p = p0.

Our test in this section allows three possibilities for the alternative hypothesis:

H1 : p > p0;H1 : p < p0 or H1 : p 6= p0.

As in Part I of these notes, you could use the Inconceivable Paradigm to select the alternative. Ac-

tually, for the applications in this section, I will take the alternative to be the one-sided alternative

of most interest to the researcher.

If you go back to the beginning of this chapter, the last sentence in the first paragraph reads:
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I will point out that for Bernoulli trials, estimation is inherently much more interesting

than testing.

Now I can say why or point outwhy. If I am a researcher and I don’t know the value of p then I will
always be interested in obtaining a confidence interval estimate of p. I will, however, be interested
in a test of hypotheses only if there exists in my mind a special value of interest for p. In my

experience, it is somewhat unusual for a researcher to have a special value of interest for p.
Let me digress for a moment before I show you the details of the test of hypotheses of this

section. In many ways, the test is almost scientifically useless. Almost, but not quite. Thus, there

is a little bit of value in your knowing it. The value of the test is not sufficient for your valuable

time except that it provides a relatively painless introduction to tests of hypotheses for population-

based inference. You need to see this introduction at some point in these notes, so it might as well

be now.

I will introduce the remainder of the test very mechanically and then end with the only appli-

cations of it that I consider worthwhile.

12.5.1 The Test Statistic, its Sampling Distribution and the P-value

The only random variable we have isX , the total number of successes in the nBernoulli trials; thus,

it is our test statistic. The sampling distribution of X is Bin(n, p0) because if the null hypothesis
is true, then p = p0. The three rules for computing the exact P-value are given in the following

result.

Result 12.2 In the formulas below,X ∼ Bin(n, p0) and x is the actual observed value of X .

1. For the alternative p > p0, the exact P-value equals

P (X ≥ x) (12.7)

2. For the alternative p < p0, the exact P-value equals

P (X ≤ x) (12.8)

3. For the alternative p 6= p0, the exact P-value is a bit tricky.

• If x = np0, then the exact P-value equals one.

• If x > np0, then the exact P-value equals

P (X ≥ x) + P (X ≤ 2np0 − x) (12.9)

• If x < np0, then the exact P-value equals

P (X ≤ x) + P (X ≥ 2np0 − x) (12.10)

The above result is all we need provided n ≤ 1000 and we have access to the website
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http://stattrek.com/Tables/Binomial.aspx.

Another approach is to use the Normal curve approximation, as detailed in the following result.

Result 12.3 Let q0 = 1−p0. Assume that both np0 and nq0 equal or exceed 25. In the rules below,
when I say area to the right [left] of, I am referring to areas under the Normal curve with mean

µ = np0 and standard deviation σ =
√
np0q0. Also, x is the actual observed value of X .

1. For the alternative p > p0, the Normal curve approximate P-value equals the area to the

right of (x− 0.5).

2. For the alternative p < p0, the Normal curve approximate P-value equals the area to the left
of (x+ 0.5).

3. For the alternative p 6= p0, the situation is a bit tricky.

• If x = np0, then the exact P-value equals one.

• If x 6= np0:

– Calculate the area to the right of (x− 0.5); call it b.

– Calculate the area to the left of (x+ 0.5); call it c.

The Normal curve approximate P-value is the minimum of the three numbers: 2b, 2c
and 1.

Let’s now turn to the question: How does a researcher choose the value p0. The textbooks I have
seen claim that there are three possible scenarios for choosing the special value of interest; they

are: history; theory; and contractual or legal. I will consider each of these possibilities in turn.

12.5.2 History as the Source of p0

I won’t be able to hide my contempt; so I won’t even try. History as the source of p0 is almost

always dumb or dangerous. (Indeed, every example I have seen of this type is bad. I am being

generous by allowing for the possibility that there could be a good example.)

The basic idea of the history justification goes as follows. Let’s say that we are interested in a

finite population, for example all 28 year-old men currently living in the United States. For some

reason, we are interested in the proportion of these men, p, who are married. We don’t know what

p equals, but somehow we know the proportion, p0, of 28 year-old men living in the United States

in 1980 who were married! The goal of the research is to compare the current men with the same

age group on 1980. Thus, we would be interested in the null hypothesis that p = p0. I have seen
numerous textbooks that have problems just like this one. I am amazed that an author could type

such a ludicrous scenario! Do you really believe that someone conducted a census of all 28 year-

old men in the United States in 1980? (Note: After typing this it occurred to me that the United

States did conduct a census in 1980. The problem, however, is that the US census suffers from

an undercount—how could it not? The idealized census as used in these notes is perfect in that it

samples every population member.)

307

http://stattrek.com/Tables/Binomial.aspx


My final example of this subsection is one that I have seen in many textbooks. It is not only

dumb, but dangerous. It is dangerous because it promotes a really bad way to do science. A

textbook problem reads as follows. The current treatment for disease B will cure 40% of the

persons to whom it is given. Researchers have a new treatment. The researchers select n =
100 persons at random from the population of those who suffer from disease B and give the new

treatment to each of these persons. Let p denote the proportion of the population that would be

cured with the new treatment. The researcher want to use the data they will collect to test the null

hypothesis that p = 0.40. Think about this problem for a few moments. Do you see anything

wrong with it?

The first thing I note is that it’s a total fantasy to say that we ever know exactly what percentage

of people will be cured with a particular treatment. But suppose you disagree with me; suppose

you think I am way too cynical and feel that while the cure rate for the existing treatment might

not be exactly 40%, pretending that it is 40% seems relatively harmless. Even if you are correct

and I am wrong, this is still a horribly designed study! Why do I say this?

The key is in the statement:

The researchers select n = 100 persons at random from the population of those who

suffer from disease B.

I opine that this statement has never been literally true in any medical study. (Can you explain

why?) It is very possible that the actual method used by the researchers to select subjects for

study resulted in either better than average patients—which would skew the results in the new

treatment’s favor— or worse than average patients—which would skew the results in favor of the

existing treatment. Even if the researchers got lucky and obtained average patients, good luck to

them in trying to convince the scientific community to believe it!

Phrasing the medical situation as a one population problem is bad science. It would be better to

take the 100 subjects—better yet, have 200 subjects—and divide them into two treatment groups

by randomization. Then analyze the data using Fisher’s test from Chapter 8 or a population-based

procedure that will be presented in a later chapter.

12.5.3 Theory as the Source of p0

Zener cards were popular in the early twentieth century for investigating whether a person pos-

sesses extra sensory perception (ESP). Each Zener card had one of five shapes—circle, cross,

waves, square or star—printed on it. There were various protocols for using the Zener cards. The

protocol I will talk about is available on a website:

http://www.e-tarocchi.com/esptest/index.php

I request that you take a break from this fascinating exposition and test yourself for ESP. Click on

the site above. When you arrive at the site click on the Test Me box and take the 25 item exam.

Let’s match the above to the ideas of this chapter and section and focus on a point in time before

you take the ESP exam. You plan to observe 25 dichotomous trials. Each trial will be a success if

you correctly identify the shape chosen by the computer and a failure if you don’t. I will assume
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that your trials are Bernoulli trials and I will denote your probability of success by p. I don’t want
to prejudge your psychic skills; thus, I do not know the value of p, Of all the possible values of

p, however, there is definitely one possibility that is of special interest to me. Can you determine

what it is? (By the way, if you can correctly determine my special value of interest, this is not an

indication of ESP!) My special value of interest is p0 = 1/5 = 0.20 because if you are guessing

then the probability you guess correctly is one-in-five. In other words, my choice of p0 follows

from my theory that you are guessing.

Thus, I select the null hypothesis p = 0.20. Although we could debate the choice of alternative
I will use p > 0.20. From Equation 12.7 in Result 12.2, if you score x correct, the exact P-value is

P (X ≥ x), where X ∼ Bin(25, 0.20).

So, what is your P-value? Well, since I have not figured out how to make these notes interactive, I

cannot respond to your answer. Thus, I will tell you how I did. I scored x = 6 correct responses in
n = 25. I went to the website

http://stattrek.com/Tables/Binomial.aspx.

and found that the exact P-value for my data is:

P (X ≥ 6) = 0.3833.

12.5.4 Contracts or Law as the Source of p0

Company B manufactures tens of thousands of widgets each month. Any particular widget can

either work properly or be defective. Because defectives are rare, we label a defective widget a

success. By contract or by law Company B is required to manufacture no more than 1% defective

widgets.

Suppose we have the ability to examine 500 widgets in order to investigate whether the con-

tract/law is being obeyed. How should we do this? Before we collect data, let’s assume that we

will be observing n = 500 Bernoulli trials with unknown probability of success p. I don’t know
what p equals, but I am particularly interested in the value 0.01, because 0.01 is the threshold be-

tween the manufacturing process being fine and being in violation of the contract/law. I take my

null hypothesis to be p = 0.01, following the philosophy that it seems fair to begin my process

by assuming the company is in compliance with the law/contract. In problems like this one, the

alternative is always taken to be p > p0 because, frankly, there is not much interest in learning that

p < p0—unless we are trying to decide whether to give Company B an award for good corporate

citizenship! Note that my stated goal above was to investigate whether the company is obeying the

law/contract. I don’t want to accuse the company of misbehaving unless I have strong evidence to

that effect.

From Equation 12.7 in Result 12.2, if the sample of 500 widgets yields x defectives, the exact

P-value is

P (X ≥ x), where X ∼ Bin(500, 0.01).

Below are some possibilities for the exact P-value.
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x : 5 6 7 8 9 10
P (X ≥ x) : 0.5603 0.3840 0.2371 0.1323 0.0671 0.0311

I will now tie this example to the idea of a critical region and the concept of power, introduced in

Chapters 8 and 9.

Recall that a critical region is a rule that specifies all values of the test statistic that will lead to

rejecting the null hypothesis. The critical regions (X ≥ 10) is the rule we get if we follow classical

directive to reject the null hypothesis if, and only if, the P-value is 0.05 or smaller. If one uses this

critical region, we see that the probability of making a Type 1 error is:

α = P (Reject H0|H0 is true) = P (X ≥ 10|p = p0 = 0.01) = 0.0311.

Now that we have determine the critical region, we can investigate the power of the test. With

the help of the binomial website, I obtained:

P (X ≥ 10|p = 0.015) = 0.2223;P (X ≥ 10|p = 0.02) = 0.5433;

P (X ≥ 10|p = 0.03) = 0.9330; and P (X ≥ 10|p = 0.04) = 0.9956.

Let me briefly interpret these four powers.

If, in fact, p = 0.015—i.e., a defective rate 50% larger than allowed by law/contract—there

is only about 2 chances in 9 (0.2223) that the test will detect it. If p = 0.02, then the chance of

correctly rejecting the null climbs to a bit more than 54%. If p = 0.03, the probability of detecting
such a large violation of the law/contract is extremely high, 93.30%. Finally, if p = 0.04, it is
almost certain—a 99.56% chance—that the test will detect the violation of the contract/law.

12.6 Summary

A researcher plans to observe n Bernoulli trials and doesn’t know the value of p. The researcher
wants to use the data that will be obtained to infer the value of p. Late in this chapter we explore the
use of a familiar method—a statistical test of hypotheses—as an inference procedure for p. Most

of this chapter, however, is focused on introducing you to a new method of inference, estimation.

As with our earlier work involving probabilities, it is important to distinguish the time before

the data are collected from the time after the data are collected. Before the data are collected,

there is a random variableX , the total number of successes that will be obtained in the n Bernoulli

trials. After the data are collected, the researcher will know the observed value, x, of X .

The notion of a point estimate/estimator is a natural starting point for inference. After the data

are collected, x is used to calculate the value of p̂ = x/n. This single number is called the point

estimate of p; the name is somewhat suggestive: the word point reminds us that we are dealing

with one number and the word estimate is, well, how statisticians refer to this activity. The point

estimate p̂ is called correct if, and only if, p̂ = p.
Having a correct point estimate is a good thing, but because the researcher does not know the

value of p, he/she will not know whether the point estimate is correct. To avoid having this all

become too abstract, it is convenient for me to reintroduce our supernatural friend Nature, first
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introduced in Chapter 8. In this current chapter Nature knows the value of p. Thus, Nature—but

not the researcher—will know whether a particular point estimate is correct.

Let’s travel back in time to before the data are collected. The researcher announces, “After I

collect data I will calculate the point estimate p̂.” In symbols, the researcher is interested in the

random variable P̂ = X/n, which we call the point estimator of p. Note the distinction, the point
estimator is a random variable P̂ that will take on observed value p̂, the point estimate.

Thus, before the data are collected, Nature—but, again, not the researcher—can calculate the

probability that the point estimator will be correct. Taking the role of Nature, we looked at one

specific possibility (n = 200 and p = 0.600) and found that this probability is very small. We could

have looked at many more examples and, except for quite uninteresting situations, the probability

that a point estimator will be correct is very small. (By uninteresting I mean situations for which

n is very small. For example, if n = 2 and p happens to equal exactly 0.5, then there is a 50%

probability that p̂ = p.) The lesson is quite clear: we need something more sophisticated than point

estimation.

Thus, I introduced you to the notion of an interval estimate/estimator. The first type of interval

estimate/estimator—the so-called fixed width interval—is intuitively appealing—but, as you will

see in Practice Problem 1 of this chapter, is unsatisfactory in terms of the probability that it is

correct.

Next, you learned about the approximate 95% confidence interval estimate of p. This interval
is really quite amazing. Before collecting data it can be said that for any value of p, the probability
that the 95% confidence interval that will be obtained is correct is approximately 95%. The lone

flaw—and it is serious—is that for this approximation to be good, both np and nq must equal or

exceed 25. I give an example with n = 100 and p = 0.02—hence, np = 2 is much smaller than

the magic threshold of 25—and show that the probability that the 95% confidence interval will be

correct is only 86.73%.

I introduce you to a misnamed exact method developed by Clopper and Pearson in 1934 with

the property that for all values of p and n the probability that the Clopper and Pearson 95% confi-

dence interval will be correct is 95% or larger.

In this chapter, you learned how to extend both the approximate and exact confidence interval

estimates to levels other than 95%. Also, you learned how to obtain the Clopper and Pearson upper

confidence bound for p, which is very useful if you believe that p is close to zero.
Section 12.4 explores why—when the approximate method performs well—most researchers

prefer it to the Clopper and Pearson conservative intervals. In particular, one can see how the

sample size n, the confidence level and the value of p̂ influence the half-width of the approximate

confidence interval. In contrast, the Clopper and Pearson intervals come from a black box and,

hence, we cannot see useful patterns in their answers.

Finally, Section 12.5 provides a brief—mostly critical—introduction to a test of hypotheses

for the value of p. This problem is not very useful in science, but I want you to be aware of its

existence, if only for intellectual completeness. In addition, this test allows us to compute its power

quite easily, which is a nice feature.
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12.7 Practice Problems

1. Diana plans to observe n = 100 Bernoulli trials. She decides to estimate p with a fixed-

width interval estimate with half width equal to 0.06. Thus, her interval estimate of p will be
[p̂− 0.06, p̂+ 0.06].

Diana wonders, “What is the probability that my interval estimator will be correct?” She

understands that the probability might depend on the value of p. Thus, she decides to use the
website binomial calculator:

http://stattrek.com/Tables/Binomial.aspx.

to find the missing entries in the following table.

Actual value of p: 0.03 0.06 0.20

The event the interval is correct: (0 ≤ X ≤ 9) (0 ≤ X ≤ 12) (14 ≤ X ≤ 26)
P (The interval is correct|p):

Actual value of p: 0.30 0.40 0.50

The event the interval is correct: (24 ≤ X ≤ 36) (34 ≤ X ≤ 46) (44 ≤ X ≤ 56)
P (The interval is correct|p):

Find Diana’s six missing probabilities for her and comment.

2. During his NBA career in regular season games, Michael Jordan attempted 1,778 three point

shots and made a total of 581.

Assume that these shots are the result of observing 1,778 Bernoulli trials.

(a) Calculate the approximate 95% confidence interval for p.

(b) Calculate the exact 95% confidence interval for p.

3. Example 12.1 introduced you to my friend Bert’s data from playing mahjong solitaire online.

In my discussion of these data, I promised that we would revisit them in a Practice Problem.

I am now keeping that promise.

This is a different kind of practice problem because none of the things I ask you to do involve

Chapter 12.

(a) Calculate the mean and standard deviation of the null distribution of R. Explain why

there is no need to specify an alternative or compute a P-value.

(b) I performed a 10,000 rep simulation experiment to obtain an approximate sampling

distribution for V , the length of the longest run of successes given that the total number

of successes equals 29. Recall that for Bert’s data, V = 3. My experiment yielded:

The relative frequency of (V ≥ 3) = 0.8799.

Comment on this result.
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(c) I performed a 10,000 rep simulation experiment to obtain an approximate sampling

distribution for W , the length of the longest run of failures given that the total number

of failures equals 71. Recall that for Bert’s data,W = 14. My experiment yielded:

The relative frequency of (W ≥ 14) = 0.1656.

Bert remarked that he became discouraged while he was experiencing a long run of

failures. (He actually had two runs of failures of length 14 during his 100 games.) It

was his feeling that being discouraged led to him concentrating less and, thus, perhaps,

playing worse. Comment on the simulation result and Bert’s feeling.

(d) We can create the following 2× 2 table from the information given.

Outcome Row Prop.

Half: Win Lose Total Win Lose

First 16 34 50 0.32 0.68

Second 13 37 50 0.26 0.74

Total 29 71 100

This table looks like the tables we studied in Chapter 8. Bert’s data, however, are not

from a CRD; games were not assigned by randomization to a half. The first 50 games

necessarily were assigned to the first half. As you will learn in Chapter 15, there is a

population-based justification for performing Fisher’s test for these data. Thus, use the

Fisher’s test website:

http://www.langsrud.com/fisher.htm

to obtain the three Fisher’s test P-values for these data.

4. During his NBA career, Shaquille O’Neal attempted a total of 22 three-point shots, making

one. Assuming that these shots are 22 observations of Bernoulli trials:

(a) Calculate the 95% two-sided confidence interval for p.

(b) Calculate the 95% one-sided upper confidence bound for p.

5. Manute Bol, at 7 feet, 7 inches, is tied (with Gheorghe Muresan) for being the tallest man to

ever play in the NBA. Not surprisingly, Bol’s specialty was blocking opponents’ shots. He

was, however, a horrible offensive player. So horrible that he hurt his team because the man

guarding him could safely ignore him. In 1988–89, Golden State’s innovative coach, Don

Nelson, decided to make Bol a three-point shot threat. If nothing else, given the NBA’s rules,

a defensive player would need to stand near Bol, who would position himself in a corner of

the court, just beyond the three-point line. During the 1988–89 season, Bol attempted 91

three points shots, making 20 of them.

Assume that his attempts are 91 observations of a sequence of Bernoulli trials. Calculate the

approximate and exact 95% confidence intervals for Bol’s p and comment.
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6. Refer to the investigation of ESP using Zener cards presented in Section 12.5.3. Recall that

this led to the null hypothesis that p = 0.20. I am interested in the alternative p > 0.20.
Suppose that we decide to test Shawn Spencer, famed psychic police consultant in Santa

Barbara, California. (Well, at least in the USA network world.)

We decide that the study of Shawn will involve n = 1,000 trials.

(a) Use the website

http://stattrek.com/Tables/Binomial.aspx.

to obtain the exact P-value if Shawn scores: x = 221 correct; x = 222 correct; x = 240
correct.

(b) What is the value of α for the critical regionX ≥ 222?

(c) Using the critical region in part (b), calculate the power of the test if, indeed, Shawn’s

p equals 0.23.

(d) Explain the practical importance of having p = 0.23 when guessing Zener cards. (Yes,

this is a trick question.)

7. Years ago, I received a gift of two round-cornered dice. Have you ever seen round-cornered

dice? Regular dice have pointy squared-corners. When I cast regular dice they bounce and

then settle. By contrast, round-cornered dice spin a great deal before coming to a rest. I

played with my round-cornered dice a great deal and noticed that both of them seemed to

give way too many 6’s; I did not record any data, but I had a very strong feeling about it.

Thus, with my past experience suggesting that 6 seemed to be special, I decided to perform

a formal study.

I took my white round-cornered die and cast it 1,000 times—call me Mr. Excitement! I

will analyze the data as follows. I will assume that the casts are Bernoulli trials, with the

outcome ‘6’ deemed a success and any other outcome a failure. I will test the null hypothesis

that p = 1/6 versus the alternative that p > 1/6 because, given my past experience, I felt

that p < 1/6 is inconceivable. If you don’t like my alternative, read on please. My 1,000

casts yielded a total of 244 successes. From Equation 12.7, the P-value for the alternative >
is

P (X ≥ 244|n = 1000, p = 1/6) = 2.91× 10−10,

with the help of the website binomial calculator. This is an incredibly small P-value! (Even

if you use the alternative 6= and double this probability, it is still incredibly small.) The null

hypothesis is untenable.

By the way, the approximate 99.73% (nearly certain) confidence interval estimate of p is:

0.244± 3

√

0.244(0.756)

1000
= 0.244± 0.041 = [0.203, 0.285].

The lower bound of this interval is much larger than 1/6 = 0.167.
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8. I want to give you a bit more information about dumb versus smart sampling. The result of

this problem, however, is not important unless you frequently:

• Select a smart random sample with n/N > 0.05.

In other words, if you choose not to read this problem, no worries.

The half-width, h, of the approximate confidence interval estimate of p is

h = z∗
√

p̂q̂

n
.

This formula arises from a dumb random sample—which includes Bernoulli trials as a spe-

cial case—or as an approximation if one has a smart random sample. It turns out that a

simple modification of the half-width will handle the situation in which one has a smart ran-

dom sample and does not want to pretend it is a dumb random sample. In this new situation,

the half-width, denoted by hs (s is for smart) is:

hs = z∗
√

p̂q̂

n

√

N − n

N − 1
= h× fpc,

where I have implicitly defined fpc—which stands for the finite population correction—to

equal
√

N − n

N − 1
.

Note the following features of the fpc:

• If n = 1, then fpc = 1. This makes sense because if n = 1 there is no distinction

between smart and dumb sampling. (Of course, if n = 1, you would not use the

approximate confidence interval formula.)

• For n > 1, fpc < 1; thus, the fpc correction term always leads to a narrower confidence

interval; why not use it all the time? Suppose that N = 10,000 and n = 500, making

n/N = 0.05, our threshold value. In this case, fpc equals

√

9500/9999 = 0.974.

Thus, if you use the fpc, the half-width of the approximate confidence interval will

decrease by 2.6%.

Often times, of course, we don’t know the exact value of N , so the fpc cannot be used.
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12.8 Solutions to Practice Problems

1. The completed table is below.

Actual value of p: 0.03 0.06 0.20

The event the interval is correct: (0 ≤ X ≤ 9) (0 ≤ X ≤ 12) (14 ≤ X ≤ 26)
P (The interval is correct|p): 0.9991 0.9931 0.8973

Actual value of p: 0.30 0.40 0.50

The event the interval is correct: (24 ≤ X ≤ 36) (34 ≤ X ≤ 46) (44 ≤ X ≤ 56)
P (The interval is correct|p): 0.8446 0.8157 0.8066

For example, for p = 0.20,

P (X ≤ 26) = 0.9442 and P (X ≤ 13) = 0.0469,

giving P (14 ≤ X ≤ 26) = 0.9442− 0.0469 = 0.8973.

My comment: The answers in this table are unsatisfactory. Without knowing the value of p,
the probability of a correct interval could be nearly one for p = 0.03 or p = 0.06 or barely

four-in-five, for p = 0.50.

2. (a) We compute p̂ = 581/1,778 = 0.327. Thus, q̂ = 0.673 and the approximate 95%

confidence interval is:

0.327± 1.96

√

0.327(0.673)

1,778
= 0.327± 0.022 = [0.305, 0.349].

(b) The exact website gives [0.305, 0.349], the same answer as the approximate interval.

3. (a) First, from Equation 11.4, we get

c = 2x(n− x) = 2(29)(71) = 4118.

From Equation 11.5, we get

µ = 1 +
c

n
= 1 + (4118/100) = 42.18.

From Equation 11.6, we get

σ =

√

√

√

√

c(c− n)

n2(n− 1)
=

√

√

√

√

4118(4018)

(100)2(99)
= 4.088.

The observed number of runs, 41, is almost equal to µ. The Normal curve approximate

P-value:
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• For > will be larger than 0.5000;

• For < will be quite close to 0.5000 (its actual value: 0.4339); and

• For 6= will be quite close to 1 (its actual value: 0.8678).

Thus, regardless of the choice of alternative, there is only weak evidence in support of

it.

(b) With the huge approximate P-value for the test statistic V , there is little reason to doubt

the assumption of Bernoulli trials.

(c) The approximate P-value for the test statistic W is small, but not convincing. Perhaps

there is some validity to Bert’s conjecture that repeated failures adversely affect his

ability.

(d) After rounding, the P-values are:

• 0.8109 for the alternative <;

• 0.3299 for the alternative >; and

• 0.6598 for the alternative 6=.

There is very little evidence that Bert’s ability changed from the first to the second half

of his study.

4. (a) Using the exact confidence interval website:

http://statpages.org/confint.html

I obtain [0.0012, 0.2284].

(b) I use the above website, but remember that I need to reset the confidence levels. I put

5 in the Upper box and 0 in the Lower box and then click on Compute. I scroll back

up the page and click on Compute. The answer is [0, 0.1981].

5. For the approximate confidence interval, I first compute p̂ = 20/91 = 0.220, which gives

q̂ = 0.780. The interval is

0.220± 1.96

√

0.22(0.78)

91
= 0.220± 0.085 = [0.135, 0.305].

For the exact confidence interval, the website gives me [0.140, 0.319]. The exact interval is
a bit wider and is shifted to the right of the approximate interval. The approximate interval

seems to be pretty good—because it is similar to the exact—even though x = 21 falls far

short of my guideline of 35.

6. (a) At the website, we enter p0 = 0.20 as the Probability of success on a single trial

because we want to compute probabilities on the assumption the null hypothesis is

correct. I enter 1,000 for the Number of trials. I then enter the various x’s values in
the question and obtain the following results:

P (X ≥ 221) = 0.0539;P (X ≥ 222) = 0.0459; and P (X ≥ 240) = 0.0011.
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(b) Recall that

α = P (RejectingH0|H0 is correct);

for the critical rule I have given you, this probability is

P (X ≥ 222|p = 0.20) = 0.0459 from part (a).

We can also see from part (a) that if one’s goal is to have α = 0.05, then this goal

cannot be met, but α = 0.0459 is the Price is Right value of α: it comes closest to the

target without exceeding it.

(c) I first note that the p = 0.23 I ask you to consider is, indeed, part of the alternative

hypothesis, p > 0.20. Thus,

P (X ≥ 222|p = 0.23) = 0.7372, roughly, 3 out of 4

actually is an example of power. The power business is different from the confidence

interval business; a power of 75% is considered to be quite respectable.

(d) I know of no career in which one gets paid for predicting Zener cards. (Notify me

if you know of one.) If Zener-card-based ESP can transfer to gambling or the stock

market—a big if—then a person with p = 0.23 might be able to make a living.
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12.9 Homework Problems

1. In the 1984 Wisconsin Driver Survey, subjects were asked the question:

For statistical purposes, would you tell us how often, if at all, you drink alcoholic

beverages?

Each subject was required to choose one of the following categories as the response:

• Several times a week;

• Several times a month;

• Less often; and

• Not at all.

Of the n = 2,466 respondents, 330 selected Several times a week. If we make the WTP

assumption (Definition 10.3) then we may view these data as the result of selecting a random

sample from the population of all licensed drivers in Wisconsin. Because n is a very small

fraction of N (which, as I opined earlier in these notes, must have been at least one million),

we may view these data as the observations from 2,466 Bernoulli trials in which the response

Several times a week is deemed a success.

(a) Use these data to obtain the approximate 95% confidence interval estimate of p.

(b) In your opinion what proportion of people would answer this question accurately? (I

say accurately instead of honestly because a person’s self-perception might not be ac-

curate.) Do you think that giving an accurate answer is related to the response; e.g.,

are true non-drinkers more or less accurate than those who truly drink several times per

week?

(c) In addition to the 2,466 persons who responded to this question, 166 persons chose

not to respond. Does this extra information change your interpretation of your answer

in part (a)? In other words, do you think that the failure to respond is related to the

self-perceived frequency of drinking?

2. Don observes n1 Bernoulli trials. Later, Tom observes n2 trials from the same process that

Don observed. In other words, Don and Tom are interested in the same p, they have different
sets of data and their data sets are independent of each other.

Don uses his data to construct the approximate 90% confidence interval for p. Tom uses his

data to construct both the approximate 95% and approximate 98% confidence intervals for p.
The three confidence intervals are:

[0.349, 0.451], [0.363, 0.477] and [0.357, 0.443].

(a) Match each interval to its researcher—Don or Tom—and its confidence level.

(b) Calculate Don’s 99% confidence interval for p.
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(c) This part is tricky. Find the 95% confidence interval for p for Don’s and Tom’s com-

bined data. Hint: First, determine the values of n1 and n2. There will be round-off

error; thus, you may use the fact that the 1’s digit for both n’s is 0.

3. Recall that my friend Bert enjoys playing mahjong solitaire online, as described in Exam-

ple 12.1. Bert also plays a second version of mahjong solitaire online, which is much more

difficult than the version explored in Example 12.1. For this second version, Bert played 250

games and achieved only 34 victories.

Assuming that Bert’s data are 250 observations of a sequence of Bernoulli trials, calculate

the exact and approximate 98% confidence interval for p.

Here is a side note for those of you who are fascinated with Bernoulli trials or mahjong soli-

taire online or the lengths of longest runs. For the first version Bert played, the length of his

longest run of failures—while not convincing—was a bit long for Bernoulli trials. For this

second version, the length of Bert’s longest run of failures was w = 25, which—according

to him—was very frustrating. I performed a 10,000 rep simulation study to investigate this

issue and found that 5,799 of my simulated arrangements yielded a value of W that was

greater than or equal to 25. Thus, Bert’s observed value of W does little to diminish my

belief in Bernoulli trials.

With such a small proportion of successes, looking at either the runs test or the value of

V is not likely to be fruitful. In particular, Bert’s observed value of V was 3. In a 10,000

rep simulation study, 4,227 arrangements yielded V ≥ 3; thus, V = 3 is not remarkable.

Finally, Bert’s data had 59 runs, which is almost equal to the mean number of runs under the

assumption of Bernoulli trials, 59.752.

4. Refer to Practice Problem number 6, a study of Shawn Spencer’s power of ESP. I decided to

test his partner, Burton ‘Gus’ Guster too. There was time to test Gus with only 500 cards.

Again, I will assume Bernoulli trials. The null hypothesis is p = 0.20 and the alternative is

p > 0.20.

(a) Use the website

http://stattrek.com/Tables/Binomial.aspx.

to obtain the exact P-value if Gus scores: x = 115 correct; x = 116 correct; x = 125
correct.

(b) What is the value of α for the critical regionX ≥ 116?

(c) Using the critical region in part (b), calculate the power of the test if, indeed, Gus’s p
equals 0.23.

(d) Compare your answer to part (c) to the power for the study of Shawn. Comment.
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Chapter 13

The Poisson Distribution

Jeanne Antoinette Poisson (1721–1764), Marquise de Pompadour, was a member of the French

court and was the official chief mistress of Louis XV from 1745 until her death. The pompadour

hairstyle was named for her. In addition, poisson is French for fish. The Poisson distribution,

however, is named for Simeon-Denis Poisson (1781–1840), a French mathematician, geometer

and physicist.

13.1 Specification of the Poisson Distribution

In this chapter we will study a family of probability distributions for a countably infinite sample

space, each member of which is called a Poisson distribution. Recall that a binomial distribution

is characterized by the values of two parameters: n and p. A Poisson distribution is simpler in that

it has only one parameter, which we denote by θ, pronounced theta. (Many books and websites

use λ, pronounced lambda, instead of θ. We save λ for a related purpose.) The parameter θ must

be positive: θ > 0. Below is the formula for computing probabilities for the Poisson.

P (X = x) =
e−θθx

x!
, for x = 0, 1, 2, 3, . . . . (13.1)

In this equation, e is the famous number from calculus,

e = lim
n→∞

(1 + 1/n)n = 2.71828 . . . .

You might recall, from the study of infinite series in calculus, that

∞
∑

x=0

bx/x! = eb,

for any real number b. Thus,

∞
∑

x=0

P (X = x) = e−θ
∞
∑

x=0

θx/x! = e−θeθ = 1.
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Table 13.1: A comparison of three probability distributions.

Distribution of X is:

Poisson(1) Bin(1000, 0.001) Bin(500, 0.002)
Mean : 1 1 1

Variance : 1 0.999 0.998
x P (X = x) P (X = x) P (X = x)
0 0.3679 0.3677 0.3675
1 0.3679 0.3681 0.3682
2 0.1839 0.1840 0.1841
3 0.0613 0.0613 0.0613
4 0.0153 0.0153 0.0153
5 0.0031 0.0030 0.0030
6 0.0005 0.0005 0.0005

≥ 7 0.0001 0.0001 0.0001
Total 1.0000 1.0000 1.0000

Thus, we see that Formula 13.1 is a mathematically valid way to assign probabilities to the non-

negative integers; i.e., all probabilities are nonnegative—indeed, they are positive—and they sum

to one.

The mean of the Poisson is its parameter θ; i.e., µ = θ. This can be proven using calculus and a
similar argument shows that the variance of a Poisson is also equal to θ; i.e., σ2 = θ and σ =

√
θ.

When I writeX ∼ Poisson(θ) I mean that X is a random variable with its probability distribu-

tion given by the Poisson distribution with parameter value θ.
I ask you for patience. I am going to delay my explanation of why the Poisson distribution is

important in science.

As we will see, the Poisson distribution is closely tied to the binomial. For example, let’s spend

a few minutes looking at the three probability distributions presented in Table 13.1.

There is a wealth of useful information in this table. In particular,

1. If you were distressed that a Poisson random variable has an infinite number of possible

values—namely, every nonnegative integer—agonize no longer! We see from the table that

for θ = 1, 99.99% of the Poisson probability is assigned to the event (X ≤ 6).

2. If you read down the three columns of probabilities, you will see that the entries are nearly

identical. Certainly, any one column of probabilities provides good approximations to the

entries in any other column. Thus, in some situations, a Poisson distribution can be used as

an approximation to a binomial distribution.

3. What do we need for the Poisson to be a good approximation to a binomial? First, we need

to have the means of the distributions match; i.e., we need to use the Poisson with θ = np,
as I did in Table 13.1. The variance of a binomial npq is necessarily smaller than the mean
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np because q < 1. Thus, the variance of a binomial cannot be made to match the variance of

the Poisson:

Variance of binomial = npq < np = θ = variance of Poisson.

If, however, p is very close to 0, then q is very close to one and the variances almost match

as illustrated in Table 13.1.

I will summarize the above observations in the following result.

Result 13.1 (The Poisson approximation to the binomial.) The Bin(n, p) distribution can be well-
approximated by the Poisson(θ) distribution if the following conditions are met:

1. The distributions have the same mean; i.e., θ = np;

2. The value of n is large and p is close to zero. In particular, the variance of the binomial npq
should be very close to the variance of the Poisson, θ = np.

As a practical matter, we mostly use this result if n > 1,000 because we can easily obtain exact

binomial probabilities from a website for n ≤ 1,000. Also, if np ≥ 25, our general guideline from
Chapter 11 states that we may use a Normal curve to obtain a good approximation to the binomial.

Thus, again as a practical matter, we mostly use this result if θ = np ≤ 25, allowing us some

indecision as to which approximation to use at np = 25, Normal or Poisson.

Poisson probabilities can be computed by hand with a scientific calculator. Alternatively, the

following website can be used:

http://stattrek.com/Tables/Poisson.aspx.

I will give an example to illustrate the use of this site.

Let X ∼ Poisson(θ). The website calculates five probabilities for you:

P (X = x);P (X < x);P (X ≤ x);P (X > x); and P (X ≥ x).

You must give as input your value of θ and a value of x. Suppose that I haveX ∼ Poisson(10) and

I am interested in P (X = 8). I go to the site and enter 8 in the box Poisson random variable, and I

enter 10 in the box Average rate of success. I click on the Calculate box and the site gives me the

following answers:

P (X = 8) = 0.1126;P (X < 8) = 0.2202;P (X ≤ 8) = 0.3328;P (X > 8) = 0.6672;

and P (X ≥ 8) = 0.7798.

As with our binomial calculator, there is a great deal of redundancy in these five answers.
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13.1.1 The Normal Approximation to the Poisson

Please look at the Poisson(1) probabilities in Table 13.1. We see that P (X = 0) = P (X = 1)
and as x increases beyond 1, P (X = x) decreases. Thus, without actually drawing the probability
histogram of the Poisson(1) we know that it is strongly skewed to the right; indeed, it has no left

tail! For θ < 1 the probability histogram is even more skewed than it is for our tabled θ = 1. As
the value of θ increases the amount of skewness in the probability histogram decreases, but the

Poisson is never perfectly symmetric.

In this course, I advocate the general guideline that if θ ≥ 25, then the Poisson’s probability

histogram is approximately symmetric and bell-shaped. (One can quibble about my choice of 25

and I wouldn’t argue about it much.) This last statement suggests that we might use a Normal

curve to compute approximate probabilities for the Poisson, provided θ is large.
For example, suppose that X ∼ Poisson(25) and I want to calculate P (X ≥ 30). We will use

a modification of the method we learned for the binomial.

First, we note that µ = 25 and σ =
√
25 = 5. Thus, our approximating curve will be the Nor-

mal curve with these values for its mean and standard deviation. Using the continuity correction,

we replace P (X ≥ 30) with P (X ≥ 29.5). Next, going to the Normal curve website, we find

that the area above (to the right of) 29.5 is 0.1841. From the Poisson website, I find that the exact

probability is 0.1821.

13.2 Inference for a Poisson distribution

If θ is unknown then its point estimator is X , with point estimate equal to x, the observed value

of X . We have two options for obtaining a confidence interval estimate of θ: an approximate

interval based on using a Normal curve approximation and an exact (conservative) confidence

interval using the Poisson equivalent of the work of Clopper and Pearson.

It is possible to perform a test of hypotheses on the value of θ. The test is not widely useful in

science; thus, I won’t present it.

13.2.1 Approximate Confidence Interval for θ

I will very briefly sketch the rational behind the Normal curve approximation. The main ideas are

pretty much exactly the ideas we had for the binomial in Chapter 12. We standardize our point

estimatorX to obtain

Z =
X − θ√

θ
.

Next, we replace the unknown parameter in the denominator by its point estimator, yielding

Z ′ =
X − θ√

X
.

Slutsky’s theorem applies; for θ sufficiently large, probabilities for Z ′ can be well-approximated

by using the N(0,1) curve. With the same algebra we used in Chapter 12, we obtain the following
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approximate confidence interval estimate of θ:

x± z∗
√
x, (13.2)

where the value of z∗ is determined by the choice of confidence level in exactly the same way as it

was for the binomial. Thus, you can find the z∗ you need in Table 12.1 on page 296.

I have investigated the performance of Formula 13.2 and I have concluded that the approxima-

tion is good for any θ ≥ 40; i.e., for any θ ≥ 40 the actual probability that this formula will give

a correct confidence interval is close to the target reflected by the choice of z∗. As always, one

can quibble with my choice of 40 as the magic threshold. It is larger than my choice, 25, for using

a Normal curve to approximate Poisson probabilities in part because the confidence interval also

relies on Slutsky’s approximation.

In practice, of course, we estimate θ because we don’t know its value. Thus, if you are con-

cerned with having a guideline based on the value of θ, an alternative guideline is to use the

approximate confidence interval if x ≥ 50.

13.2.2 The ‘Exact’ (Conservative) Confidence Interval for θ

Suppose that we plan to observe a random variable X and we are willing to assume that X ∼
Poisson(θ). We want to use the observed value of X to obtain a confidence interval for θ, but the
condition for using the approximate method of the previous subsection is not met. For example,

suppose that we observe X = 10; what should we do?
In Chapter 12, when you learned how to use the website:

http://statpages.org/confint.html

you probably noticed that the website also can be used for Poisson distribution. Click on this

website now and scroll down to the section Poisson Confidence Intervals. You will see that there

is one box for data entry, called Observed Events; this is where you place the observed value

of X . Note that the default value is 10, which, coincidentally, is the value I asked you to use!

Click on the Compute box and the site gives you the exact—which, as in Chapter 12, really means

conservative—two-sided 95% confidence interval for θ:

[4.7954, 18.3904].

If, instead, you want the two-sided 98% confidence interval for θ, then you proceed exactly as you
did in Chapter 12. Scroll down to Setting Confidence Levels, type 98 in Confidence Level and

click on Compute. Scroll back up to Poisson Confidence Intervals and make sure that 10 is still

in the Observed Events box. Click on the Compute box and the site gives the answer:

[4.1302, 20.1447].

Suppose that I want the one-sided 90% upper confidence bound for θ, still with x = 10. Scroll
down to Setting Confidence Levels, enter 10 in the Upper Tail, enter 0 in the Lower Tail and
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click on Compute. Scroll back up to Poisson Confidence Intervals and make sure that 10 is still

in the Observed Events box. Click on the Compute box and the site gives the answer:

[0.4749, 15.4066].

This answer is a bit strange; the lower bound in the interval should be 0, but it’s not. I played

around with this website a bit and here is what I learned. If x ≤ 2 then the site gives 0 as the

(correct) lower bound for the one-sided interval. If, however, x ≥ 3, it gives a positive lower

bound, which seems to be incorrect. This is not incorrect for two reasons:

1. We are free to replace the non-zero lower bound with 0 if we want; by making the interval

wider, the probability of a correct interval becomes a bit larger.

2. Without examining either the programmer’s code or performing a huge analysis—which I

have neither the time nor interest to do—I can’t be sure, but I believe that having a non-zero

lower bound is part of the conservative nature of the site’s intervals. Here is what I mean.

If θ actually equaled the lower bound I have above for x = 10, which is 0.4749, then the

probability of 10 or more successes is 10−10 (you can find this on our website for computing

Poisson probabilities). Thus, if x = 10, values of θ smaller than 0.4749 are pretty much

impossible anyways.

The next example shows why this material provides insight into some of our work in Chapter 12.

Example 13.1 (Don K. and high hopes) Don K. was a teammate on my high school basketball

team. Don wasn’t very tall, but he was very quick and had a very strong throwing arm. He started

his senior year as first or second player off the bench, but as the year progressed his playing time

diminished. A highlight of his year was when he sank a half-court shot at the end of a quarter in

a blow-out 93-40 victory. After his amazing shot, Don would spend most of his practice free time

attempting very long shots. I don’t remember him making many such shots, but everyone on the

team noted how our coach, Mr. Pasternak— whom we affectionately dubbed Boris either because

of his resemblance to the actor Boris Karloff or because Doctor Zhivago was the movie of 1965—

was doing a slow boil from frustration. Finally, one day at practice, Coach could contain himself

no longer and berated Don at length for not practicing a more useful basketball skill. Eight minutes

later during a scrimmage as the time clock was running down to zero, Don grabbed a defensive

rebound, pivoted and threw the ball 70 (?) feet, resulting in a perfect basket—swish through the

net. Don ran around the court yelling, “See, Boris, I have been practicing a useful shot,” while the

rest of us collapsed in laughter.

Perhaps because of my friend Don’s experience, I have always been interested in situations in

which successes are rare. Thus, let’s look at some examples. I used the site

http://statpages.org/confint.html

to obtain the exact (conservative) 95% upper bound for p in each of the situations below.

• A total of x = 0 successes are obtained in n = 10 Bernoulli trials; the exact (conservative)

95% upper bound for p is: p ≤ 0.2589.
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• A total of x = 0 successes are obtained in n = 100 Bernoulli trials; the exact (conservative)
95% upper bound for p is: p ≤ 0.0295.

• A total of x = 0 successes are obtained in n = 1,000 Bernoulli trials; the exact (conservative)

95% upper bound for p is: p ≤ 0.0030.

As I have mentioned a number of times in these notes, the weakness of exact answers is that they

are a black box; we can’t see a pattern in the answers. There is a pattern in the above answers, as

I will now demonstrate. (Indeed, you might see the pattern above, but you won’t know why until

you read on.)

Let’s suppose now that our random variableX has a Poisson distribution and we observe x = 0.
Using the same website, I can obtain an upper 95% confidence bound for θ; it is θ ≤ 2.9957,
which, when I am feeling especially daring, I round to θ ≤ 3.000. Now we are going to use the

fact that, under certain conditions, we can use the Poisson to approximate the binomial. Ignoring

the conditions for a moment, recall that the key part of the approximation is to set θ for the Poisson
equal to np from the binomial. Thus—and this is the key point—an exact confidence interval

for θ is an approximate confidence interval for np. Thus, the upper bound θ ≤ 3.000 becomes

np ≤ 3.000 which becomes the following result.

Result 13.2 (Approximate 95% Confidence Upper Bound for p When x = 0.) If n ≥ 100,

p ≤ 3/n, (13.3)

is a good approximation to the exact 95% confidence upper bound for p when x = 0. This result is
sometimes referred to as the rule of 3.

13.3 The Poisson Process

The binomial distribution is appropriate for counting successes in n i.i.d. trials. For p small and n
large, the binomial can be well approximated by the Poisson. Thus, it is not too surprising to learn

that the Poisson distribution is also a model for counting successes.

Consider a process evolving in time in which at random times successes occur. What does this

possibly mean? Perhaps the following picture will help.

0 1 2 3 4 5 6
O O O O O O O O

In this picture, observation begins at time t = 0 and the passage of time is denoted by moving

to the right on the number line. At various times successes will occur, with each success denoted

by the letter ‘O’ placed on the number line. Here are some examples of such processes.

1. A ‘target’ is placed near radioactive material and whenever a radioactive particle hits the

target we have a success.
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2. A road intersection is observed. A success is the occurrence of an accident.

3. A hockey (or soccer) game is watched. A success occurs whenever a goal is scored.

4. On a remote stretch of highway, a success occurs when a vehicle passes.

The idea is that the times of occurrences of successes cannot be predicted with certainty. We

would like, however, to be able to calculate probabilities. To do this, we need a mathematical

model, much like our mathematical model for Bernoulli trials.

Our model is called the Poisson Process. A careful mathematical presentation and derivation

is beyond the goals of this course. Here are the basic ideas:

1. Independence: The number of successes in disjoint intervals are independent of each other.

For example, in a Poisson Process, the number of successes in the interval [0, 3] is indepen-
dent of the number of successes in the interval [5, 6].

2. Identically distributed: The probability distribution of the number of successes counted in

any time interval depends only on the length of the interval.

For example, the probability of getting exactly five successes is the same for interval [0, 2.5]
as it is for interval [3.5, 6.0].

3. Successes cannot be simultaneous. (This assumption is needed for technical reasons that we

won’t discuss.)

With these assumptions, it turns out that the probability distribution of the number of successes

in any interval of time is the Poisson distribution with parameter θ, where θ = λ×w, where w > 0
is the length of the interval and λ > 0 is a feature of the process, often called its rate.

I have presented the Poisson Process as occurring in one dimension—time. It also can be

applied if the one dimension is, say, distance. For example, a researcher could be walking along a

path and occasionally finds successes. Also, the Poisson Process can be extended to two or three

dimensions. For example, in two dimensions a researcher could be searching a field for a certain

plant or animal that is deemed a success. In three dimensions a researcher could be searching a

volume of air, water or dirt looking for something of interest.

The modification needed for two or three dimensions is quite simple: the Poisson Process still

has a rate, again called λ, and now the number of successes in an area or volume has a Poisson

distribution with θ equal to the rate multiplied by the area or volume, whichever is appropriate.

Also, of course, to be a Poisson Process in two or three dimensions requires the assumptions of

independence and identically distributed to be met.

13.4 Independent Poisson Random Variables

Earlier we learned that ifX1, X2, . . . , Xn are i.i.d. dichotomous outcomes (success or failure), then

we can calculate probabilities for the sum of these guys X:

X = X1 +X2 + . . . Xn.
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Probabilities forX are given by the binomial distribution. There is a similar result for the Poisson,

but the conditions are actually weaker. The interested reader can think about how the following

result is implied by the Poisson Process.

Result 13.3 (The sum of independent Poisson random variables.) Suppose that for i = 1, 2, 3, . . . , n,
the random variable Xi ∼ Poisson(θi) and that the sequence of Xi’s are independent. Define

θ+ =
∑n

i=1 θi. Then X ∼ Poisson(θ+).

Because of this result we will often (as I have done above), but not always, pretend that we have

one Poisson random variable, even if, in reality, we have a sum of independent Poisson random

variables. I will illustrate what I mean with an estimation example.

Suppose that Cathy observes 10 i.i.d. Poisson random variables, each with parameter θ. She

summarizes the ten values she obtains by computing their total, X , remembering that X ∼
Poisson(10θ). Cathy can then calculate a confidence interval for 10θ and convert it to a confi-

dence interval for θ.
For example, suppose that Cathy observes a total of 92 when she sums her 10 values. Because

92 is sufficiently large (it exceeds 50), I will use the formula for the approximate two-sided 95%

confidence interval for 10θ. It is:

92± 1.96
√
92 = 92± 18.800 = [73.200, 110.800].

The interpretation of this interval is, of course:

73.200 ≤ 10θ ≤ 110.800.

If we divide through by 10, we get

7.3200 ≤ θ ≤ 11.0800.

Thus, the two-sided approximate 95% confidence interval for θ is [7.320, 11.080]. By the way,

the exact confidence interval for 10θ is [74.165, 112.83]. This is typically what happens; the exact
confidence interval for a Poisson is shifted to the right of the approximate confidence interval

because the Poisson distribution is skewed to the right.

13.4.1 A Comment on the Assumption of a Poisson Process

Recall my four examples of possible Poisson Processes given on page 327. My first example,

radioactive decay, was, by far, the most popular example in textbooks on probability theory, circa

1970, when I was an undergraduate student. Literally, radioactive decay involves a source of ra-

dioactivematerial comprised of a huge number of atoms, each of which has a very small probability

of decaying in a short time period. Because atoms don’t talk to each other, “Hey, Adam, I am about

to decay, will you join me?” it seems extremely reasonable to believe we have a huge number of

Bernoulli trials with a very small value of p. Hence, assuming a Poisson Process is simply restat-

ing the idea that the Poisson distribution approximates the binomial. All models have an implicit
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expiration date; for example, if I am still shooting free throws at age 80, I definitely won’t have the

same p I had at age 17. For radioactive decay, if the length of observation approaches the half-life

of the element then the rate will definitely decrease because—by definition—half the atoms have

decayed at the half life. For example, uranium-232 has a half-life of 69 years and carbon-14, which

is used to date fossils, has a half-life of 5,730 years.

I hope that you will agree that radioactive decay is a pretty solid example of a Poisson Process.

My second and fourth examples—both involving traffic—appear, however, to be on shaky ground.

Let’s examine the fourth example, in which a success is the passage of a car on a remote stretch

of highway. When I think of a remote highway, it is hard for me to imagine that the rate of traffic

at, say, 3:00 AM is the same as it is at 3:00 PM. Thus, you might think that the assumption of a

Poisson Process is reasonable only for a very limited period of time, say, 9:00 AM to 4:00 PM. You

would be correct, except for what I am now going to tell you, which is the point of this subsection.

I want to make this argument very concrete. To that end, suppose that I am Nature and I know

that the rate is as given in the following picture.

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
0

3

6
Rate per hour

1

4

6
5

3

Let’s make sure that this picture is clear. From 12:00 AM (midnight) to 6:00 AM a car passing the

spot follows a Poisson Process with an average of one car per hour. From 6:00 AM to 9:00 AM

the rate of the Poisson Process quadruples to four cars per hour; and so on.

If we watch the road continuously, then we do not have a Poisson Process over the 24 hours of

a day because the rate is not constant. If I look at the process for certain limited periods of time,

then I will have a Poisson Process; for example, if I observe the process over the six hour time

period of 9:00 AM to 3:00 PM, I am observing a Poisson Process with rate equal to six cars per

hour.

Now let’s imagine, however, that we do not observe the process continuously at all. Instead,

every day at the same time, say midnight, we are told how many cars passed the spot in the day

just completed. Call this observed count x with corresponding random variable X . I will now

demonstrate that X has a Poisson distribution.

We can writeX as the sum of five random variables:

X = X1 +X2 +X3 +X4 +X5,

where

• X1 is the number of cars that pass the spot between midnight and 6:00 AM.

• X2 is the number of cars that pass the spot between 6:00 AM and 9:00 AM.
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Table 13.2: The number of homicides, by year, in Baltimore, Maryland.

Year: 2003 2004 2005 2006 2007

Number of homicide deaths: 270 276 269 276 282

• And so on, for X3, X4 X5, throughout the day.

From the above picture, being Nature I know that:

• X1 ∼ Poisson(6 × 1 = 6); X2 ∼ Poisson(4 × 3 = 12); X3 ∼ Poisson(6 × 6 = 36); X4 ∼
Poisson(5× 3 = 15); and X5 ∼ Poisson(3× 6 = 18).

• Also, the random variablesX1, X2 . . .X5 are statistically independent.

• From Result 13.3, we know that X has a Poisson distribution with parameter

θ+ = 6 + 12 + 36 + 15 + 18 = 87.

I might even abuse language a bit and say that the number of cars passing the spot is a Poisson

Process with a rate of 87 cars per day. I shouldn’t say this of course, but sometimes we get a bit

lazy in probability and statistics!

Of course, I am not Nature, so I would never know the exact rate. The following example with

real data is illustrative of the above method.

Example 13.2 (Homicides in Baltimore.) I recently discovered data on homicides, by year, in

Baltimore, Maryland. The data are presented in Table 13.2.

I am going to assume that the number of homicides per year is a Poisson Process with unknown

rate of λ homicides per year. I will revisit this example in Chapter 14. With my assumption, I have

observed the process for five units of time—five years—and counted a total of

270 + 276 + 269 + 276 + 282 = 1,373 successes.

(Remember that whatever we are counting, no matter how tragic it might be, is called a success.

Hence, a homicide death is a success.) We view 1,373 as the observed value of a random variable

X with Poisson(θ) distribution. Because my observed value of X is much larger than 50, I feel

comfortable using the approximate confidence interval for θ, given in Formula 13.2. For 95%

confidence, we get

1373± 1.96
√
1373 = 1373± 72.6 = [1300.4, 1445.6].

Because the process was observed for five time units, we have θ = 5λ. Thus, the above confidence
interval for θ becomes

1300.4 ≤ 5λ ≤ 1445.6;
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after dividing through by 5, we get

260.08 ≤ λ ≤ 289.12.

Thus, [260.08, 289.12] is my approximate 95% confidence interval for the rate of homicides per

year in Baltimore during the years 2003–2007.

13.5 Summary

The Poisson is a probability distribution—see Equation 13.1—concentrated on the nonnegative

integers. The Poisson distribution has a single parameter, θ, which can be any positive number.

The mean and variance of a Poisson distribution both equal θ and the standard deviation equals
√
θ.

Poisson probabilities can be calculated with the help of the website:

http://stattrek.com/Tables/Poisson.aspx.

If θ ≥ 25, then the Normal curve with µ = θ and σ =
√
θ will give good approximations to the

Poisson(θ) distribution.
The first use for the Poisson distribution is as an approximation to the binomial distribution. In

particular, suppose we have a Bin(n, p) distribution, with n large, p small and npq approximately

equal to np; i.e., q is very close to one. If we set θ = np, then the Poisson distribution is a good

approximation to the Binomial distribution.

If X ∼ Poisson(θ), then X is the point estimator of θ. The standardized version of the point

estimatorX is

Z =
X − θ√

θ
.

As implied above, if θ ≥ 25, then the N(0,1) curve provides good approximate probabilities for Z.
Combining the above with Slutsky’s theorem, we obtain the following approximate confidence

interval for θ:
x± z∗

√
x,

where the value of z∗ depends on the choice of confidence level and is given in Table 12.1 on

page 296. My advice is that this interval performs as advertised provided x ≥ 50. For smaller

values of x, see the next paragraph.
There is an exact—actually conservative—confidence interval for θ, available on the website:

http://statpages.org/confint.html

The Poisson distribution also arises from a mathematical model for successes occurring ran-

domly in time. In particular, the first two of the three assumptions of a Poisson Process are similar

to the assumptions of Bernoulli trials. If we have a Poisson Process then the number of successes

in any time interval of length w has a Poisson distribution with parameter θ = wλ, where λ > 0
is a parameter of the process, called its rate. (If w = 1, then θ = λ. Thus, the mean number of

successes in one unit of time is λ; hence, the name rate.)
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When I talk about a Poisson Process in general, I will speak of it evolving in time. It could,

alternatively, evolve in distance. Moreover, a Poisson Process can be used for counting successes

in two or three dimensions.

The Poisson distribution has the following very useful property. If the random variablesX1,X2,

. . . ,Xn, are independent withXi ∼ Poisson(θi)—i.e., theXi’s need not be identically distributed—

then the new random variable

X = X1 +X2 + . . .Xn =
∑

Xi,

has a Poisson distribution with parameter

θ+ = θ1 + θ2 + . . . θn =
∑

θi.

In words, the sum of independent Poisson random variables has a Poisson distribution; and the

parameter for the sum is the sum of the parameters. This property of Poisson distributions can be

very useful; I illustrate its use with data on the annual number of homicide deaths in Baltimore,

Maryland.

13.6 Practice Problems

1. Suppose that X ∼ Poisson(20). Use the website

http://stattrek.com/Tables/Poisson.aspx

to calculate the following probabilities.

(a) P (X = 20).

(b) P (X ≤ 20).

(c) P (X > 20).

(d) P (16 ≤ X ≤ 24).

2. Suppose that X ∼ Bin(2000,0.003). I want to know P (X ≤ 4). Help me by calculating an

approximate probability for this event.

3. Wayne Gretzky is perhaps the greatest hockey player ever. We have the following data from

his NHL (National Hockey League) career.

• During the 1981–82 season he played 80 games and scored 92 goals.

• During the 1982–83 season he played 80 games and scored 71 goals.

• During the 1983–84 season he played 74 games and scored 87 goals.

Assume that Gretzky’s goal scoring followed a Poisson Process with a rate of λ goals per

game. Use the three seasons of data given above to obtain an approximate 98% confidence

interval for λ.

4. LetX ∼ Poisson(θ). GivenX = 1, find the exact 95% upper confidence bound for θ. Apply
your finding to create the rule of 4.75 when X = 1.
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13.7 Solutions to Practice Problems

1. For parts (a)–(c), go to the website and enter 20 for both x and the Average rate of success.

You will obtain:

(a) P (X = 20) = 0.0888.

(b) P (X ≤ 20) = 0.5591.

(c) P (X > 20) = 0.4409.

(d) There are several ways to get the answer. I suggest:

P (16 ≤ X ≤ 24) = P (X ≤ 24)− P (X ≤ 15).

I enter the website twice and obtain:

P (16 ≤ X ≤ 24) = 0.8432− 0.1565 = 0.6867.

2. Our binomial calculator website does not work for n > 1,000; hence, I want an approximate

answer. For the binomial, the mean is np = 2000(0.003) = 6. This is much smaller than

25, so I will not use the Normal curve approximation. In addition, the binomial variance is

npq = 6(0.997) = 5.982 which is only a bit smaller than the mean. Thus, I will use the

Poisson approximation. I go to the website

http://stattrek.com/Tables/Poisson.aspx

and enter 4 for x and θ = np = 6 for Average rate of success. The website gives me 0.2851

as its approximation of P (X ≤ 4).

By the way, Minitab is able to calculate the exact probability; it is 0.2847. Thus, the Poisson

approximation is very good.

3. Combining the data, we find that Gretzky scored 250 goals in 234 games. We view x =
250 as the observed value of a random variable X which has a Poisson distribution with

parameter θ. Also, θ = 234λ. For 98% confidence, we see from Table 12.1 that z∗ = 2.326.
Thus, the approximate 98% confidence interval for θ is

250± 2.326
√
250 = 250± 36.78 = [213.22, 286.78].

Literally, we are asserting that

213.22 ≤ θ ≤ 286.78 or 213.22 ≤ 234λ ≤ 286.78.

Dividing through by 234, we get

213.22/234 ≤ λ ≤ 286.78/234 or 0.911 ≤ λ ≤ 1.226.
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4. Go to the website

http://statpages.org/confint.html.

Scroll down to Setting Confidence Levels. Enter 5 in the Upper box, 0 in the Lower box

and click on Compute. The site now knows that we want the 95% upper confidence bound.

Scroll up to Poisson Confidence Intervals, enter 1 in the Observed Events box and click

on Compute. The site gives us [0, 4.7439] as the upper 95% confidence bound for θ.

If X ∼ Bin(n, p) with n large and the observed value of X is 1, then 4.7439, rounded rather

clumsily to 4.75, is the approximate 95% upper confidence bound for np. Thus, for n large

and X = 1,

4.75/n is the approximate 95% upper confidence bound for p.

As a partial check, I scrolled up to Binomial Confidence Intervals, entered 1 for x, entered
100 for n, and clicked on Compute. The site gave me 0.0466 as the exact 95% upper

confidence bound for p, which is reasonably approximated by 4.75/n = 4.75/100 = 0.0475.
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Table 13.3: Traffic accident data in Madison, Wisconsin.

Year: 2005 2006 2007 2008 2009 Total

Average weekday

arterial volume 26,271 25,754 25,760 24,416 24,222 126,423

Total crashes 4,577 4,605 4,779 4,578 4,753 23,292

Bike crashes 97 95 118 95 115 520

Pedestrian crashes 84 87 80 76 77 404

Fatal crashes 9 12 13 6 14 54

13.8 Homework Problems

1. Suppose that X ∼ Poisson(10). Use the website

http://stattrek.com/Tables/Poisson.aspx

to calculate the following probabilities.

(a) P (X = 8).

(b) P (X ≤ 6).

(c) P (X ≤ 15).

(d) P (7 ≤ X ≤ 15).

2. Suppose that X ∼ Bin(5000,0.0001). According to Minitab, P (X ≤ 2) = 0.9856. Find the

Poisson approximation to this probability. Compare your approximate answer with the exact

answer and comment.

3. LetX ∼ Poisson(θ). GivenX = 2, find the exact 95% upper confidence bound for θ. Apply
your finding to create the rule of 6.30 when X = 2.

4. The data in Table 13.3 appeared in the Wisconsin State Journal on July 13, 2010, for acci-

dents involving autos in Madison, Wisconsin.

In parts (a)–(c), assume that the number of crashes of interest follows a Poisson Process with

unknown rate λ per year. Use the data in the Total column to obtain the approximate 95%

confidence interval estimate of λ.

(a) Bike crashes.

(b) Pedestrian crashes.

(c) Fatal crashes. Also obtain the exact confidence interval.
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Chapter 14

Rules for Means and Variances; Prediction

14.1 Rules for Means and Variances

The result in this section is very technical and algebraic. And dry. But it is useful for understanding

many of prediction results we obtain in this course, beginning later in this chapter.

We have independent random variablesW1 andW2. Note that, typically, they are not identically

distributed. The result below is an extremely special case of a much more general result. It will

suffice, however, for our needs; thus, I see no reason to subject you to the pain of viewing the

general result.

We need some notation:

• Let µ1 [µ2] denote the mean ofW1 [W2].

• Let Var(W1) [Var(W2)] denote the variance ofW1 [W2].

• Let b denote any number. Define

W = W1 − bW2.

Result 14.1 (The mean and variance ofW .) For the notation given above,

• The mean ofW is

µW = µ1 − bµ2 (14.1)

• The variance ofW is

Var(W ) = Var(W1) + b2 Var(W2). (14.2)

In our two applications of this result in this chapter, the number b will be taken to equal µ1/µ2;

thus,

µW = µ1 − (µ1/µ2)µ2 = µ1 − µ1 = 0,

for our applications.
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14.2 Predicting for Bernoulli Trials

Predictions are tough, especially about the future—Yogi Berra.

We plan to observe m Bernoulli trials and want to predict the total number of successes that will

be obtained. Let Y denote the random variable and y the observed value of the total number

of successes in the future m trials. Similar to estimation, we will learn about point and interval

predictions of the value of Y .

14.2.1 When p is Known

Because prediction is a new idea in this course, I want to present a gentle introduction to it. Suppose

that you have a favorite pair of dice, one colored blue and the other white. Let’s focus on the blue

die. And let’s say your favorite number is 6—perhaps you play Risk a great deal; in Risk, 6 is the

best outcome by far when one casts a die. Ghengis Khan playing Risk would roll a lot of 6’s.

You plan to cast the die 600 times and you want to predict the number of 6’s that you will

obtain. You believe that the die is balanced; i.e., that the six possible outcomes are equally likely

to occur.

OK. Quick. Don’t think of any of the wonderful things you have learned in this course. Give

me your point (single number) prediction of how many 6’s you will obtain. I conjecture that your

answer is 100. (I asked this question several times over the years to a live lecture and always—save

once—received the answer 100 from the student who volunteered to answer. One year a guy said

72 and got a big laugh. I failed him because it is my job to make the jokes, such as they are. No, I

didn’t really fail him, but I was more than a bit annoyed that he got a larger laugh than I did with

my much cleverer anecdotes.)

My academic grandfather (my advisor’s advisor, who happened to be male) is Herb Robbins,

a very brilliant and witty man. Herb was once asked what mathematical statisticians do, and he

replied, “They find out what non-statisticians do and prove it’s optimal.”

Thus, I am going to argue that your answer of 100 is the best answer to the die question I posed

above. In order to show that something is best mathematically, we find a way to measure good

and whichever candidate answer has the largest amount of good is best. This is the approach for

the glass-half-full people. More often, one finds a way to measure bad and whichever candidate

answer has the smallest amount of bad is best.

We want to predict, in advance, the value that Y will yield. We denote the point prediction by

the single number ŷ. We adopt the criterion that we want the probability of being correct to be as

large as possible. (Thus, we define being correct as good and seek to maximize the probability that

we will get a good result.)

Result 14.2 (The best point prediction of Y .) Calculate the mean of Y , which is mp.

• Ifmp is an integer, then it is uniquely the most probable value of Y and our point prediction

is ŷ = mp.
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• Ifmp is not an integer, then the most probable value of Y is one of the integers immediately

on either side of mp. Check them both; whichever is more probable is the point prediction.

If they are equally probably, I choose the even integer.

Below are some examples of this result.

• For my die example, m = 600 and p = 1/6, giving mp = 600(1/6) = 100. This is an

integer; thus, 100 is the point prediction of Y . With the help of the website calculator (details

not given), I find that P (Y = 100) = 0.0437. For comparison, P (Y = 99) = 0.0436 and

P (Y = 101) = 0.0432. Thus, if 99 is your life-long favorite number, it is difficult for me to

criticize using it as your point prediction. In the long-run, you will have one fewer correct

point prediction for every 10,000 times you cast the blue die 600 times. That’s a lot of die

casting!

• Suppose thatm = 200 and p = 0.50. Then,mp = 200(0.5) = 100 is an integer; thus, 100 is
the point prediction of Y . With the help of the website calculator, I find that P (Y = 100) =
0.0563.

• Suppose that m = 300 and p = 0.30. Then, mp = 300(0.3) = 90 is an integer; thus, 90 is

the point prediction of Y . With the help of the website calculator, I find that P (Y = 90) =
0.0502.

• Suppose that m = 20 and p = 0.42. Then, mp = 20(0.42) = 8.4 is not an integer. The

most likely value of Y is either 8 or 9. With the help of the website calculator, I find that

P (Y = 8) = 0.1768 and P (Y = 9) = 0.1707. Thus, ŷ = 8.

• Suppose that m = 75 and p = 0.50. Then, mp = 75(0.50) = 37.5 is not an integer. The

most likely value of Y is either 37 or 38. With the help of the website calculator, I find that

P (Y = 37) = 0.0912 and P (Y = 38) = 0.0912. Because these probabilities are identical, I
choose the even integer; thus, ŷ = 38.

• Suppose that m = 100 and p = 0.615. Then, mp = 100(0.615) = 61.5 is not an integer.

The most likely value of Y is either 61 or 62. With the help of the website calculator, I find

that P (Y = 61) = 0.0811 and P (Y = 62) = 0.0815. Thus, ŷ = 62.

In each of the above examples we saw that the probability that a point prediction is correct

is very small. As a result, scientists usually prefer a prediction interval. It is possible to create a

one-sided prediction interval, but we will consider only two-sided prediction intervals.

We have two choices: using a Normal curve approximation or finding an exact interval. Even

if you choose the exact interval, it is useful to begin with the Normal curve approximation.

Result 14.3 (Predicting when p is known.) Let Y denote the total number of successes in m fu-

ture Bernoulli trials. The Normal curve approximate prediction interval for Y when p is known

is:

mp± z∗
√
mpq (14.3)
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where the value of z∗ is determined by the desired probability of getting a correct prediction inter-
val. The value of z∗ is given in Table 12.1 on page 296. It is the same number that is used for the

two-sided confidence interval for p.

I won’t indicate a proof of this result, other than to say it is the same derivation we used in Chap-

ter 12 to find the approximate confidence interval for p, except that in the current situation we don’t
need Slutsky’s theorem because the value of p is known.

For our die example withm = 600, I want to have a prediction interval for which the probability
it will be correct equals approximately 98%. From Table 12.1, I find that z∗ = 2.326. The

prediction interval is:

600(1/6)± 2.326
√

600(1/6)(5/6) = 100± 21.23 = [78.77, 121.23].

Let me make a couple of remarks concerning this answer. First, it makes no sense to predict

that I will obtain a fractional number of 6’s; thus, I round-off my endpoints to obtain the closed

interval [79, 121]. Second, I remember that this answer is not really an interval of numbers; more

accurately, I predict that Y will be one of the numbers in the set 79, 80, 81, . . . , 121. This more

accurate statement is way too tedious for me; thus, I will abuse language and say that [79, 121] is
my approximate 98% prediction interval for Y .

You might be thinking: Hey, Bob, why did you use the Normal curve approximation; why

not use exact binomial probabilities? Good question. If I am really serious about this prediction

problem, I take my approximate answer, [79, 121], as my starting point. I go to the binomial

calculator website and find that form = 600 and p = 1/6:

P (Y ≤ 121) = 0.9894 and P (Y ≤ 78) = 0.0078.

Thus,

P (79 ≤ Y ≤ 121) = 0.9894− 0.0078 = 0.9816,

which is very close to my target of 98% probability. Thus, I am really happy with the prediction

interval [79, 121].

14.2.2 When p is Unknown

We now consider the situation in which p is unknown. We will begin with point prediction. The

first difficulty is that we cannot achieve our criterion’s goal: we cannot find the most probable

value of Y . The most probable value, as we saw above, is at or near mp, but we don’t know what

p is. Thus, we won’t concern ourselves with point prediction.

Because p is unknown, we cannot use Formula 14.3 as a prediction interval. In order to proceed,

we need to add another ingredient to our procedure. We assume that we have past data from the

process that will generate the m future trials. We denote the past data as consisting of n trials

which yielded x successes, giving p̂ = x/n as our point estimate of the unknown p and, as always,
q̂ = 1− p̂. We will now use the Result 14.1 to derive a prediction interval for Y .
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It will be convenient to begin by defining a symbol r, the ratio of the future number of trials to

the past number of trials:

r = m/n. (14.4)

Note that if r is close to zero, then we are using a relatively large amount of past data to predict

a relatively small number of future trials. Conversely, if r is large, then we are using a relatively

small amount of past data to predict a relatively large number of future trials.

The algebra between this point and Result 14.4 is pretty intense. Unless you find that working

through messy algebra improves your understanding, feel free to jump (skip, hop, dash) ahead to

Result 14.4.

In Result 14.1, letW1 = Y , W2 = X and b = r. Thus,

W = Y − rX.

The mean ofW is:

µW = µY − rµX = mpq − (m/n)npq = mpq −mpq = 0

and the variance ofW is:

Var(W ) = Var(Y ) + r2 Var(X) = mpq + r(m/n)npq = mpq(1 + r).

Let me make a couple of quick comments about this formula for the variance of W . As you will

see below, the larger the variance, the wider the prediction interval. We see that the variance is

proportional tom, the number of trials being predicted. This makes sense; more trials means more

uncertainty. The variance is also proportional to (1 + r). To see why this makes sense, refer to my

comments above immediately after Equation 14.4.

We can standardizeW :

Z =
W − µW
√

Var(W )
=

W − 0
√
mpq

√
1 + r

=
Y − rX

√
mpq

√
1 + r

.

It can be shown that ifm and n are both large and p is not too close to either 0 or 1, then probabil-
ities for Z can be well approximated by the N(0,1) curve. Slutsky’s work can also be applied here;

the result is:

Z ′ =
Y − rX

√

rX [1− (X/n)]
√
1 + r

.

It can be shown that ifm and n are both large and p is not too close to either 0 or 1, then probabil-
ities for Z ′ can be well approximated by the N(0,1) curve. As a result, using the same algebra we

had in Chapter 12 (the names have changed) we can expand Z ′ and get the following prediction

interval for Y .

Result 14.4 (Predicting when p is unknown.) The formula below is the approximate prediction

interval for Y , the total number of successes in m future Bernoulli trials, when p is unknown. In

this formula, r is given in Equation 14.4; x is the observed number of successes in the past data
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of n trials; q̂ = (n − x)/n is the proportion of failures in the past data; and z∗ is determined by

the desired probability of the interval being correct. The relationship between z∗ and the desired

probability is given in Table 12.1 on page 296.

rx± z∗
√

rxq̂
√
1 + r = rx± z∗

√

rx(1 + r)q̂. (14.5)

I will illustrate the use of this formula with real data from basketball.

On page 274, I introduced you to the data Katie Voigt collected and shared with me. I will use

some of Katie’s data to illustrate the current method.

I will put myself in time on day 3 of Katie’s study before she collected the day’s data. I want to

use the combined data from Katie’s first two days of shooting to predict the number of successes

that she will achieve on herm = 100 trials on day 3.

Let me explicitly review the necessary assumptions. Katie’s 300 shots on days 1–3 are Bernoulli

trials with an unknown value of p. Note, in particular, that I assume that her future trials are gov-

erned by the same process that generated her past data. Now, let’s get to Katie’s data.

On day 1, Katie obtained 56 successes and on day 2 she obtained 59 successes. Combining

these days, the past data consist of n = 200 trials with x = 56 + 59 = 115 successes. I will use

these data to obtain the approximate 95% prediction interval for Y, the number of successes she

will obtain on day 3. I will use Formula 14.5 to obtain my answer. Thus, I need to identify the

values of the various symbols in the formula.

r = m/n = 100/200 = 0.5; x = 115; z∗ = 1.96; and q̂ = (200− 115)/200 = 0.425.

Next, I substitute these values into Formula 14.5 and obtain:

0.5(115)± 1.96
√

0.5(115)(0.425)
√
1 + 0.5 = 57.5± 1.96

√
24.4375

√
1.5 =

57.5± 11.86 = [45.64, 69.36],

which I will round to [46, 69].
This is a very wide interval. (Why do I say this? Well, in my opinion, a basketball player will

believe that making 46 out of 100 is significantly different than making 69 out of 100.) A great

thing about prediction (not shared by estimation or testing) is that we find out whether our answer

is correct. It is no longer the case that only Nature knows! In particular, when Katie attempted the

m = 100 future shots, she obtained y = 66 successes. The prediction interval is correct because it
includes y = 66.

You should note that there is no exact solution to this problem. Even a simulation experiment

is a challenge. I will discuss how a simulation experiment is performed for a limited situation

motivated by Katie’s data.

In order to do a simulation study we must specify three numbers: m, n and p. (Even though

the researcher does not know p, Nature, the great simulator, must know it.) And, as we shall see, it

is a two-stage simulation.

To be specific, I will simulate something similar to Katie’s problem. I will take m = 100,
n = 200 and p = 0.60. (Of course, I don’t know Katie’s p, but 0.60 seems to be not ridiculous.) A

single rep of the simulation experiment is as follows.
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1. Simulate the value of X ∼ Bin(200,0.60), our simulated past data for Katie.

2. Use our value of X from step 1 to estimate p and then compute the 95% prediction interval

for Y , remembering to use the interval for p unknown.

3. Simulate the value of Y ∼ Bin(100,0.60) and see whether or not the interval from step 2 is

correct.

I performed this simulation with 10,000 reps and obtained 9,493 (94.93%) correct prediction in-

tervals! This is very close to the nominal (advertised) rate of 95% correct.

Before we leave this section, I will use Katie’s data to obtain one more prediction interval.

I will put myself in time on day 9 of Katie’s study before she collected the day’s data. I want

to use the combined data from Katie’s first eight days of shooting (n = 800) to predict the number

of successes that she will achieve on herm = 200 trials on days 9 and 10 combined (m = 200).
Let me explicitly review the necessary assumptions. Katie’s 1,000 shots on days 1–10 are

Bernoulli trials with an unknown value of p. Note, in particular, that I assume that her future trials

are governed by the same process that generated her past data. Now, let’s get to Katie’s data.

On days 1–8, Katie obtained a total 505 successes. Thus, the past data consist of n = 800 trials
with x = 505 successes. I will use these data to obtain the approximate 95% prediction interval for

Y , the number of successes she will obtain on days 9 and 10 combined. I will use Formula 14.5 to

obtain my answer. Thus, I need to identify the values of the various symbols in the formula.

r = m/n = 200/800 = 0.25; x = 505; z∗ = 1.96; and q̂ = (800− 505)/800 = 0.369.

Next, I substitute these values into Formula 14.5 and obtain:

0.25(505)± 1.96
√

0.25(505)(0.369)
√
1 + 0.25 = 126.25± 1.96

√
46.5862

√
1.25 =

126.25± 14.96 = [111.29, 141.21],

which I will round to [111, 141].
On days 9 and 10 combined, Katie achieved y = 130 successes. The prediction interval is

correct because it includes y = 130.

14.3 Predicting for a Poisson Process

Compared to my above work on the binomial distribution, this section will be quite brief. I will

consider only one of several possible problems, namely the following. I plan to observe a Poisson

Process with unknown rate λ for t2 units of time. I have past data on the same process that gave x
successes in an observational period of t1 units of time. After I derive the prediction interval, For-

mula 14.7, I will illustrate the method with the Baltimore homicide data introduced in Chapter 13

in Table 13.2 on page 331. In particular, I will put myself in time at the end of 2004, which means

that my past data are for t1 = 2 years and I will want to predict the total number of homicides for

the year 2005, giving me a future observation of t2 = 1 year.
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Returning to the general problem, the observed number of successes in the past data, x, is the
observed value of a random variable X which has distribution Poisson(λt1). I want to predict the

value of Y which has distribution Poisson(λt2).
For the binomial problem with p unknown, recall that the ratio r, defined in Equation 14.4,

played a key role in our prediction interval. We need a similar ratio for the current Poisson problem:

r′ = t2/t1. (14.6)

Note that, similar to the binomial problem, this is the ratio of the length of future observation of

the process to the length of past observation of the process. I put a prime symbol on the notation

for the current ratio to avoid confusion with the binomial problem’s ratio.

The algebra between this point and Result 14.5 is pretty intense. Unless you find that working

through messy algebra improves your understanding, feel free to jump ahead to Result 14.5.

In Result 14.1, letW1 = Y , W2 = X and b = r′. Thus,

W = Y − r′X.

The mean ofW is:

µW = µY − r′µX = λt2 − (t2/t1)λt1 = λt2 − λt2 = 0.

and the variance ofW is:

Var(W ) = Var(Y ) + (r′)2 Var(X) = λt2 + r′(t2/t1)λt1 = λt2(1 + r′).

We can standardizeW :

Z =
W − µW
√

Var(W )
=

W − 0
√

λt2(1 + r′)
=

Y − r′X
√

λt2(1 + r′)
.

It can be shown that if t1 and t2 are both large and λ is not too close to 0, then probabilities for Z
can be well approximated by the N(0,1) curve. Slutsky’s work can also be applied here. The idea

is that in the denominator we replace the unknown λ by X/t1. This seems sensible because the

mean of X is λt1. The result is:

Z ′ =
Y − r′X

√

r′X(1 + r′)
.

It can be shown that if t1 and t2 are both large and λ is not too close to 0, then probabilities for

Z ′ can be well approximated by the N(0,1) curve. As a result, using the same algebra we had in

Chapter 12 (the names have changed) we can expand Z ′ and get the following prediction interval

for Y .

Result 14.5 (Predicting for a Poisson Process.) A Poisson Process will be observed for t2 units
of time; let Y denote the number of successes that will occur. The process has been observed previ-

ously for t1 units of time, during which x successes were counted. In the formula below, r′ is given
by Equation 14.6; and z∗ is determined by the desired probability of the interval being correct.
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The relationship between z∗ and the desired probability is given in Table 12.1 on page 296. The

formula below is the approximate prediction interval for Y when the rate of the Poisson Process is

unknown.

r′x± z∗
√

r′x(1 + r′) (14.7)

I will illustrate the use of this formula with the Baltimore homicide data, presented in Table 13.2

on page 331. The past data consist of the t1 = 2 years, 2003 and 2004. The total number of

homicides, x, in those two years is 270 + 276 = 546. The future period of interest consists of

t2 = 1 year, 2005. Thus, r′ = 1/2 = 0.5. I want to have an interval for which the probability it

will be correct is approximately 95%; thus, my choice for z∗ is 1.96. Substituting these values into
Formula 14.7, I get:

0.5(546)± 1.96
√

0.5(546)(1 + 0.5) = 273± 39.66 = [233.34, 312.66],

which I round to [233, 313]. In words, at the beginning of 2005, using the 2003 and 2004 data, my

95% prediction interval for the number of homicides in Baltimore in 2005 is [233, 313]. This is a
very wide interval! I imagine that if—after homicide totals of 270 and 276 in 2003 and 2004—the

number declined to 233 or increased to 313 in 2005, many people would conclude that something

must have changed. Our interval shows that such a large change is within the bounds of Poisson

variation.

The actual number of homicides in 2005 turned out to be y = 269; thus, the prediction interval
is correct.

As with Bernoulli trials with p unknown, there is no exact formula for a prediction interval. The

only way to evaluate the quality of the Normal curve approximation contained in our prediction

interval is to perform a simulation experiment. A simulation study is a challenge. For simplicity, I

will limit my presentation of how a simulation experiment is performed to the context of the above

Baltimore homicide example.

In order to do a simulation experiment we must specify one number, the rate of the Poisson

Process. For the Baltimore process, I will specify that λ = 270 in my computer simulation. Each

rep of the computer simulation will consist of the following three steps:

1. Simulate the value of X ∼ Poisson(2λ = 540).

2. Use our value of X from step 1 to compute the 95% prediction interval for Y .

3. Simulate the value of Y ∼ Poisson(λ = 270) and see whether or not the interval from step 2

is correct.

I performed this simulation with 10,000 reps and obtained 210 intervals that were too large and

253 intervals that were too small. Thus,

10,000 − (210 + 253) = 9,537—or 95.37%—of the intervals were correct.

This is a very good agreement between simulation results and the nominal probability of being

correct, 95%.
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14.4 Summary

This chapter introduces the notion of prediction, in the context of Bernoulli trials or a Poisson

Process.

The first situation is that we plan to observem future Bernoulli trials and we want to predict the

total number of successes, Y , that will be obtained. There are two situations of interest: p known

and p unknown.
For the case in which p is known, we first consider the point prediction ŷ. We adopt the criterion

that we want to maximize the probability that the point prediction will be correct; i.e., we want to

choose ŷ to maximize P (Y = ŷ). The result is:

• If the mean of Y , mp, is an integer, then ŷ = mp is the unique maximizer of the probability

of obtaining a correct point prediction.

• If the mean of Y , mp, is not an integer, then calculate the probability of Y equaling each of

the two integers nearest to mp. Whichever of these two integers has the larger probability

of occurring is the point prediction. If they have the same probability of occurring, then I

arbitrarily decide that the even integer will be the point prediction.

We looked at several examples and found that in every case the probability that the point prediction

will be correct is quite small. Thus, the somewhat tedious steps outlined above for finding the point

prediction are arguably somewhat (no pun intended) pointless. As a result, we turn our attention

to finding a prediction interval for the value of Y .

The first decision is to select the desired probability that the prediction interval will be correct.

The popular choices—80%, 90%, 95%, 98% and 99%—are familiar from our work on confidence

interval estimation. The approximate prediction interval for Y is given in Formula 14.3, reproduced

below:

mp± z∗
√
mpq.

In this formula, the value of z∗ depends on the desired probability and is the same number we used

for approximate confidence intervals.

There are three comments to remember about this approximate prediction interval. First, be-

cause we are predicting the number of successes—which must be an integer—the endpoints of

the interval should be rounded-off to their nearest integers. For example, if the formula yields

[152.27, 191.33] we should round this to [152, 191]. Second, although for convenience I will al-

ways refer to the answer as an interval, it really isn’t. For example, if we predict that Y will be in

the interval [152, 191], we actually are predicting that Y will take on one of the values:

152, 153, 154, . . . , 191.

Third and finally, if m ≤ 1,000, once we have a prediction interval, we should use the binomial

calculator website to obtain the exact probability that it will be correct. (Recall that form > 1,000,

the calculator website does not yield exact binomial probabilities.)

Now we turn to the scientifically more interesting problem of finding a prediction interval for

Y when p is unknown. This new problem cannot be solved unless we add a new ingredient to our
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set-up. We assume that we have observed n past Bernoulli trials from the same process that will

generate the m future Bernoulli trials; in particular, the p for the past is the same as the p for the

future and the future is statistically independent of the past. The approximate prediction interval

for Y is given in Formula 14.5, reproduced below:

rx± z∗
√

rxq̂
√
1 + r = rx± z∗

√

rx(1 + r)q̂.

In this formula, r = m/n, x is the total number of successes in the n past trials; z∗ is the same as

it was for p known; and q̂ = (n− x)/n is the proportion of failures in the n past trials.

Lastly, we learned how to obtain a prediction interval in the context of a Poisson Process.

Assume that there is a Poisson Process with unknown rate λ. The process has been previously

observed for t1 units of time, yielding a total of x successes. The process will be observed for t2
units of time in the future and will yield Y successes. The approximate prediction interval for Y is

given in Formula 14.7, reproduced below

r′x± z∗
√

r′x(1 + r′).

In this formula, r′ = t2/t1; and z∗ is the same as it was for both of our earlier prediction intervals.

Finally, I want to comment on Formula 14.5. In particular, I want to explain why I present it in

two different ways:

rx± z∗
√

rxq̂
√
1 + r and rx± z∗

√

rx(1 + r)q̂.

I will refer to these as the outside and inside versions, respectively, because the former has the

term (1+ r) within its own radical sign outside the first radical sign; obviously, inside has the term
(1 + r) inside its only radical sign. What possible reason do I have for doing this?

The term rx is equal to

(m/n)x = m(x/n) = mp̂.

Thus, the outside version is equivalent to

mp̂± z∗
√

mp̂q̂
√

(1 + r).

This expression makes clear the relationship between the situations when p is unknown, For-

mula 14.5, and p is known, Formula 14.3. Namely, in the p is known formula we replace the

unknown p and q by their estimates from the previous data. To make this work, we need to include

the correction term
√

(1 + r). Somewhat whimsically, I like to think of this correction term as

representing the cost of ignorance.

The inside version gives insight of the connection between the binomial and Poisson formulas

for prediction. Recalling that I use r [r′] to denote the ratio of future to past for the binomial

[Poisson], the prediction formulas for binomial and Poisson are identical except that the binomial

formula contains the term q̂ under its radical sign.
The derivations of Formulas 14.5 and 14.7 involve some intense algebra and the use of the

fairly advanced Result 14.1. I include these things in these Course Notes for completeness; feel

free to ignore them if you don’t find excessive algebra to be helpful.
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14.5 Practice Problems

1. The entry

http://en.wikipedia.org/wiki/Mendelian_inheritance

inWikipedia provides a colorful illustration of the results of a dihybrid cross involving brown

or white cats with short or long tails. According to Mendelian inheritance, the probability

that a cat created by such a cross will be brown with a short tail is 9/16. For the sake of this
question, let’s all agree that Mendelian inheritance is correct.

I plan to observe m = 320 future cats created by such a cross and I want to obtain a 98%

prediction interval for the total number of these cats that will have brown fur and a short tail.

2. Refer to the previous problem. According to Mendelian inheritance, the probability that a

cat created by such a cross will have a long tail—regardless of fur color—is 0.25.

I plan to observe m = 400 future cats created by such a cross and I want to obtain a 99%

prediction interval for the total number of these cats that will have a long tail.

3. During Michael Jordan’s first season with the Chicago Bulls, 1984–85, he made 630 out of

746 free throw attempts. In his last season with the Chicago Bulls, 1997–98, he made 565

out of 721 free throw attempts. Use the data from his first season to predict the number of

free throws he would make during his last season. Use the 99% prediction level.

4. The purpose of this example is to show you the folly of using a small amount of data to

predict a large amount of the future. On day 1, Katie obtained 56 successes in 100 trials.

Use these data to obtain the 98% prediction interval for them = 900 future trials on days 2–
10 combined.

After day 10, it was determined that Katie had made 579 of her shots on days 2–10 combined.

Comment on your prediction interval.

5. Data for hockey player Wayne Gretzky were presented on page 333 in a Practice Problem.

Use his data from the 1981–82 season—92 goals in 80 games— to predict his number of

goals—71 in 80 games—in the 1982–83 season. Assume that we have a Poisson Process

with unknown rate of λ goals per game. Calculate the 95% prediction interval.

6. Refer to the previous problem. In the two seasons 1981–83 combined, Gretzky scored a total

of 92+71 = 163 goals. given that Gretzky would play 74 games during the 1983–84 season,

use the data from 1981–83 to obtain the 95% prediction interval for the number of goals he

would score in 1983–84.

Given that Gretzky scored 87 goals in 1983–84, comment on your prediction interval.
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14.6 Solutions to Practice Problems

1. This is a standard problem with p = 9/16 known and m = 320. The desired probability,

98%, gives z∗ = 2.326. Using Formula 14.3, we get

320(9/16)± 2.326
√

320(9/16)(7/16) = 180± 20.64 = [159.36, 200.64],

which I round to [159, 201].

I go to the binomial calculator website and obtain

P (Y ≤ 201) = 0.9926 and P (Y ≤ 158) = 0.0079.

Thus,

P (159 ≤ Y ≤ 201) = 0.9926− 0.0079 = 0.9847.

This is a bit larger than the target of 98%. Let’s see if we can do better. The idea is to

make the prediction interval narrower, but not much narrower. Too much narrower and the

probability of being correct would fall below the target of 98%.

First, I try the interval [160, 201]; i.e., I increase the lower bound by one and leave the upper
bound alone. I find that its probability of including Y is 0.9819 (details not given; check if

you need practice with the binomial calculator).

Next, I try [159, 200] and find that its probability of including Y is 0.9820.

Finally, I try [160, 200]; i.e., I take the original approximate interval, increase the lower

bound by one and decrease the upper bound by one. I find that its probability of including Y
is 0.9792. This is a bit smaller than the target probability, but it’s actually the closest of the

three probabilities.

Any one of these modifications of the approximate interval is fine; I (very slightly) prefer

the interval [160, 200] because of its symmetry around the point prediction 180.

Note: Usually at this time I tell you the value of Y and we can see whether the prediction

interval is correct. Sorry, but acquiring 320 cats is too much for this dedicated author.

2. This is a standard problem with p = 0.25 known and m = 400. The desired probability,

99%, gives z∗ = 2.576. Using Formula 14.3, we get

400(0.25)± 2.576
√

400(0.25)(0.75) = 100± 22.31 = [77.69, 122.31],

which I round to [78, 122].

I go to the binomial calculator website and obtain

P (Y ≤ 122) = 0.9946 and P (Y ≤ 77) = 0.0039.

Thus,

P (78 ≤ Y ≤ 122) = 0.9946− 0.0039 = 0.9907.

This is very close to the target of 99%. Thus, I won’t bother to see what happens if I change

either endpoint of the interval.
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3. This is prediction with p unknown. The past data give x = 630, n = 746 and q̂ = 116/746 =
0.155. The future number of trials is m = 721, giving r = 721/746 = 0.9665. (Note: A
weakness with this method is that at the beginning of the 1997–98 season, nobody knew

the eventual value of m. One way around this was to restate the problem as “Of his first

m = 500 free throws during the season, predict his number of successes.” It is possible

that the number m is somehow related to how well he was shooting, but I will ignore this

possibility.)

I will substitute these values into the prediction formula, Formula 14.5, noting that 99%

gives z∗ = 2.576:

rx± z∗
√

rxq̂
√
1 + r = 608.90± 2.576

√

608.90(0.155)
√
1 + 0.9665 =

608.90± 35.09 = [573.81, 643.99],

which I round to [574, 644]. This prediction interval is too large, because y = 565. Perhaps
using data from 13 years earlier was a bad choice for the past data.

In 1997–98, Jordan had his lowest free throw success percentage of his career; even worse

than his two (misguided) later years in Washington.

4. This is prediction with p unknown. The past data give x = 56, n = 100 and q̂ = 44/100 =
0.44. The future number of trials ism = 900, giving r = 900/100 = 9.

I will substitute these values into the prediction formula, Formula 14.5, noting that 98%

gives z∗ = 2.326:

rx±z∗
√

rxq̂
√
1 + r = 504±2.326

√

504(0.44)
√
1 + 9 = 504±109.54 = [394.46, 613.54],

which I round to [394, 614]. This extremely wide prediction interval is correct, because

y = 579.

5. We have t1 = t2 = 80 games; thus r′ = 80/80 = 1. The 95% level gives us z∗ = 1.96. The
observed value of X is 92. We substitute this information into Formula 14.7 and obtain:

r′x± z∗
√

r′x(1 + r′) = 92± 1.96
√

92(1 + 1) = 92± 26.6 = [65, 119],

after rounding. This very wide interval is correct because it includes y = 71. I opine that
many hockey fans would interpret the change from 92 to 71 goals as significant, but it falls

within the range of Poisson variation.

6. We have t1 = 80 + 80 = 160 games and t2 = 74 games; thus r′ = 74/160 = 0.4625. The
95% level gives us z∗ = 1.96. The observed value of X is 163, giving us r′x = 75.39. We

substitute this information into Formula 14.7 and obtain:

r′x± z∗
√

r′x(1 + r′) = 75.39± 1.96
√

75.39(1 + 0.4625) = 75.39± 20.6 = [55, 96],

after rounding. This very wide interval is correct because it includes y = 87.
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14.7 Homework Problems

1. Refer to Practice Problems 1 and 2. Let A be the event that the cat has white fur and let B
be the event that the cat has a long tail.

(a) Define a success to be that event (A or B) occurs. Remember, or means and/or. Ac-

cording to Mendelian inheritance, what is the probability of a success?

(b) Form = 160 cats created by such a cross, calculate the 95% prediction interval for the

number of successes.

(c) Use the binomial calculator website to determine the exact probability that your interval

in (b) will be correct.

2. On days 1–19, Katie made 1,227 out of 1,900 attempted shots. Use these 1,900 observations

to calculate the 99% prediction interval for the number of shots, out of m = 100, that she
would make on day 20.

Given that Katie made y = 71 shots on day 20, comment on your prediction interval.

3. Refer to the data on traffic accidents in Table 13.3 on page 336. Use the combined data

from years 2005–2008, 405 crashes with bikes, to obtain the 95% prediction interval for the

number of bike crashes in 2009.

Given that the number of bike crashes in 2009 was y = 115, comment on your prediction

interval.
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Chapter 15

Comparing Two Binomial Populations

In this chapter and the next, our data are presented in a 2× 2 contingency table. As you will learn,
however, not all 2× 2 contingency tables are analyzed the same way. I begin with an introductory

section.

15.1 The Ubiquitous 2× 2 Table

I have always liked the word ubiquitous; and who can argue taste? According to dictionary.com

the definition of ubiquitous is:

Existing or being everywhere, especially at the same time; omnipresent.

Table 15.1 is a partial recreation of Table 8.5 on page 170 in Chapter 8 of these notes.

Let me explain why I refer to this table as ubiquitous. You will learn of many different scientific

scenarios that yield data of the form presented in Table 15.1. Depending on the scenario, you will

learn the different appropriate ways to summarize and analyze the data in this table.

I say that Table 15.1 is only a partial recreation of Chapter 8’s table because of the following

changes:

1. In Chapter 8, the rows were treatments 1 and 2; in Table 15.1, they are simply called rows 1

and 2. In some scenarios, these rows will represent treatments and in some scenarios they

won’t.

2. In Chapter 8, the columns were the two possible responses, success and failure; in Table 15.1,

they are simply called columns 1 and 2. In some scenarios, these columns will represent the

response and in some scenarios they won’t.

3. The table in Chapter 8 also included row proportions that served two purposes: they de-

scribed/summarized the data; and they were the basis (via the computation of x = p̂1 − p̂2)
for finding the observed value of the test statistic, X , for Fisher’s test. Again, in some sce-

narios in this and the next chapter we will compute row proportions, and in some scenarios

we won’t.
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Table 15.1: The general notation for the ubiquitous 2× 2 contingency table of data.

Column

Row 1 2 Total

1 a b n1

2 c d n2

Total m1 m2 n

Here are the main features to note about the ubiquitous 2× 2 contingency table of data.

• The values a, b, c and d are called the cell counts. They are necessarily nonnegative integers.

• The values n1 and n2 are the row totals of the cell counts.

• The valuesm1 and m2 are the column totals of the cell counts.

• The value n is the sum of the four cell counts; alternatively, it is the sum of the row [column]

totals.

Thus, there are nine counts in the 2× 2 contingency table, all of which are determined by the four

cell counts.

15.2 Comparing Two Populations; the Four Types of Studies

The first appearance of the ubiquitous 2 × 2 contingency table was in Chapter 8 for a CRD with

a dichotomous response. Recall that Fisher’s Test is used to evaluate the Skeptic’s Argument. As

stated at the beginning of this Part II of these notes, a limitation of the Skeptic’s Argument is that

it is concerned only with the units under study. In this section, you will learn how to extend the

results of Chapter 8 to populations. In addition, we will extend results to observational studies that,

as you may recall from Chapter 1, do not involve randomization.

In Chapter 8 the units can be trials or subjects. The listing below summaries the studies of

Chapter 8.

• Units are subjects: The infidelity study; the prisoner study; and the artificial Headache

Study-2.

• Units are trials: The golf putting study.

The idea of a population depends on the type of unit. In particular,

• When units are subjects, we have a finite population. The members of the finite population

comprise all potential subjects of interest to the researcher.

• When units are trials, we assume that they are Bernoulli Trials.
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The number four in the title of this section is obtained by multiplying 2 by 2. When we

compare two populations both populations can be Bernoulli trials or both can be finite populations.

In addition, as we shall discuss soon, a study can be observational or experimental. Combining

these two dichotomies, we get four types of study; for example an observational study on finite

populations.

It turns out that the mathematical formulas are identical for the four types of studies, but the

interpretation of our analysis depends on the type of study. In addition, the assumptions are some-

what different in the four settings.

We begin with an observational study on two finite populations. This study was published

in 1988; see [1].

Example 15.1 (The Dating study.) The first finite population is undergraduate men at at the Uni-

versity of Wisconsin–Madison and the second population is undergraduate men at Texas A&M

University. Each man’s response is his answer to the following question:

If a woman is interested in dating you, do you generally prefer for her: to ask you out;

to hint that she wants to go out with you; or to wait for you to act.

After data were collected, it was found that only two or three (I can’t remember for sure) of the 207

subjects selected wait for the response. As a result, the researchers decided that ask is a success

and either of the other responses is a failure. The purpose of the study is to compare the proportion

of successes at Wisconsin with the proportion of successes at Texas A&M.

These two populations obviously fit our definition of finite populations. Why is it called ob-

servational? The dichotomy of observational/experimental refers to the control available to the

researcher. Suppose that Matt is a member of one of these populations. As a researcher, I have

control over whether I haveMatt in my study, but I do not have control over the population to which

he belongs. Consistent with our usage in Chapter 1, the variable that determines a subject’s popu-

lation, is called the study factor. In the current example, the study factor is school attended and it

has two levels: Wisconsin and Texas A&M. This is an observational factor, sometimes called, for

obvious reasons, a classification factor, because each subject is classified according to his school.

Table 15.2 presents the data from this Dating Study. Please note the following decisions that I

made in creating this table.

1. Similar to our tables in Chapter 8, the columns are for the response and the rows are for

the levels of the study factor; i.e., the populations. Note that because the researcher did not

assign men to university by randomization, we do not refer to the rows as treatments.

2. As in Chapter 8, I find the row proportions to be of interest. In particular, we see that 56%

of the Wisconsin men sampled are successes compared to only 31% of the Texas men.

Next, we have an experimental study on two finite populations. Below is my slight alteration

of an actual study of Crohn’s disease that was published in 1988; see [2]. I have taken the original

sample sizes, 37 and 34, and made them both 40. My values of the p̂’s differ from the original ones

by less than 0.005. Why did I make these changes?
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Table 15.2: Data from the Dating study.

Counts Row Proportions

Prefer: Prefer:

Population Ask Other Total Ask Other Total

Wisconsin 60 47 107 0.56 0.44 1.00

Texas A&M 31 69 100 0.31 0.69 1.00

Total 91 116 207

Table 15.3: Data from the modified study of Crohn’s disease.

Counts Row Proportions

Response: Response:

Population S F Total S F Total

Drug C 24 16 40 0.600 0.400 1.000

Placebo 13 27 40 0.325 0.675 1.000

Total 37 43 80

1. I can’t believe that a 25 year-old study, albeit apparently a very good study, is the final word

in the treatment of Crohn’s disease. Thus, I don’t see much upside in preserving the exact

data.

2. The computations become much friendlier—I am not a big fan of dividing by 37—by chang-

ing both sample sizes to 40. Perhaps a minor point, but why pass on a chance to reduce the

tedium of hand computations?

3. Most importantly, I want to use this example to make some general comments on how the

WTP assumption relates to medical studies. I don’t have perfect knowledge of how the actual

study was performed and I don’t want to be unfairly critical of a particular study; instead, I

will be fair in my criticism of my version of the study.

Example 15.2 (A study of Crohn’s Disease.) Medical researchers were searching for an improved

treatment for persons with Crohn’s disease. They wanted to compare a new therapy, called

drug C, to an inert drug, called a placebo. Eighty persons suffering from Crohn’s disease were

available for the study. Using randomization, the researcher assigned 40 persons to each treat-

ment. After three months of treatment, each person was examined to determine whether his/her

condition had improved (a success) or not (a failure).

The data from this study of Crohn’s disease is presented in Table 15.3. There is a very important

distinction between the study of Crohn’s disease and the Dating study. Below we are going to

talk about comparing the drug C population to the placebo population. But, as we shall see,

and perhaps is already obvious, there is, in reality, neither a drug C population nor a placebo
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population. Certainly not in the physical sense of there being a University of Wisconsin and a

Texas A&M University.

Indeed, as I formulate a population approach to this medical study, the only population I can

imagine is one superpopulation of all persons, say in the United States, who have Crohn’s disease.

This superpopulation gives rise to two imaginary populations: first, imagine that everybody in the

superpopulation is given drug C and, second, imagine that everybody in the superpopulation is

given the placebo.

To summarize the differences between observational and experimental studies:

1. For observational studies, there exists two distinct finite populations. For experimental stud-

ies, there exists two treatments of interest and one superpopulation of subjects. The two

populations are generated by imagining what would happen if each member of the super-

population was assigned each treatment. (It is valid to use the term treatment because, as

you will see, an experimental study always includes randomization.)

2. Here is a very important consequence of the above: For an observational study, the two pop-

ulations have distinct members, but for an experimental study, the two populations consist

of the same members.

Let me illustrate this second comment. For the Dating study, the two populations are comprised

of different men—Bubba, Bobby Lee, Tex, and so on, for one population; and Matt, Eric, Brian,

and so on, for the other population. For the Crohn’s study, both populations consist of the same

persons, namely the persons in the superpopulation.

15.3 Assumptions and Results

We begin with an observational study on finite populations. Assume that we have a random

sample of subjects from each population and that the samples are independent of each other. For

our Dating study, independence means that the method of selecting subjects from Texas was totally

unrelated to the method used in Wisconsin. Totally unrelated is, of course, rather vague, but bear

with me for now.

The sample sizes are n1 from the first population and n2 from the second population. We

define the random variable X [Y ] to be the total number of successes in the sample from the first

[second] population. Given our assumptions, X ∼ Bin(n1, p1) and Y ∼ Bin(n2, p2), where pi is
the proportion of successes in population i, i = 1, 2.

Always remember that you can study the populations separately using the methods of Chap-

ter 12. The purpose of this chapter is to compare the populations, or, more precisely, to compare

the two p’s. We will consider both estimation and testing.

For estimation, our goal is to estimate p1 − p2. Define point estimators P̂1 = X/n1 and

P̂2 = Y/n2. The point estimator of p1 − p2 is

W = P̂1 − P̂2 = X/n1 − Y/n2.
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A slight modification of Result 14.1 (I won’t give the details) yields the mean and variance ofW :

µW = µX/n1 − µY /n2 = n1p1/n1 − n2p2/n2 = p1 − p2, and

Var(W ) = Var(X)/n2
1 + Var(Y )/n2

2 = p1q1/n1 + p2q2/n2.

Thus, it is easy to standardizeW :

Z =
(P̂1 − P̂2)− (p1 − p2)

√

(p1q1)/n1 + (p2q2)/n2

. (15.1)

It can be shown that if both n1 and n2 are large and neither pi is too close to either 0 or 1, then

probabilities for Z can be well approximated by using the N(0,1) curve. Slutsky’s theorem also

applies here. Define

Z ′ =
(P̂1 − P̂2)− (p1 − p2)

√

(P̂1Q̂1)/n1 + (P̂2Q̂2)/n2

, (15.2)

where Q̂i = 1 − P̂i, for i = 1, 2. Subject to the same conditions we had for Z, probabilities for
Z ′ can be well approximated by using the N(0,1) curve. Thus, using the same algebra we had

in Chapter 12, Formula 15.2 can be expanded to give the following two-sided confidence interval

estimate of (p1 − p2):

(p̂1 − p̂2)± z∗
√

(p̂1q̂1)/n1 + (p̂2q̂2)/n2. (15.3)

I will use this formula to obtain the 95% confidence interval estimate of (p1 − p2) for the

Dating study. First, 95% confidence gives z∗ = 1.96. Using the summaries in Table 15.2 we get

the following:

(0.56− 0.31)± 1.96
√

(0.56)(0.44)/107 + (0.31)(0.69)/100 =

0.25± 1.96(0.0666) = 0.25± 0.13 = [0.12, 0.38].

Let me briefly discuss the interpretation of this interval.

The first thing to note is that the confidence interval does not include zero; all of the numbers

in the interval are positive. Thus, we have the qualitative conclusion that (p1 − p2) > 0, which we

can also write as p1 > p2. Next, we turn to the question: How much larger?. The endpoints of

the interval tell me that p1 is at least 12 percentage points and at most 38 percentage points larger

than p2. I remember, of course, that my confidence level is 95%; thus, approximately 5% of such

intervals, in the long run, will be incorrect.

I choose to make no assessment of the practical importance of p1 being between 12 and 38

percentage points larger than p2; although I enjoy the Dating study, to me it is essentially frivolous.

(Professional sports, in my opinion, are essentially frivolous too. Not everything in life needs to

be serious!)

For a test of hypotheses, the null hypothesis is H0: p1 = p2. There are three choices for the

alternative:

H1: p1 > p2; H1: p1 < p2; orH1: p1 6= p2.
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Recall that we need to know how to compute probabilities given that the null hypothesis is true.

First, note that if the null hypothesis is true, then (p1 − p2) = 0. Making this substitution into Z in

Equation 15.1, we get:

Z =
P̂1 − P̂2

√

(p1q1)/n1 + (p2q2)/n2

. (15.4)

We again have the problem of unknown parameters in the denominator. For estimation we used

Slutsky’s results and handled the two unknown p’s separately. But for testing, we proceed a bit

differently.

On the assumption that the null hypothesis is true, p1 = p2; let’s denote this common value

by p (nobody truly loves to have subscripts when they aren’t needed!). It seems obvious that we

should combine the random variables X and Y to obtain our point estimator of p. In particular,

define

P̂ = (X + Y )/(n1 + n2) and Q̂ = 1− P̂ .

We replace the unknown pi’s [qi’s] in Equation 15.4 with P̂ [Q̂] and get the following test statistic.

Z =
P̂1 − P̂2

√

(P̂ Q̂)(1/n1 + 1/n2)
. (15.5)

Assuming that n1 and n2 are both large and that p is not too close to either 0 or 1, probabilities for
Z in this last equation can be well approximated with the N(0,1) curve.

The observed value of the test statistic Z is:

z =
p̂1 − p̂2

√

(p̂q̂)(1/n1 + 1/n2)
, (15.6)

The rules for finding the approximate P-value are given below.

• For H1: p1 > p2: The approximate P-value equals the area under the N(0,1) curve to the

right of z.

• ForH1: p1 < p2: The approximate P-value equals the area under the N(0,1) curve to the left

of z.

• For H1: p1 6= p2: The approximate P-value equals twice the area under the N(0,1) curve to

the right of |z|.

I will demonstrate these rules with the Dating study.

Personally, I would have chosen the alternative p1 > p2, but I will calculate the approximate

P-value for all three possibilities. I begin by calculating p̂ = (60+31)/(107+100) = 0.44, giving
q̂ = 0.56. The observed value of the test statistic is

z =
0.25

√

(0.44)(0.56)(1/107 + 1/100)
=

0.25

0.0690
= 3.62.
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Using a Normal curve website calculator, the P-value for p1 > p2 is 0.00015; for p1 < p2 it is

0.99985; and for p1 6= p2 it is 2(0.00015) = .00030.
The Fisher’s test site can be used to obtain the exact P-value, using the same method you

learned in Chapter 8. Using the website I get the following exact P-values: 0.00022, 0.99993 and

0.00043. The Normal curve approximation is pretty good.

(Technical Note: Feel free to skip this paragraph. There is some disagreement among statis-

ticians as to whether the numbers from the Fisher’s website should be called the exact P-values.

Note, as above, I will call them exact because it is a convenient distinction from using the N(0,1)

curve. The P-values are exact only if one decides to condition of the values of m1 and m2 in Ta-

ble 15.1. Given the Skeptic’s Argument in Part I of these notes, these values are fixed, but for the

independent binomial sampling of this section, they are not. Statisticians debate the importance of

the information lost if one conditions on the observed values ofm1 and m2. It is not a big deal for

this course; I just want to be intellectually honest with you.)

We will turn now to the study of Crohn’s disease, our example of an experimental study on

finite populations. Because the two populations do not actually exist in the physical world, we

modify our sampling a bit.

• Decide on the numbers n1 and n2, where ni is the number of subjects who will be given

treatment i. Calculate n = n1 + n2, the total number of subjects who will be in the study.

• Select a smart random sample of n subjects from the superpopulation; i.e., we need to obtain

n distinct subjects.

• Divide the n subjects selected for study into two treatment groups by randomization. As-

sign n1 subjects to the first treatment and n2 subjects to the second treatment.

If we now turn to the two imaginary populations, we see that our samples are not quite inde-

pendent. The reason is quite simple. A member of the superpopulation, call him Ralph, cannot

be given both treatments. Thus, if, for example, Ralph is given the first treatment he cannot be

given the second treatment. Thus, knowledge that Ralph is in the sample from the first population

tells us that he is not in the sample from the second population; i.e., the samples depend on each

other. But if the superpopulation has a large number of members compared to n, which is usually

the case in practice, then the dependence between samples is very weak and can be safely ignored,

which is what we will do.

Ignoring the slight dependence between samples, we can use the same estimation and testing

methods that we used for the Dating study. The details are now given for the study of Crohn’s

disease. The data I use below can be found in Table 15.3.

Here is the 95% confidence interval estimate of p1 − p2:

(0.600−0.325)±1.96
√

(0.600)(0.400)/40 + (0.325)(0.675)/40 = 0.275±0.210 = [0.065, 0.485].

As with the confidence interval for the Dating study, let me make a few comments. This interval

does not include zero. I conclude that p1 is at least 6.5 and at most 48.5 percentage points larger

than p2. While the researchers were no doubt pleased to conclude that drug C is superior to the
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placebo, this interval is too wide to be of practical value. Like it or not, modern medicine must

pay attention to cost-benefit analyses and the benefit at 6.5 percentage points is much less than the

benefit at 48.5 percentage points. Ideally, more data should be collected, which will result in a

narrower confidence interval.

For the test of hypotheses, I choose the first alternative, p1 > p2. Using the Fisher’s test

website, the exact P-value is 0.0122. To use the Normal curve approximation, first we need p̂ =
37/80 = 0.4625. Plugging this into Equation 15.6, we get

Z =
0.275

√

(0.4625)(0.5375)[1/40 + 1/40]
=

0.275

0.11149
= 2.467.

From the Normal curve calculator, the approximate P-value is 0.0068. This is not a very good

approximation of the exact value, 0.0122, because n1 and n2 are both pretty small. There is a

continuity correction that improves the approximation, but it’s a bit of a mess; given that we have

the Fisher’s test website, I won’t bother with the continuity correction.

15.3.1 ‘Blind’ Studies and the Placebo Effect

Well, if I ever become tsar of the research world I will eliminate the use of the word blind to

describe studies! Until that time, however, I need to tell you about it. (By the way, I would replace

blind by ignorant which, as you will see, is a much more accurate description.)

Look at the data from our study of Crohn’s disease, in Table 15.3 on page 356. Note the value

p̂2 = 0.325, which is just a bit smaller than one-third. In words, of the 40 persons given the inert

drug—the placebo—nearly one-third improved! This is an example of what is called the placebo

effect. Note that I will not attempt to give a precise definition of the placebo effect. For more

information, see the internet or consult one of your other professors.

It is natural to wonder:

Why did the condition improve for 32.5% of the subjects on the placebo?

Two possible explanations come to mind immediately:

1. Like many diseases, if one suffers from Crohn’s disease, then one will have good days and

bad days. Thus, for some of the 13 persons on the placebo who improved, the improvement

might have been due to routine variation in symptoms.

2. For some of the patients, being in a medical study and receiving attention might provide a

psychological boost, resulting in an improvement.

Regarding the second item above, if you don’t know about studies being blind, you might think,

Hey, if the physician tells me that I am receiving a placebo, how is this going to help

my outlook? Indeed, I might be a little annoyed about it!
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Our study of Crohn’s disease was double blind.

The first blindness was that the 80 subjects were blind to—ignorant of—the treatment they

received. Each subject signed some kind of informed consent document that included a statement

that the subject might receive drug C or might receive a placebo. This is actually a very good

feature of the study. Because of this blindness, it is reasonable to view the difference, p̂1 − p̂2 =
0.275, as a measure of the biochemical effectiveness of drug C. Without blindness, this difference

measures biochemical effectiveness plus the psychological impact of knowing one is receiving

an active drug rather than an inactive one. Without blindness, how much of the 27.5 percentage

point improvement is due to biochemistry? Who knows? If not much, then how can one honestly

recommend drug C?

Of course, it is easy to say, “I will have my subjects be blind to treatment;” it might not be so

easy to achieve. For example, if drug C has a nasty side-effect, subjects might infer their treatment

depending on the presence or absence of the side-effect.

I said that our study of Crohn’s disease was double blind. The second blindness involved

the evaluator(s) who determined each subject’s response. An assessment of improvement, either

through examining biological material or asking the subject a series of questions, can be quite

subjective. It is better if the person making the assessment is ignorant—again, a much better word

than blind—of the subject’s treatment.

Not all medical studies can be blind. For example, in a study of breast cancer, the treatments

were mastectomy versus lumpectomy. Obviously, the patient will know which treatment she re-

ceives! If blindness is possible, however, the conventional wisdom is that it’s a good idea.

(This reminds me of an example of what passes for humor among statisticians: A triple blind

study is one in which the subjects are blind to treatment; the evaluators are blind to treatment; and

the statistician analyzing the data is blind to treatment!)

In medical studies, on humans especially, there are always ethical issues. In the early days

of research for a treatment for HIV infection, for example, many people felt that it was highly

unethical to give a placebo to a person who is near death. I am not equipped to help you navigate

such treacherous waters, but I do want to make a comment about our study of Crohn’s disease.

Looking at the data on the 40 persons who received drug C, we see that 60% were improved.

Sixty percent sounds less impressive, however, when you are reminded that 32.5% improved on

the placebo. Thus, a placebo helps us to gauge how wonderful the new therapy actually is.

There is a final feature of the actual study of Crohn’s disease, a feature that makes me admire

the researchers even more. The data in Table 15.3 must have made the researchers happy. Their

proposal—treat Crohn’s disease with drug C—was shown to be correct, based on the criterion of

statistical significance. It would have been easy after collecting their data to write-up their results

and submit them for publication.

Instead, the researchers chose to collect data again, three months after the treatment period

had ended. These follow-up data (modified, again, by me for reasons given earlier) are presented

in Table 15.4. The follow-up data are statistically significant—the exact P-value for > is 0.0203,

details not shown—but the benefits of both drug C and the placebo diminished over time. I am not

a physician, but this suggests that drug C should perhaps be viewed as a maintenance treatment

rather than a one-time treatment.
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Table 15.4: Modified data from the study of Crohn’s disease at follow-up.

Observed Frequencies Row Proportions

Response: Response:

Population S F Total S F Total

Drug C 15 25 40 0.375 0.625 1.000

Placebo 6 34 40 0.150 0.850 1.000

Total 21 59 80

15.3.2 Assumptions, Revisited

In this brief subsection I will examine the WTP assumption for both the Dating study and our study

of Crohn’s disease.

From all I have read, heard and observed, the University of Wisconsin–Madison has a strong

Department of Psychology. Thus, please do not interpret what follows as a criticism.

I used the Dating study in my in-person classes for almost 20 years. My students seem to have

felt that it is a fun study. We discussed how the data were collected at Madison; what follows is

based on what my students told me over the years.

Psychology 201, Introduction to Psychology, is a very popular undergraduate course. Students

tended to take my course during the junior or senior year. Every semester, a strong majority of

my students had finished or were currently enrolled in Psychology 201; a strong majority of those

students had taken it during their first year on campus. Obviously, I had no access to students who

took Psychology 201 during, for example, their last semester on campus unless, of course, they

also took my class during their last semester on campus. Despite the caveat implied above, it is

most likely accurate to say that a majority of students in Psychology 201 take it during their first

year on campus.

On the first day of lecture in Psychology 201 the instructor draws a Normal curve on the

board—Normal curves are big in psychology—similar to the one I present to you in Figure 15.1.

As I have done in this figure, the instructor divides the curve into five regions, with a grade assigned

to each region. The instructor tells the class that this curve represents the distribution of final grades

in the class: equal numbers of A’s and F’s; equal numbers of B’s and D’s; C the most common

grade; and A and F tied for rarest grade. This presentation, I have been told, really gets the students’

attention! Having been thus psychologically prepared, the students are then told how to avoid this

curve: sign-up for extra credit. After class they race into the hallway outside the lecture hall to

enroll as a subject in one or more research studies. Including, once upon a time, the Dating study.

Again, let me emphasize that I am not being critical of this method of recruiting subjects;

chemists need beakers, microscopes and chemicals; psychologists need subjects. In addition, I

suspect that the experience of being a subject is an invaluable part of one’s education.

The point of the above is the following: First year men are almost certainly overrepresented

in the group of 107 Wisconsin men in the Dating study. Does this matter? Should it affect our

willingness to make the WTP assumption?

I polled my students over the years, and while there was some disagreement, a solid majority
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Figure 15.1: The promised (threatened?) distribution of grades in Psychology 201.
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believed that first year men are much more likely than other men to be successes. Something

about the excitement and newness of being on campus. I suspect that you have much better direct

knowledge of young men on campus; thus, I will end my speculations. Except to say that if my

students are correct, then the 56% success rate among Wisconsin men in Table 15.2 is likely to be

an overestimate of the true p1 for all Wisconsin men.

I have no idea how the men from Texas A & M were selected for the Dating study. Perhaps

at Texas A & M, the first year of study is devoted to farming and/or military activities—after

all, its original name is the Agricultural and Mechanical College of Texas with an education that

consisted of agricultural and military techniques. (Texas A & M is a fine modern university with a

very strong Statistics Department.)

I will return to these issues surrounding the Dating study later in this chapter when we consider

Simpson’s Paradox.

Let’s turn our attention now to our study of Crohn’s disease. Researchers in such studies don’t

even try to obtain a random sample of subjects for study. Here are some reasons why:

1. There does not exist a listing of all persons in the United States with Crohn’s disease. If

there was such a list. it would be inaccurate soon after it is created.

2. If there was a listing of the population, it would be easy to select 80 persons at random,

but these subjects would be scattered across the country and we could not force them to go

through the inconvenience of being in our study.

3. Our study of Crohn’s disease was performed to determine whether or not drug C has any

benefit. Thus, we would not want to spend a huge amount of money and effort to obtain a

sample that is nearly random, only to find that the drug is ineffective.

Now I am going to tell you a really nice feature of our study of Crohn’s disease, a feature that

indeed is present in all of our experimental studies.
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If you decide to make the WTP assumption, then you can conclude that drug C is superior to

the placebo, overall, for the entire population of persons suffering from Crohn’s disease. You can

even use the confidence interval to proclaim how much better drug C is than the placebo.

If, however, you decide not to make the WTP assumption, then you can revert to a Part I

analysis of the Skeptic’s Argument. The P-value for the population-based inference is the same as

the P-value for the randomization-based inference. This is the nice feature: for an experimental

study we always have a valid Part I analysis; if we are willing to make the WTP assumption, our

analysis becomes richer and more useful, at the risk of being less valid if, indeed, our belief in

WTP is seriously misguided.

15.4 Bernoulli Trials

In the previous section, I presented two of the promised four types of studies, namely the studies—

observational or experimental—on finite populations. In this section I will tell you about observa-

tional and experimental studies on Bernoulli trials.

The distinction between observational and experimental studies with Bernoulli trials confuses

many people. It’s a good indicator of whether somebody thinks like a mathematician or a scientist.

Mathematicians think as follows: Given that we assume we have two sequences of Bernoulli

trials, both p1 and p2 are constant and there is no memory. Thus, one can prove (and they are

correct on this) that there is no reason to randomize.

Scientists think as follows: In a real problem we can never be certain that we have Bernoulli

trials and frequently we have serious doubts about it. As a result, if we can randomize, it adds

another level of validity to our findings, similar to what I stated at the end of the last section when

discussing our study of Crohn’s disease.

The good news is that Formula 15.3 on page 358, our earlier confidence interval estimate of

p1 − p2, is valid in this section too. In addition, the Fisher’s test website gives exact P-values.

Alternatively, you may use the N(0,1) curve to obtain approximate P-values, using the rules given

on page 359 and the observed value of the test statistic, z, given in Equation 15.6 on page 359.
I will begin with an example of an experimental study on Bernoulli trials.

Example 15.3 (Clyde’s study of 3-point shooting.) For his project for my class, former star col-

lege basketball player, Arnold (Clyde) Gaines studied his ability to shoot baskets. He decided to

perform a balanced CRD with a total of n = 100 shots. His treatments were the locations of the

attempted shot, both behind the three-point line. Treatment 1 was shooting from the front of the

basket and treatment 2 was shooting from the left corner of the court.

Clyde’s data are in Table 15.5. First, I note, descriptively, that Clyde’s performance was almost

identical from the two locations. Using Fisher’s test, the exact P-values are: 0.5000 for >; 0.6577

for <; and 1 for 6=. The confidence interval, however, provides an interesting insight.

The 95% confidence interval estimate of p1 − p2 is

(0.42− 0.40)± 1.96
√

(0.42)(0.58)/50 + (0.40)(0.60)/50 = 0.02± 0.19 = [−0.17, 0.21].
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Table 15.5: Data from Clyde’s Three-point basket study.

Observed Frequencies Row Proportions

Population Basket Miss Total Basket Miss Total

Front 21 29 50 0.42 0.58 1.00

Left Corner 20 30 50 0.40 0.60 1.00

Total 41 59 100

Table 15.6: Data from the High-temperature forecast study.

Counts Row Proportions

Population S F Total S F Total

Spring 46 43 89 0.517 0.483 1.00

Summer 50 39 89 0.562 0.438 1.00

Total 96 82 178

Let’s examine this interval briefly. Unlike our intervals for the Dating and Crohn’s data, this

interval includes zero. It also includes both negative and positive numbers. I label such an interval

inconclusive because it states that p1 might be less than, equal to or greater than p2. Next, I look
at the endpoints. The upper bound, 0.21, tells me that p1 might be as much as 21 percentage points

larger than p2. The lower bound,−0.17, tells me that p1 might be as much as 17 percentage points

smaller than p2.
This interval is so wide that, in my opinion, it has no practical value. Here is what I mean.

Based on my expertise on basketball, I would be amazed if the two p’s for a highly skilled basket-
ball player differed by more than 0.15. (Feel free to disagree with me.) As a result, this confidence

interval tells me less than what I ‘knew’ before the data were collected. Clearly, to study this

problem one needs many more than n = 100 shots. (We would reach the same conclusion by

performing a power analysis, but I won’t bother you with the details.)

Next, we have an example of an observational study on Bernoulli trials. Having lived in

Michigan or Wisconsin my entire life, I had noted that weather seems to be less predictable in

spring than in summer. In 1988, I collected some data to investigate this issue.

Example 15.4 (High temperature prediction in Madison, Wisconsin.) Every day, the morning

Madison newspaper would print a predicted high temperature for that day and the actual high

for the previous day. Using these data over time, one could evaluate how well the predictions

performed. I arbitrarily decided that a predicted high that came within two degrees of the actual

high was a success and all other predictions were failures. Thus, for example, if the predicted high

was 60 degrees; then an actual high between 58 and 62 degrees, inclusive, would be a success;

any other actual high would be a failure.

Table 15.6 presents the data that I collected. The summer predictions were better (descriptively),

366



but not by much. I found this surprising. My choice of alternative is <, which has exact P-value

equal to 0.3260. The other exact P-values are 0.7739 for >; and 0.6520 for 6=.

The 95% confidence interval estimate of p1 − p2 is

(0.517− 0.562)± 1.96
√

(0.517)(0.483)/89 + (0.562)(0.438)/89 =

−0.045± 0.146 = [−0.191, 0.101].

I am not an expert at weather forecasting; thus, I cannot really judge whether this confidence

interval is useful scientifically, but I doubt that it is because it is so wide.

15.5 Simpson’s Paradox

The most important difference between an observational and experimental study is in how we

interpret our findings. Let us compare and contrast the Dating study and the study of Crohn’s

disease.

In both studies we concluded that the populations had different p’s. Of course these conclusions
could be wrong, but let’s ignore that issue for now. We have concluded that the populations are

different, so it is natural to wonder why are they different?

In the Dating study we don’t know why. Let me be clear. We have concluded that Wisconsin

men and Texas men have very different attitudes, but we don’t know why. Is it because the groups

differ on:

Academic major? Ethnicity? Religion? Liberalism/Conservatism? Wealth?

We don’t know why. Indeed, perhaps the important differences are in the womenmentioned in the

question. Perhaps being asked out by a Texas woman is very different from being asked out by a

Wisconsin woman.

The above comments (not all of which are silly!) are examples of what is true for any observa-

tional study. We can conclude that the two populations are different, but we don’t know why.

Let us contrast the above with the situation for our study of Crohn’s disease. In this study, the

two populations consist of exactly the same subjects! Thus, the only possible explanation for the

difference between populations is that drug C is better than the placebo. (This is a good time to

remember that our conclusion that the populations differ could be wrong.)

Simpson’s Paradox (no, not named for Homer, Marge, Bart, Maggie, Lisa or even O.J.) pro-

vides another, more concrete, way to look at this same issue.

Years ago, I worked as an expert witness in several cases of workplace discrimination. As a

result of this work, I was invited to make a brief presentation at a continuing education workshop

for State of Wisconsin administrative judges. (In Wisconsin, the norm was to have workplace

discrimination cases settled administratively rather than by a jury of citizens.) Below I am going to

show you what I presented in my 10 minutes. Note that my analysis below is totally descriptive, not

inferential. For the current discussion, I don’t really care whether the data come from a population

and, if they do, whether or not the WTP assumption seems reasonable. I simply want to show you

possible hidden patterns in data.
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Table 15.7: Hypothetical data from an observational study. The study factor is the sex of the

employee. The response is whether the employee was released (lost job) or not.

Released?

Sex Yes No Total p̂
Female 60 40 100 0.60

Male 40 60 100 0.40

Total 100 100 200

Table 15.8: Case 1: Data from Table 15.7 with a background factor—job type—added.

Job A Job B

Released? Released?

Sex Yes No Total p̂ Sex Yes No Total p̂
Female 30 20 50 0.60 Female 30 20 50 0.60

Male 20 30 50 0.40 Male 20 30 50 0.40

Total 50 50 100 50 50 100

These are totally and extremely hypothetical data. A company with 200 employees decides

it must reduce its work force by one-half. Table 15.7 reveals the relationship between the sex of

the worker and the employment outcome. The table shows that the proportion of women who were

released was 20 percentage points larger than the proportion of men who were released. This is

an observational study—the researcher did not assign, say, Sally to be a woman by randomization.

This means that we do not know why there is a difference. In particular, it would be presumptuous

to say it is because of discrimination. (Aside: There is a legal definition of discrimination and I

found that there is one thing lawyers really hate: When statisticians think they know the law.)

The idea we will pursue is: What else do we know about these employees? In particular, do

we know anything other than their sex? Let us assume that we know their job type and that, for

simplicity, there are only two job types, denoted by A and B. We might decide to incorporate the

job type into our description of the data. I will show you four possibilities for what could occur.

As will be obvious, this is not an exhaustive listing of possibilities.

My first possibility is shown in Table 15.8; it shows that bringing job type into the analysis

might have no effect whatsoever. The proportion in each sex/job type combination matches exactly

what we had in Table 15.7.

Henceforth, we will refer to our original table as the collapsed table and tables such as the two

in Table 15.8 as the component tables.

Before we move on to Case 2, let me say something about the numbers in Table 15.8. Yes,

I made up these numbers, but I was not free to make them any numbers I might want; I had a

major constraint. Note, for example, that 30 females were released from Job A and 30 females

were released from Job B, giving us a total of 60 females released, which matches exactly the
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Table 15.9: Case 2: Hypothetical observational data with a background factor—job type—added.

Job A Job B

Released? Released?

Sex Yes No Total p̂ Sex Yes No Total p̂
Female 30 10 40 0.75 Female 30 30 60 0.50

Male 30 30 60 0.50 Male 10 30 40 0.25

Total 60 40 100 40 60 100

Table 15.10: Case 3: Hypothetical observational data with a background factor—job type—added.

Job A Job B

Released? Released?

Sex Yes No Total p̂ Sex Yes No Total p̂
Female 60 15 75 0.80 Female 0 25 25 0.00

Male 40 10 50 0.80 Male 0 50 50 0.00

Total 100 25 125 0 75 75

number of females released by the company, as reported in Table 15.7. In fact, for every position

in the ubiquitous 2 × 2 contingency table, Table 15.1, the sum of the numbers in the component

tables must equal the number in the collapsed table, such as our 30 + 30 = 60 for the numbers

in the ‘a’ position. I summarize this fact by saying that the collapsed and component tables must

be consistent. I hope that the terminology makes this easy to remember: if you combine the

component tables, you get the collapsed table; if you break the collapsed table down—remember,

you don’t lose any data—the result is the component tables.

My next possibility is in Table 15.9. In this Case 2 we find that job type does matter and it

matters in the sense that women are doing even worse than they are doing in the collapsed table—

the difference, p̂1 − p̂2, equals 0.25 in both job types, compared to 0.20 in the collapsed table. Our

next possibility, Case 3 in Table 15.10, shows that if we incorporate job type into the description,

the difference between the experiences of the sexes could disappear.

Finally, Case 4 in Table 15.11 shows that if we incorporate job type into the description, the

result can be quite remarkable. In the collapsed table, p̂1 > p̂2, but this relationship is reversed, to
p̂1 < p̂2, in all (both) component tables. This reversal is called Simpson’s Paradox.

Let’s take a moment and catch our breaths. I have shown you four possible examples (Cases 1–

4) of what could happen if we incorporate a background factor into an analysis. My creation of the

component tables is sometimes referred to as adjusting for a background factor or accounting

for a background factor. It is instructive, at this time, to look at Cases 1 and 4 in detail.

We have a response (released or not), study factor (sex) and background factor (job type). In

the collapsed table we found an association between response and study factor and in Case 1 the

association remained unchanged when we took into account the background factor, job type. To
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Table 15.11: Case 4: Simpson’s Paradox: Hypothetical observational data with a background

factor—job type—added.

Job A Job B

Released? Released?

Sex Yes No Total p̂ Sex Yes No Total p̂
Female 56 24 80 0.70 Female 4 16 20 0.20

Male 16 4 20 0.80 Male 24 56 80 0.30

Total 72 28 100 28 72 100

Table 15.12: Relationships of background factor (job type) with study factor (sex) and background

factor (job type) with response (released or not) in Case 1.

Job Job

Sex A B Total p̂ Released? A B Total p̂
Female 50 50 100 0.50 Yes 50 50 100 0.50

Male 50 50 100 0.50 No 50 50 100 0.50

Total 100 100 200 Total 100 100 200

see why this is so, examine Table 15.12. We see that the background factor has no association (the

row p̂’s are identical) with either the study factor or the response. As a result, incorporating it into

the analysis has no effect.

By contrast, in Case 4, putting the background factor into the analysis had a huge impact. We

can see why in Table 15.13. In this case, the background factor is strongly associated with both

the study factor (sex) and the response (outcome); in particular, women are disproportionately in

Job A and persons in Job A are disproportionately released. It can be shown that something like

Cases 2–4 can occur only if the background factor is associated with both the study factor and

the response. Here is where randomization becomes relevant. If subjects are assigned to study

factor level by randomization, then there should be either no or only a weak association between

study factor and background factor. With randomization, it would be extremely unlikely to obtain

Table 15.13: Relationships of background factor (job type) with study factor (sex) and background

factor (job type) with response (released or not) in Case 4.

Job Job

Sex A B Total p̂ Released? A B Total p̂
Female 80 20 100 0.80 Yes 72 28 100 0.72

Male 20 80 100 0.20 No 28 72 100 0.28

Total 100 100 200 100 100 200
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an association between sex (study factor) and job (background factor) as strong as (or stronger

than) the one in Table 15.13.

Thus, with randomization, the message in the collapsed table will be pretty much the same

as the message in any of the component tables; well, unless randomization yields a particularly

bizarre—and unlikely—assignment.

Let’s look at Simpson’s Paradox and the Dating study. First, I need a candidate for my back-

ground factor. Given the opinions of my students, I will use the man’s year in school. All of the

computations are easier if we have only two levels for the background factor; thus, I will specify

two levels. It is natural for you to wonder:

Hey, Bob. Why don’t you look at the data? Perhaps three or four levels would be

better.

This is a fair point, except that I don’t have any data to look at. Years ago, I phoned one of

the researchers who had conducted the Dating study—a very talented person I had helped in 1976

when she was doing research for her M.S. degree—and, after explaining what I wanted to do, asked

if she could provide me with some background data. She told me, “We already looked at that.” She

did kindly give me permission to include her study in a textbook I wrote. While writing the text, it

was my experience that nasty researchers would not let me use their data; kindly researchers let me

use their published data; no researchers provided me with additional data. Deservedly or not—my

guess is deservedly—there seems to be a fear among researchers that statisticians like to criticize

published work by finding other ways to analyze it. (Indeed, I am guilty of this charge, as shown

in the example I present on free throws in the next subsection.)

In any event, I will look at the Dating study because it is a real study with which you are famil-

iar, but all aspects of the component tables will be hypothetical. In addition to having hypothetical

component tables, I will modify the data from the Dating study to make the arithmetic much more

palatable. The modified data are presented in Table 15.14. The modified data has three changes:

1. I changed n1 from 107 to 100.

2. I changed p̂1 from 0.56 to 0.55.

3. I changed p̂2 from 0.31 to 0.30.

I hope that you will agree that these modifications do not distort the basic message in the actual

Dating study data, Table 15.2 on page 356.

My background factor is years on campus, with levels: less than one (i.e., a first year student)

and one or more. My hypothetical component tables are given in Table 15.15. In this table, we see

that if we adjust for years on campus, the two schools are exactly the same! Note that I am not

claiming that the two schools are the same; I manufactured the data in Table 15.15. I am saying

that it could be the case that the two schools are the same.

The moral is as follows. Whenever you see a pattern in an observational study, be aware that the

following is possible: If one adjusts for a background factor, the pattern could become stronger; it

could be unchanged; it could become weaker while preserving its direction; it could disappear; or

it could be reversed. The last of these possibilities is referred to as Simpson’s Paradox.
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Table 15.14: Modified data from the Dating study.

Observed Frequencies Row Proportions

Prefer Women to: Prefer Women to:

Population Ask Other Total Ask Other Total

Wisconsin 55 45 100 0.55 0.45 1.00

Texas A&M 30 70 100 0.30 0.70 1.00

Total 85 115 200

Table 15.15: Hypothetical component tables for the modified Dating study data presented in Ta-

ble 15.14.

Less than 1 year on campus At least 1 year on campus

Response Response

School Ask Other Total p̂ School Ask Other Total p̂
Wisconsin 49 21 70 0.70 Wisconsin 6 24 30 0.20

Texas A&M 14 6 20 0.70 Texas A&M 16 64 80 0.20

Total 63 27 90 Total 22 88 110

15.5.1 Simpson’s Paradox and Basketball

When I gave my presentation to the administrative judges, they seemed quite interested in the

four possible cases I gave them for what could occur when one adjusts/accounts for a background

factor. I told them, as I will remind you, that my Cases 1–4 do not provide an exhaustive list of

possibilities, they are simply four examples of the possibilities.

An audience member asked me, “Which case occurred in the court case on which you were

working?” I reminded him that the data are totally hypothetical.

Another audience member asked, “OK, which of the four cases is the most likely to occur in

practice?” This is a trickier question. If you are really bad (nicer than saying stupid) at selecting

background factors, then you will continually pick background factors that are not associated with

the response. As a result, as I stated above, controlling for the background factor will result in

Case 1 or something very similar to it. If you pick background factors that are associated with

the response, then it all depends on whether the background factor is associated with the study

factor. If it is, then something interesting might happen when you create the component tables.

I will note, however, that I only occasionally see reports of Simpson’s Paradox occurring. Does

this mean it is rare or that people rarely look for it? In this subsection I will tell you a story of my

finding Simpson’s Paradox in some data on basketball free throws.

My description below is a dramatization of some published research; see [3]. It will suffice, I

hope, for the goals of this course.

Researchers surveyed a collection of basketball fans, asking the question:

A basketball player in a game is rewarded two free throw attempts. Do you agree or
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disagree with the following statement?

The player’s chance of making his second free throw is greater if he made his first free

throw than if he missed his first free throw.

The researchers reported that a large majority of the fans agreed with the statement. The re-

searchers then claimed to have data that showed the fans were wrong and went so far as to say that,

“The fans see patterns where none exists.” My initial reaction was that the researchers’ statement

was rather rude. I do not call someone delusional just because we disagree! You can proba-

bly imagine my happiness when I demonstrated—well, at least in my opinion, you can judge for

yourself—that the fans might have been accurately reporting—albeit misinterpreting—a pattern

they had seen.

The researchers’ method was, to me, quite curious. They reported data on nine players and

because their analysis of the nine players showed no pattern, they concluded that the fans could

not possibly have seen a pattern! As if there are only nine basketball players in the world! (The

researchers in question actually have had very illustrious careers—much more than I have had,

for example—and I don’t entirely fault their work. Indeed, the problem is that their preliminary

analysis should not have been published as it was; this was definitely a case of the peer review

system failing—hardly an unusual occurrence!)

The good news is that I am not going to show you data on nine players; the data from two of

the players will suffice.

Table 15.16 presents the data we will analyze. There is a great deal of information in this

table and I will, therefore, spend some time explaining it. The data come from two NBA seasons

combined, 1980–81 and 1981–82. Larry Bird and Rick Robey were two NBA players. Let’s look

at the first set of tables in Table 15.16, which presents data from Larry Bird. On 338 occasions in

NBA games, Bird attempted a pair of free throws. In the next chapter, we will see how to analyze

Bird’s data as paired data, but it can also be fit into our model of independent Bernoulli trials.

In particular, we will view the outcome of the second shot as the response and the outcome of the

first shot as the determinant of the population. In particular, my model is that if he makes the first

free throw, then the second free throw comes from the first Bernoulli trial process, with success

probability equal to p1. If he misses the first free throw, then the second free throw comes from the

second Bernoulli trial process, with success probability equal to p2. This is clearly the model the

researchers had in mind; the statement they gave to the fans, in my symbols, is the statement that

p1 > p2.
We see that the data for both Larry Bird and Rick Robey contraindicates the majority fan belief;

i.e., p̂1 < p̂2 for both men. We could perform Fisher’s test for either man’s data, but the smallest

of the six P-values (three alternatives for each man) is 0.4020—details not given, trust me on this

or use the website to verify my claim. Thus, for these two men, there is only weak evidence of the

first shot’s outcome affecting the second shot. The researchers’ conclusion—and it’s valid—is that

the data on either Bird or Robey, as well as their seven other players, contradicts the majority fan

opinion in their survey.

If one focuses on row proportions and P-values for Fisher’s tests, one might overlook the most

striking feature in the data: Bird was much better than Robey at shooting free throws! I had a

clever idea—no false modesty for me—and it led to a publication. I realized that we could “Do
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Table 15.16: Observed frequencies and row proportions for pairs of free throws shot by Larry Bird

and Rick Robey, and the collapsed table.

Larry Bird

Observed Frequencies Row Proportions

First Second Shot First Second Shot

Shot: Hit Miss Total Shot: Hit Miss Total

Hit 251 34 285 Hit 0.881 0.119 1.000

Miss 48 5 53 Miss 0.906 0.094 1.000

Total 299 39 338

Rick Robey

Observed Frequencies Row Proportions

First Second Shot First Second Shot

Shot: Hit Miss Total Shot: Hit Miss Total

Hit 54 37 91 Hit 0.593 0.407 1.000

Miss 49 31 80 Miss 0.612 0.388 1.000

Total 103 68 171

Collapsed Table

Observed Frequencies Row Proportions

First Second Shot First Second Shot

Shot: Hit Miss Total Shot: Hit Miss Total

Hit 305 71 376 Hit 0.811 0.189 1.000

Miss 97 36 133 Miss 0.729 0.271 1.000

Total 402 107 509
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Simpson’s Paradox in reverse.” In particular, I decided to view Bird’s and Robey’s tables as my

component tables and I threw them together to create the collapsed table, which is the bottom table

in Table 15.16.

In the collapsed table, p̂1 = 0.811 is much larger than p̂2 = 0.729. By contrast, in both

component tables, p̂1 is about 2 percentage points smaller than p̂2. For these data, Simpson’s

Paradox is occurring! Let’s take a few minutes to see why it is occurring. In the collapsed table,

we don’t know who is shooting free throws. Given that the first shot is a hit, the probability that

Bird is shooting increases, while if the first shot is a miss, the probability that Robey is shooting

increases. (I ask you to trust these intuitive statements; they can be made rigorous, but I don’t want

that diversion.) Thus, the pattern in the collapsed table is due to the difference in ability between

Bird and Robey; it is not because one shot influences the next.

In my paper, I asked the following question:

Which of the following scenarios seems more reasonable?

1. A basketball fan has in his/her brain an individual 2 × 2 table for every one of

the thousands of players that he/she has ever viewed.

2. A basketball fan has in his/her brain one 2×2 table, collapsed over all the players
that he/she has ever viewed.

I opined that only the second scenario is reasonable. My conclusions were:

• Researchers should not assume that the data they analyze are the data that are available to

everyone else.

• For the current study, instead of scolding people for seeing patterns that don’t exist, it is

better to teach them that a pattern one finds in a collapsed table is not necessarily the pattern

one would find in component tables.

I hope that if you become a creator of research results, you will always remember this first conclu-

sion; I believe that it is very important.

A side note on something that turned out to be humorous, but easily could have turned out to

be tragic. (Admittedly, only if you view having a paper unfairly rejected as tragic.) The referee for

my paper clearly was annoyed that I had found a flaw in the researchers’ conclusion because he/she

said that my paper should be rejected unless and until I presented a theory on the operation of the

brain that would establish that one table is easier to remember than thousands of tables. Some

associate editors, no doubt, are lazy and rarely contradict their referees; I was fortunate to have an

associate editor who—with knowledge of the identity of the referee—wrote to me, “I don’t think

you could ever make this referee happy. Your paper is interesting and I am going to publish it.”
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15.6 Summary

In this chapter and the next we study population-based inference for studies that yield data in the

form of a 2 × 2 contingency table. In this chapter we focus on the so-called independent random

samples type of data.

There are four types of studies considered in this chapter:

1. Observational studies to compare two finite populations;

2. Experimental studies to compare two finite populations;

3. Observational studies to compare two sequences of Bernoulli trials; and

4. Experimental studies to compare two sequences of Bernoulli trials.

First, we consider the assumptions behind the data. In the first type listed above, we assume

that we have independent random samples from the two finite populations. For an experimental

study on finite populations, we begin with one superpopulation and two treatments. With these

ingredients, we define the first [second] finite population to be the result of giving treatment 1

[2] to every member of the superpopulation. We select a random sample of n members from the

superpopulation to be the subjects in the study. The n selected members are divided into two

groups by the process of randomization. The members in the first [second] group are assigned

to treatment 1 [2] and, hence, they become the sample from the first [second] population. The

resultant two samples are not quite independent, but if the size of the superpopulation is much

larger than n, the dependence can be safely ignored.

For an observational study on Bernoulli trials, we simply observe n1 trials from the first process

and n2 trials from the second process. As an example in these notes, the first [second] process is

temperature forecasting in the spring [summer]. For an experimental study on Bernoulli trials, we

begin with a plan to observe n trials, each of which can be assigned to either process of interest.

The assignment is made by randomization. As an example in these notes, a basketball player’s

trials consisted of 100 shots. Shots were assigned to treatments (different processes, representing

different locations) by randomization.

Whatever type of study we have, we define p1 to be the proportion [probability] of success in

the first population [Bernoulli trial process] and we define p2 to be the proportion [probability] of

success in the second population [Bernoulli trial process].

All four types of studies have the same formula for the confidence interval estimate of p1 − p2.
It is given in Formula 15.3 and is reproduced below:

(p̂1 − p̂2)± z∗
√

(p̂1q̂1)/n1 + (p̂2q̂2)/n2.

For a test of hypotheses the null hypothesis is H0: p1 = p2. There are three choices for the

alternative:

H1: p1 > p2; H1: p1 < p2; orH1: p1 6= p2.

We have two methods for finding the P-value of a set of data and a specific alternative.
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First, the Fisher’s test website can be used to obtain an exact P-value. Second, an approximate

P-value can be obtained by using the N(0,1) curve. For this second method, the observed value of

the test statistic is presented in Formula 15.6 and is reproduced below:

z =
p̂1 − p̂2

√

(p̂q̂)(1/n1 + 1/n2)

In this formula,

p̂ = (x+ y)/(n1 + n2),

the total number of successes in the two samples divided by the sum of the sample sizes. Also,

q̂ = 1− p̂. The rules for finding the approximate P-value are given on page 359.

I introduce the placebo effect and the idea of blindness in a study.

With an observational study, it can be instructive to explore the possible impact of a background

factor. We view our original data as the collapsed table which can be subdivided into component

tables, with one component table for each value of the background factor. The result of creating

component tables can be very interesting or a waste of time. If the pattern in the data in the

collapsed table is reversed in every component table, then we say that Simpson’s Paradox is

occurring.
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Table 15.17: Response to question 1 by sex for the 1986 Wisconsin survey of licensed drivers. See

Practice Problem 1 for the wording of question 1 and the definition of a success.

Counts Row Proportions

Response Response

Sex S F Total Gender: S F Total

Female 409 329 738 Female 0.554 0.446 1.000

Male 349 392 741 Male 0.471 0.529 1.000

Total 758 721 1479

15.7 Practice Problems

1. We will analyze some data from the 1986 Wisconsin survey of licensed drivers. Question 1

on the survey asked,

How serious a problem do you think drunk driving is in Wisconsin?

There were four possible responses: extremely serious; very serious; somewhat serious;

and not very serious. I decided to label the first of these responses—extremely serious—a

success and any of the others a failure. Each subject also was asked to self-report his/her

sex. A total of 1,479 subjects answered both of these questions, plus a third question, see

problem 2. A total of 210 subjects failed to answer at least one of these three questions; I

will ignore these 210 subjects.

The data are presented in Table 15.17. I will view these data as independent random samples

from two finite populations; the first population being female drivers and the second being

male drivers. If this seems suspicious to you, I will discuss this issue in Chapter 16.

(a) Calculate the 95% confidence interval estimate of p1 − p2. Comment.

(b) Find the exact P-value for the alternative 6=. Comment.

(c) Find the approximate P-value for the alternative 6=. Comment.

2. Refer to problem 1. Each of the 1,479 subjects also self-reported his/her category of con-

sumption of alcoholic beverages, which we coded to: light drinker; moderate drinker; and

heavy drinker. By the way, light drinker includes self-reported non-drinkers. I used these

three coded responses as my three levels of a background factor. The resultant three compo-

nent tables are presented in Table 15.18.

(a) If you fix the population—either female or male—what happens to p̂ as you move from

one component table to another?

(b) If you create 2× 3 table for which rows are sex and columns are self-reported drinking

behavior, what will you find? Note that you don’t need to create this table; you should

be able to see the pattern from Table 15.18.
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Table 15.18: Three component tables for the data in Table 15.17.

Light Drinkers

Observed Frequencies Row Proportions

Response Response

Gender: S F Total Gender: S F Total

Female 234 133 367 Female 0.638 0.362 1.000

Male 151 100 251 Male 0.602 0.398 1.000

Total 385 233 618

Moderate Drinkers

Observed Frequencies Row Proportions

Response Response

Gender: S F Total Gender: S F Total

Female 133 142 275 Female 0.484 0.516 1.000

Male 115 146 261 Male 0.441 0.559 1.000

Total 248 288 536

Heavy Drinkers

Observed Frequencies Row Proportions

Response Response

Gender: S F Total Gender: S F Total

Female 42 54 96 Female 0.438 0.562 1.000

Male 83 146 229 Male 0.362 0.638 1.000

Total 125 200 325
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(c) In the collapsed table, p̂1 − p̂2 = 0.083. Calculate this difference for each of the

component tables. Comment.

(d) In each of the component tables, find the exact P-value for the alternative 6=; thus, I am

asking you to find three P-values. Comment.

(e) Write a brief summary of what you have learned in these first two problems.

3. In Example 12.1, I introduced you to my friend Bert’s playing mahjong solitaire online. I

will use Bert’s data to investigate whether he had Bernoulli trials.

Let’s model his first [second] 50 games as Bernoulli trials with success rate p1 [p2]. I want
to test the null hypothesis that p1 = p2; if this hypothesis is true, then he has the same p for

all 100 games. Thus, in the context of assuming independence, this is a test of whether Bert

has Bernoulli trials.

Recall that I reported that Bert won 16 of his first 50 games and 13 of his second 50 games.

Find the exact P-value for the alternative 6=.

4. An observational study yields the following collapsed table.

Group S F Total

1 99 231 330

2 86 244 330

Total 185 475 660

Below are two component tables for these data.

Subgroup A Subgroup B

Group S F Total Group S F Total

1 24 96 120 1 75 135 210

2 cA 225 2 cB 105

Total 345 Total 315

Complete these tables so that Simpson’s Paradox is occurring or explain why Simpson’s

Paradox cannot occur for these data. You must present computations to justify your answer.

5. An observational study yields the following collapsed table.

Group S F Total

1 180 320 500

2 117 183 300

Total 297 503 800

Below are two component tables for these data.
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Subgroup A Subgroup B

Group S F Tot Group S F Tot

1 130 130 260 1 50 190 240

2 cA 180 2 cB 120

Total 440 Total 360

Complete these tables so that Simpson’s Paradox is occurring or explain why Simpson’s

Paradox cannot occur for these data. You must present computations to justify your answer.

15.8 Solutions to Practice Problems

1. (a) We will use Formula 15.3 with z∗ = 1.96. The values of the two p̂’s, the two q̂’s, n1

and n2 are given in Table 15.17. Substituting these values into Formula 15.3 gives:

(0.554− 0.471)± 1.96
√

(0.554)(0.446)/738 + (0.471)(0.529)/741 =

0.083± 0.051 = [0.032, 0.134].

The interval does not include zero; I conclude, first, that p1 is larger than p2. More

precisely, I conclude that the proportion of female drivers who are successes is be-

tween 3.2 and 13.4 percentage points larger than the proportion of male drivers who

are successes.

(b) Using the Fisher’s test website, I find that the exact P-value for the alternative 6= is

0.0015. The data are highly statistically significant. There is very strong evidence that

the female proportion is larger than the male proportion.

(c) For the approximate test, I need to calculate

p̂ = (409 + 349)/(738 + 741) = 0.513.

The observed value of the test statistic is given in Formula 15.6. Substituting into this

formula, we obtain:

z =
0.083

√

0.513(0.487)(1/738 + 1/741)
=

0.083

0.0260
= 3.192.

From a Normal curve area website calculator, I find that the area under the N(0,1) curve

to the right of 3.192 equals 0.0007. Doubling this, we get 0.0014 as the approximate

P-value. The approximate and exact P-values are almost identical.

2. (a) For both females and males, as the degree of drinking increases, the proportion of

successes declines.

(b) It is clear that men have substantially higher levels of drinking alcohol than women.

381



(c) By subtraction, the difference is 0.036 for the light drinkers; 0.043 for the moderate

drinkers; and 0.076 for the heavy drinkers. The difference is positive in each component

table; thus, we are not close to having Simpson’s Paradox. The difference, however, is

closer to zero in each component table than it is in the collapsed table.

(d) For the light drinkers, the P-value is 0.3982; for the moderate drinkers, the P-value

is 0.3409; and for the heavy drinkers, the P-value is 0.2136. None of these P-values

approaches statistical significance.

(e) For each category of drinking, women have a higher success rate than men, but none

of the data approaches statistical significance. (Aside: The direction of the effect is

consistent—women always better than men—and there is a way to combine the tests,

but we won’t cover it in this class. When I did this, I obtained an overall approximate

P-value equal to 0.0784, which is much larger than the P-value for the collapsed table.)

In the collapsed table, women have a much higher success rate than men. I would not

label the collapsed table analysis as wrong. If one simply wants to compare men and

women, then its analysis is valid. Many people, however, myself included, think it’s

important to discover that self-reported drinking frequency is linked to attitude, which

we can see with the component tables.

3. Go to the Fisher’s test website and enter the counts 16, 34, 13 and 37. The resultant two-sided

P-value is 0.6598. The evidence in support of a changing value of p is very weak.

4. In the collapsed table the two row totals are equal. Thus, it is easy to see that p̂1 > p̂2. So,
we need a reversal, p̂1 < p̂2, in both component tables.

In the A table, this means

cA/225 > 24/120 or cA > 45 or cA ≥ 46.

In the B table, this means

cB/105 > 75/210 or cB > 37.5 or cB ≥ 38.

Consistency requires that cA + cB = 86. There are three ways to satisfy these three condi-

tions: cA = 46 and cB = 40; cA = 47 and cB = 39; and cA = 48 and cB = 38.

5. In the collapsed table

p̂1 = 180/500 = 0.36; p̂2 = 117/300 = 0.39.

Thus, for a reversal we need p̂1 > p̂2 in both component tables.

In the A table, this means

cA/180 < 130/260 or cA < 90 or cA ≤ 89.

In the B table, this means

cB/120 < 50/240 or cB < 25 or cB ≤ 24.
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Consistency requires that cA + cB = 117. It is impossible to satisfy these three conditions

because cA ≤ 89 and cB ≤ 24 imply that

cA + cB ≤ 89 + 24 = 113 < 117.

15.9 Homework Problems

1. Refer to the data in Table 15.18. Consider a data table with the same response, female

moderate drinkers in row 1 and male moderate drinkers in row 2.

(a) Calculate the 90% confidence interval estimate of p1 − p2.

(b) Find the exact P-value for the alternative >.

(c) Find the approximate P-value for the alternative >.

2. Refer to the data in Table 15.18. Consider a data table with the same response, male moderate

drinkers in row 1 and male heavy drinkers in row 2.

(a) Calculate the 90% confidence interval estimate of p1 − p2.

(b) Find the exact P-value for the alternative >.

(c) Find the approximate P-value for the alternative >.

3. An observational study yields the following collapsed table.

Group S F Total

1 113 287 400

2 102 198 300

Total 215 485 700

Below are two component tables for these data.

Subgroup A Subgroup B

Gp S F Total Gp S F Total

1 73 227 300 1 40 60 100

2 cA 100 2 cB 200

Total 400 Total 300

Determine all pairs of values of cA and cB so that Simpson’s Paradox is occurring or explain

why Simpson’s Paradox cannot occur for these data. You must present computations to

justify your answer.

4. An observational study yields the following collapsed table.
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Group S F Total

1 60 40 100

2 c 100

Total 200

Below are two component tables for these data.

Subgroup A Subgroup B

Group S F Total Group S F Total

1 25 25 50 1 35 15 50

2 36 34 70 2 cB 30

Total 61 59 120 Total 80

Determine all pairs of values of c and cB so that Simpson’s Paradox is occurring or explain

why Simpson’s Paradox cannot occur for these data. You must present computations to

justify your answer.
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Chapter 16

One Population with Two Dichotomous

Responses

This chapter focuses on a new idea. Thus far in these notes, a unit (subject, trial) has yielded one

response. In this chapter, we consider situations in which each unit yields two responses, both

dichotomies. Later in these Course Notes we will examine situations in which both responses

are numbers and the mixed situation of one response being a number and the other a dichotomy.

Multi-category responses can be added to the mix, but—with one exception—we won’t have time

for that topic.

Sometimes the examples of this chapter will look very much like our examples of Chapter 15.

Other times, it will be natural to view our two responses as paired data. As a result, you need to

be extra careful as you read through this material.

16.1 Populations: Structure, Notation and Results

A population model for two dichotomous responses can arise for a collection of individuals—

a finite population—or as a mathematical model for a process that generates two dichotomous

responses per trial.

Here are two examples.

1. Consider the population of students at a small college. The two responses are sex with

possible values female and male; and the answer to the following question, with possible

values yes and no.

Do you usually wear corrective lenses when you attend lectures?

2. Recall the data on Larry Bird in Chapter 15, presented in Table 15.16 on page 374. We view

his shooting a pair of free throws as a trial with two responses: the outcome of the first shot

and the outcome of the second shot.

Recall that I treated the Larry Bird data as Chapter 15 data; i.e., independent random samples from

two Bernoulli trials processes. Later in this chapter we will view his results as paired data. Both
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perspectives are valid, but it will require some care for you to be comfortable with such moving

between models. Also, my example of sex and lenses can be viewed as Chapter 15 data, but I

would find it awkward to refer to it as paired data.

We begin with some notation. With two responses per unit, sometimes it would be confusing

to speak of successes and failures. Instead, we proceed as follows.

• The first response has possible valuesA andAc. Note thatAc is read A-complement or not-A.

• The second response has possible values B and Bc. Note that Bc is read B-complement or

not-B.

In the above example of a finite population,A could denote female; Ac could denote male; B could

denote the answer ‘yes;’ and Bc could denote the answer ‘no.’ In the above example of trials, A
could denote that the first shot is made; Ac could denote that the first shot is missed; B could

denote that the second shot is made; and Bc could denote that the second shot is missed. In fact,

with data naturally viewed as paired, such as Larry Bird’s shots, it is natural to view A [B] as a

success on the first [second] response and Ac [Bc] as a failure on the first [second] response.

It will be easier if we consider finite populations and trials separately. We will begin with finite

populations.

16.1.1 Finite Populations

Table 16.1 presents our notation for population counts for a finite population. Remember that,

in practice, only Nature would know these numbers. This notation is fairly simple to remember:

all counts are represented by N , with or without subscripts. The symbol N without subscripts

represents the total number of members of the population. AnN with subscripts counts the number

of members of the population with the feature(s) given by the subscripts. For example, NAB is the

number of population members with response values A and B; NAc is the number of population

members with valueAc on the first response; i.e., for this, we don’t care about the second response.

Note also that these guys sum in the obvious way:

NA = NAB +NABc .

In words, if you take the number of population members whose response values are A and B; and

add to it the number of population members whose response values are A and Bc, then you get the

number of population members whose value on the first response is A.
It might help if we have some hypothetical values for the population counts. I put some in

Table 16.2.

If we take the table of population counts and divide each entry by N , we get the table of

population proportions or probabilities—see the discussion in the next paragraph. I do this in

Tables 16.3 and 16.4, for the general notation and our particular hypothetical data.

Now we must face a notational annoyance. Consider the number 0.36 in Table 16.4, derived

from our hypothetical population counts for the sex and lenses study. There are two ways to

interpret this number. First, it is the proportion of the population who have valueA (female) on the
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Table 16.1: The table of population counts.

B Bc Total

A NAB NABc NA

Ac NAcB NAcBc NAc

Total NB NBc N

Table 16.2: Hypothetical population counts for the study of sex and corrective lenses.

Yes (B) No (Bc) Total

Female (A) 360 240 600

Male (Ac) 140 260 400

Total 500 500 1000

Table 16.3: The table of population proportions—lower case p’s with subscripts—or

probabilities—upper case P ’s followed by parentheses.

B Bc Total

A pAB = P (AB) pABc = P (ABc) pA = P (A)
Ac pAcB = P (AcB) pAcBc = P (AcBc) pAc = P (Ac)
Total pB = P (B) pBc = P (Bc) 1

Table 16.4: Hypothetical population proportions or probabilities for the study of sex and corrective

lenses.

Yes (B) No (Bc) Total

Female (A) 0.36 0.24 0.60

Male (Ac) 0.14 0.26 0.40

Total 0.50 0.50 1.00
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first response and valueB (yes) on the second response. From this perspective, it is natural to view

0.36 as pAB because we use lower case p’s for population proportions—with a subscript, if needed,

to clarify which one. But consider our most commonly used chance mechanism when studying

a finite population: Select a member of the population at random. For this chance mechanism it

is natural to view 0.36 as the probability of selecting a person who is female and would answer

‘yes.’ We use upper case ‘P’ to denote the word probability. Hence, it is also natural to write

P (AB) = 0.36.
The point of all this is . . . ? Well, in this chapter pAB = P (AB) (and pA = P (A), and so

on); the one we use will depend on whether we feel it is more natural to talk about proportions or

probabilities.

16.1.2 Conditional Probability

Conditional probability allows us to investigate one of the most basic questions in science: How

do we make use of partial information?

Consider again the hypothetical population presented in Tables 16.2 and 16.4. Consider the

chance mechanism of selecting one person at random from this population. We see that P (A) =
0.60. In words, the probability is 60% that we will select a female. But suppose we are given the

partial information that the person selected answered ‘yes’ to the question. Given this information,

what is the probability the person selected is a female? We write this symbolically as P (A|B); i.e.,
the probability that A will occur given that B occurs. How do we compute it?

We reason as follows. Given that B occurs, we know that the selected person is among the

500 in column B of Table 16.2. Of these 500 persons, reading up the column, we see that 360 are

female. Thus, by direct reasoning P (A|B) = 360/500 = 0.72, which is different than P (A) =
0.60. In words, knowledge that the person usually wears corrective lenses in lecture increases the

probability that the person is female.

We now repeat the above reasoning, but using symbols instead of numbers. Refer to Table 16.1.

Given that B occurs, we know that the selected subject is among the NB subjects in column B.

Of these NB subjects, reading up the column, we see that NAB have property A. Thus, by direct

reasoning we obtain the following equation.

P (A|B) = NAB/NB. (16.1)

Now, this is a perfectly good equation, relating the conditional probability of A given B to popu-

lation counts. Most statisticians, however, prefer a modification of this equation. On the right side

of the equation divide both the numerator and denominator byN . This, of course, does not change

the value of the right side and has the effect of converting counts to probabilities. The result is

below, the equation which is usually referred to as the definition of conditional probability.

P (A|B) = P (AB)/P (B). (16.2)

Now there is nothing uniquely special about our wanting to find P (A|B); we could just as

well be interested in, say, P (Bc|Ac). In fact, there are eight possible conditional probabilities of

interest; all combinations of the following three dichotomous choices: to use A or Ac; to use B or
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Table 16.5: Conditional probabilities of the B’s given the A’s in the hypothetical study of sex and

lenses. For example, P (B|A) = 0.60, P (Bc|Ac) = 0.65 and P (Bc) = 0.50.

Yes (B) No (Bc) Total

Female (A) 0.60 0.40 1.00

Male (Ac) 0.35 0.65 1.00

Unconditional 0.50 0.50 1.00

Bc; and to put the ‘A’ or the ‘B’ first. Now, of course, it would be no fun to derive these eight

formulas one-by-one; fortunately, if we view Equation 16.2 creatively, we don’t need to.

Look at Equation 16.2 again. What it is really saying is,

If you want the conditional probability of one event given another event, calculate the

probability that both events occur divided by the probability of the conditioning event

occurring.

With this interpretation, we immediately know how to compute any conditional probability. For

example,

P (Bc|Ac) = P (AcBc)/P (Ac).

Note that in the numerator on the right side of this equation, we write our event in ‘alphabetical

order;’ i.e. the ‘A’ event is written before the ‘B’ event. We are not required to do this, but life is

easier if we adopt little conventions like this one: for example, it is easier to see whether different

people have obtained the same answer.

I will now return to the study of sex and lenses to show a quick way to obtain all eight condi-

tional probabilities. We can work with either the table of population counts or population propor-

tions; I will use the latter, Table 16.4.

Divide every entry in Table 16.4 by its row total. The results are in Table 16.5. The four

numbers in the body of this table are the conditional probabilities of the B’s given the A’s. For

example, P (Bc|A) = 0.40. In words, given the selected person is female, the probability is 40%

that the person will answer ‘no.’ More succinctly, 40% of the females would answer ‘no.’

Here is a hint to help you remember that Table 16.5 gives the conditional probabilities of the

B’s given the A’s, instead of the A’s given the B’s. Look at the margins: We see 0.50 as the

(marginal, unconditional) probability of both B and Bc. The other marginal totals are both 1.00

and they cannot be the probabilities of A and Ac. Thus, this is a table of probabilities of B’s; i.e.,

probabilities of B’s given A’s.
Similarly, if you divide every entry in Table 16.4 by its column total you get the table of the

conditional probabilities of the A’s given the B’s. The results are in Table 16.6.

16.1.3 How Many Probabilities are There?

Look at Table 16.3 again. There are nine probabilities in this table: the four cell probabilities, the

four marginal probabilities and the overall probability of 1 in the lower right corner. All except
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Table 16.6: Conditional probabilities of the A’s given the B’s in the hypothetical study of sex and

lenses. For example, P (A|B) = 0.72, P (Ac|Bc) = 0.52 and P (Ac) = 0.40.

Yes (B) No (Bc) Unconditional

Female (A) 0.72 0.48 0.60

Male (Ac) 0.28 0.52 0.40

Total 1.00 1.00 1.00

the 1 are unknown to a researcher, but this does not mean that there are actually eight unknown

probabilities. It turns out that if one chooses wisely (remember the very old knight near the end of

Indiana Jones and the Last Crusade) then knowledge of three probabilities will suffice to determine

all eight probabilities. As we shall see below, there are several possible sets of three, although I

won’t give you an exhaustive list of sets. I will give you four of the possible sets that are of

the greatest interest to scientists. The first two of my four sets obviously work; the other two

require some care and will be covered in a Practice Problem. I will be referring to the symbols in

Table 16.3.

1. Any three of the cell probabilities will suffice. For example, if we know the values of

P (AB), P (ABc) and P (AcB), then we can obtain the remaining five unknown probabilities.

For example, in Table 16.4, once we know P (AB) = 0.36, P (ABc) = 0.24 and P (AcB) =
0.14, we can obtain the remaining probabilities by addition and subtraction.

2. A row marginal probability, a column marginal probability and any cell probability

will suffice. For example, if we know the values of P (A), P (B) and P (AB), then we can

determine all eight probabilities. For example, in Table 16.4, once we know P (A) = 0.60,
P (B) = 0.50 and P (AB) = 0.36, we can obtain the remaining probabilities by subtraction

and addition.

3. A conditional probability for each row plus one of the row marginal probabilities will

suffice. For example, if we know the values of P (B|A), P (B|Ac) and P (A), then we can

determine all eight probabilities.

4. A conditional probability for each column plus one of the column marginal probabili-

ties will suffice. For example, if we know the values of P (A|B), P (A|Bc) and P (B), then
we can determine all eight probabilities.

If you choose your three probabilities unwisely you will not be able to determine all probabilities.

For one of many possible examples, suppose you know P (A) = 0.80, P (B) = 0.30 and P (Ac) =
0.20. With these three probabilities, you cannot determine the remaining five probabilities. (Try it!)

The difficulty lies in the fact that once we know P (A) = 0.80, we can deduce that P (Ac) = 0.20;
i.e., knowing P (Ac) is not new information.
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16.1.4 Screening Test for a Disease

You might be thinking, “I am not interested in any relationship between sex and lenses.” Fair

enough. I used that example just to get us going. In this subsection we will consider an extremely

important application of the ideas of this chapter, namely the analysis of a screening test for a

disease.

For many diseases, early detection can be extremely beneficial, for both the ultimate outcome

for the patient and the cost of treatment. Screening tests, however, are often controversial. At

my annual physical a few years ago, I learned that the PSA screening test for prostate cancer

was no longer routine. More recently, there has been much discussion in the media about new

recommendations on mammograms for the detection of breast cancer in women.

Here is the way our model fits. We have a population of people at a particular moment in time

and we are interested in one particular disease. Each person either has the disease, denoted by A,
or does not have the disease, denoted by Ac. Furthermore, we can imagine giving each person a

screening test. For any given person, the screening test can be positive, denoted by B, or negative,

denoted by Bc. Thus, for each person in the population there are two dichotomous responses of

interest: the actual disease state and the results of the screening test, if it were given.

We can see immediately that the current problem has issues that were not present in our hypo-

thetical study of sex and lenses. First, it might not be easy to learn whether a person has a disease.

(If it were easy, inexpensive and painless to determine, nobody would bother with trying to develop

a screening test.) Second, we cannot force a person to have a screening test. (True, we cannot force

a person to tell us his/her sex or whether he/she usually wears corrective lenses, but the issue is

much trickier for screening tests that might be painful and might have negative consequences.)

As a result, one must use great care in any attempt to evaluate a real life screening test. What I

present below is an idealization of what a researcher or physician will face in practice.

Remember that a positive result on a screening test is interpreted as indicating the disease is

present. But it is very important to remember that screening tests make mistakes!

In a screening test, the various combinations of response values have special meanings and it

is important to note these. In particular,

• Event AB is called a correct positive.

• Event AcB is called a false positive.

• Event ABc is called a false negative.

• Event AcBc is called a correct negative.

Make sure you understand why these labels make sense.

Let’s now look at a hypothetical screening test, presented in Table 16.7. Let’s summarize the

information in this table.

1. Ten percent of the population have the disease.

2. If everyone were given the screening test, 18.5% of the population would test positive.
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Table 16.7: Population counts for a hypothetical screening test.

Screening test result:

Positive (B) Negative (Bc) Total

Disease Present (A) 95 5 100

Disease Absent (Ac) 90 810 900

Total 185 815 1,000

3. The screening test is correct for 905 persons: 95 correct positives and 810 correct negatives.

4. The screening test is incorrect for 95 persons: 90 false positives and 5 false negatives.

Let’s focus on the errors made by the screening test. (I am definitely a glass half empty person!)

Consider false negatives; i.e., the combination of A, the disease present, withBc, the screening

test saying the disease is absent. It seems obvious to me that there are three rates, or probabilities,

of possible interest. I will illustrate these ideas with our hypothetical screening test.

1. P (ABc) = 5/1000 = 0.005; in words, one-half of one percent of the population will receive
a false negative test result.

2. P (A|Bc) = 5/815 = 0.006; in words, six-tenths of one percent of those who would test

negative will actually have the disease.

3. P (Bc|A) = 5/100 = 0.05; in words, five percent of those who have the disease would test

negative.

It seems to me that each of these three numbers—0.005, 0.006 and 0.05 in our example—could

reasonably be called a false negative rate. Biostatisticians call P (Bc|A) the false negative rate

and, as best I can tell, have not given a name to the other rates.

Does any of this matter? Well, yes, I think it does. First, I would be hard pressed to argue that

P (ABc) is an interesting number, but I believe that both of the conditional probabilities are worthy

of attention. I believe it is useful to think of P (Bc|A) as being of most interest to the medical

community and P (A|Bc) as being of most interest to regular people. Why do I say this?

First, considerP (Bc|A), the one that is called the false negative rate by the medical community.

As a physician, I might think,

Let’s consider all the persons with the disease; what proportion of these people who

need help will be told that they are fine?

Second, consider P (A|Bc), the one with no name. A person is told that the screening test result

is negative. A thoughtful person—some would say hypochondriac, but let’s not be judgmental—

might wonder,

Do I have the disease; i.e., did the screening test make a mistake?

394



A definitive answer might be available only with an autopsy—thanks, but I’ll pass on that! There

is some value, however, in considering the number P (A|Bc). Of all the persons who test negative,
this number is the proportion that actually have the disease.

As an aside, I hope that you have not concluded that I view the medical research community

as some nasty organization that gives names only to things of interest to them and refuses to name

things of interest to patients. As we will see later in this chapter, data collection might well give

us a good estimate of P (Bc|A), but it is often impossible to estimate—without some controversial

assumptions—the value of P (A|Bc). My suspicion is that P (Bc|A) is given a name, in part,

because it can be estimated without controversy. But, of course, I could be wrong.

My issue of there being two rates of interest becomes really important when we consider false

positives. A false positive occurs whenever Ac is matched with B. Again, there are three rates we

could calculate, again illustrated with our hypothetical screening test.

1. P (AcB) = 90/1000 = 0.09; in words, nine percent of the population will receive a false

positive test result.

2. P (B|Ac) = 90/900 = 0.10; in words, ten percent of those for whom the disease is absent

would test positive.

3. P (Ac|B) = 90/185 = 0.487; in words, 48.7% of those who would test positive are free of

the disease.

Look at these last two rates. Biostatisticians call P (B|Ac) the false positive rate, but it seems to

me that P (Ac|B) deserves a name too! At various times in history, governments have considered

or enacted policies in which: everybody gets tested and those who test positive will be quarantined.

This last computation shows that, for our hypothetical population, of those quarantined, 48.7% are

actually disease free!

16.1.5 Trials and Bayes’ Formula

We do not have a table of population counts for trials. We begin with the table of probabilities.

So, how do we obtain the table of probabilities? Well, mostly, we cannot obtain it, but in later

sections we will learn how to estimate it from data. But this is a good time to introduce a couple

of important ideas.

Recall the definition of conditional probability given in Equation 16.2:

P (A|B) = P (AB)/P (B).

We can rewrite this as

P (AB) = P (B)P (A|B). (16.3)

This new equation is called the multiplication rule for conditional probabilities. Note what it

says, in words:

The probability that two events both occur is the product of the probability of one

event occurring and the conditional probability of the remaining event, given the one

we already handled.
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With this admittedly awkward statement, we can obtain two versions of the multiplication rule for

conditional probabilities. For example, if we interchange the roles of A and B in Equation 16.3,

we get:

P (AB) = P (A)P (B|A). (16.4)

We want two ways to calculate P (AB) because sometimes we know the pair P (A) and P (B|A)
and other times we know the pair P (B) and P (A|B).

I will now give you a somewhat silly application of these ideas to illustrate how we can build a

table of probabilities.

Years ago, I lived with a dog named Casey. Periodically, I would exercise on my treadmill for

30 minutes and watch television. Casey would sit by the window watching the yard, with special

interest in viewing squirrels. I could not see the yard from the treadmill.

I will view each such 30 minute segment of time as a trial. Two dichotomous responses are

obtained—though not by me—during the trial:

• A: One or more squirrels enter the yard; obviously, Ac is that no squirrels enter the yard.

• B: Casey barks at some time during the trial; obviously, Bc is that Casey does not bark

during the trial.

From past experience I know (estimate or guess might be more accurate verbs; see the next section)

the following numbers:

P (A) = 0.30, P (B|A) = 0.80 and P (B|Ac) = 0.10.

In words, in any given trial, there is a 30% chance that at least one squirrel will visit the yard;

given that at least one squirrel visits the yard, there is an 80% chance that Casey will bark; and if

no squirrels visit the yard, there is a 10% chance that Casey will bark.

The first fact we can deduce is: P (Ac) = 1 − P (A) = 0.70. We now proceed to complete the

following table.

B Bc Total

A 0.30

Ac 0.70

Total 1.00

Next, we consider P (AB). By Equation 16.3, P (AB) = P (B)P (A|B), but this is no help,

because we know neither of the numbers on the right side of this equation. Instead, we use Equa-

tion 16.4,

P (AB) = P (A)P (B|A) = 0.30(0.80) = 0.24. Similarly,

P (AcB) = P (Ac)P (B|Ac) = 0.70(0.10) = 0.07.

Next, we place these two numbers in our table and continue with simple subtractions and additions

until we obtain the completed table, given below.
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B Bc Total

A 0.24 0.06 0.30

Ac 0.07 0.63 0.70

Total 0.31 0.69 1.00

There are some amazing facts revealed in this table! First, we see that P (B) = 0.31; i.e., there
is a 31% chance that Casey will bark during a trial. Why is this amazing? Well, we started with

information on whether Casey would bark conditional on squirrel behavior, and end up with the

unconditional probability of Casey barking.

OK, well maybe the former was not so amazing, but this next one definitely is. It is so great

that it has a name: Bayes’ formula or Bayes’ rule; well, two names. It is named in honor of the

Reverend Thomas Bayes who did or did not discover it before his death in 1761. (The historical

controversy will be ignored in this course.)

First, I will show you how to use Bayes’ rule, which is very easy, and then I will give you the

formula, which is quite a mess. Suppose that during my trial I hear Casey bark. It is natural for

me to wonder, “Did any squirrels visit the yard?” In other words, I want to calculate P (A|B).
Now before Bayes nobody could answer this question; in fact, it looked impossible: we are given

information about conditional probabilities ofB’s givenA’s, how could we possibly reverse them?

It seemed like alchemy or some occult method would be required to obtain an answer.

But as often happens, especially in math or riding a bicycle, what appears to be illogical or

impossible works if you just do it. (Ugh! This sounds like a Nike commercial; what’s next?

Impossible is nothing?)

Let’s just calculate P (A|B); but how? Well, by definition, P (A|B) = P (AB)/P (B) and we

can read both of these numbers from our table! Thus,

P (A|B) = P (AB)/P (B) = 0.24/0.31 = 0.774.

In words, given that Casey barks, there is a 77.4% chance that at least one squirrel visited the yard.

We see that it is easy to reverse the direction of conditioning, provided we are able to complete

the table of probabilities. My advice is that in practice, just complete the table and then you can

calculate any conditional probability that you desire.

For completeness, I will show you Bayes’ formula in all its mathematical glory, but I do not

recommend using it and you are not responsible for it in any way!

Here are elements we need for Bayes’ formula.

• We need a partition of the sample space, denoted by the k events A1, A2, . . . , Ak. By a

partition I mean that the events are pairwise disjoint (i.e., they don’t overlap in any way) and

their union is the entire sample space.

• We need some other event of interest B.

• We need to know P (Ai), for i = 1, 2, . . . , k.

• We need to know P (B|Ai), for i = 1, 2, . . . , k.
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Table 16.8: The table of counts for a sample of size n.

B Bc Total

A a b n1

Ac c d n2

Total m1 m2 n

Before I give you Bayes’ formula note that these three conditions are met for my example with

Casey: k = 2; the events are A1 = A and A2 = Ac; B is as above; and both probabilities and both

conditional probabilities are known.

So, here it is, Bayes’ formula:

P (Ai|B) =
P (Ai)P (B|Ai)

∑k
j=1 P (Aj)P (B|Aj)

, for i = 1, 2, . . . , k. (16.5)

16.2 Random Samples from a Finite Population

Recall our table of probabilities, reproduced below:

B Bc Total

A P (AB) P (ABc) P (A)
Ac P (AcB) P (AcBc) P (Ac)
Total P (B) P (Bc) 1

In my experience, in most scientific applications these eight probabilities are unknown. Also,

a scientist might well be interested in any or all of the eight possible conditional probabilities.

(Admittedly, as discussed earlier, there are many mathematical relationships between these 16 un-

known rates.) In this section we will discuss what is possible and what is practicable in estimating

these various numbers.

We will investigate three types of random samples. Whichever way we sample, we will present

the data we obtain in a table, as illustrated in Table 16.8, our ubiquitous 2 × 2 table for data,

introduced in Chapter 15 in Table 15.1 on page 354. I introduce the three types of random samples

below and I will illustrate each with our earlier example of sex and lenses.

1. Type 1: Overall Random Sample. Select a random sample of size n from the population. In

this case all eight of the remaining numbers in Table 16.8 (excluding the n) are the observed
values of random variables; i.e., their values cannot be predicted, with certainty, before data

collection.

2. Type 2: Independent Random Samples from the Rows. Select two independent random

samples: The first is of size n1 from the population of all subjects with value A for the first

response; the second is of size n2 from the population of all subjects with value Ac for the

first response. In this case, n1, n2 and n = n1+n2 are all fixed in advance by the researcher;

the remaining six counts are observed values of random variables.
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3. Type 3: Independent Random Samples from the Columns. Select two independent ran-

dom samples: The first is of sizem1 from the population of all subjects with value B for the

second response; the second is of size m2 from the population of all subjects with value Bc

for the second response. In this case, m1, m2 and n = m1 +m2 are all fixed in advance by

the researcher; the remaining six counts are observed values of random variables.

For our sex and lenses study, these become:

1. Type 1: Overall Random Sample. A random sample of size n is selected from the popula-

tion of all 1,000 students.

2. Type 2: Independent Random Samples from the Rows. Two lists are created: one of the

600 female students and one of the 400 male students. Select a random sample of size n1

from the female population. Then select an independent random sample of size n2 from the

male population.

3. Type 3: Independent Random Samples from the Columns. Two lists are created: one of

the 500 students whowould answer ‘yes’ and one of the 500 students who would answer ‘no.’

Select a random sample of size m1 from the ‘yes’ population. Then select an independent

random sample of sizem2 from the ‘no’ population.

Note that it is often the case that at least one of the three ways of sampling is unrealistic. In the

above, I cannot imagine that the researcher would have a list of either the ‘yes’ or ‘no’ population;

hence, the Type 3 sampling is not of interest for this example.

Let us consider Type 2 sampling in general. Upon reflection, you will realize that Type 2

sampling is equivalent to what we studied in Chapter 15, except that the names have been changed.

In particular, population 1 in Chapter 15 consists of all subjects with feature A and population 2

in Chapter 15 consists of all subjects with feature Ac. In this context, label B a success and Bc a

failure. Thus, what we earlier called p1 and p2 are now P (B|A) and P (B|Ac), respectively. Thus,
our earlier methods for estimation and testing of p1−p2 can be immediately applied to a difference

of conditional probabilities: P (B|A)− P (B|Ac).
Of course, Type 2 and Type 3 sampling are really the same mathematically. For example, if

you have independent random samples from the columns, you may simply interchange the roles

of rows and columns and then have independent random samples from the rows. In practice it is

convenient to allow for both Type 2 and Type 3 sampling.

For independent random samples from the columns, identify population 1∗ as all subjects with
feature B and population 2∗ as all subjects with feature Bc. Make the definitions p∗1 = P (A|B)
and p∗2 = P (A|Bc). Thus, the difference in conditional probabilities P (A|B)−P (A|Bc) is simply

p∗1 − p∗2.
The above might seem very confusing, but it’s really quite simple: Sample by rows and we are

interested in p1 − p2; sample by columns and we are interested in p∗1 − p∗2.
There are six parameters of most interest to a researcher:

pA, pB, p1, p2, p
∗
1 and p∗2.

Now, here are the really important facts to note:
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1. For Type 1 sampling, all six of these parameters can be estimated.

2. For Type 2 sampling, only p1 and p2 can be estimated; the other four cannot be estimated.

3. For Type 3 sampling, only p∗1 and p
∗
2 can be estimated; the other four cannot be estimated.

We can see the truth of these facts with a simple, but extreme, example. In the sex and lenses study,

suppose that I decide to take a Type 2 sample as follows: n1 = 10 of the 600 females and all 400

males. Then I will get the following data:

B Bc Total

A a 10− a 10

Ac 140 260 400

Total 140 + a 270− a 410

We know from the population counts that P (A|B) = p∗1 = 360/500 = 0.72. But our estimate of

p∗1 from this table will be a/(140 + a) which can range from a minimum of 0 when a = 0 to a

maximum of 0.067 when a = 10. In other words, our estimate of 0.72 will never be larger than

0.067! This is a very bad estimate! Think about this example and make sure that you understand

why it is happening.

Before leaving this section, I want to revisit the screening test example in the context of our

three types of sampling.

Medical researchers typically do not use Type 1 sampling for the following two reasons.

1. Many diseases are quite rare, making P (A), P (AB) and P (ABc) very small. As a result,

one would require a huge sample size to estimate these well. In the best of situations a huge

sample size is expensive. Also, nobody would spend a huge amount of money on sampling

just to (possibly) learn that the screening test is ineffective.

2. We skirt around the issue of how difficult it is to obtain a random sample. For many diseases,

the sufferers are people who are not particularly easy to find, which, of course, is an impor-

tant step in being in a sample. For example, IV drug users and sex workers are two groups

that have high rates of HIV infection, but are difficult to locate for a study. And, if located,

they might be reluctant to participate.

Type 3 sampling is not possible because researchers will not have lists of people who will test

positive (negative) before they collect data!

As a result, the most realistic way to sample is Type 2: Select what you hope is a random

sample from people who clearly have the disease and an independent random sample from people

who seem to not have the disease and proceed.

Thus, confirming what I stated earlier, because they use Type 2 sampling, medical researchers

can estimate p1 and p2. They cannot estimate either p∗1 or p
∗
2. Thus, it is understandable why they

refer to the former with the definite article ‘the.’
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Table 16.9: Hypothetical population counts, in thousands.

Outcome

Risk Factor Bad (B) Good (Bc) Total

Present (A) 24 276 300

Absent (Ac) 28 672 700

Total 52 948 1,000

16.3 Relative Risk and the Odds Ratio

Let’s return to the model of a finite population with two responses, as introduced at the beginning

of this chapter. The following situation is common in medical studies. The first response is the

presence (A) or absence (Ac) of a risk factor. The second response is a health outcome, either bad

(B) or good (Bc). Here is an example. A pregnant woman is a smoker (A) or nonsmoker (Ac). Her

baby’s birth-weight is either low (B) or normal (Bc).

We will begin with a table of hypothetical population counts, presented in Table 16.9. Typically,

a researcher is interested in comparing P (B|A) to P (B|Ac). These are the probabilities of the bad
outcome conditional on the risk feature being present or absent, respectively. Even though B is

an undesirable outcome, we label it a success because in these medical problems it is often rare.

Even if it’s not rare in a particular problem, we still call it a success to avoid confusion. (Having B
sometimes be a success and sometimes be a failurewould definitely confuse me!) Using Chapter 15

notation, I write p1 = P (B|A) and p2 = P (B|Ac).
We note that for the hypothetical population counts in Table 16.9, p1 = 24/300 = 0.08 and

p2 = 28/700 = 0.04. We could compare these by subtracting:

p1 − p2 = 0.08− 0.04 = 0.04,

in words, the probability of the bad outcome is larger by 0.04 when the risk factor is present

compared to when the risk factor is absent. Because both p1 and p2 are small, we might want to

compare them by dividing: p1/p2. This ratio is called the relative risk.

For the population counts in Table 16.9, the relative risk equals p1/p2 = 0.08/0.04 = 2. In

words, the presence of the risk factor doubles the probability of the bad outcome.

Scientifically, it would make sense to want to estimate p1 − p2 or p1/p2. Recall the three types
of random sampling that were introduced on page 398. Type 1 sampling is rarely used because it is

difficult to get a random sample from the entire population and even if we could obtain one, with

a rare bad outcome we won’t get enough data for subjects with bad outcomes to learn very much.

Also, it can be difficult to perform Type 2 sampling, because there won’t be lists of people based

on the presence or absence of the risk factor. Type 3 sampling is, however, often reasonable. One

can use hospital records to obtain—one hopes—Type 3 random samples. In fact, a study based on

Type 3 sampling is called a case-control study. As we have argued earlier, however, with Type 3

sampling we cannot estimate p1 or p2. We can handle this difficulty, somewhat, by introducing the

notion of the odds ratio.
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Odds are an alternative to probabilities as a measure of uncertainty. For example, consider one

cast of a balanced die and suppose we are interested in the outcome ‘4.’ We have said that the

probability of the outcome ‘4’ is 1/6, but we could also say that the odds of the ‘4’ are 1 (the

number of outcomes that give ‘4’) to 5 (the number of outcomes that don’t give ‘4’), or 1/5. In
general, if the event of interest has probability p, then the odds of the event is p/(1− p).

The current paragraph is enrichment. I recommend you read it, but you will not be responsible

for its content. Be careful with language! I am talking about the odds of an event. Sometimes

people—especially in gambling contexts—speak of the odds against an event, which is the inverse

of of odds of the event. Thus, a gambler would say that, when casting a balanced die, the odds

against a ‘4’ are the inverse of 1/5, which is 5, usually stated as 5 to 1. But gambling is actually

more complicated because bookies and casinos modify the true odds against an event to ensure

themselves a long-run profit. We saw this earlier with the roulette wheel example. The probability

of red is 18/38. Remembering that the odds of an event with probability p is p/(1 − p), the odds
against the event is (1− p)/p. Thus, the odds against red are 20/18 = 10/9. It would be a fair bet
if the casino paid $19 for a $9 bet that wins. Casinos, of course, have no desire to offer fair bets.

An easy way for them to deal with this is to take the actual odds against, 10/9 for the roulette bet,
and shorten (reduce) the odds; in the case of roulette they shorten the odds against from the true

10/9 to the profitable 1.
For the problem of this section, the odds of B in row A is p1/(1 − p1) and the odds of B

in row Ac is p2/(1 − p2). In terms of the symbols in Table 16.1, these odds are NAB/NABc and

NAcB/NAcBc , respectively. Thus, their ratio, called the odds ratio, is:

NABNAcBc

NABcNAcB
. (16.6)

The great thing about this formula is the following. We have defined the odds ratio in terms of the

row probabilities; i.e., the conditional probabilities of the B’s given the A’s. But an examination

of this formula shows that it is symmetric in the arguments A and B; hence, the odds ratio remains

the same if we define it in terms of the column probabilities. Thus, and this is the important part,

we can estimate the odds ratio for any of our three types of sampling.

Finally, a little bit of algebra shows that

odds ratio = relative risk × 1− p2
1− p1

.

Thus, if both p1 and p2 are close to zero, the odds ratio is approximately equal to the relative risk;

and we know that the relative risk is interesting.

For the population in Table 16.9, the odds ratio is

24(672)

276(28)
= 2.087,

which is close to the relative risk, previously shown to equal 2.

We will now discuss how to estimate the odds ratio. Note that this method is valid for any of

our three types of random sampling. Table 16.10 presents our notation for the data we collect, our
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Table 16.10: Notation for data for estimating the odds ratio.

Outcome

Risk Factor Bad (B) Good (Bc) Total

Present (A) a b n1

Absent (Ac) c d n2

Total m1 m2 n

ubiquitous 2× 2 table of data in Table 15.1. Our point estimate of the odds ratio, θ, is

θ̂ = (ad)/(bc).

I placed the population in Table 16.9 in my computer and simulated a case-control study with

m1 = m2 = 200. My data are in Table 16.11. My estimated odds ratio is

θ̂ = [89(131)]/[69(111)] = 1.522,

which is considerably smaller than the population value, which Nature alone knows to be 2.087.

We can obtain a confidence interval estimate of θ but it’s a bit involved. We actually obtain

a confidence interval estimate of λ = ln(θ), where by ‘ln’ I mean the natural logarithm that is

popular in calculus and has base e = 2.71828 . . ..
Our point estimate of λ is λ̂ = ln(θ̂). For our data, λ̂ = ln(1.522) = 0.4200.
The approximate confidence interval estimate of λ is:

λ̂± z∗
√

1

a
+

1

b
+

1

c
+

1

d
. (16.7)

The 95% confidence interval estimate of λ for the data in Table 16.11 is:

0.4200± 1.96

√

1

89
+

1

69
+

1

111
+

1

131
=

0.4200± 1.96(0.2058) = 0.4200± 0.4035 = [0.0165, 0.8235].

To get back to a confidence interval estimate of θ, we exponentiate the endpoints of this interval:

(2.71828)0.0165 = 1.017 and (2.71828)0.8235 = 2.278.

Thus, finally, the 95% confidence interval estimate of the odds ratio is [1.017, 2.278]. This is not
a very useful interval; it is correct, because it contains θ = 2.087, but its lower bound is so close

to 1, the risk factor being present might not be much of a danger. (An odds ratio of 1 means that

p1 = p2.) More data are needed.
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Table 16.11: Simulated data for estimating the odds ratio from the population given in Table 16.9.

Outcome

Risk Factor Bad (B) Good (Bc) Total

Present (A) 89 69 158

Absent (Ac) 111 131 242

Total 200 200 400

16.4 Comparing P (A) to P (B)

For a finite population, this section assumes we have a Type 1 random sample; i.e., a random

sample from the entire population. For trials, the assumption is that we have i.i.d. dichotomous

trials; i.e., the table of probabilities is the same for each trial and trials are independent. This does

not mean that A and B are independent—see Practice Problem 2.

In this section, I will focus on the entries P (A) and P (B) in Table 16.3 on page 389. In

many studies, it would be difficult to explain an interest in comparing these two probabilities. In

my hypothetical study of sex and lenses, why would I want to compare the proportion of females

in the population (P (A)) with the proportion of people who would answer the question with ‘yes’

(P (B))? Similar comments are true for the studies: of a screening test; my dog barking at squirrels;

the relationship between a risk factor and a bad outcome.

In my study of Larry Bird, however, P (A) is the probability that he makes the first of the pair

of free throws and P (B) is the probability that he makes the second of the pair of free throws. As

a result, it is natural to compare P (A) and P (B) to investigate whether he is more skilled on his

first or second shot.

I will not begin this section, however, with this basketball example. Instead we will revisit a

technique we used extensively in Part I of these Course Notes: computer simulation experiments.

16.4.1 The Computer Simulation of Power

Refer to Table 9.8 on page 203. This table presents the results of a power study for a variety of

constant treatment effect alternatives for Sara’s golf study. It should not be a problem if your rec-

ollection of this topic and this table are a bit hazy. My point is more about simulation experiments

and not really so much about power.

Recall that I stated that the number of possible assignments for Sara’s golf study is 1.075×1023.
I am interested in the finite population that consists of

N = 1.075× 1023

members, with each member being a possible assignment. Each member’s card contains two

dichotomous pieces of information:

• A if test statistic U would reject the null hypothesis for the card’s assignment; and Ac if test

statistic U would fail to reject the null hypothesis for the card’s assignment.
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Table 16.12: Results of a computer simulation experiment on the power of test statistics U and R1

for the alternative of a constant treatment effect of 3 yards for Sara’s golf study.

R1

U Reject (B) Fail to reject (Bc) Total

Reject (A) 1,136 153 1,289

Fail to reject (Ac) 398 8,313 8,711

Total 1,534 8,466 10,000

• B if test statisticR1 would reject the null hypothesis for the card’s assignment; andBc if test

statistic R1 would fail to reject the null hypothesis for the card’s assignment.

Recall from Table 9.7 on page 201, that the critical regions for these tests are U ≥ 10.65 and

R1 ≥ 1788.0. The critical values—10.65 and 1788.0—were obtained via a computer simulation

experiment with 10,000 reps and both give, approximately, α = 0.0499 as the probability of a

Type 1 error.

In Table 9.8 on page 203, I report the results of six computer simulation experiments, one each

for six hypothesized values of the constant treatment effect. Thus, I have data for six different

population boxes; one box for each of the effects studied. I will restrict attention for now to a

constant treatment effect of 3 yards.

With the above set-up, P (A) is the probability that test statistic U would correctly reject the

null hypothesis given that the constant treatment effect equals 3 yards. Similarly, P (B) is the

probability that test statistic R1 would correctly reject the null hypothesis given that the constant

treatment effect equals 3 yards. If we could examine all 1.075×1023 possible assignments, then we

would know the values of P (A) and P (B) and, hence, be able to determine which test statistic is

more powerful for the alternative we are studying. Of course, we might learn that P (A) = P (B),
which would tell us that the tests are equally powerful for the given alternative.

Instead of examining all possible assignments, I used a computer simulation experiment with

10,000 reps; in the terminology introduced in Chapter 10, I selected a dumb random sample of size

n = 10,000.

I begin by reprinting the results of my computer simulation experiment in Table 16.12. The

careful reader will note that I have interchanged the rows and columns in my Chapter 9 table to

obtain this Chapter 16 table, so that, in the current chapter’s set-up P (A) and P (B) refer to power.
I will now show you how to use the data in Table 16.12 to make an inference about the values of

P (A) and P (B).
Obviously, we can consider these probabilities separately. In particular, focusing on test statis-

tic U , we find that our point estimate of P (A) is 0.1289 and the approximate 95% confidence

interval estimate of P (A) is:

0.1289± 1.96
√

0.1289(0.8711)/10,000 = 0.1289± 0.0066 = [0.1223, 0.1355].

Similarly, our point estimate of P (B) is 0.1534 and the approximate 95% confidence interval
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estimate of P (B) is:

0.1534± 1.96
√

0.1534(0.8466)/10,000 = 0.1534± 0.0071 = [0.1463, 0.1605].

These intervals are comfortably separated; the upper bound of the former is 0.0108 smaller than

the lower bound of the latter. Thus, it seems clear that R1 is more powerful than U .

Our confidence interval formula for comparing two proportions requires us to have independent

random samples. What would this entail for the current problem? We would select a dumb random

sample of 10,000 assignments to evaluate the performance of U ; then we would again select a

dumb random sample of 10,000 assignments to evaluate the performance of R1. In other words,

we would perform a computer simulation experiment with 10,000 reps for U and then perform a

computer simulation experiment with 10,000 reps for R1. I could have done this; why didn’t I?

Well, let’s pretend that I had performed two computer simulation experiments and again ob-

tained point estimates of 0.1289 and 0.1534. Let’s find the 95% confidence interval estimate of

P (A)− P (B):

(0.1289− 0.1534)± 1.96

√

0.1289(0.8711)

10,000
+

0.1534(0.8466)

10,000
=

−0.0245± 0.0096 = [−0.0341,−0.0249].

Please note the half-width of this interval: 0.0096. When we learn the correct confidence interval

estimate later in this section, we will see that its half-width is only about one-half as much, 0.0046.

Thus, by having one sample of assignments and using each assignment twice, we reduce the half-

width, in this example, by a factor of two when compared to having two independent samples.

Let’s now learn the correct way to analyze the data in Table 16.12. We will begin with a test of

hypotheses.

Based on Occam’s Razor, the natural null hypothesis is P (A) = P (B). There are three natural
possibilities for the alternative hypothesis:

H1: P (A) > P (B); or H1: P (A) < P (B); orH1: P (A) 6= P (B).

Using the symbols in Table 16.3 on page 389,

P (A) = P (B) becomes P (AB) + P (ABc) = P (AB) + P (AcB),

which, after canceling, becomes P (ABc) = P (AcB).

Similarly, the alternative > is equivalent to

P (ABc) > P (AcB);

the alternative < is equivalent to

P (ABc) < P (AcB);

and the alternative 6= is equivalent to

P (ABc) 6= P (AcB).
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Below is a partial reproduction of the table of probabilities:

B Bc Total

A P (ABc)
Ac P (AcB)
Total

The two probabilities in this picture are the only ones that matter for the test of hypotheses.

This is a very interesting result. Of the four cells in the population table, only two are relevant

to our null hypothesis.

Let’s look at the data in Table 16.12. In this table, we have the results of a dumb random sample

of size 10,000, but the numbers a = 1,136 and d = 8,313 are irrelevant for our test of hypotheses.

What are relevant are the numbers b = 153 and c = 398.
Define m = b + c which equals 153 + 398 = 551 for our data. I call m the effective sample

size. The sample size is 10,000, but of these observations, only m = 551 are relevant for our test.
We can think of m as the observed value of the random variable M ; before collecting data, we

defineM to be the number of observations that fall into either of the cells on the off diagonal: ABc

or AcB.

This next part is a mess notationally, but a simple idea. Conditional on the knowledge that an

observation falls in an off diagonal cell, label the upper right cell—ABc—a success and the lower

left cell—AcB—a failure. Thus, conditional on the valueM = m, we havem Bernoulli trials. For

thesem Bernoulli trials, the probability of success is

P (ABc|ABc or AcB) =
P (ABc)

P (ABc) + P (AcB)
which we will call p.

Now here is the key point to note.

• If the null hypothesis is true, then p = 0.5.

• If the alternative hypothesis > is true, then p > 0.5.

• If the alternative hypothesis < is true, then p < 0.5.

• If the alternative hypothesis 6= is true, then p 6= 0.5.

Thus, our test of hypotheses can be viewed as testing

H0: p = 0.5 versus H1: p > 0.5; or H1: p < 0.5; or H1: p 6= 0.5,

where p is the probability of success for m Bernoulli trials. We already know how to perform

this test! Its P-value is given by Result 12.2 on page 306 with p0 = 0.5.
Because our special value of interest is 0.5, the the null sampling distribution is Bin(m, 0.5),

which is symmetric. As a result, the two terms that are summed for the alternative 6= are the same

number.

In the context of this chapter, the test from Chapter 12 is calledMcNemar’s test. I will use our

data on power to remind you how to use the website:
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http://stattrek.com/Tables/Binomial.aspx

to obtain the exact P-value for McNemar’s test.

After accessing the site, enter 0.5 as the Probability of success; enterm = 551 for theNumber

of trials; and enter b = 153 for the Number of successes. Click on calculate and you will obtain

five probabilities. The two that are relevant are:

• P (X ≤ 153) = 1.920× 10−26; and

• P (X ≥ 153) = 1.

The first of these is the exact P-value for the alternative<; the second of these is the exact P-value

for the alternative >; and twice the first of these is the exact P-value for the alternative 6=. I should

have mentioned it earlier, but the only defensible choice for the alternative for the power study

is 6=. If one is trying to decide which test statistic is more powerful, why would one ever use a

one-sided alternative!

Thus, the exact P-value for my alternative is 3.840 × 10−26. This is a very small P-value!

Could it be an error? Well, the mean and standard deviation of the Bin(551,0.5) distribution are

µ = 551(0.5) = 275.5 and σ =
√

551(0.5)(0.5) = 11.73.

Thus, the observed value b = 153 is more than ten standard deviations below the mean! As a

statistician I tend to be cautious; but not in this problem! I know that the sum of ranks test is more

powerful than the comparison of means test for the alternative we have considered.

We went to a great deal of effort to motivate the test of hypotheses for comparing P (A) and
P (B); for a change-of-pace, I simply will give you the approximate confidence interval estimate

of P (A) − P (B). (Actually, the formula below is a special case of a formula you will learn in

Chapter 20.) The approximate confidence interval estimate of P (A)− P (B) is:

(
b− c

n
)± (z∗/n)

√

n(b+ c)− (b− c)2

n− 1
, (16.8)

where, as usual, the value of z∗ depends on one’s choice of the confidence level, as given in

Table 12.1. I will illustrate the use of this formula for the data of our study of power. Recall that

b = 153, c = 398 and n = 10,000. First, (b− c) = −245; (b+ c) = 551; and

n(b+ c)− (b− c)2 = 10000(551)− (−245)2 = 5,449,975.

Thus, the approximate 95% confidence interval estimate of P (A)− P (B) is:

−0.0245± 0.000196

√

5,449,975

9,999
= −0.0245± 0.0046 = [−0.0291,−0.0199].

Note, as mentioned earlier, the half-width of this confidence interval is h = 0.0046.
The above computation of the confidence interval is a bit nasty! Because n = 10,000 is very

large, the term under the square root sign is large and messy to obtain. When our ‘data’ come
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from a computer simulation experiment, n is frequently very large. In these cases, there is an

approximate formula which is much easier to use. In particular, consider the term under the square

root. Its numerator is

n(b+ c)− (b− c)2.

For the simulation experiment above, this term becomes

n(b+ c)− (b− c)2 = 10000(551)− (−245)2 = 5,449,975.

The point of this argument is that the term (b − c)2 has a negligible effect on the answer; with it,

we obtain 5,449,975; without it, we would obtain 5,510,000 The former is only 1.1% smaller than

the latter. If we exclude the (b− c)2 term, then square root term in Formula 16.8 reduces to:

√

(n/n− 1)(b+ c).

For n = 10,000, the ratio n/(n − 1) is almost one. If we ignore it, Formula 16.8 reduces to the

much simpler formula:

(
b− c

n
)± (z∗/n)

√
b+ c, (16.9)

If I use this new formula for our earlier data, which had:

b = 153, c = 398 and n = 10,000, we get

−0.0245± 0.000196
√
153 + 398 = −0.0245± 0.0046;

the same answer we obtained from Formula 16.8.

Let’s apply the above inference methods to the Larry Bird data in Table 15.16 in Chapter 15. I

will reproduce his data below:

First Second Shot

Shot: Hit Miss Total

Hit 251 34 285

Miss 48 5 53

Total 299 39 338

We see that

b = 34; c = 48; b+ c = m = 82; b− c = −14; and n = 338.

For the test of H0 : P (A) = P (B), I choose the alternative 6=. and go to the website:

http://stattrek.com/Tables/Binomial.aspx.

I enter: 0.5 for the Probability of success; m = 82 for the Number of trials: and b = 34 for the

Number of successes. I click on Calculate and obtain:

P (X ≥ 34) = 0.9515 and P (X ≤ 34) = 0.0753.
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Thus, the P-value for > is 0.9515; the P-value for < is 0.0753; and the P-value for my alternative,

6= is 2(0.0753) = 0.1506. There is evidence that Bird’s success probability on his second shot was
larger than his success probability on his first shot, but the evidence is not convincing.

This is a very wide interval; 5.2 percentage points—its half-width—is a substantial amount in

free throw shooting. The point estimate, −0.041, suggests that Bird might have been much better

on his second shots, but the data are inconclusive.

By the way, the approximate 95% confidence interval for P (A)− P (B) is:

(−14/338)± (1.96/338)

√

338(82)− (−14)2

337
= −0.041± 0.052 = [−0.093, 0.011].

If I use the approximate (simpler) Formula 16.9, I obtain:

−0.041± (1.96/338)
√
34 + 48 = −0.041± 0.053.

The approximation, while excellent, is not quite as good as before because n = 338 instead of

10,000. As a practical matter, however, to me a half-width of 0.053 has the same meaning as a

half-width of 0.052.

16.5 Paired Data; Randomization-based Inference

In the largest sense, every example in this chapter has paired data. In one study, each person’s sex

is paired with the person’s response on lenses. In another study, Casey’s barking behavior is paired

with the foraging of squirrels. I would call neither of these, however, paired data. For me, in this

chapter, I reserve the term paired data to situations in which I want to compare P (A) and P (B).
Two studies fit this criterion: our revisit of the Chapter 9 study of power and our analysis of free

throw data.

There is another way to view paired data that is useful: the two examples in this chapter are

cases of reusing units (or reusing subjects or trials). For example, in the study of power our

subjects are assignments and we obtain two responses/features—i.e., we reuse—from each subject.

Similarly, Larry Bird goes to the line to attempt a pair of free throws; the trial gives us his response

on the first attempt and then we reuse it to obtain his response on the second attempt.

I chose to analyze Bird’s data with a populationmodel. This means that the 338 trials in our data

set are viewed as the realization of 338 i.i.d. trials. This extra assumption creates a mathematical

structure in which the quantities P (A) and P (B) make sense; thus allowing us to derive various

confidence interval estimates—for P (A), P (B) and P (A)−P (B). Without a population model, I

cannot use Bird’s data for inference because randomization is not possible—as you will soon see,

randomizing would mean I could randomize the order of his shots, but clearly the first shot must

be taken before the second shot.

My first example below is one that has been a favorite of teachers of Statistics throughout my

career, but I have no idea whether such a study has ever been conducted! Imagine that we want to

compare two therapies—call them cream 1 and cream 2—as a treatment for acne. As I hope these

names suggest, the therapies would be applied to the skin as opposed to being taken orally or given

in a shot. This will be important.
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Arguably, a numerical response would be natural, but let’s assume that the response is a di-

chotomy, with possibilities improved—a success—and not improved—a failure. Suppose that we

had 100 persons suffering from acne available for study. We could perform a CRD, using ei-

ther randomization-based inference—Chapter 8—or population-based inference—Chapter 15. We

could, however, do something else, which I will now describe.

We could reuse each subject. In particular, if Bert has acne, we could tell him to put cream 1

on the left side of his face and cream 2 on the right side of his face. After the period of treatment,

we would obtain two responses from Bert. We might, for example, code the responses as:

• A if cream 1 yields a success;

• Ac if cream 1 yields a failure;

• B if cream 2 yields a success; and

• Bc if cream 2 yields a failure.

Here are two natural questions:

1. How did the researcher decide that cream 1 would be applied to the left side Bert’s face?

2. How about the other subjects in the study; Would they all apply cream 1 to the left sides of

their faces?

Let’s consider the second question first. It would be bad science to have every subject put cream 1

on the left side and cream 2 on the right side. Well, perhaps I should say potentially bad science. I

don’t really know whether side of the face influences the response. But if I performed the study in

this way, all I can legitimately claim is that I have compared left-side-cream 1 to right-side-cream-

2; in other words, the effect of the side of the face would be completely confounded with the effect

of the type of cream.

There are two solutions to this side-of-the-face issue. The first is simple randomization. Sup-

pose that there are 100 persons available for study. A separate randomization is performed for

each of the 100 persons. For example, for Bert, side left or right is selected at random; cream 1 is

applied to the selected side and cream 2 is applied to the remaining side. Thus, with 100 persons

the overall randomization will involve 100 small randomizations.

Suppose that we do indeed have 100 subjects for study and we perform the 100 separate ran-

domizations as described above. Let X denote the number of subjects who will place cream 1

on the left sides of their faces. Clearly, the probability distribution of X is Bin(100,0.5). We

know from earlier work—or it can be easily verified with our binomial calculator website— that

P (X = 50) is small; only 0.0796. Thus, there is a 92% chance that one of the creams will be

applied to more left sides than the other cream. Also, P (40 ≤ X ≤ 60) = 0.9648; thus, a discrep-
ancy of more than 20 from side-to-side is unlikely, but not unimaginable. If the researcher feels

strongly that side-of-face has a strong influence on the response, the fact that randomization could

lead to one cream getting an additional 20 or more good sides is disturbing.

A solution to the above issue—namely, that randomization will likely lead toX 6= 50—is given

by a cross-over design. In a cross-over design we select only one assignment, which is a desirable
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simplification over the 100 needed above. The one assignment selects 50 subjects at random from

the total of 100. Each of the 50 selected subjects puts cream 1 on the left side of the face and each

of the remaining 50 subjects puts cream 1 on the right side of the face.

An obvious question is: Why not always use a cross-over design? The cross-over design

requires a more complicated analysis and we don’t have time to present it in this course. (More

accurately, I have made an executive decision not to present it.)

I conjecture that the above acne example has remained popular with teachers of Statistics be-

cause it is such a natural example of a medical issue that can be treated two different ways si-

multaneously. The next step in the hierarchy would be a medical issue which can be addressed

with only one therapy at a time, but is recurrent. An obvious example—one familiar to readers of

these notes—would be a study of headaches. Artificial Headache Study-2 (HS-2) was introduced

in Example 8.4 on page 168 and its data are in Table 8.4. For convenience, I reproduce its data

below with the names of the drugs changed to 1 and 2:

Pain relieved? Row Prop.

Drug : Yes No Total Yes No

1 29 21 50 0.58 0.42

2 21 29 50 0.42 0.58

Total 50 50 100

The exact P-value for the alternative 6= for Fisher’s test is 0.1612—details not given.

We could modify this headache study to enable subject reuse. In particular, we would need

two headaches per subject, with one headache treated by drug 1 and the other with drug 2. The

treatment assigned to the first headache would be determined by randomization.

I will create two distinct artificial data sets to investigate the issue of whether or not sample

reuse is a good strategy. I need to be careful. I want to compare each new data set to the data in

HS-2. Recall that HS-2 required 100 subjects—50 assigned to each treatment—to obtain the total

of 100 observations in the data table above. One hundred subjects reused would give us data on

200 headaches, which seems to me to be giving an unfair advantage to subject reuse. Therefore,

each of my two data sets for subject reuse has 50 subjects, giving a total of 100 headaches.

Next, I want both of my two new data sets to be comparable to the data from HS-2. Here is

what I mean. With subject reuse, my 2× 2 data table will look like the following.

Drug 2

Drug 1 Success (B) Failure(Bc) Total

Success (A) a b n1

Failure (Ac) c d n2

Total m1 m2 50

In HS-2, drug 1 gives 58% successes and drug 2 gives 42% successes. To be fair (comparable) I

must have these same numbers for both of my subject reuse data sets. Thus, their data tables will

look like:
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Table 16.13: The two extreme subject reuse data sets consistent with HS-2 data. For the alterna-

tive 6=, the P-value for b = 8 is 0.0078 and the P-value for b = 29 is 0.3222. For comparison, the

P-value for the HS-2 data with the same alternative is 0.1612.

Smallest Possible b Largest Possible b
Drug 2 Drug 2

Drug 1 Success (B) Failure(Bc) Total Drug 1 Success (B) Failure(Bc) Total

Succ. (A) 21 8 29 Succ. (A) 0 29 29

Fail. (Ac) 0 21 21 Fail. (Ac) 21 0 21

Total 21 29 50 Total 21 29 50

Drug 2

Drug 1 Success (B) Failure(Bc) Total

Success (A) a b 29

Failure (Ac) c d 21

Total 21 29 50

Recall that in these tables, a counts the number of (reused) subjects who would achieve a success

with both drugs; d counts the number of (reused) subjects who would achieve a failure with both

drugs; b counts the number of (reused) subjects for whom—more picturesquely—drug 1 defeated

drug 2; and c counts the number of (reused) subjects for whom drug 1 lost to drug 2.

You may verify—or you may simply trust me—that in this last table, b can take on any integer

value from 8 to 29. I look at the extremes of these possibilities in Table 16.13. Let’s take a few

minutes to examine the information in this table.

For b = 8, the data are highly statistically significant, with an exact P-value of 0.0078. For

b = 29, the exact P-value is very large, 0.3222. First, although I won’t prove this, if I created

similar tables for b = 9, 10, 11, . . . , 28, we would find that the P-value for the alternative 6=—as

well as the alternative >—would increase with the value of b. Indeed, we would find that for

b = 16 the P-value is 0.1516 and for b = 17 the P-value is 0.1686. The table with b = 17 is:

Drug 2

Drug 1 Success (B) Failure(Bc) Total

Success (A) 12 17 29

Failure (Ac) 9 12 21

Total 21 29 50

In this table, slightly fewer than one-half of the subjects (actual count, 24 of 50) respond the same

to each drug and slightly more than one-half of the subjects respond differently to the drugs. As a

physician, I can’t believe that the results would be dissimilar for so many subjects; thus, I would

anticipate obtaining b that is smaller than 17 and, hence, opt for subject reuse because it would

give me a smaller P-value; i.e., it would be more sensitive. Of course, I am not a physician; thus,

the validity of my opinion is quite questionable. Someday if you are the researcher in a study like

this, you will need to decide whether to have subject reuse.
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Above I have talked about sample reuse for hypothetical studies of acne and headaches. If

one opts for subject reuse, then one can perform population-based inference or the randomization-

based inference of Part I of these notes; from either perspective, one uses McNemar’s test and

obtains the same P-value for any fixed alternative.

16.5.1 Maslow’s Hammer Revisited

Above I talked about a hierarchy: for acne, a subject can receive two treatments simultaneously; for

headaches a subject can receive two treatments serially. Intuition often suggests—and experience

has often verified—that subject reuse can lead to a more efficient study. It is perhaps then simply

human nature (Maslow’s Hammer) that researchers seek other venues for subject reuse. In this

subsection I will discuss one such situation, with lots of cautionary words for you.

Suppose that you have 200 patients with colon cancer and two therapies that you want to

compare. The above ideas for acne and headaches clearly won’t work. But here is an idea. Before

assigning subjects to treatments, record the values of several variables on each individual and

summarize these values with a single number. Let’s assume that we believe that the larger the

number, the better the subject’s prognosis for a favorable response, be it a dichotomy or a number.

In this scenario it is valid to do the following:

Use the values of the 200 numbers to form 100 pairs of subjects in the following

way. The subjects with the two largest numbers create a pair. Of the remaining 198

numbers, the subjects with the two largest numbers create a pair. And so on.

Once the 100 pairs are formed, within each pair select a subject at random to be given the first

therapy; the other member of the pair will receive the second therapy.

Here is the really important point. If you proceed as above, then it is valid to perform

randomization-based inference on the 100 pairs. I recommend against performing population-

based inference in this case, but I don’t have time to give my whole argument, except to note the

following. Suppose that Bert and Walt are among my 200 patients and that they are paired as

above. If I looked at the entire population of hundreds of thousands of people (I am guessing at the

population size), then I would be amazed if Bert and Walt were paired in the population. Thus, it

is not clear how sample pairs relate to population pairs, so I won’t do it!

By the way, as you will see in Chapter 20, randomization is key. If one forms pairs in an

observational study, the results are a disaster!

16.6 Summary

This chapter is concerned with the situation in which each unit (trial, subject) yields two dichoto-

mous responses. We begin with units that are subjects; this situation, as before in these notes, leads

us to define a finite population. We begin with the table of population counts, given in Table 16.1.

If we divide each population count by the population size, N , we obtain the table of population

proportions or probabilities, given in Table 16.3.
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In practice, these tables—counts and probabilities—are known only to Nature. When units are

trials, there is no notion of population counts, making the table of probabilities the starting point.

Again, in practice, the table of probabilities is known only to Nature.

The table of probabilities allows us to define the very useful and interesting concept of con-

ditional probabilities, of which there are eight. Thus, in addition to the eight probabilities in the

table of probabilities, we have eight conditional probabilities; 16 is a lot of probabilities! But, no

worries; we learn that there are really only three non-redundant (conditional or not) probabilities.

There are many valid sets of three non-redundant probabilities and any set of them will yield the

remaining 13 probabilities.

I introduce you to a very important use of the above ideas: screening tests for a disease. Also,

you learn the important Bayes’ rule (or formula), which allows us to reverse the direction of con-

ditioning.

The next issue is: How to obtain data in order to perform inference on the various probabilities

of interest. Three possibilities are considered; listed and described on page 398. Type 2 sampling—

independent random samples from the rows—is mathematically equivalent to Type 3 sampling—

independent random samples from the columns.

Of the 18 possible probabilities, most analyses focus on comparing the members of one or more

of the following pairs: P (A) and P (B); p1 and p2; and p
∗
1 and p

∗
2. Note that when I write p1 and p2,

I am reverting to Chapter 15 notation; in Chapter 16 notation, p1 = P (B|A) and p2 = P (B|Ac).
I prefer the Chapter 15 notation because it’s not so messy! Also, when I write p∗1 and p∗2, this is
Chapter 15 notation in which the populations are in the columns and the success is in the first row.

Again, p∗1 and p
∗
2 could be expressed in the messier conditional probability notation of Chapter 16.

The main result is that

1. For Type 1 sampling, all six of these parameters can be estimated.

2. For Type 2 sampling, only p1 and p2 can be estimated; the other four cannot be estimated.

3. For Type 3 sampling, only p∗1 and p
∗
2 can be estimated; the other four cannot be estimated.

I give a numerical example with Type 2 sampling that illustrates the second (and the mathemati-

cally equivalent third) of these results.

I then introduce you to a class of medical studies—the relationship between a risk factor and a

bad outcome—for which we need to estimate p1 and p2, but neither Type 1 nor Type 2 sampling is

realistic. Provided that p1 and p2 are relatively small, this difficulty can be overcome by focusing

on the odds ratio rather than the relative risk, p1/p2. We can then use Type 3 sampling to estimate

the odds ratio, which is the same number for columns as it is for rows.

I give two examples in which the researcher is interested in comparing P (A) and P (B). It is
easy to find the exact P-value for the test of the null hypothesis that these two probabilities are

equal. The test is called McNemar’s test and is a special case of the test we learned in Chapter 12.

There is also an approximate confidence interval estimate of P (A)−P (B), given in Formula 16.8,

that is based on a Normal curve approximation.

The chapter ends with a lengthy discussion of applications to medical studies. We consider

studies with subject reuse and randomization. It makes sense that subject reuse should lead to a
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more sensitive analysis, but in any given situation the researcher must decide which method to use;

there are no guarantees in this area!

16.7 Practice Problems

1. Suppose that we are given the following table of population counts:

B Bc Total

A 800 200 1,000

Ac 1,200 2,800 4,000

Total 2,000 3,000 5,000

(a) Calculate the table of population probabilities.

(b) Calculate the eight conditional probabilities.

2. Suppose that we are given the following table of population counts:

B Bc Total

A 400 600 1,000

Ac 1,600 2,400 4,000

Total 2,000 3,000 5,000

(a) Calculate the table of population probabilities.

(b) Calculate the eight conditional probabilities.

(c) Notice that every conditional probability is equal to the corresponding unconditional

probability. Whenever this happens, we say that the two responses are statistically

independent. With independence, the multiplication rule for conditional probabilities:

P (AB) = P (A)P (B|A), becomes P (AB) = P (A)P (B),

which corresponds to our definition of independence in Chapter 10. In words, the

probability associated with cell AB is the product of its row and column marginal

probabilities. It now follows that the two responses are statistically independent if, and

only if, every one of the four cell probabilities is equal to the product of its row and

column marginal probabilities.

Of course, it’s no fun to check this multiplication for every cell. Fortunately, it can be

shown that this multiplicative relationship holds for either: all four cells or none of the

cells. Thus, we need to check only one cell.
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3. Below is a table of probabilities.

B Bc Total

A 0.195 0.455 0.650

Ac 0.105 0.245 0.350

Total 0.300 0.700 1.000

Explain why you don’t need to do any calculations to obtain the eight conditional probabili-

ties.

4. On page 392, I stated that if we know:

A conditional probability for each row plus one of the row marginal probabilities,

then we could obtain all eight of the probabilities in the table of probabilities. I will not

prove this fact in all of its algebraic glory; instead, I will show you an example of how to do

it.

For example, given P (B|A) = 0.375, P (B|Ac) = 0.500 and P (A) = 0.800, determine the

eight probabilities in Table 16.3.

By the way, I also stated that if we know:

A conditional probability for each column plus one of the column marginal prob-

abilities,

then we could obtain all eight of the probabilities in the table of probabilities. I won’t show

you an example of this because it is just like the one I do show you, but with the rows and

columns interchanged.

5. Below is the table of population counts for a disease and its screening test. (Recall that A
means the disease is present and B means the screening test is positive.)

B B
c Total

A 254 35 289

A
c 199 3126 3325

Total 453 3161 3614

(a) What proportion of the population would test positive?

(b) What proportion of the population is disease free?

(c) What proportion of the population is free of the disease and would test negative?

(d) What proportion of the population has the disease and would test positive?

(e) Of those who would test negative, what proportion has the disease?

(f) Of those who are free of the disease, what proportion would test positive?

(g) What proportion of the population would receive a correct screening test result?
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(h) Of those who would receive an incorrect screening test result, what proportion would

receive a false positive?

(i) What proportion of the population does not have the disease or would test negative?

6. My dog Casey would visit my neighbor Sally while she was shooting free throws. I could

see Sally shoot, but I could not see the outcome of her shot. Because Sally was a professional

poker player, she did not have a tell; i.e., as best I could discern, her reaction to a made shot

was identical to her reaction to a missed shot. In other words, Sally and Casey could see

everything; I could only see when shots were attempted. According to Sally, her free throws

were Bernoulli trials with probability of success (made shot) p = 0.80. Also according to

Sally, immediately after she made a shot, Casey would bark 70% of the time; immediately

after she missed a shot, Casey would bark 40% of the time (Sally liked to feed squirrels).

Casey would neither confirm nor refute Sally’s numbers.

Use the above information to answer the following questions.

(a) Sally is preparing to shoot; what is the probability that Casey is about to bark?

(b) Sally has shot and Casey has barked; what is the probability Sally made the shot?

(c) Sally has shot and Casey is silent; what is the probability Sally made the shot?

7. Refer to the medical studies introduced in Section 16.3. The population counts are given by

the following table, in thousands.

B Bc Total

A 9 291 300

Ac 7 693 700

Total 16 984 1,000

Calculate the values of p1, p2, the relative risk and the odds ratio for this population.

8. Refer to the previous problem. I used Minitab to generate data from this population using a

case-control study (Type 3 sampling) and obtained the following data.

B Bc Total

A 99 93 192

Ac 101 207 308

Total 200 300 500

(a) Calculate the odds ratio for these data. Viewing this number as the point estimate of

the population odds ratio, comment.

(b) Obtain the approximate 95% confidence interval estimate of the population odds ratio.

Is the interval estimate correct?
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9. The data for Rick Roby shooting free throws is below:

First Second Shot

Shot: Hit Miss Total

Hit 54 37 91

Miss 49 31 80

Total 103 68 171

(a) Find the exact P-values for each of the three possible alternatives for the test of the null

hypothesis that P (A) = P (B).

(b) Calculate the approximate 95% confidence interval estimate of P (A)− P (B).

16.8 Solutions to Practice Problems

1. (a) I divide each count by N = 5,000 and obtain the table of probabilities below:

B Bc Total

A 0.16 0.04 0.20

Ac 0.24 0.56 0.80

Total 0.40 0.60 1.00

(b) The table of conditional probabilities of B’s given A’s is below.

B Bc Total

A P (B|A) = 0.80 P (Bc|A) = 0.20 1.00

Ac P (B|Ac) = 0.30 P (Bc|Ac) = 0.70 1.00

P (B) = 0.40 P (Bc) = 0.60 1.00

The table of conditional probabilities ofA’s givenB’s is below. For example, P (A|Bc) =
0.07.

B Bc

A P (A|B) = 0.40 P (A|Bc) = 0.07 P (A) = 0.20
Ac P (Ac|B) = 0.60 P (Ac|Bc) = 0.93 P (Ac) = 0.80
Total 1.00 1.00 1.00

2. (a) I divide each count by N = 5,000 and obtain the table of probabilities below:

B Bc Total

A 0.08 0.12 0.20

Ac 0.32 0.48 0.80

Total 0.40 0.60 1.00

(b) The table of conditional probabilities of B’s given A’s is below.
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B Bc Total

A P (B|A) = 0.40 P (Bc|A) = 0.60 1.00

Ac P (B|Ac) = 0.40 P (Bc|Ac) = 0.60 1.00

P (B) = 0.40 P (Bc) = 0.60 1.00

The table of conditional probabilities of A’s given B’s is below.

B Bc

A P (A|B) = 0.20 P (A|Bc) = 0.20 P (A) = 0.20
Ac P (Ac|B) = 0.80 P (Ac|Bc) = 0.80 P (Ac) = 0.80
Total 1.00 1.00 1.00

3. We can see that P (AB) = 0.195 is equal to P (A)P (B) = 0.650(0.300) = 0.195. Thus,

the two responses are independent (refer to the previous practice problem). As a result the

marginal probabilities are equal to the conditional probabilities. For example

0.30 = P (B) = P (B|A) = P (B|Ac).

4. We proceed as follows. Given that P (A) = 0.800, we know that P (Ac) = 0.200. We put

these two numbers into our table of probabilities:

B Bc Total

A 0.800

Ac 0.200

Total 1.000

Next, we use my second statement of the multiplication rule for conditional probabilities,

Equation 16.4, twice. First,

P (AB) = P (A)P (B|A) = 0.800(0.375) = 0.300.

Second, we use it with a slight change of names:

P (AcB) = P (Ac)P (B|Ac) = 0.200(0.500) = 0.100.

We place these two newly acquired probabilities into our table, giving:

B Bc Total

A 0.300 0.800

Ac 0.100 0.200

Total 1.000

Finally, after a flurry of additions and subtractions, we obtain:

B Bc Total

A 0.300 0.500 0.800

Ac 0.100 0.100 0.200

Total 0.400 0.600 1.000
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5. (a) 453/3614 = 0.125; (b) 3325/3614 = 0.920; (c) 3126/3614 = 0.865; (d) 254/3614 =
0.070; (e) 35/3161 = 0.011; (f) 199/3325 = 0.060; (g) (254 + 3126)/3614 = 0.935;
(h) 199/(35 + 199) = 0.850; (i) (3614− 254)/3614 = 0.930.

6. This, of course, is a dreaded story problem. The primary challenge is to write the given

information in the language of this chapter. First, we identify the trial: Sally attempts a

free throw. Second, we identify the two dichotomous responses and give them labels: one

response is the outcome of the shot and the other response is Casey’s behavior. I will define

B for Casey barking and A for Sally making her shot. This gives us the following table of

probabilities with unknown probabilities missing:

B Bc Total

A
Ac

Total 1.00

Next, we write one piece of the given information in symbols: P (A) = 0.80, which implies

that P (Ac) = 0.20. We put this information in our table:

B Bc Total

A 0.80

Ac 0.20

Total 1.00

Next, we use the multiplication rule for conditional probabilities twice:

P (AB) = P (A)P (B|A) = 0.80(0.70) = 0.56 and

P (AcB) = P (Ac)P (B|Ac) = 0.20(0.40) = 0.08.

We put this information in our table and do lots of adding and subtracting; the end result is:

B Bc Total

A 0.56 0.24 0.80

Ac 0.08 0.12 0.20

Total 0.64 0.36 1.00

We are now ready to answer questions!

(a) The question asks for P (B); from the table, P (B) = 0.64.

(b) The question asks for P (A|B); from the definition of conditional probability,

P (A|B) = P (AB)/P (B), which equals 0.56/0.64 = 0.875.
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(c) The question asks for P (A|Bc); from the definition of conditional probability,

P (A|Bc) = P (ABc)/P (Bc), which equals 0.24/0.36 = 0.667.

7. We have p1 = 9/300 = 0.03 and p2 = 7/700 = 0.01. The relative risk is p1/p2 =
0.03/0.01 = 3. The odds ratio is

θ =
9(693)

291(7)
= 3.062.

8. (a) The odds ratio of these data is

θ̂ =
99(207)

93(101)
= 2.182.

The point estimate is considerably smaller than the population value, 3.062.

(b) First, I compute

λ̂ = ln(θ̂) = ln(2.182) = 0.7802.

The 95% confidence interval estimate of λ is

0.7802± 1.96
√

1/99 + 1/93 + 1/101 + 1/207 = 0.7802± 1.96(0.1886) =

0.7802± 0.3697 = [0.4105, 1.1499].

This gives us the following 95% confidence interval estimate of θ:

e0.4105 ≤ θ ≤ e1.1499 or 1.508 ≤ θ ≤ 3.158.

This interval is correct because it (barely) includes θ = 3.062.

9. (a) Go to the website

http://stattrek.com/Tables/Binomial.aspx

to obtain the exact P-values for McNemar’s test.

After accessing the site, enter 0.5 as the Probability of success; enter m = 37 + 49 =
86 for the Number of trials; and enter b = 37 for the Number of successes. Click on

calculate and you will obtain five probabilities. The two that are relevant are:

• P (X ≤ 37) = 0.1177

• P (X ≥ 37) = 0.9197.

Thus, the P-value for < is 0.1177; the P-value for > is 0.9197; and the P-value for 6= is

2(0.1177) = 0.2354.

(b) For the confidence interval estimate, note that (b− c) = −12, b+ c = 86 and n = 171.
Thus, the interval is

(
−12

171
)± (1.96/171)

√

171(86)− (−12)2

170
= −0.0702± 0.01146(9.255) =

−0.0702± 0.1061 = [−0.1763, 0.0359].

In the data, Roby was a considerably better shooter on his second shot, but the confi-

dence interval estimate is inconclusive.
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16.9 Homework

1. This is a problem about a very good screening test for a very rare disease. You are given the

following probabilities:

P (A) = 0.001, P (B|A) = 0.999 and P (B|Ac) = 0.01.

Calculate P (Ac|B). Comment.

Hint: Rather than work with very small probabilities, it might be easier to work with popu-

lation counts. To this end, let the population size N be one million.

2. This problem is about relative risks and odds ratios. Below is a table of hypothetical popu-

lation counts, in thousands.

Group B Bc Total

A 12 188 200

Ac 12 788 800

Total 24 976 1000

A case-control study with 800 subjects from this population yielded the data below.

Group B Bc Total

A 207 90 297

Ac 193 310 503

Total 400 400 800

(a) Calculate the relative risk and odds ratio for the population.

(b) Calculate the point estimate of the population odds ratio.

(c) Obtain the 95% CI for the population odds ratio.

3. A former student of mine, Jackie, planned to study her dog, Basia, with a total of 50 trials.

Jackie wanted to study Basia’s ability to catch a kernel of popped corn that has been tossed

towards her. (I am guessing that Basia is a female.) Years of experience had convinced

Jackie that Basia was very skilled at catching popcorn that was tossed directly at her. For

her study, Jackie chose the following two treatments. For the first [second] treatment, Jackie

would toss the popcorn approximately two feet to Basia’s right [left]. A trial is labeled a

success if, and only if, Basia catches the kernel before it hits the ground.

Jackie, of course, could perform a CRD and analyze it using the methods of Chapter 15—if

she was willing to assume Bernoulli trials—or Chapter 8—if not. Here is another idea. We

can take the 50 trials and form 25 pairs. Trials 1 and 2 form the first pair; trials 3 and 4 form

the second pair; and so on. Jackie chose to perform this randomized pairs design; similar to

the acne and headache studies, Jackie performed a separate randomization for each of her 25

pairs of trials. This is mathematically valid because Jackie it is a form of reusing units.
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Jackie obtained the following results: Basia obtained a total of 16 successes on the first

treatment; seven pairs of trials yielded two successes; and four pairs of trials yielded two

failures.

(a) Use the information above to complete the following data table:

Treatment 2

Treatment 1: Success Failure Total

Success

Failure

Total 25

(b) Obtain the exact P-value for each of the three possible alternatives.

(c) Now pretend that Jackie had performed a CRD and obtained exactly the same data.

Obtain the exact P-value for each of the three possible alternatives. Compare these

answers to your answers in (b).

4. Refer to the previous problem. Leigh performed 50 pairs of trials on her dog Attica. A

trial consisted of Leigh standing near a window inside her home while Attica was reposed

on the floor. For treatment 1, Leigh would yell, “Squirrel, Attica!” For treatment 2, Leigh

would calmly remark, “Hey Attica, squirrel.” Attica’s response was classified into one of

two categories—a success if she got excited and a failure if she did not move. There was

a total of 37 successes on the first treatment and a total of only 16 successes on the second

treatment. For only five pairs of trials did Attica give two successes.

(a) Present these data in a 2× 2 table.

(b) Find the exact P-value for the alternative >.

(c) Pretend that Leigh had performed a CRD and obtained exactly the same data. Obtain

the exact P-value for the alternative >.
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Chapter 17

Inference for One Numerical Population

In Chapter 10 you learned about finite populations. You learned about smart and dumb random

samples from a finite population. You learned that i.i.d. trials can be viewed as the outcomes of

a dumb random sample from a finite population. Chapter 11 developed these ideas in the special

case of a dichotomous response. This was a very fruitful development, leading to all the results not

named Poisson in Chapters 12–16. And, of course, our results for the Poisson are related to our

results for the binomial.

In Chapters 17–20 we mimic the work of Chapters 11–16, but for a numerical response rather

than a dichotomy. First, you will see the familiar distinction between a finite population and a

mathematical model for the process that generates the outcomes of trials. Second, you will see that

responses that are counts must be studied differently than responses that are measurements. We

begin by studying responses that are obtained by counting.

Before we get to count responses, let me lay out some notation for this chapter. Recall that

either dumb random sampling from a finite population or the assumption that trials are i.i.d., result

in our observing n i.i.d. random variables:

X1, X2, X3, . . . , Xn.

The probability/sampling distribution for each of these random variables is determined by the

population. Recall that for a dichotomous response the population is quite simple; it is determined

by the single number p. For a numerical response, as you will soon see, the population is more

complex—it is a picture, not a single number. Finally, when I want to talk about a generic random

variable—one observation of a trial or one population member selected at random—I will use the

symbolX , without a subscript.

You may need—on occasion—to refer back to the preceding paragraph as you work through

this chapter.

17.1 Responses Obtained by Counting

I will begin with finite populations.
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Table 17.1: The population distribution for the cat population.

x 0 1 2 3 Total

P (X = x) 0.10 0.50 0.30 0.10 1.00

Figure 17.1: The probability histogram for the cat population.
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17.1.1 Finite Populations for Counts

Please remember that the two examples in this subsection are both hypothetical. In particular, I

claim no knowledge of cat ownership or household size in our society.

Example 17.1 (The cat population.) A city consists of exactly 100,000 households. Nature knows

that 10,000 of these households have no cats; 50,000 of these households have exactly one cat;

30,000 of these households have exactly two cats; and the remaining 10,000 households have

exactly three cats.

We can visualize the cat population as a population box that contains 100,000 cards, one for

each household. On a household’s card is its number of cats: 0, 1, 2 or 3. Consider the chance

mechanism of selecting one card at random from the population box. (Equivalently, selecting one

household at random from the city.) Let X be the number on the card that will be selected. It is

easy to determine the sampling distribution ofX and it is given in Table 17.1. For example, 50,000

of the 100,000 households have exactly one cat; thus P (X = 1) = 50,000/100,000= 0.50. It will
be useful to draw the probability histogram of the random variableX; it is presented in Figure 17.1.

To this end, note that consecutive possible values of X differ by 1; thus, δ = 1 and the height of

each rectangle in Figure 17.1 equals the probability of its center value. For example, the rectangle

centered at 1 has a height of 0.50 because P (X = 1) = 0.50. Either the distribution in Table 17.1 or
its probability histogram in Figure 17.1 can play the role of the population. In the next section, we

will see that for a measurement response the population is a picture, called the probability density

function. (Indeed, the population must be a picture for mathematical reasons—trust me on this.)
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Because we have no choice with a measurement—the population is a picture—for consistency, I

will refer to the probability histogram of a count response as the population. Except when I don’t;

occasionally, it will be convenient for me to view the probability distribution—such as the one in

Table 17.1—as being the population. As Oscar Wilde reportedly said,

Consistency is the last refuge of the unimaginative.

It can be shown that the mean, µ, of the cat population equals 1.40 cats per household and its

standard deviation, σ, equals 0.80 cats per household. I suggest you trust me on the accuracy of

these values. Certainly, if one imagines a fulcrum placed at 1.40 in Figure 17.1, it appears that the

picture will balance. If you really enjoy hand computations, you can use Equations 7.1 and 7.3

on pages 147 and 148 to obtain µ = 1.40 and σ2 = 0.64. Finally, if you refer to my original

description of the cat population in Example 17.1, you can easily verify that the median of the

100,000 population values is 1. (In the sorted list, positions 10,001 through 60,000 are all home

to the response value 1. Thus, the two center positions, 50,000 and 50,001 both house 1’s; hence,

the median is 1.) For future use it is convenient to have a Greek letter to represent the median of a

population; we will use ν, pronounced as new.
You have now seen the veracity of my comment in the first paragraph of this chapter; the

population for a count response—a probability histogram—is much more complicated than the

population for a dichotomy—the number p.
Thus far with the cat population, I have focused exclusively on Nature’s perspective. We now

turn to the view of a researcher.

Imagine that you are a researcher who is interested in the cat population. All you would know is

that the response is a count; thus, the population is a probability histogram. But which probability

histogram? It is natural to begin with the idea of using data to estimate the population’s probability

histogram. How should you do that?

Mathematically, the answer is simple: Select a random sample from the population of 100,000

households. Provided that the sample size, n, is 5% or fewer of the population size, N = 100,000,

whether the sample is smart or dumb matters little and can be ignored. For the cat population, this

means a sample of 5,000 or fewer households. (It is beyond my imagination—see Wilde quote

above—that a cat population researcher would have the energy and resources to sample more than

5,000 households!)

In practice, a researcher would attempt to obtain a sample for which the WTP assumption

(Definition 10.3 on page 240) is reasonable.

Because the cat population is hypothetical, I cannot show you the results of a real survey.

Instead, I put the cat population in my computer and instructed my favorite statistical software

package, Minitab, to select a random sample of n = 100 households. (I chose a dumb sample

because it is easier to program.) The data I obtained are summarized in Table 17.2. In this table,

of course, the researcher would not know the numbers in the Unknown Probability column; but

Nature would. Nature can see that the researcher’s relative frequencies are somewhat close to the

unknown probabilities. Given that the population is a picture, it seems reasonable to draw a picture

of the data. Which picture?

The idea is that I want to allow Nature to compare the picture of the data to the picture of the

population. Thus, the dot plot is not a good idea—it’s like comparing apples to music. A histogram
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Table 17.2: Data from a simulated random sample of size n = 100 from the cat population in

Table 17.1.

Relative Unknown

Value Frequency Frequency Probability

0 9 0.09 0.10

1 44 0.44 0.50

2 35 0.35 0.30

3 12 0.12 0.10

Total 100 1.00 1.00

Figure 17.2: The density histogram for the data in Table 17.2. This is our picture-estimate of the

population in Figure 17.1.
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seems reasonable, but which one? The natural choice is the density histogram because, like the

probability histogram, its total area is one.

For a count response—but not a measurement response—we need one modification of the den-

sity histogram before we use it. Remembering back to Chapter 2, one of the reasons for drawing

a histogram of data is to group values into class intervals—sacrificing precision in the response

values for a picture that is more useful. In Chapter 7, we never grouped values for the probabil-

ity histogram. Thus, when we use a density histogram to estimate the probability histogram of a

population, we do not group values together. Without grouping, there is no need for an endpoint

convention; thus, we modify slightly our method for drawing a density histogram. The modifica-

tion is presented in Figure 17.2, our density histogram of the data in Table 17.2.

In Chapter 12 our population is a number, p. Our estimate of it, p̂, is called a point estimate

because it is a point/number estimating a point/number. In the current chapter, we estimate a

picture—the probability histogram—by a picture—the density histogram; thus, it is natural to

refer to the density histogram as the picture-estimate of the population.
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Table 17.3: Data from a simulated random sample of size n = 5,000 from the cat population in in

Table 17.1.

Relative Unknown

Value Frequency Frequency Probability

0 504 0.1008 0.1000

1 2,478 0.4956 0.5000

2 1,478 0.2956 0.3000

3 540 0.1080 0.1000

Total 10,000 1.0000 1.0000

A picture-estimate can be quite useful, especially if it is based on a large amount of data. For

example, because the cat population is completely hypothetical, it is easy to generate a random

sample of any size we want. I decided to select a dumb random of size n = 5,000 households from

the cat population; my data are in Table 17.3. Even a cursory comparison of the numbers in the

third and fourth columns of this table indicates that for a sample of size 5,000, the picture-estimate

of the cat population is very nearly perfectly accurate.

Now I need to give you the bad news. In Chapter 12, you learned how to estimate the population

with confidence. We called the result the confidence interval estimate of p because it consisted of
an interval of numbers—in other words, it consisted of a bunch of potential populations. I wish

that I could estimate a probability histogram with confidence, but that goal is unattainable. As a

result, as a researcher, you must choose either or both of the following strategies.

1. Create the picture-estimate—the density histogram—and be happy with it, despite our in-

ability to estimate with confidence.

2. Estimate some feature of the probability histogram with confidence. The feature most often

estimated is the mean, µ; we will learn about another possible feature in Chapter 18.

Thus far in this chapter, I have restricted attention to a count response for a finite population;

indeed, I have presented only one example! Nevertheless, the above two strategies are the choices

you face for every numerical response, be it count or measurement.

I end this subsection with another example of a count response on a finite population. I want

to remind you that the following example is totally hypothetical; I have chosen it for two reasons.

1. It will be convenient to have second and third specific examples—the cat population was the

first—of a skewed population.

2. This example will be useful in Chapter 18 when I discuss various common errors in estima-

tion.

Example 17.2 (The family size population.) A community consists of exactly 7,000 households.

The variable of interest is the number of children in the household who are attending public school.

Population counts and two population distributions are given in Table 17.4. The two probability

histograms are given in Figure 17.4.
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Table 17.4: The population counts and two distributions for the family size population.

Value: 0 1 2 3 4 5 6 7 Total

Counts: 2, 800 1, 260 840 714 546 420 294 126 7, 000

Population 1: All 7,000 households

x : 0 1 2 3 4 5 6 7 Total

P (X = x) : 0.400 0.180 0.120 0.102 0.078 0.060 0.042 0.018 1.000

Population 2: The 4,200 households with a positive response

y : 0 1 2 3 4 5 6 7 Total

P (Y = y) : 0.000 0.300 0.200 0.170 0.130 0.100 0.070 0.030 1.000

Figure 17.3: The probability histograms for the two family size populations.

Population 1 (X): All households

0 1 2 3 4 5 6 7

0.400

0.180
0.120 0.102 0.078 0.060 0.042 0.018

Population 2 (Y): All households with a positive response

0 1 2 3 4 5 6 7

0.30

0.20
0.17

0.13
0.10

0.07
0.03
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Table 17.5: The 36 quartets in solitaire mahjong.

Category Number Quartets

Numerals 9 1, 2, 3, 4, 5, 6, 7, 8 and 9

Letters 7 B, C, E, F, N, S and W

Circles 8 2, 3, 4, 5, 6, 7, 8 and 9

Bamboo 8 2, 3, 4, 5, 6, 7, 8 and 9

Miscellaneous 4 Woman, platter, plant and bird

Total 36

We will revisit the family size population in the Practice Problems and Homework.

17.1.2 A Population of Trials

In Example 12.1, I introduced you to my friend Bert and his 100 games of online solitaire mahjong.

Below I will show you data from another friend of mine, Walt, who plays a different version of

online solitaire mahjong. Walt’s version is definitely more difficult than Bert’s; thus, I am not

particularly interested in comparing their performances.

In my presentation of Bert’s data, I made the outcome of a game a dichotomy: win or lose. I

now want to make the outcome of Walt’s game a count. To do this, I need to tell you a bit about

online solitaire mahjong. First, for ease of presentation, I will say simplymahjong instead of online

solitaire mahjong. Feel free to ignore the description below and jump ahead to the beginning of

Example 17.3.

If you are interested in learning more about mahjong, you can play Walt’s version at

http://freegames.ws/games/boardgames/mahjong/freemahjong.htm.

Mahjong begins with 144 tiles, consisting of 36 quartets. The quartets are described in Table 17.5.

The 144 tiles are arranged in three dimensions. The player studies the arrangement and clicks on

a pair of tiles of the same quartet type. (There are rules governing which tiles one may click on;

again, if you are interested, play it a few times.) For example, the player might click on two birds.

The tiles that have been clicked disappear, leaving two fewer tiles in the arrangement. The game

ends in a victory if all tiles—72 pairs—are removed and ends in a loss if no legal moves remain.

(A nice feature of the game is it tells you when no moves are available.) Let T denote the number

of tiles remaining in the arrangement when the game ends. If T = 0 the game ends with a victory;

if T > 0 the game ends with a loss. I define the response to be X = T/2, the number of pairs of

tiles remaining when the game ends. Thus, the possible values ofX are the integers between 0 and

72, inclusive.

Example 17.3 (Walt playing mahjong.) Walt played 250 games of mahjong. A score of x = 0
means he won the game; a score of x > 0 means the game ended with x pairs remaining. The

smaller the value of x, the better Walt performed.
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Table 17.6: Data from Walt’s 250 games of mahjong. The value is the number of pairs remaining

when the game ended. A value of 0 means that Walt won the game.

Rel. Rel. Rel. Rel.

Value Freq. Freq. Value Freq. Freq. Value Freq. Freq. Value Freq. Freq.

0 34 0.136 13 5 0.020 25 8 0.032 37 5 0.020

1 5 0.020 14 7 0.028 26 6 0.024 39 4 0.016

2 3 0.012 15 5 0.020 27 9 0.036 40 1 0.004

4 1 0.004 16 8 0.032 28 6 0.024 41 2 0.008

5 3 0.012 17 3 0.012 29 5 0.020 42 3 0.012

6 1 0.004 18 6 0.024 30 4 0.016 44 2 0.008

7 4 0.016 19 6 0.024 31 13 0.052 45 1 0.004

8 4 0.016 20 8 0.032 32 4 0.016 47 2 0.008

9 1 0.004 21 7 0.028 33 4 0.016 55 1 0.004

10 7 0.028 22 8 0.032 34 6 0.024 57 1 0.004

11 3 0.012 23 14 0.056 35 4 0.016 Total 250 1.000

12 5 0.020 24 8 0.032 36 3 0.012

We assume that Walt’s games are the outcomes of i.i.d. trials with probabilities given by an

unknown probability histogram. Table 17.6 presents Walt’s data.

It is not easy to learn from this table! Notice that the data range from a low of 0 to a high of 57,

with a number of gaps; in particular, none of Walt’s games ended with x equal to: 3, 38, 43, 46,

48–54, 56 or 58–72. I won’t draw the density histogram of Walt’s data; i.e., the picture-estimate of

the unknown probability histogram. I will note, however, that the histogram is strongly skewed to

the right with a tall peak above 0 and a number of minor peaks. Suffice to say, looking at the data

in Table 17.6, I conclude that 250 observations are not enough to obtain a good picture-estimate of

the population.

For future reference, I will note that for these 250 observations, the mean is x̄ = 19.916,
the standard deviation is s = 12.739 and the median is x̃ = 21. (This is another example of the

surprising result that the mean is smaller than the median even though the data are strongly skewed

to the right.)

Later in these Course Notes I will look at the 216 observations that remain after deleting the 34

games Walt won. (My reason for doing this will be explained at that time.) For future reference, I

will note that for these remaining 216 observations, the mean is x̄ = 23.051, the standard deviation
is s = 10.739 and the median is x̃ = 23. Also, the distribution of these remaining 216 observations

is close to symmetric; thus, it is no surprise that the mean and median nearly coincide.

17.2 Responses Obtained by Measuring

Under the entry,Measurement, Wikipedia lists seven basic measurement quantities:
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Figure 17.4: The balanced spinner.

0.75 0.25

0.50

0.00,1.00

t
.....
........
............
................
...........
.....
......
.......
........
..........
...........
.............
................
....................
............................


..........................

....................
...............
.............
...........
.........
........
.......
......
.....
...........
................
............
........
.....
.

@
@
@
@

@
@
@R

@
@

@

�a

�
b

time, length, mass, temperature, electric current, amount of substance and luminous

intensity.

All of the examples in these Course Notes are limited to the first four of these and a select few

mathematical functions of one or more of these; for example, area, volume and velocity. Also, I

tend to prefer weight and speed to their closely related mass and velocity.

If you reflect on our development of probability in these Course Notes, you will realize that

almost everything we have done has grown from the notion of the equally likely case. For a CRD,

we assume that all possible assignments are equally likely to occur. For a finite population, we

assume that all cards in the population box are equally likely to be selected. For the i.i.d. trials

we have studied, the outcome of a trial could be viewed as selecting a card from a box. The only

exception is the Poisson Process, which is derived from a mathematical model for randomness

in time. But even the Poisson distribution is tied to the equally likely case in the sense that it

approximates the binomial.

In order to develop the mathematical theory we use for a numerical response, we need a new

basic chance mechanism; one that, indeed, is similar to the equally likely case. This new chance

mechanism is the (balanced) spinner model. I will usually suppress the adjective balanced be-

cause, in these notes, we will not consider any unbalanced spinner models. The spinner model is a

refinement of the balanced roulette wheel we discussed earlier in these notes. Figure 17.4 presents

a circle with circumference equal to 1. If you think of this as a pre-digital-clock clock face, put

the numbers: 0.00 at the 12:00, 0.25 at the 3:00, 0.50 at the 6:00, 0.75 at the 9:00 and 1.00 at the

12:00, as I have done in this figure. Ignore the fact, for now, that 0.00 and 1.00 share the same

point on this circle. The figure also contains a spinner with its arrow pointing at what appears to be

at or near 0.375. The modifier balanced in the balanced spinner model reflects the assumption that
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Figure 17.5: The uniform or rectangular pdf on the interval [0,1].
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if one flicks the spinner with adequate force, then the arrow shows no preference in its stopping

point.

One needs to be careful with this notion of showing no preference. We cannot say that every

stopping point—every number between 0 and 1—is equally likely to occur, because there are an

infinite number of stopping points. If one allows an infinite number of equally likely outcomes,

then all of the results of probability theory that we use will collapse. (Trust me on this.) Instead,

somebody figured out a clever way to look at this. The idea is that instead of assigning probabilities

to points on the circle, we assign probabilities to arcs of the circle. The rule of the spinner model

is:

The probability that the arrow lands in an arc is equal to the length of the arc.

For example, in Figure 17.4 find the arc from point a, moving clockwise, to point b. By the rule,

the probability that the arrow lands within this arc is equal to b−a, which, from the figure, appears

to be a bit smaller than 0.05.

The balanced spinner model states that successive operations of it yield i.i.d. random variables

with probabilities given by the rule above. The spinner model is important because it gives us a

physical device to think about for measurements.

Let X be a random variable whose observed value is obtained by an operation of the spinner

model; i.e., by flicking the spinner. I will now show you how to use a mathematical function to

calculate probabilities forX . Figure 17.5 presents the graph of a very important function in Statis-

tics. It is called the uniform probability density function on the interval [0, 1]. It is an example

of a very important class of functions that are called probability density functions, abbreviated

pdf for the singular and pdfs for the plural, pronounced simply as pea-dee-eff(s). Let me point out

some features of this function and its graph.

1. If we denote the function by f(x), we see that f(x) = 0 if x < 0 or if x > 1. This means that

the graph of f(x) coincides with the horizontal axis for x < 0 and for x > 1; I emphasize
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this feature in the figure by typing a ‘0’ to represent the height of the graph. In future graphs,

I won’t bother with the ‘0’ anymore.

2. The function f(x) equals 1 for all 0 ≤ x ≤ 1, as noted in the figure.

3. The total area under the pdf (and above the horizontal axis, which is always implied) equals 1.

This pdf is called the uniform pdf because—except for where it equals zero—it has a uniform

height. It is sometimes called the rectangular pdf because its graph—again ignoring where it

equals zero—has the shape of a rectangle. It is my impression that uniform is the more popular of

the two names.

Remember that just before I first referred you to Figure 17.5, I defined the random variable

X whose observed value is obtained by an operation of the spinner model. Statisticians say that

probabilities for X are given by the uniform pdf on [0, 1]. Let me show you why.

Suppose that we have any two numbers a and b that satisfy 0 ≤ a < b ≤ 1. We are interested in

the probability of the event (a ≤ X ≤ b). From the spinner model, we know that the probability of

this event equals the length of the arc that begins at a and moves clockwise to b; i.e., the probability
equals (b−a). We can also obtain this answer from the pdf. We simply calculate the area under

the pdf between the numbers a and b. This is the area of a rectangle with base equal to (b− a) and
height equal to 1; thus, it equals

(b− a)× 1 = b− a.

In other words, we obtain probabilities for the spinner model by calculating areas under the uniform

pdf.

If this were a course for math majors, I would show you that the above demonstration for the

event (a ≤ X ≤ b) can be extended to all possible events, but this is too tedious for my purposes

for this course.

17.2.1 The General Definition of a Probability Density Function

I have shown you one extended example of a measurement random variable. For the random

variable X with observed value given by one operation of the spinner model, we have found that

X has a pdf which will yield its probabilities by computing areas. The general result is that if we

have a chance mechanism that yields a measurement random variable X , then it will have its own

pdf, which will not necessarily be the uniform pdf on the interval [0, 1]. The pdf for X is given in

the following definition.

Definition 17.1 The pdf of a measurement random variable X is a function which satisfies the

following equation for every pair of real numbers a and b with a ≤ b.

P (a ≤ X ≤ b) equals the area under the graph of the pdf between the numbers a and b. (17.1)

The above definition has two important consequences.

1. The total area underX’s pdf equals one because the total probability is one.
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2. The graph of a pdf may not fall below the horizontal axis because, if it did, there would be

some negative areas and probabilities cannot be negative.

Nowwe get to a subtle issue. I have been looking at this situation from the perspective of a scientist.

I have a chance mechanism that arises in a scientific problem and it yields a measurement random

variable X . I next try to find X’s pdf. (We had a successful quest for the spinner model; can we

be successful for other situations?) For example, think back to Sara’s study of golf, introduced in

Chapter 1. Consider Sara’s trials with the 3-Wood; if we assume that these are i.i.d. trials, what is

the pdf?

Here is a surprise. At this time, we are not going to try to answer this question for Sara. Instead,

we switch perspective to that of a mathematician. Rather than try to find the pdf for a particularX ,

we simply study functions that could be pdfs. As a mathematician, I am interested in properties

of functions that could be pdfs; whether there is a scientific application for a particular function

does not concern me.

(Aside: The following link will take you to what passes for humor in this area:

http://www-users.cs.york.ac.uk/susan/joke/3.htm#real.)

The above ideas lead to the following definition.

Definition 17.2 A function f could be a pdf for some measurement random variable if it satisfies

the following conditions.

1. The value of f(x) is nonnegative for all real numbers x.

2. The total area under the function f(x) equals 1.

We get the following result, which is quite useful and comforting.

Result 17.1 Let a and b be any numbers with a < b. Let X be a measurement random variable;

hence, it has a pdf. Then the following is true:

P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a < X < b).

In words, this result tells us that for a measurement random variable X , the probability of that X
falls in an interval of numbers does not depend on whether the interval includes either or both of

its endpoints. (We know that this is not true for a count random variable.) This result is actually

very easy to prove; thus, I will prove it for you.

We can write

P (a ≤ X ≤ b) = P (a ≤ X < b) + P (X = b).

Thus, the result will follow when I prove that P (X = b) = 0. We write,

P (X = b) = P (b ≤ X ≤ b).

By Definition 17.1, the probability of the latter term is the area under the pdf between b and b. But
this is simply the area of a line; thus, it equals zero.

As a mathematician, I want to study functions that could be pdfs; i.e., that satisfy Defini-

tion 17.2. Not surprisingly, it is most efficient if I can develop properties for families of pdfs.

Let’s pause for a moment. You might be thinking,

436

http://www-users.cs.york.ac.uk/susan/joke/3.htm#real


Families of pdfs? I barely know what a pdf is!

Actually, you have already met the most famous family of pdfs. Dating back to Chapter 7, we have

found several uses for the family of Normal curves; namely, these uses involved using a particular

Normal curve to obtain an approximate probability. Notice that a Normal curve could be a pdf; its

total area is one and it is never negative. Indeed, the family of Normal curves is usually called the

family of Normal pdfs.

During the 20th century, many clever mathematical statisticians exerted a great deal of time

and effort to obtain many wonderful features of the family of Normal pdfs, some of which you

will learn in the remainder of these Course Notes. Because of the plethora of useful results for

Normal pdfs, it is predictable—recall Maslow’s hammer—that scientists and statisticians love to

state that the pdf of a scientifically important random variableX is a Normal curve. In many cases,

a Normal pdf may be a good approximation to the true and unknown pdf, but, sadly, in many cases

it is not. My advice is that when you come across such a claim, be skeptical; think about whether

it makes sense scientifically. For example, if your response is the age for a population of college

students, you know that the pdf will be strongly skewed to the right and, hence, it will not be well

approximated by a Normal curve.

17.2.2 Families of Probability Density Functions

Almost always in these notes, when faced with a measurement random variable I will simply

assume that it has an unknown pdf. On occasion, however, it will be useful to at least entertain the

possibility that the unknown pdf is the member of some family. There are four families that we

will consider; they are listed below, with comments.

1. The family ofNormal pdfs. You saw the graph of a Normal pdf in Figure 7.4 on page 151. If

you believe that the unknown pdf is exactly or approximately symmetric, you might entertain

the possibility that it is a Normal curve.

2. The family of Laplace pdfs; also called the family of double exponential pdfs. Graphs of

some Laplace pdfs are given at:

http://en.wikipedia.org/wiki/Laplace_distribution.

(Note: Unless you really love this material, do not attempt to read the entire passage. I

simply want you to look at the graphs of select Laplace pdfs at the top of the page on the

right. Similar comments apply to the sites below.) If you believe that the unknown pdf is

exactly or approximately symmetric, you might entertain the possibility that it is a Laplace

pdf. In other words, a Laplace pdf is a natural competitor to a Normal pdf.

3. The family of exponential pdfs. Graphs of some exponential pdfs are given at:

http://en.wikipedia.org/wiki/Exponential_distribution.

An exponential pdf is skewed to the right and its most important feature is its connection to

the Poisson Process; this connection is explored in a Practice Problem in this chapter.
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4. The family of log-normal pdfs. Graphs of some log-normal pdfs are given at:

http://en.wikipedia.org/wiki/Log-normal_distribution.

If the random variable of interest takes on positive values only—i.e., zero or negative mea-

surements are not allowed—then you might consider using a log-normal pdf. The log-normal

is a rich family, including pdfs that are nearly symmetric as well as those that are strongly

skewed to the right.

Why the name log-normal? Well, if the random variable X has a log-normal pdf, then the

random variable Y which equals the natural log of X has a normal pdf. (This is why X
must be strictly positive; one cannot take the log of zero or a negative number.) Reversing

this, if Y has a Normal pdf, and we let X be equal to exp(Y ), then X has the log-normal

distribution. Bonus points if you have spotted that the name is dumb; it should be called the

exponential-normal distribution, but the inaccurate name log-normal has persisted.

The family of Weibull pdfs is a competitor to the family of log-normal pdfs, but we won’t consider

it in these Course Notes.

17.3 Estimation of µ

As I mentioned earlier, for a count response, the population—a probability histogram—can be

estimated by the density histogram of the data. Sadly, estimation with confidence is not possible.

The story is similar for a measurement response. A density histogram of the data can be used to

estimate the pdf. (Grouping values, as we did in Chapter 2 is allowed.) If you want a smoother

estimate, you can employ a kernel estimate, as discussed in Chapter 2. Again sadly, estimation

with confidence is not possible.

Even though we cannot estimate with confidence, I believe that it is always a good idea to use

the data to obtain a picture-estimate of the population picture. In addition, often a scientist wants

to estimate the mean, µ, of the population, for either counts or measurements. The estimation of

the mean is the topic of this section. As you will learn, there are some really useful results on

estimating the mean of a population.

Statisticians, as a group, have been criticized for being a bit too enthusiastic in their interest in

the mean. I remember seeing a textbook in which the author stated, more or less, the following:

Tom owns a store and is interested in the income of his customers.

So far, this is fine, but then the author, without any explanation, proceeded to say:

Let µ be the mean income of his population of customers.

Huh? How did interest translate into the mean? Before I introduce the technical results, I want to

share three brief stories; the first two are in the category of jokes and the third is from real life.

1. When I first studied Statistics in the late 1960s, here is the first joke I heard about my area

of interest:
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A statistician is a person who, while standing with one foot in a vat of boiling

water and one foot in a vat of ice water, will say, “On average, I feel fine!”

2. I told the story of the statistician and the water every semester for many years until some

undergraduate math majors provided me with an updated version which takes into account

the popularity of bow hunting in Wisconsin. Their story went as follows:

Three statisticians are bow hunting. They locate a deer and take aim. The first

statistician fires and his arrow lands 40 feet to the left of the deer. The second

statistician fires and her arrow lands 40 feet to the right of the deer. The third

statistician jumps up and down shouting, “We hit it!”

3. Quoting from

http://en.wikipedia.org/wiki/Aloha_Airlines_Flight_243:

On April 28, 1988, a Boeing 737-297 . . . suffered extensive damage after an ex-

plosive decompression in flight, but was able to land safely at Kahului Airport on

Maui.

The safe landing of the aircraft despite the substantial damage inflicted by the

decompression established Aloha Airlines Flight 243 as a significant event in the

history of aviation, with far-reaching effects on aviation safety policies and pro-

cedures. . . .

. . . the United States National Transportation Safety Board (NTSB) concluded that

the accident was caused by metal fatigue exacerbated by crevice corrosion. The

plane was 19 years old and operated in a coastal environment, with exposure to

salt and humidity.

I cannot overemphasize what a big deal this was in America. It inspired a 1990 television

movie, Miracle Landing. In real life, there was an anxiety among fliers concerning metal

fatigue and, especially, flying in an older airplane.

So, what does this have to do with Statistics? Reportedly, an airline sent a memo to flight

attendants (see [1]), which stated:

To avoid increasing a potentially high level of customer anxiety, please use the

following responses when queried by customers. Question: How old is this air-

craft? Answer: I’m unaware of the age of this particular aircraft. However, the

average age of our aircraft is 13.5 years.

The airline proposed responding to a question about a particular airplane with an answer

about their fleet of airplanes. Is this really very different from my earlier reference to what

the textbook author said about the merchant Tom?

Remember: Science trumps (is more important than) Statistics. For an extremely depressing

example, consider the distribution of the sizes (mass or diameter) of all meteors/asteroids that

enter Earth’s atmosphere during the next 100 years. I don’t care about the mean or median of the

distribution; it’s the maximum that we need to worry about!
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17.3.1 The Assumptions

Recall that we plan to observe random variables

X1, X2, X3, . . .Xn.

We assume that these are i.i.d. random variables from an unknown population. Our goal is to esti-

mate the mean of the population, denoted by µ. Also, for later use, let σ denote the unknown stan-

dard deviation of the population. We will be interested in the following summaries—themselves

random variables too—of the random variablesX1, X2, X3, . . .Xn:

X̄ and S, the mean and standard deviation of the random variables.

The observed values of these random variables are x̄ and s.
The obvious point estimator [estimate] of µ is X̄ [x̄]. We now face a new problem. When

we studied the binomial or the Poisson, we could calculate the exact sampling distribution of our

point estimator. This allowed us to obtain exact—actually conservative—confidence intervals for

the parameter of interest, either p or θ. In addition, we could use a Normal curve and Slutsky’s

Theorem to obtain approximate confidence intervals for either p or θ and we had a pretty good idea
when the approximation was good. The problem of estimating µ is much more difficult.

It is more difficult because we are studying a much more general problem. Above I state

that our random variables come from an unknown population, without specifying any features of

the population. The exact sampling distribution of X̄ will vary from population to population

and—with one notable exception, which is discussed later—is a mess to derive. Thus, we will

work almost exclusively—I would say exclusively, but some statisticians like to split hairs on this

issue—on finding approximate answers, with the added annoyance that it is very difficult to tell

whether the approximation is good.

The mathematical theory needed for our results begins with a famous result, called the Central

Limit Theorem. See

http://en.wikipedia.org/wiki/Central_limit_theorem

if you are interested in details of its history. Let’s examine this three word name. Theorem, of

course, means it is an important mathematical fact. Limit means that the truth of the theorem is

achieved only as n grows without bound. In other words, for any finite value of n the result of the

theorem is only an approximation. This should remind you of our earlier presentation of the Law

of Large Numbers, which is also a limit result. Central, finally, refer to its importance; i.e., it is

central to all of probability theory.

There are two parts to the Central Limit Theorem. The first part tells us how to standardize X̄
and is given in the equation below. If we define Z by:

Z =
X̄ − µ

σ/
√
n

(17.2)

then Z is the standardized version of X̄ . The second part of the Central Limit Theorem addresses

the following issue. I want to calculate probabilities for Z, but I don’t know how to do this.
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I decide to use the N(0,1) curve to obtain approximate probabilities for Z. The Central Limit

Theorem shows that in the limit, as n grows without bound, any such approximate probability will

converge to the true (unknown) probability. This is a fairly amazing result! It does not matter what

the original population looks like; in the limit, the N(0,1) curve gives correct probabilities for Z.
Of course, in practice, it is never the case that ‘n grows without bound;’ we have a fixed n

and we use it. But if n is large we can hope that the N(0,1) curve gives good approximations.

Ideally, this hope will be verified with some computer simulations and we will do this on several

occasions.

If we expand Z in Equation 17.2, we get the following result, that, while scientifically useless,

will guide us to better things.

Result 17.2 (The approximate confidence interval for µ when σ is known.) As usual, the tar-

get confidence level determines the value of z∗, as given in Table 12.1 on page 296. The confidence
interval estimate of µ is

x̄± z∗(σ/
√
n). (17.3)

Recall the cat population, introduced in Example 17.1 with probability histogram given in Fig-

ure 17.1. Recall that Nature knows µ = 1.40 and σ = 0.80. Imagine a researcher who does not

know µ, but somehow knows that σ = 0.80. Scientifically, this is ridiculous, but many mathemat-

ical statisticians seem to love the television show Jeopardy: any answer—Equation 17.3—must

have a question!

Thus, please humor me while I illustrate some computations. In my role as Nature, I put the

cat population into my computer. Then, switching gears, I become the researcher who knows that

σ = 0.80, but does not know the value of µ; again, a neat trick, given that the value of µ is needed

to compute σ! Anyways, as the researcher I select a random sample of n = 25 households (smart

or dumb doesn’t matter) and obtain the following data:

1 1 1 1 2 0 1 0 1 3 2 0 0

2 1 1 3 1 1 3 1 3 2 1 2

For 95% confidence, z∗ = 1.96. Thus, the 95% confidence interval estimate of µ, given σ = 0.8
and n = 25, is:

x̄± 1.96(0.80/
√
25) = x̄± 0.314.

For the 25 observations above, you may verify that x̄ = 1.36; also, although we don’t need it for

the confidence interval, the standard deviation of these 25 numbers is s = 0.952
Nature can see that the point estimate, 1.36, is almost correct because µ = 1.40. Both Nature

and the researcher can see that the standard deviation of the data is quite a bit larger—0.952 is 19%

larger than 0.80—than the standard deviation of the population. The 95% confidence interval for

µ is:

x̄± 0.314 = 1.36± 0.314 = [1.046, 1.674].

Nature can see that this particular confidence interval is correct because it includes µ = 1.40; the
researcher, ignorant of the value of µ, would not know this fact.
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By looking at one random sample of size n = 25, we have had the experience of evaluating the
formula, but we don’t know how it performs. The Central Limit Theorem approximation, which

gives us the 95%, is accurate as n grows without bound, but is it any good for n = 25?
To answer this last question, I repeated the above activity another 9,999 times. To be precise, I

had Minitab generate a total of 10,000 random samples of size n = 25. For each generated random
sample I calculated the interval

x̄± 0.314.

I obtained the following results:

• A total of 286 simulated confidence intervals were too small. Recall that this means that the

upper bound of the interval, u, is smaller than µ = 1.40.

• A total of 318 simulated confidence intervals were too large. Recall that this means that the

lower bound of the interval, l, is larger than µ = 1.40.

• A total of 286+318 = 604 confidence intervals were incorrect. This is larger than the target
of 500. If we calculate the nearly certain interval for the probability of an incorrect 95%

confidence interval, we get:

0.0604± 3
√

(0.0604)(0.9396)/10000 = 0.0604± 0.0071.

Thus, the Central Limit Theorem approximation, while not horrible, is clearly not exact; The

true probability of an incorrect confidence interval is definitely larger than 0.0500.

I repeated the above simulation study on the cat population, but took n = 100. I obtained the

following results:

• A total of 253 simulated confidence intervals were too small.

• A total of 260 simulated confidence intervals were too large.

• A total of 253+260 = 513 confidence intervals were incorrect. This is larger than the target
of 500, but well within the bounds of sampling error. Thus, it appears that the Central Limit

Theorem approximation is quite good for n = 100.

In science, σ is always unknown. We need a way to deal with this. The obvious idea works;

replace the unknown σ with the s computed from the data. More precisely, define Z ′ as follows.

Z ′ =
X̄ − µ

S/
√
n

(17.4)

According to the work of Slutsky, the Central Limit Theorem conclusion for Z is also true for Z ′;

i.e., we can use the N(0,1) curve for Z ′ too. This leads to our second confidence interval formula,

which we will call Slutsky’s confidence interval estimate of µ:
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Table 17.7: Results from three simulation experiments. Each simulation had 10,000 reps, with

a rep consisting of a random sample of size n from the cat population in Table 17.1. For each

sample, Slutsky’s approximate 95% confidence interval estimate of µ, Formula 17.5, is computed

and Nature classifies it as too small, too large or correct.

Sample size Number of Number of Number of

(n) Too Small Intervals Too Large Intervals Incorrect Intervals

10 451 371 822

20 377 286 663

40 363 245 608

Result 17.3 (Slutsky’s approximate confidence interval estimate of µ.) As usual, the target con-

fidence level determines the value of z∗, as given in Table 12.1 on page 296. Slutsky’s approximate
confidence interval estimate of µ is:

x̄± z∗(s/
√
n). (17.5)

Playing the role of Nature, I put the cat population into my computer. Then, switching roles to

the researcher, I selected a random sample of size n = 10. I obtained the following data:

2, 1, 2, 2, 1, 2, 1, 1, 3, 2.

These data yield x̄ = 1.700 and s = 0.675. Thus, for these data, Slutsky’s 95% confidence interval

estimate of µ is

1.700± 1.96(0.675/
√
10) = 1.700± 0.418 = [1.282, 2.118].

Reverting to Nature, I note that, in fact, µ = 1.40. Thus, the point estimate is incorrect, but the

95% confidence interval is correct.

I performed three simulation experiments for the cat population, each with 10,000 reps, to

investigate the performance of Slutsky’s approximate 95% confidence interval estimate of µ. The
first simulation experiment was for random samples of size n = 10; the second was for n = 20;
and the third was for n = 40. My results are presented in Table 17.7. Take a minute to look at the

numbers in this table; below is their most important feature.

• For each sample size, there are too many incorrect intervals. Note, however, that as n in-

creases, the number of incorrect intervals declines. This is in agreement with the math theory

which states that as n grows without bound, the 95% confidence level becomes accurate.

Imagine that you are a mathematical statistician thinking about the results in Table 17.7. The only

formula you have is Slutsky’s and it is yielding too many incorrect intervals! What can you do?

Let’s look at the confidence interval formula again:

x̄± z∗(s/
√
n).
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Figure 17.6: Some possible effects of making Slutsky’s confidence intervals wider. Slutsky’s

interval is [l, u]; its wider version is [l′, u′].

µl u

Both intervals are correct:

l′ u′

µl u

Both intervals are too small:

l′ u′

µl u

Slutsky’s interval is too small, but its wider version is correct:

l′ u′

The values of x̄, s and n come from the data; you can’t change them. All that you can possibly

change is the number z∗. You realize that if you replace z∗ by a larger number, the interval will

become wider. Think back to any one of my simulation studies that are reported in Table 17.7. If I

make every one of the 10,000 intervals wider, this is what will happen:

1. Intervals that had been correct will remain correct; because the center (x̄) does not change,
the new interval will include the original interval, which includes µ. See Figure 17.6.

2. Some of the intervals that had been incorrect will remain incorrect. See Figure 17.6 for a

picture of a too small interval that remains too small.

3. Intervals that had been incorrect might become correct. Figure 17.6 illustrates this possi-

bility for a too small confidence interval.

So, how much wider should we make Slutsky’s intervals? We will replace z∗ by a larger number

that we will denote by t∗. Table 17.7 suggests that we will need a bigger correction for n = 10
than we will need for n = 40. Also, for n sufficiently large, we won’t need any correction. In other

words, the value of t∗ should depend on the sample size n. Actually, statisticians prefer to say that

t∗ is a function of the number of degrees of freedom in the deviations, which is (n− 1).
A solution to this difficulty—finding t∗—was obtained by William Sealy Gosset in 1908, who

published his findings under the name Student. Gosset invented a new family of pdfs, called the

t-curves or, sometimes, Student’s t-curves. A specific t-curve is determined by one parameter,

called its degrees of freedom (df ). Possible values for the degrees of freedom are the positive
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integers: 1, 2, 3, . . . . Every t-curve has its one peak at 0 and is symmetric. As the number of

degrees of freedom increases, the t-curves have less spread; visually, the peak becomes taller and

the symmetric tails shorter. As the degrees of freedom grow, the t-curves converge to the N(0,1)

curve; thus, in an abuse of language, the N(0,1) curve is sometimes referred to the t-curve with

df = ∞. Pictures of the t-curves for df = 1, 2, 5 and∞ (i.e., the N(0,1) curve) are available at

http://en.wikipedia.org/wiki/Student’s_t-distribution

Note the following. For degrees of freedom as small as 5, visually it is difficult to distinguish

between a t-curve and the N(0,1) curve. For df > 5, even though we might not be able to see the

differences between the two curves, the differences are important!

We will use the following website for calculating areas under a t-curve for you.

http://stattrek.com/online-calculator/t-distribution.aspx

(I used a different site during the Summer 2013 class, but it has exploded; well, the internet equiv-

alent of exploding. Don’t use it!) We are going to use this website quite a lot; thus, it will be

convenient for me to present a facsimile of it in Table 17.8. In this facsimile, I have replaced the

website’s three boxes by three horizontal line segments because it is easier to create the latter with

my word processor.

Above the three boxes in the website is the default option t-score for the first user specification:

Describe the random variable. There is another option of which you will learn later; for now, do

not change the default.

Next, you need to enter the number of degrees of freedom for the t-curve/distribution of interest.

In my illustrative examples below I will use df = 10. Your next choice is to enter a value for t

score or Cumulative probability: P (T < t) but not both. If you:

• Opt for t score, you may enter any real number; negative, zero or positive. Alternatively, if

you

• Opt for Cumulative probability: P (T < t) then you must enter a number that is strictly

between 0 and 1.

Let me do a few examples to illustrate the use of this site. Remember in each example below, I

have entered df = 10.

1. I want to obtain the area under the t-curve with df = 10 to the left of −1.367.

• I enter −1.367 in the box next to t score and click on the box Calculate.

• My answer, 0.1008, appears in the Cumulative probability: P (T < −1.367) box.

Note that in order to remind me of what I am doing, in the Cumulative probability: box, the

site replaces the generic t with the value I am using, −1.367.

2. I want to find the number, let’s call it t, with the following property: the area under the

t-curve with df = 10 to the left of t is equal to 0.05.
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Table 17.8: Facsimile of t-curve calculator website.

Describe the random variable t-score

Degrees of freedom

t score

Cumulative probability: P (T < t)

• I enter 0.05 in the box next to Cumulative probability: P (T < t) and click on the box

Calculate.

• My answer, −1.812, appears in the t-score box.

(Aside: Do you need a break from this exciting presentation? If so go to

http://www-users.cs.york.ac.uk/susan/joke/3.htm#boil.

The mathematician’s behavior in this joke is relevant to the next two examples. If you can’t

stand to take a break or don’t have the time, carry on.)

3. I want to obtain the area under the t-curve with df = 10 to the right of 2.863. For this

problem, the site is annoying! It only gives areas to the left. There are two ways to attack

this problem; I will use the fact that the total area under any pdf equals 1. (The other way

uses the fact that the t-curves are symmetric around 0; you don’t need to know it.)

Proceeding as in (1) above, I find that the area under the curve to the left of 2.863 is equal to
0.9916. As a result, the area I seek is 1− 0.9916 = 0.0084.

4. I want to find the number, let’s call it t, with the following property: the area under the t-

curve with df = 10 to the right of t is equal to 0.15. This problem is similar to the problem

in (2) above, except that left has been changed to right.

As in (3) above, I rewrite the problem. The number I seek, t, has the property that the area

to the left of it equals 1 − 0.15 = 0.85. Proceeding as in (2) above, I obtain the answer

t = +1.093.

Now that you are familiar with how this site operates, I will use it to solve a very specific

problem.

Recall that for the cat population and n = 10, Slutsky’s confidence interval did not perform

well. I am now going to show you Gosset’s interval for these data. (I will give you the general

method shortly.) I go to the t-curve website calculator and enter n − 1 = 9 for the degrees of

freedom.
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Figure 17.7: Finding the value of t∗ for Gosset’s 95% confidence interval estimate.

t∗−t∗ 0

Area = 0.95 Area = 0.025Area = 0.025

Our goal is to find the number t∗ with the property:

The area under the t-curve between −t∗ and t∗ is equal to 0.95.

Figure 17.7 illustrates this idea (except that I did not bother to draw the t-curve). We see that

because of the symmetry of the t-curve, the areas to the left of−t∗ and to the right of t∗ both equal
0.025. Because our website calculator handles only areas to the left, I change my problem slightly:

My new goal is to find the number t∗ with the property that the area under the t-curve to the left of
it equals 0.95 + 0.025 = 0.975. I enter 0.975 into the box Cumulative probability . . . . I click on

calculate and obtain the answer 2.262. In other words, the number 2.262 plays the same role for

the t-curve with df = 9 as 1.96 does for the N(0,1) curve. Thus, I replace z∗ = 1.96 Slutsky’s 95%
confidence interval by t∗ = 2.262, and obtain:

x̄± 2.262(s/
√
10).

For n = 20, Gosset’s 95% confidence interval is:

x̄± 2.093(s/
√
20).

Finally, for n = 40, Gosset’s 95% confidence interval is:

x̄± 2.023(s/
√
40).

Note that as n increases from 10 to 20 to 40, the value of t∗ for Gosset’s interval becomes closer to

the z∗ = 1.96 for Slutsky’s interval. This is because as n grows, Slutsky performs better and, thus,

less correction is needed.

I simulated 10,000 of Gosset intervals for the cat population and each of the values of n = 10,
20 and 40; my results are in Table 17.9. Look at the numbers in this table for a few minutes and

note the following.

1. For n = 10, Gosset’s interval performs awesomely! (Bieberly?) The number of incorrect

intervals, 510, almost matches the target number, 500. This discrepancy—between 510 and

500—is well within the bounds of chance.

2. Be careful! For n = 20, Gosset gives more incorrect intervals than it does for n = 10; does
this mean its performance is declining as n grows? No! The difference between 510 and 540

is well within the random variation of a simulation study. If Gosset (or Slutsky) performs

well for a particular value of n, it will also perform well for any larger value of n.
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Table 17.9: Results from three simulation experiments. Each simulation had 10,000 reps, with

a rep consisting of a random sample of size n from the cat population in Table 17.1. For each

sample, Gosset’s approximate 95% confidence interval estimate of µ is computed and Nature

classifies it as too small, too large or correct.

Sample size Number of Number of Number of

(n) Too Small Intervals Too Large Intervals Incorrect Intervals

10 362 148 510

20 332 208 540

40 320 209 529

I will now give you Gosset’s general approximate confidence interval for µ.

Result 17.4 (Gosset’s approximate confidence interval estimate of µ.) Gosset’s confidence in-

terval is:

x̄± t∗(s/
√
n). (17.6)

The value of t∗ depends on the sample size and the desired confidence level, as described below.

1. Select the desired confidence level and write it as a decimal; e.g., 0.95 or 0.99.

2. Subtract the desired confidence level from one and call it the error rate. Divide the error

rate by two and subtract the result from one; call the final answer c; e.g., 0.95 gives c =
1− 0.05/2 = 0.975 and 0.99 gives c = 1− 0.01/2 = 0.995.

3. Go the website

http://stattrek.com/online-calculator/t-distribution.aspx.

Next, enter n− 1 for degrees of freedom; enter c in the Cumulative probability . . . box; and

click on Calculate. The value t∗ will appear in the t-score box.

Take a moment and verify that you know how to obtain t∗ = 2.093 for 95% confidence and n = 20.

17.3.2 Gosset or Slutsky?

If n = 500 and you want 95% confidence, you may use Slutsky with z∗ = 1.960 or Gosset with

t∗ = 1.965. For n = 1,000 and 95% confidence, Gosset’s t∗ = 1.962. In words, for n sufficiently

large, the two confidence interval formulas are essentially identical. When n is small enough for

z∗ and t∗ to differ substantially, I recommend using Gosset’s t∗. In other words, for the problem of

estimation of µ, you can forget about Slutsky’s formula; I recommend that you always use Gosset.

Do not read too much into my endorsement of Gosset. All I am saying is that Gosset is prefer-

able to Slutsky; I am not saying that Gosset always performs well. Let me give you an example in

which Gosset performs poorly.

448

http://stattrek.com/online-calculator/t-distribution.aspx


Figure 17.8: The log-normal pdf with parameters 5 and 1.
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Figure 17.8 presents the log-normal pdf with parameters 5 and 1. Recall that this means if X
has the log-normal pdf with parameters 5 and 1, then Y equal to the natural log ofX has the N(5,1)

curve for its pdf. We can see that this log-normal pdf is strongly skewed to the right. It can be

shown that its mean is µ = 244.7 and its standard deviation is σ = 320.8. (The value ν = 148.4 is
the median of the pdf; it divides the pdf’s total area of one into two equal areas. We will discuss

the estimation of ν in Chapter 18.)

Suppose that a researcher is interested in a measurement random variable X which takes on

positive values. Nature knows that the pdf ofX is given in Figure 17.8, but the researcher does not

know this. Based on the scientific goals of the study, the researcher decides to estimate µwith 95%

confidence. Thus, the researcher will use Gosset’s interval to estimate µ with 95% confidence. I

will now explore the performance of Gosset’s interval for the population in Figure 17.8.

I performed eight simulation experiments, each with 10,000 reps. As in our earlier examples,

each rep yielded Gosset’s 95% confidence interval for a simulated random sample of size n from

the pdf in Figure 17.8. Each simulated confidence interval is classified as: too small, too large or

correct. The eight simulations are for different values of n; my results are presented in Table 17.10.

Remember: Because I want 95% confidence, the target number of incorrect intervals is 500.

Let me make a few comments about this massive simulation study.

1. For n = 10 Gosset’s interval performs very poorly. The nominal probability of obtaining an

incorrect interval is 5%; the estimated probability is almost 16%.

2. As I kept doubling n in my simulations, the performance of Gosset improved, but very

slowly. At n = 640, the error rate might be ok—the nearly certain interval, details not

given, 0.0564 ± 0.0069, barely includes the target 0.0500—but it might be a bit large. For

n = 1,280, finally, the error rate seems to be very close to 0.0500. Remember that the math

theory says that in the limit as n goes to infinity the error rate will be 0.0500.

3. Note that, for all values of n in the table, and especially n ≤ 40, the number of intervals that

are too small is vastly larger than the number of intervals that are too large. We will explore
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Table 17.10: Results from eight simulation experiments. Each simulation had 10,000 reps, with

a rep consisting of a random sample of size n from the log-normal pdf in Figure 17.8. For each

sample, Gosset’s approximate 95% confidence interval estimate of µ = 244.7 is computed and

Nature classifies it as too small, too large or correct.

Sample size Number of Number of Number of

(n) Too Small Intervals Too Large Intervals Incorrect Intervals

10 1,582 13 1,595

20 1,355 12 1,367

40 1,122 22 1,144

80 823 44 867

160 674 54 728

320 533 90 623

640 440 124 564

1,280 376 136 512

this issue later.

Sometimes a fancy math argument allows us to use one simulation experiment for an entire

family of populations. Such a family is the exponential. I performed three simulation experiments

on an exponential pdf. As usual, each of the 10,000 reps: generated random sample from the

exponential pdf; calculated Gosset’s 95% confidence interval; checked to see how the interval

compared to µ. My results are given in Table 17.11. The exponential distribution is skewed to the

right and Gosset’s interval does not work well for n ≤ 40. At n = 80, the nearly certain interval

for the true error rate includes the target, 0.0500, but just barely.

17.3.3 Population is a Normal Curve

I have told you that if the population is an exponential pdf, then one simulation experiment on

confidence intervals covers every member of the family. The same is true for the family of Laplace

pdfs, and I will give you my simulation results for it in a Practice Problem. The log-normal family

is not so amenable; a different simulation experiment is needed for every member of the family.

The family of Normal pdfs also has the property that one simulation covers all curves. In fact,

I performed a simulation experiment with 10,000 reps to study the performance of Gosset’s 95%

confidence interval for a Normal pdf population and n = 5. The results were:

• Two hundred twenty-seven of the simulated intervals were too large.

• Two hundred forty-five of the simulated intervals were too small.
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Table 17.11: Results from eight simulation experiments. Each simulation had 10,000 reps, with a

rep consisting of a random sample of size n from the exponential pdf with parameter λ = 1. For
each sample, Gosset’s approximate 95% confidence interval estimate of µ = 1/λ = 1/1 = 1. is
computed and Nature classifies it as too small, too large or correct.

Sample size Number of Number of Number of

(n) Too Small Intervals Too Large Intervals Incorrect Intervals

10 928 29 957

20 738 45 783

40 584 96 680

80 472 93 565

• A total of 227 + 245 = 472 of the simulated intervals were incorrect. This is a bit smaller

than the target of 500, but well within the bounds of sampling variation.

Actually, I did not need to perform a simulation experiment for a Normal pdf because:

Result 17.5 If the population is a Normal pdf, then the confidence level in Gosset’s confidence

interval is exact.

This result is true because in Gosset’s original work, he assumed a Normal pdf in order to derive

the t-curves.

17.4 Lies, Damned Lies and Statistics Texts

Quoting from

http://en.wikipedia.org/wiki/Lies,_damned_lies,_and_statistics,

“Lies, damned lies, and statistics” is a phrase describing the persuasive power of num-

bers, particularly the use of statistics to bolster weak arguments. It is also sometimes

colloquially used to doubt statistics used to prove an opponent’s point.

The term was popularized in the United States by Mark Twain (among others), who

attributed it to the 19th-century British PrimeMinister Benjamin Disraeli (1804-1881):

“There are three kinds of lies: lies, damned lies, and statistics.” However, the phrase

is not found in any of Disraeli’s works and the earliest known appearances were years

after his death. Other coiners have therefore been proposed, and the phrase is often

attributed to Twain himself.

In the 1970s, a favorite television show of mine was Kung Fu. starring the late David Carradine.

(You might know him as the title character Bill in two Quentin Tarantino films.) Carradine’s

character traveled the American West of the 19th-century; his purpose? As he put it,
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I don’t seek answers. I seek a better understanding of the questions.

I believe that this is a good goal for so-called higher education in general. This has been my

(attempted) approach in dealing with the researcher’s question:

When should I use Gosset’s confidence interval formula?

If the population is a Normal pdf, then Gosset is exact. Thus, if Nature were to tell you that the

population you are studying is a Normal pdf, then you can feel very comfortable using Gosset’s

formula. Unfortunately, Nature is not so forthcoming and—skeptics that we academics are—if

you announce that Nature has told you this, we won’t believe you.

In practice, a researcher does not know what the population is. Thus, if you choose to use

Gosset’s formula, you must accept that there is a uncertainty about whether it will perform

as advertised. The only way to reduce that uncertainty is to be a good scientist; i.e., to be

knowledgeable about the phenomenon under study. As the simulation studies have shown, as

a scientist you need to be able to judge how much skewness there is in the population. If you

anticipate little or no skewness, then you will anticipate that Gosset will perform as advertised. If,

however, you anticipate a great deal of skewness in the population, then you should worry about

using Gosset for small values of n, where—as you have seen—small is a function of the amount

of skewness.

One of my firm beliefs is:

It is the scientist, not the statistician, who should assess the likely shape of the popu-

lation.

If you understand human nature, especially the desire to be an expert, you will be unsurprised to

learn that this belief of mine is unpopular with many statisticians; they believe that their expertise in

Statistics makes them best equipped to make such decisions. One of their most popular statements

is to, “Look at the data.” I will address this issue shortly.

I suspect you would agree that the answer to the researcher’s question:

When should I use Gosset’s confidence interval formula?

that I have presented in these notes is nuanced. By contrast, the answer given in many introductory

Statistics texts is quite definitive:

1. If n ≤ 30, then you should use Gosset only if the population is a Normal pdf.

2. If n > 30, Slutsky always performs as advertised.

A word of explanation is needed. For degrees of freedom larger than 29, these texts make no

distinction between t∗ and z∗; thus, for them, for n > 30, Slutsky’s and Gosset’s intervals are

identical. Also, how does a student know whether the population is a Normal pdf? Easy; the

textbook author, the instructor or some other authority figure tells the student that the population

is a Normal pdf! (As the writer Dave Barry frequently types, “I am not making this up!”) Call

me a radical, but I think that education—even in a math-related field—should consist of more than

learning to obey, without question, an authority figure!
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Also, note that I have conclusively demonstrated that the two-part advice found in these texts is

untrue. For the cat population, which is not a Normal pdf, Gosset’s confidence interval performed

as advertised for n as small as 10. For the log-normal pdf we examined, for n ≤ 320 Gosset’s

intervals performed poorly.

I have had many conversations with Statistics’ educators in which I have asked them about this

lie that textbooks tell students. Their response? They channel Col. Nathan R. Jessup, a character

in the movie A Few Good Men, and shout—well, sometimes they don’t raise their voices—They

can’t handle the truth! I have a much higher opinion of you.

https://www.youtube.com/watch?v=futzi-bYW0E

17.4.1 More on Skewness

As I mentioned above, if the population is a Normal curve, then Gosset’s formula is exact. Actually,

I can say a bit more than that. If the population is a Normal curve, then the probability that a

Gosset confidence interval will be too small is the same as the probability that it will be too large.

By contrast, for the family of exponential pdfs and our one example of a log-normal pdf, intervals

that are too small vastly outnumber the intervals that are too large (see Tables 17.10 and 17.11). I

will show you why.

I performed a simulation experiment with 100 reps. For each rep I generated a random sample

of size n = 20 from the N(0,1) pdf. From each sample, I obtained two numbers: x̄ and s. I

have drawn a scatterplot of these 100 pairs of numbers in Figure 17.9. Each pair is represented

by a un upper case ‘Oh,’ with s on the vertical axis and x̄ on the horizontal axis. Note that I

have deliberately not given you much information on the scales of the axes in this picture. On the

horizontal axis I have marked µ = 0 and you can see that the 100 values of x̄ are placed (left-to-

right) approximately symmetrically around 0. Similarly, on the vertical axis I have marked σ = 1.
The important feature of this plot, however, is that there is no relationship between the values of x̄
and s; knowing, for example, that x̄ < µ or that x̄ > µ tells us nothing about the value of s.

In fact, it’s an important property of random samples from a Normal pdf that the value of X̄ is

statistically independent of the value of S.
I will now contrast the above situation for Normal pdfs with samples from the log-normal pdf

with parameters 5 and 1, pictured in Figure 17.8, which was the topic of a simulation experiment,

with results presented in Table 17.10. Recall from this table that for n = 20, Gosset’s 95%

confidence interval performs very poorly, with 1,355 [12] simulated intervals that are too small

[large].

Figure 17.10 presents a scatterplot of s versus x̄ for 100 random samples of size n = 20 from

the log-normal pdf in Figure 17.8. This scatterplot looks nothing like our previous one! In this

scatterplot there is a very strong increasing relationship between the values x̄ and s. In particular,

if x̄ is substantially smaller than µ = 244.7, then s tends to be much smaller than σ = 320.8; and
if x̄ is substantially larger than µ, then s tends to be much larger than σ. I will now explain why

this matters.

The half-width of Gosset’s 95% confidence interval with n = 20 is

2.093s/
√
20.
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Figure 17.9: The scatterplot of the standard deviation, s, versus the mean, x̄, for 100 random

samples of size n = 20 from a N(0,1) pdf. Note that there is no relationship between these two

values. If you know about the correlation coefficient (see Chapter 21), it equals 0.021 for this

picture.
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Thus, if x̄ is substantially smaller than µ = 244.7, then, based on our scatterplot, this half-width

will be very small. This means that the interval will be very narrow and, hence, many of these

intervals will be incorrect by being too small. On the other hand, if x̄ is substantially larger than µ,
then the half-width will be very large and it will be unusual for the interval to be too large. If you

question my reasoning, look at the simulation results: 1,355 intervals were too small, but only 12

were too large.

One last comment on this situation with the log-normal. A popular textbook claims that if

your data look normal, then Gosset’s confidence interval performs as advertised. Here I face a

difficulty. In order for me to show your that this advice is wrong, I would need to spend time

teaching you about Normal quantile plots and we simply do not have the time. If you take another

Statistics course, you will likely learn that Normal quantile plots can be very useful, but not for the

current situation. For more details, see

http://www.stat.wisc.edu/˜wardrop/papers/tr1008.pdf.

Unfortunately, this paper is perhaps a bit advanced for the new student of Statistics.

17.5 Computing

In the examples of this chapter, I have given you n, x̄ and s and you have learned how to find t∗

from a website and calculate Gosset’s confidence interval estimate of µ. In this short section, I will
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Figure 17.10: The scatterplot of the standard deviation, s, versus the mean, x̄, for 100 random

samples of size n = 20 from a the log-normal pdf with parameters 5 and 1. Note that there

is a strong increasing relationship between these two values. If you know about the correlation

coefficient (see Chapter 21), it equals 0.862 for this picture.
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show you what to do with raw data; i.e., the n numbers

x1, x2, x3, . . . , xn.

For example, recall Reggie’s n = 15 dart scores from a distance of 10 feet, reported in Chapter 1

and reproduced below:

181 184 189 197 198 198 200 200 205 205 206 210 215 215 220

Let’s assume that these are 15 observations from i.i.d. trials. This is a count population and with

such a small amount of data I cannot expect to obtain an accurate picture-estimate of the popula-

tion. Instead, I will use Reggie’s data to estimate the mean, µ, of the population with confidence.
You begin by going to a familiar website:

http://vassarstats.net.

The left-side of the page lists a number of options; click on t-Tests & Procedures. (You might

remember doing exactly this in Chapter 1.) This takes you to a new set of options; click on the

bottom one, .95 and .99 Confidence Intervals for the Estimated Mean of a Population. (Their use

of language is poor—who am I to talk! We obtain confidence intervals for a mean, not an estimated

mean.) Next, enter the data, by typing or pasting, and click on calculate.

The site gives lots of output, including:

N = 15; mean = 201.5333; std. dev. = 11.1986; df = 14;

tcrit(.05) = 2.14; and tcrit(.01) = 2.98.

As you may have guessed, in our language, these signify:

n = 15; x̄ = 201.5333; s = 11.1986; df = 14; and the t∗ for 95%[99%] is 2.14[2.98].

I used Minitab to verify these values for x̄ and s. I went to the website

http://stattrek.com/online-calculator/t-distribution.aspx

and obtained t∗ = 2.145 for 95% and t∗ = 2.977 for 99%.

The vassarstats website also reports:

• Confidence Intervals for Estimated Mean of Population:

For .95 CI: 201.5333± 6.1878.

For .99 CI: 201.5333± 8.6167.

I verified these two intervals as being correct. Thus, it appears that we can trust this website.
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17.6 Summary

In Chapters 17 and 18 our data consist of i.i.d. random variables

X1, X2, X3, . . . , Xn,

from a numerical population. If the values of these random variables are obtained by counting,

then the population is a probability histogram. If the values of these random variables are obtained

by measuring, then the population is a probability density function (pdf). In words, in either case,

the population is a picture which either consists of rectangles or is a smooth curve. The picture

must be nonnegative with total area equal to one.

The population picture is used to calculate probabilities for the random variables. For counting,

we focus on the random variable taking on exactly the number x. In particular, P (X = x) equals
the area of the rectangle centered at x; if there is no rectangle centered at x, then x is an impossible

value for X and P (X = x) = 0.
For a measurement, we focus on the random variable falling between two numbers; i.e., lying

in some interval. In particular, for any numbers a and b with a ≤ b,

P (a ≤ X ≤ b) = the area under the pdf between the numbers a and b.

Remember that for any measurement random variable X and any number b, P (X = b) = 0. This
implies—Result 17.1—that for any a and b with a < b.

P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a < X < b).

Several families of pdfs are important in Statistics, including: the normal and Laplace families—

both symmetric—and the exponential and log-normal families—both skewed to the right.

The population picture is known to Nature, but is unknown to the researcher. The population

picture can be estimated by a density histogram of the data. In addition, the kernels introduced in

Chapter 2 can serve as an estimate of a pdf. Sadly, it is impossible, in general, to estimate a picture

with confidence. (For a family of pdfs, if one estimates all of the parameters with confidence, then

one can obtain a confidence estimate of the pdf, but this topic is beyond the scope of this course.)

Researchers often focus on estimating a feature of the population picture. The most popular

feature in science and statistics is the center of gravity, or mean, of the picture. The great thing

about estimating the mean is that we have an approximate method that works for any population

picture. (This is a bit inaccurate; there are some mathematical situations in which our method

does not work, but they tend to be—for better or worse—ignored in practice and are definitely

way beyond the scope of a first course.) The not-so-great thing is that determining whether the

approximation is good can be very tricky.

The method we use is Gosset’s approximate confidence interval estimate of µ. Its formula is

x̄± t∗(s/
√
n),

with the method of determining t∗ explained in Result 17.4.
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Gosset derived this formula by assuming that the population picture is a normal pdf. Thus,

Gosset’s confidence level is exact if the population is a Normal pdf. Gosset’s work was a solid

piece of mathematics; by assuming a normal population, he was able to derive the family of t-curve

pdfs which made his formula easy to obtain. Strictly speaking, Gosset’s math result is not useful

to scientists. As a scientist, how could you ever be sure that the unknown population was exactly

a Normal curve?

Thus, a serious scientist must always wonder whether Gosset’s confidence interval is valid—

i.e., performs as advertised—for the true unknown population picture. Statisticians have been

studying this issue for more than 50 years using a combination of fancy math arguments and com-

puter simulations. In this chapter you saw the results of several computer simulation experiments

that explored the behavior of Gosset’s confidence interval. The issue of the performance of Gos-

set’s confidence interval is too huge and complicated to lend itself to a one sentence answer, but

the following summary is accurate, while not very precise.

1. Gosset’s big weakness is skewness in the population picture. We saw that for the small

amount of skewness in the cat population, Gosset worked fine for n as small as 10. For more

pronounced skewness—see the log-normal and exponential examples—even for values of n
much larger than 30, Gosset might perform very poorly.

2. This item is more complicated mathematically. A thorough presentation is beyond the scope

of this course, but I want to mention it. Look at the formula for the Normal curve in Equa-

tion 7.6; x’s that are much larger or much smaller than the mean, µ are said to be in the tail

of the curve. For any Normal curve, the tails behave like

exp[−(x − µ)2].

In math terms, this is a very rapid decay; i.e., as x moves away from µ this number becomes

close to zero very rapidly. By contrast, for the Laplace family of pdfs, the tails behave like

exp[−|x− µ|].

which is a much slower decay that in the Normal curves. In everyday language, we say that

the Laplace pdfs have heavier tails than the Normal pdfs. Heavier tails affect the performance

of Gosset’s confidence interval. This last idea is explored a bit in a Practice Problem and in

Chapter 18.
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17.7 Practice Problems

1. Recall the community of 7,000 households that was introduced in Example 17.2. The vari-

able of interest is the number of children in the household who are attending public school.

I used this community to create two populations: population 1 consisting of all 7,000 house-

holds; and population 2 consisting of the 4,200 households that have at least one child at-

tending public school.

(a) Calculate the mean, µ and median, ν of the two populations.

(b) Use the probability histograms in Figure 17.3 to obtain P (2 ≤ X ≤ 4) and P (2 ≤
Y ≤ 4). Explain your reasoning.

(c) It is possible to obtain probabilities for Y (population 2) from population 1 and the

definition of conditional probability, Equation 16.2. For example,

P (Y = 2) = P (X = 2|X > 0) =
P (X = 2 and X > 0)

P (X > 0)
=

P (X = 2)/0.600 = 0.120/0.600 = 0.20.

Use a similar argument to determine P (Y = 3) from P (X = 3) and P (X > 0) =
0.600.

2. Intelligence quotients (IQs) for members of a population are generally manipulated (a less

judgmental term is transformed) in a non-linear manner so that they have approximately a

N(100,15) pdf. For the sake of this question, let’s take this to be true. Use the website to

answer the following questions. In parts (a)–(c) you are asked to determine the proportion

of the population with the given feature. In (d) you will learn a new way to use the website.

(a) An IQ of 90 or less.

(b) An IQ of 130 or more.

(c) An IQ between 95 and 120.

(d) An IQ such that 83 percent of the population have a lower IQ.

3. Example 17.3 introduced you to data obtained by my friend Walt. For his 250 games, Walt

obtained x̄ = 19.916 pairs of tiles unmatched and s = 12.739. Use these data to obtain

Gosset’s 95% confidence interval estimate of the mean, µ, of his population.

4. Refer to the previous question. Walt’s 250 games can be viewed as a mixture of two distri-

butions: games he wins, which always give x = 0; and games he loses which give x > 0. It
is reasonable to ask, “Given that Walt loses, what is the population mean for the process that

generates his observed values of X?” For this problem, the data consist of n = 216 games,

with x̄ = 23.051 and s = 10.739. Use these data to obtain Gosset’s 95% confidence interval

estimate of the mean, µ, of the new population.
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5. I performed seven—by now—familiar simulation experiments to investigate the performance

of Gosset’s 95% confidence interval when sampling from a Laplace pdf. As with the family

of exponential pdfs, for a given value of n, one simulation covers the entire family. The

results of my seven simulations are presented in Table 17.12.

Write several sentences that describe what this table reveals.

6. In this problem I will explore the connection between a Poisson Process with parameter λ
per unit time and the exponential distribution. If you are not interested in this connection,

feel free to jump (skip, hop) ahead to the next practice problem.

Consider the following function. For any λ > 0,

f(x) = λ exp(−λx) for x ≥ 0
= 0 for x < 0

If you have studied calculus, you can verify that the total area under this curve equals 1, for

every value of λ > 0. Thus, for any fixed value of λ > 0, it is a pdf. If we let λ > 0 vary,

we get a family of pdfs, called the family of exponential pdfs with parameter λ > 0. (By the
way, it is the family of exponential distributions; don’t call it the exponential family, because

that means something else!) The parameter λ is called the rate of the exponential. The mean

and standard deviation of an exponential equal the same number, the inverse of the rate:

µ = σ = 1/λ.

If X is a random variable with the exponential pdf with parameter λ, then for two numbers,

a < b, it can be shown—using calculus—that

P (a < X ≤ b) = exp(−λa)− exp(−λb).

Now suppose that we have a Poisson Process with rate λ per unit time. For the numbers

a < b in the previous paragraph, let Y1 be the number of successes in the Poisson Process in

the interval [0, a] and let Y2 be the number of successes in the Poisson Process in the interval

(a, b]. In addition, letX be the time of the first success in the Poisson Process. In the timeline

below, x denotes the observed value of the random variableX . As drawn below, a < x ≤ b;
i.e., the event (a < X ≤ b) has occurred.

0 xa b

Y1 Y2

Looking at this picture we can see that

a < X ≤ b is the same event as (Y1 = 0 and Y2 > 0).
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From Chapter 13: Y1 has a Poisson distribution with parameter λa; Y2 has a Poisson distri-

bution with parameter λ(b− a); and Y1 and Y2 are independent. Furthermore,

P (Y1 = 0) = exp(−λa) and P (Y2 > 0) = 1− P (Y2 = 0) = 1− exp(−λ(b− a)).

Thus,

P (Y1 = 0 and Y2 > 0) = exp(−λa)× [1− exp(−λ(b− a))] = exp(−λa)− exp(−λb).

In words, the distribution of X is exponential with parameter λ.

Thus, we have another way to view a Poisson Process. We begin at time 0; at random time

X1 a success occurs; at random time X1 + X2 a second success occurs; at random time

X1 +X2 +X3 a third success occurs; and so on. The times between arrivals

X1, X2, X3 . . .

are i.i.d. random variables with the exponential distribution with parameter λ.

This is helpful for studying Poisson Processes because now—through the use of i.i.d. expo-

nential random variables—we are able to simulate a realization of a Poisson Process for any

length of time that we desire.

7. This last practice problem is aimed at students who are interested in computer programming.

Feel free to skip this problem if you are not interested.

Let Q be any number, strictly between 0 and 1: 0 < Q < 1. For a measurement random

variable X , consider the equation P (X ≤ xQ) = Q. The idea of this equation is that given

Q, the unknown in this equation is xQ. For example, in part (d) of Practice Problem 2,

Q = 0.83 and X has a N(100,15) distribution. We found that x0.83 = 114.312; i.e., P (X ≤
114.312) = 0.83. We call the number xQ the Q-quantile of the distribution of X , or, more

briefly, the Q-quantile of X .

Computer programmers are good at simulating i.i.d. trials from the uniform distribution on

the interval [0, 1]. How do they simulate from other pdfs? As it turns out, the answer is quite

simple.

To be precise, suppose you want to generate an observationX from the exponential pdf with

λ = 2. Simply generate a value u from the uniform distribution on the interval [0, 1] and
transform it to x = Xu; i.e., the generated observation is equal to the u-quantile of X . With

this method, the generated x is from the exponential pdf with λ = 2. Contact me if you want

more details. The important point is that if we can generate i.i.d. trials from the uniform

distribution on the interval [0, 1], then we can generate i.i.d. trials from any pdf!
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Table 17.12: Results from seven simulation experiments. Each simulation had 10,000 reps, with

a rep consisting of a random sample of size n from a Laplace pdf. For each sample, Gosset’s

approximate 95% confidence interval estimate of µ is computed and Nature classifies it as too

small, too large or correct.

Sample size Number of Number of Number of

(n) Too Small Intervals Too Large Intervals Incorrect Intervals

10 179 195 374

20 224 207 431

40 229 245 474

80 251 245 496

160 263 256 519

320 246 243 489

640 266 270 536

17.8 Solutions to Practice Problems

1. (a) I will use the population counts given in Table 17.4. For both populations, the total

number of children is:

1260(1) + 840(2) + 714(3) + 546(4) + 420(5) + 294(6) + 126(7) = 12,012.

Thus, the mean for population 1 is 12012/7000 = 1.716 and the mean for population 2

is 12012/4200 = 2.860.

Also from the population counts, we can see that the median of population 1 is 1 and

the median of population 2 is 2.5.

(b) For both population pictures, δ = 1; thus, the area of each rectangle equals its height.

Reading from the pictures,

P (2 ≤ X ≤ 4) = 0.120 + 0.102 + 0.078 = 0.300 and

P (2 ≤ Y ≤ 4) = 0.20 + 0.17 + 0.13 = 0.50.

(c) We note that

P (Y = 3) = P (X = 3|X > 0) = P (X = 3)/P (X > 0) = 0.102/0.600 = 0.17.

2. For parts (a)–(c) we use the default Area from a value option. For all parts we enter 100 in

theMean box and 15 in the SD box.
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(a) We want P (X ≤ 90). Click on the Below option and enter 90 in its box. Click on

Recalculate and the answer 0.2525 appears in the Results box. In words, just over

one-quarter of the population have an IQ of 90 or less. Note that even though IQs are

usually (?) reported as an integer, I do not use a continuity correction. I choose to treat

IQ as a measurement.

(b) We want P (X ≥ 130). Click on the Above option and enter 130 in its box. Click on

Recalculate and the answer 0.0228 appears in the Results box. In words, approximately

one-in-44 population members have an IQ of 130 or larger.

(c) We want P (95 ≤ X ≤ 120). We have not done a problem like this before. Click on

the Between option and enter 95 [120] in its left [right] box. Click on Recalculate and

the answer 0.5393 appears in the Results box. Be careful! If you place 120 in the left

box and 95 in the right box, the site gives the answer −0.5393.

(d) This one’s a bit tricky. We want the number a which satisfies

P (X ≤ a) = 0.83.

First, change the option from Area from a value to Value from an area. This will change

the site’s labels. Enter 0.83 in the Area box and reenter your values of 100 for Mean

and 15 for SD. Click on the Below option and the answer, 114.311 appears in its box;

i.e., I did not need to click on Recalculate. If I wanted a new area, then I would need to

click on Recalculate. For example, I changed the area to 0.75, clicked on Recalculate

and obtained the answer 110.113 in Below’s box.

3. Go to the t-curve calculator website,

http://stattrek.com/online-calculator/t-distribution.aspx

Following the presentation in these Course Notes, enter n − 1 = 250 − 1 = 249 in the

degrees of freedom box and 0.975 in the Cumulative probability box. Click on Calculate

and t∗ = 1.970 appears in the t score box. Note that with this large number of degrees of

freedom, t∗ barely exceeds z∗ = 1.96 for the N(0,1) curve.

Gosset’s 95% confidence interval estimate of µ is:

19.916± 1.97(12.739/
√
250) = 19.916± 1.587 = [18.329, 21.503].

4. I proceed as in (2) above, but enter n − 1 = 216 − 1 = 215 in the degrees of freedom box

and 0.975 in the Cumulative probability box. Click on Calculate and t∗ = 1.971 appears in

the t score box.

Gosset’s 95% confidence interval estimate of µ is:

23.051± 1.971(10.739/
√
216) = 23.051± 1.440 = [21.611, 24.491].
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5. For n ≥ 40, Gosset’s confidence interval appears to behave as advertised. For example, with

n = 40, Gosset gives 474 incorrect intervals, which is within sampling error of the target

500. The surprising feature in this table is that for n ≤ 20, Gosset’s intervals give too few

incorrect intervals! We have not seen this situation before!

This is not the worst situation that could occur, but it does mean that the Gosset’s intervals

are wider than they need to be. The reason this happens is because the Laplace pdfs have a

heavier tail than the Normal pdfs. (See comments in item 2 on page 458.)
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17.9 Homework Problems

1. Refer to the population presented in Table 17.13. Let X denote a random variable whose

distribution is given by this population.

(a) Draw the probability histogram for this population.

(b) What is the mean, µ, of this population. (No computation is required.)

(c) Suppose we have a random sample of size n = 20 from this population. Do you think

that Gosset’s 95% confidence interval will perform well? Briefly explain your answer.

(d) Calculate P (2 < X ≤ 5).

2. The random variable X has a uniform distribution on the interval 0 to 20. This means that

the pdf of X is

f(x) = 0.05, for 0 ≤ x ≤ 20
= 0, otherwise

(a) Draw the graph of this pdf.

(b) Use your graph to calculate P (X ≤ 5); P (7 < X ≤ 15); P (X > 35).

3. In Example 12.1, I introduced you to my friend Bert and his 100 games of online solitaire

mahjong. Recall that Bert won 29 of his 100 games. Recall that in Example 17.3 I showed

how to report the outcome of a mahjong game as a count. For the 71 games Bert lost, his

mean number of pairs of tiles remaining was 23.93, with a standard deviation of 11.33.

Assuming that these 71 numbers are the realizations of 71 i.i.d. trials, calculate Gosset’s 95%

confidence interval estimate of µ.

4. Refer to the previous problem. Briefly compare your results for Bert with my results for

Walt in Practice Problem 4.

5. Recall that in Section 17.5 I used Reggie’s dart data from 10 feet to illustrate the use of the

vassarstats website. With the assumption of i.i.d. trials, calculate Gosset’s 95% confidence

interval estimate of µ for Reggie’s data from 12 feet, reproduced below.

163 164 168 174 175 186 191 196 196 197 200 200 201 203 206

6. There is a family of uniform pdfs, with two parameters: the left and right boundaries of the

rectangle, A and B. For example, if A = 0 and B = 1, we get the uniform pdf on the

interval [0, 1]; A = 0 and B = 20, we get the uniform pdf on the interval [0, 20]. I want you
to explore the performance of Gosset’s 95% confidence interval estimate of µ = (A+B)/2
for a i.i.d. data from the uniform pdf on the interval [A,B].

I performed three simulation experiments of the usual sort, with 10,000 reps for each exper-

iment. My results are in Table 17.14. Briefly describe what this table reveals.
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Table 17.13: The population distribution for Homework problem 1.

x 0 1 2 3 4 5 6 Total

P (X = x) 0.05 0.10 0.20 0.30 0.20 0.10 0.05 1.00

Table 17.14: Results from three simulation experiments. Each simulation had 10,000 reps, with

a rep consisting n i.i.d. trials from a uniform pdf. For each sample, Gosset’s approximate 95%

confidence interval estimate of µ is computed and Nature classifies it as too small, too large or

correct.

Sample size Number of Number of Number of

(n) Too Small Intervals Too Large Intervals Incorrect Intervals

10 250 268 518

20 272 247 519

40 239 240 479

7. I performed a simulation experiment with 10,000 reps. I used the family size population 1 in

Figure 17.3. Each rep generated a random sample of size n = 20 and constructed Gosset’s

95% confidence interval estimate of µ. The experiment yielded 641 incorrect intervals, with

120 of one type and 521 of the other type.

What is your opinion as to how many of the confidence intervals—120 or 521—were too

large? Explain your answer.
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Chapter 18

Inference for One Numerical Population:

Continued

Chapter 17 did most of the heavy lifting for inference for one numerical population. By compari-

son, this chapter is pretty user-friendly.

18.1 A Test of Hypotheses for µ

This section is very similar to Section 12.5, which presented a test of hypotheses for a binomial p.
Again, the idea is that of all of the possible values of µ, there is one value of special interest to

the researcher. This known special value of interest is denoted by µ0 and the null hypothesis is

that µ = µ0. As in Chapter 12, the justification for the value µ0 is: history; theory; or contracts

or law. As in Chapter 12, the test of this section is not terribly useful in science. Recall that the

very important McNemar’s test of Chapter 16 was a special case of the not-so-important test of

Chapter 12. Similarly, Chapter 20 will present an important use for the test of this section.

As usual, there are three possibilities for the alternative:

µ > µ0; µ < µ0; or µ 6= µ0.

As in Chapter 17, we assume that our data will consist of n i.i.d. random variables:

X1, X2, X3, . . . , Xn,

with summary random variables X̄ and S, the mean and standard deviation of these variables. The

observed values of these guys are:

x1, x2, x3, . . . , xn, x̄ and s.

Because our hypotheses involve the mean of the population, the obvious and natural choice for the

test statistic is X̄ , with observed value x̄. In order to obtain an approximate sampling distribution

we standardize X̄ and obtain

Z =
X̄ − µ

σ/
√
n
.
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We don’t yet have our test statistic; there is a flaw inherent in this Z: we don’t know the values µ
and σ. Handling σ is easy enough; we replace it in Z with S, giving

Z ′ =
X̄ − µ

S/
√
n
.

We will follow our approach of Chapter 17 and use Gosset’s t-curve with df = n − 1 to obtain

approximate probabilities for Z ′. But Z ′ is not a test statistic because we don’t know the value of µ.
Just in time, we recall that we want to know how the test statistic behaves on the assumption that

the null hypothesis is true. Given that the null hypothesis is true, we can replace the unknown µ
in Z ′ with the known µ0. The result is our test statistic:

T =
X̄ − µ0

S/
√
n
; (18.1)

after data are collected, the observed value of T is

t =
x̄− µ0

s/
√
n
. (18.2)

The three rules for finding the P-value are similar to earlier rules and are summarized in the follow-

ing result. The website we are using in these Course Notes gives areas to the left under a t-curve.

In the items listed below, I include an equivalent area to the right rule.

Result 18.1 In the formulas below, t is given in Equation 18.2 and areas are computed under the

t-curve with df = n− 1.

1. For the alternative µ > µ0, the approximate P-value equals the area to the right of t. If you
prefer, the approximate P-value equals the area to the left of −t.

2. For the alternative µ < µ0, the approximate P-value equals the area to the left of t. If you
prefer, the approximate P-value equals the area to the right of −t.

3. For the alternative µ 6= µ0, the approximate P-value equals twice the area to the right of |t|.
If you prefer, the approximate P-value equals twice the area to the left of −|t|.

I will illustrate the use of these rules.

Suppose that we have

µ0 = 20, n = 16, x̄ = 23.00 and s = 8.00.

First, we use Equation 18.2 to obtain the observed value of the test statistic:

t =
x̄− µ0

s/
√
n

=
23.00− 20

8.00/
√
16

= 3/2 = 1.50.

Using the website introduced in Chapter 17:
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http://stattrek.com/online-calculator/t-distribution.aspx

and the rules above:

• For the alternative >: enter n − 1 = 16 − 1 = 15 for the degrees of freedom; enter −t =
−1.50 in the t score box; and click on Calculate. The approximate P-value, 0.0772, appears
in the Cumulative probability box.

• For the alternative <: leave 15 for the degrees of freedom; enter t = 1.50 in the t score

box; and click on Calculate. The approximate P-value, 0.9228, appears in the Cumulative

probability box.

• For the alternative 6=: the approximate P-value equals twice the area to the left of −|t| =
−1.50. From the above, we know that this area equals 0.0772. Thus, the approximate P-

value equals 2(0.0772) = 0.1544.

If you believe that the population is symmetric or approximately symmetric, then the approxi-

mate P-values given above should be reasonably accurate, even for relatively small values of n.
If you suspect that the population is strongly skewed and your alternative is two-sided (6=),

my advice is to use the above rules if your n is very large. Of course, very large is vague; the

guidelines we had in Chapter 17—i.e., how large depends on how skewed—are fine here too.

If, however, you suspect that the population is strongly skewed and your alternative is one-

sided (> or <), then my advice is to never use the rules above. I don’t have the time to explain

why, but it’s related to the fact that for a population that is strongly skewed to the right [left] the

incorrect confidence intervals are too small [large] much more often than they are too large [small].

This translates into the approximate P-value being either much too large or much too small.

18.2 Estimating the Median of a pdf

Recall that a fundamental feature of a pdf is that the total area under it is equal to 1. It thus follows

that there exists a number ν (pronounced new) with the following property.

The area under the pdf to the left (and right) of ν is equal to 0.5.

The number ν is called the median of the pdf, for rather obvious reasons. Note my use of the

definite article: the median. I am being a bit dishonest here. Let me explain. For every pdf we

have seen, including all the families of pdfs mentioned in Chapter 17, there is a unique number, ν,
with the property that:

the area under the pdf to the left (and right) of ν is equal to 0.5.

It is possible mathematically, however, for there to be an interval of numbers with this property.

Figure 18.1 presents a pdf (a combination of two rectangles) for which all numbers in the closed

interval [10, 15] are medians. Notice how this happens. It requires a gap between two collections

of possible measurement values and exactly one-half of the area is on each side of the gap. Such
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Figure 18.1: A bizarre pdf with an interval of medians. In particular, every real number between

10 and 15 inclusive is a median of this pdf.

0 5 10 15 20

0.05

0.10

a picture is perfectly reasonable to a mathematician, but I am still waiting for someone to suggest

a scientific situation for which it would be the pdf. As a result, I label such a pdf to be bizarre.

In these Course Notes I exclude such bizarre pdfs although, with a bit of awkwardness, we could

include them. I just don’t want to do so!

There is a really amazing exact result for estimating ν. Recall that we assume that we will

observe i.i.d. random variables:

X1, X2, X3, . . . , Xn.

The observed values of these random variables are denoted by:

x1, x2, x3, . . . , xn.

We take these n numbers and sort them, from smallest to largest and denote these sorted data by:

x(1) ≤ x(2) ≤ x(3) ≤ . . . ,≤ x(n).

Following the notation of Chapter 10, the median of these data is denoted by x̃ and this median is

our point estimate of ν.
Here is the amazing part. Without any assumptions about the pdf, we can obtain an exact

confidence interval estimate of ν. For n ≤ 20 the exact confidence interval estimate of ν can be

found in Table 18.1. Here is an example of its use.

Suppose we have a random sample of size n = 10 from a pdf. Using our table, we have the

choice of the following exact confidence interval estimates of ν:

• [x(1), x(10)] is the exact 99.8% confidence interval estimate of ν;

• [x(2), x(9)] is the exact 97.9% confidence interval estimate of ν; and

• [x(3), x(8)] is the exact 89.1% confidence interval estimate of ν.

It will be instructive for you to see how to obtain the levels of the intervals in Table 18.1.

For each measurement random variable,Xi, define the random variable Yi as follows:

Yi = 1 ifXi < ν
= 0.5 ifXi = ν
= 0 ifXi > ν
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Table 18.1: Confidence interval estimates of the median of a pdf. The confidence levels are exact..

Exact Exact

Confidence Confidence Confidence Confidence

n Interval Level n Interval Level

2 [x(1), x(2)] 50.0% 14 [x(2), x(13)] 99.8%
14 [x(3), x(12)] 98.7%

3 [x(1), x(3)] 75.0% 14 [x(4), x(11)] 94.3%
14 [x(5), x(10)] 82.0%

4 [x(1), x(4)] 87.5%
15 [x(3), x(13)] 99.3%

5 [x(1), x(5)] 93.8% 15 [x(4), x(12)] 96.5%
15 [x(5), x(11)] 88.2%

6 [x(1), x(6)] 96.9%
6 [x(2), x(5)] 78.1% 16 [x(3), x(14)] 99.6%

16 [x(4), x(13)] 97.9%
7 [x(1), x(7)] 98.4% 16 [x(5), x(12)] 92.3%
7 [x(2), x(6)] 87.5% 16 [x(6), x(11)] 79.0%

8 [x(1), x(8)] 99.2% 17 [x(3), x(15)] 99.8%
8 [x(2), x(7)] 93.0% 17 [x(4), x(14)] 98.7%

17 [x(5), x(13)] 95.1%
9 [x(1), x(9)] 99.6% 17 [x(6), x(12)] 85.7%
9 [x(2), x(8)] 96.1%
9 [x(3), x(7)] 82.0% 18 [x(4), x(15)] 99.2%

18 [x(5), x(14)] 96.9%
10 [x(1), x(10)] 99.8% 18 [x(6), x(13)] 90.4%
10 [x(2), x(9)] 97.9%
10 [x(3), x(8)] 89.1% 19 [x(4), x(16)] 99.6%

19 [x(5), x(15)] 98.1%
11 [x(1), x(11)] 99.9% 19 [x(6), x(14)] 93.6%
11 [x(2), x(10)] 98.8% 19 [x(7), x(13)] 83.3%
11 [x(3), x(9)] 93.5%

20 [x(4), x(17)] 99.7%
12 [x(2), x(11)] 99.4% 20 [x(5), x(16)] 98.8%
12 [x(3), x(10)] 96.1% 20 [x(6), x(15)] 95.9%
12 [x(4), x(9)] 85.4% 20 [x(7), x(14)] 88.5%

13 [x(2), x(12)] 99.7%
13 [x(3), x(11)] 97.8%
13 [x(4), x(10)] 90.8%

473



The argument below is invalid for a count response. Thus, in particular, the confidence levels in

Table 18.1 are invalid for a count response. See Result 18.3 below for a fact of a positive nature

for a count response.

The Yi’s are n random variables with the following features:

1. A researcher who does not know the value of ν will not be able to observe the Yi’s. Nature,

however, will be able to observe the Yi’s.

2. For every value of i,
P (Yi = 1) = 0.5 and P (Yi = 0) = 0.5.

This follows from the definition of the median of a pdf.

3. The Yi’s are independent. This is true because theXi’s are independent.

4. The Yi’s are Bernoulli trials with p = 0.5. Thus, if we define

Y = Y1 + Y2 + . . .+ Yn,

then Y has the binomial distribution with parameters n and p = 0.5. In words, Y counts the

number of response values that will be smaller than ν.

Let’s look at the confidence interval [x(3), x(8)] for n = 10. As with all confidence intervals, it can
be too small, too large or correct. Let’s look at the first two of these possibilities:

• The confidence interval is too small if, and only if, its upper bound, x(8), is < ν. This occurs
if, and only if, y ≥ 8; i.e., the eighth ordered observation is less than ν if, and only if,

at least eight unordered observations are smaller than ν. Thus, the probability that the

confidence interval is too small can be obtained easily from our binomial calculator website:

http://stattrek.com/Tables/Binomial.aspx.

If you go to this site and enter: 0.5, 10 and 8 and then click on Calculate, you will obtain

P (Y ≥ 8) = 0.05469.

• The confidence interval is too large if, and only if, its lower bound, x(3) is > ν. This occurs
if, and only if: y ≤ 2. Because the binomial distribution with p = 0.5 is symmetric,

P (Y ≤ 2) = P (Y ≥ 8) = 0.05469.

(If you don’t like this argument, you may use the website a second time.)

• The probability that the confidence interval is correct is:

1− P (The CI is too small)− P (The CI is too large) = 1− 2(0.05469) = 0.89072,

which I have rounded to 0.891, or 89.1%, in Table 18.1.
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For n > 20 it is possible to obtain an exact CI for ν with a modification of my argument above. In

this class, however, we will be happy with the approximation given in the following result.

Result 18.2 (Approximate confidence interval estimate of the median, ν, of a pdf.) Proceed as

follows:

1. First, obtain the usual z∗—see Table 12.1 on page 296—for your target confidence level.

2. Calculate

k′ =
n+ 1

2
− z∗

√
n

2
.

Round k′ down to the nearest integer and call the result k. (If k′ is an integer, then k = k′;

but if k′ is an integer, you were probably sloppy in calculating it!)

3. The approximate confidence interval estimate of ν is [x(k), x(n+1−k)]. Note that x(n+1−k) is

the kth largest observation in the sorted list. Thus, this confidence interval is symmetric in

position; it extends from the kth smallest observation to the kth largest observation.

I will illustrate this method with a sample size of n = 50. I will choose 95% for the confidence

level, which gives z∗ = 1.96. I calculate

k′ =
51

2
− 1.96

√
50

2
= 25.50− 6.93 = 18.57,

which I round down to k = 18. Thus, the approximate 95% confidence interval estimate of ν is

[x(18), x(33)].
For the purposes of this course, if n > 20 you may simply use Result 18.2 to obtain a confidence

interval estimate of ν for a pdf. I will, however, present a brief digression on the quality of the

approximation.

Consider the interval above for n = 50: [x(18), x(33)]. For my definition of Y above, this

interval is too small if, and only if, Y ≥ 33, where Y ∼ Bin(50,0.5). With the help of the binomial

calculator website,

http://stattrek.com/Tables/Binomial.aspx,

we find

P (Y ≥ 33) = 0.0164.

Because of the symmetry in the binomial for p = 0.5, this is also the probability that the interval

will be too large. Thus, the exact probability that this interval will be correct is

1− 2(0.0164) = 0.9672.

This probability is a bit larger than our target, 0.95; thus, we might look at a narrower interval:

[x(19), x(32)]. Again, using the website, we find

P (Y ≥ 32) = 0.0324.

As a result, the probability that the narrower interval will be correct is only 1−2(0.0324) = 0.9352.
I would stick with the original interval.
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18.2.1 Examples with Real Data

I introduced you to Brian’s study of running in Problem 1 of Section 1.8. Below are his ten sorted

times to run one mile in combat boots:

321 323 329 330 331 332 337 337 343 347

and below are his ten sorted times to run one mile in jungle boots:

301 315 316 317 321 321 323 327 327 327

I will add the assumption that Brian’s times, with either footwear, are the result of observing n = 10
i.i.d. trials from a pdf with unknown median ν. From Table 18.1, I choose the confidence interval

with exact level 89.1%: [x(3), x(8)]. For Brian’s data the 89.1% confidence interval estimate of ν
is:

[x(3), x(8)] = [329, 337] for combat boots; and [316, 327] for jungle boots.

In Chapter 2 you learned of Sara’s study of golf. She had two samples of size n = 40. If

we assume that each sample is the result of observing i.i.d. trials, then we may use Result 18.2 to

obtain an approximate 95% confidence interval estimate of each population median.

For n = 40 and z∗ = 1.96, we get

k′ =
40 + 1

2
− 1.96

√
40

2
= 20.50− 6.20 = 14.30.

Thus, k = 14 and the approximate 95% confidence interval estimate of ν is [x(14), x(27)]. Sara’s
data, sorted by club, are in Table 2.2 on page 29. Using this table, we find that

[x(14), x(27)] = [107, 122] for the 3-Wood; and [x(14), x(27)] = [92, 108] for the 3-Iron.

For Kymn’s study of rowing in Chapter 2, n = 5 for each treatment. If we assume that each

sample is the result of observing i.i.d. trials, then from Table 18.1, the 93.8% (exact) confidence

interval estimate of ν is:

[x(1), x(5)] = [489, 493] and [479, 488] for treatments 1 and 2, respectively.

These numerical values can be found in Figure 2.1 on page 28.

Finally, for Cathy’s study of running in Chapter 2, n = 3 for each treatment. If we assume

that each sample is the result of observing i.i.d. trials, then from Table 18.1, the 75.0% (exact)

confidence interval estimate of ν is:

[x(1), x(3)] = [521, 539] and [520, 528] for the high school and park routes, respectively.

These numerical values can be found in Table 2.5 on page 41.
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Table 18.2: The population distribution for the cat population.

x 0 1 2 3 Total

P (X = x) 0.10 0.50 0.30 0.10 1.00

18.2.2 Estimating the Median of a Count Response

The confidence intervals given in Table 18.1 and Result 18.2 clearly state that the population must

be a pdf. And there is a sign at a favorite park of mine: No Skateboards Allowed. Right. People

always obey signs.

In this subsection I will explore what happens if the population is a probability histogram. I

will begin with a particular example.

Suppose that a researcher selects a dumb random sample of size n = 20 from the cat population

presented in Table 17.1 and reproduced in Table 18.2. After looking at Table 18.1, I decide on the

exact confidence level of 95.9% which gives the interval [x(6), x(15)]. Recall that the median, ν, of
the cat population is 1. I will calculate the probability that the interval [X(6), X(15)] will be correct.
(Are you thinking: Why? It’s 95.9%. Recall, however, that the 95.9% comes from the assumption

that the population is a pdf, which is no longer the situation.)

The confidence interval estimate will be too small if, and only if, its upper bound is smaller

than ν = 1. This happens if, and only if, at least 15 of the 20 observations are smaller than 1. I go

to

http://stattrek.com/Tables/Binomial.aspx

and enter 0.1, 20 and 15; I click on Calculate and find that the probability the interval will be too

small is 9.48× 10−12. Let’s call this zero.

The confidence interval estimate will be too large if, and only if, its lower bound is larger than

ν = 1. This happens if, and only if, at most 5 of the 20 observations are 1 or 0. I go to

http://stattrek.com/Tables/Binomial.aspx

and enter 0.6, 20 and 5; I click on Calculate and find that the probability the interval will be too

large is 0.0016.

As a result of the two above computations, the probability that the interval [X(6), X(15)] will be
correct is 1 − 0.0016 = 0.9984. This is way too large! The probability of an incorrect interval is

more than 25 times smaller than I wanted (0.041/0.0016 = 25.625).
The above example for the cat population illustrates the following result.

Result 18.3 (Confidence interval for the median for a count population.) The actual probabil-

ity of a correct confidence interval is larger for a probability histogram than it is for a pdf. Some-

times it is very much larger.

There is another—in my mind, more important—issue with the cat population. The possible

values ofX are 0, 1, 2 and 3. Below are two additional possibilities for the cat population. (Given

that the cat population is totally hypothetical, we should not become attached to one possibility!)
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u 0 1 2 3 Total

P (U = u) 0.100 0.401 0.309 0.190 1.000

w 0 1 2 3 Total

P (W = w) 0.100 0.399 0.311 0.190 1.000

These two populations are almost identical, but the median for U is 1 and the median for W is 2.

This is a huge difference, especially when you note the values of U and W have the very small

range of 0 to 3. By contrast, the mean of U is 1.589 and the mean of W is 1.591 (details not

shown). Thus, the means are far superior to the medians for summarizing the extremely small

difference between the two populations.

Thus, my general guideline is: If the number of possible values of a count response is small

do not use the median, either to summarize the data or describe the population.

The remaining situation I will discuss is when the number of possible values of a count response

is large. Admittedly, there is a big gap between small and large, but I need to limit the time we

spend on this topic.

Earlier I derived the confidence level for one of the intervals in Table 18.1. The derivation was

based on the following facts for a pdf:

P (X < ν) = 0.50;P (X = ν) = 0; and P (X > ν) = 0.50.

Almost always, one or more of these equations is not true for a probability histogram. (See the

Practice Problems for the exception.) For example, for the cat population,

P (X < ν) = P (X = 0) = 0.10;P (X = ν) = P (X = 1) = 0.50;

and P (X > ν) = P (X > 1) = 0.40.

The result we saw above—for n = 20—is that the actual error rate of the interval was more than 25

times smaller than the nominal error rate. This huge discrepancy was due to the fact that P (X = ν)
is so large. If the researcher believes that P (X = ν), while not literally zero, is close to zero, then
the actual confidence levels are only a bit larger than what they are for a pdf. I will illustrate these

ideas in the following example.

Example 18.1 (Bob playing Tetris, circa 1990.) Years ago, I enjoyed playing the video game

Tetris. The score on the game I played was equal to the number of lines I completed before the

screen overflowed. (If this makes no sense, don’t worry; the score was a count and higher counts

were better.) My sorted scores from 25 games are in Table 18.3.

Even if you exclude my uncharacteristic small outlier, 51, there is a lot of variation in these re-

sponses. Neither the nature of Tetris nor my scores suggest that P (X = ν), whatever ν might be,

is very large. Thus, I personally feel comfortable to use our designed-for-pdf confidence intervals

for this count response. For completeness, I will calculate the 95% confidence interval estimate.

First,

k′ =
25 + 1

2
− 1.96

√
25

2
= 13− 4.9 = 8.1,
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Table 18.3: Twenty-five sorted Tetris scores from 1990.

51 70 73 74 75 81 85 90 90 93 94 94 95

98 100 100 101 103 106 106 107 110 111 112 114

giving k = 8. The approximate confidence interval is

[x(8), x(18)] = [90, 103].

18.3 Prediction

In Chapter 14 you learned how to predict the total number of successes inm future Bernoulli trials

and the total number of successes in a future observation of a Poisson Process. We will consider

again prediction in Chapters 21 and 22 when we study regression. This brief section introduces

you to two prediction methods for i.i.d. trials with a measurement response; i.e., for which the

population is a pdf.

Here is our mathematical model. We plan to observe (n+ 1) i.i.d. random variables:

X1, X2, . . . , Xn, Xn+1.

Our goal is to use the values of the first n of these:

X1, X2, . . . , Xn,

to predict the value of the last oneXn+1. I will give you two methods for doing this:

1. Assume the pdf is a Normal curve with both the mean µ and the standard deviation σ un-

known.

2. Making no assumptions about the form of the pdf. This is the so-called distribution-free

method.

18.3.1 Prediction for a Normal pdf

Summarize the variables

X1, X2, . . . , Xn

with their mean X̄ and their standard deviation S. The observed values of these summaries are x̄
and s. Below is the main result. I won’t give any proof or motivation of it.

Result 18.4 (Prediction interval for Xn+1 for a Normal pdf.) With the framework described above,

the prediction interval is

x̄± t∗s
√

1 + (1/n) (18.3)
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The value of t∗ depends on the sample size and the desired probability of the interval being cor-

rect, as described below. (This is exactly the same procedure we had in Chapter 17 for Gosset’s

confidence interval.)

1. Select the desired probability of a correct prediction and write it as a decimal; e.g., 0.95 or

0.99.

2. Subtract the desired probability from one and call it the error rate. Divide the error rate by

two and subtract the result from one; call the final answer c; e.g., 0.95 gives c = 1−0.05/2 =
0.975 and 0.99 gives c = 1− 0.01/2 = 0.995.

3. Go the website

http://stattrek.com/online-calculator/t-distribution.aspx.

Next, enter n− 1 for degrees of freedom; enter c in the Cumulative probability . . . box; and

click on Calculate. The value t∗ will appear in the t-score box.

I will illustrate this result with data from Chapter 17.

Table 17.6 on page 432 presents the scores from 250 games of mahjong played by my friend

Walt. I want to focus on the n = 216 games he lost (x > 0) and use that data to predict his score

on the next game he loses. For these n = 216 games, we have the following summary statistics:

x̄ = 23.051 and s = 10.739.

In addition, I commented on the fact—but did not demonstrate it—that the distribution of these 216

scores is approximately symmetric. Thus, even though a count can never have exactly a Normal

pdf, I will use a Normal pdf as an approximation to the unknown probability histogram.

I want the probability that my prediction interval is correct to equal (approximately) 0.95. With

the help of the t-curve website, I find t∗ = 1.971. Thus, the (approximate) 95% prediction interval

is

23.051± 1.971(10.739)
√

1 + (1/216) = 23.051± 21.216 = [1.835, 44.267] = [2, 44],

after rounding. This is a very wide interval!

Walt’s next game, a loss, yielded x = 5; thus, the prediction interval was correct. Indeed, Walt

played six more losing games—with one win mixed in—and his scores—12, 24, 6, 26, 9, 20—all

were in the 95% prediction interval. Thus, the 95% prediction interval gave seven out of seven

correct predictions. Hardly conclusive, but better than zero out of seven!

18.3.2 Distribution-Free Prediction

Let’s assume that our population is a pdf, but otherwise we make no assumption about it. This is

why we use the name distribution-free.

In this situation, we take our n variables:

X1, X2, X3, . . . , Xn,
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and sort them from smallest to largest:

X(1) ≤ X(2) ≤ X(3) ≤ . . . ≤ X(n),

Actually, because we assume that the population is a pdf, the probability that any adjacent values

are equal is 0. Thus, when I present math arguments, I may assume that the sorted random variables

satisfy:

X(1) < X(2) < X(3) < . . . < X(n),

These sorted random variables yield the following sorted observed data:

x(1) < x(2) < x(3) < . . . < x(n).

My method below is messy for general n, so let’s look at a fairly simple example.

First, I need to show you a useful consequence of assuming our random variables are i.i.d.

from a pdf. Suppose that n = 3 and our sorted data are: 2, 4, and 9. There are six possibilities for

unsorted data:

2, 4, 9 2, 9, 4 4, 2, 9 4, 9, 2 9, 2, 4 and 9, 4, 2

Here is the result: Because we assume that the n = 3 random variables are i.i.d., these six arrange-

ments are equally likely to have occurred. (We had a special case of this result earlier for Bernoulli

trials, which allowed us to develop the runs test and analyze the lengths or runs of successes.)

Visually, before we observe n = 3 i.i.d. random variables from a pdf, we know that our sorted

variables will look like the following:

X(1) X(2) X(3)

Now suppose that we plan to observe X1, X2, X3 and X4. We plan to sort only the first three of

these which will give us a picture like the one above. It is true—and follows from the above, but

don’t worry about it if this is getting too mathematical—that each of the following four possibilities

are equally likely to occur:

• X4 < X(1);

• X(1) < X4 < X(2);

• X(2) < X4 < X(3); and

• X(3) < X4.

In the context of this section—prediction—we see that if we use [x(1), x(3)] as a prediction interval
for X4, the probability that the interval will be correct is 2/4 (see the above listing), or 50%.
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Let’s catch our breath. In the terminology of this section, I have shown you that if we want to

use n = 3 observations to predict the value of observation number n + 1 = 4, then the prediction

interval

[X(1), X(3)] with observed value [x(1), x(3)]

has probability 0.50 of being correct. Except for the fact that our probability of being correct, 0.50,

is disappointingly small, this is a great method!

I will spare you the details, but the above argument can be generalized from n = 3 to any value
of n. The result is given below.

Result 18.5 (Our first result on distribution-free prediction.) Given we have n i.i.d. random vari-

ables from a pdf, the probability that the prediction interval

[X(1), X(n)] (18.4)

will contain the observed value of Xn+1 is equal to

1− 2

n + 1
. (18.5)

Below are three evaluations of the probability given in Formula 18.5.

1. For n = 3, the probability is
1− (2/4) = 0.50,

as we had found earlier.

2. For n = 99, the probability is
1− (2/100) = 0.98.

3. For n = 999, the probability is

1− (2/1000) = 0.998.

As the above computations show, for n = 99—and certainly for n = 999—the probability that the

prediction interval is correct is perhaps larger than we require. And, obviously, for a large value of

n, the interval from the minimum to the maximum of the observations will usually be extremely

wide and, naturally, sensitive to even one extreme outlier. This is not a practical difficulty, because

Result 18.5 can be generalized quite easily. (But don’t worry about proving or even seeing the

generalization; just be able to use it.)

Result 18.6 (The general result on distribution-free prediction.) Let k be any positive integer

with k < (n/2). Given we have n i.i.d. random variables from a pdf, the probability that the

prediction interval

[X(k), X(n+1−k)] (18.6)

will contain the observed value of Xn+1 is equal to

1− 2k

n + 1
. (18.7)
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I will look at the probability for this general result—Formula 18.7—for n = 99 and several choices
of k.

1. For n = 99 and k = 1, the probability is

1− (2/100) = 0.98,

which agrees with our earlier result.

2. For n = 99 and k = 2, the probability is

1− (4/100) = 0.96.

3. For n = 99 and k = 3, the probability is

1− (6/100) = 0.94.

4. For n = 99 and k = 5, the probability is

1− (10/100) = 0.90.

Before I illustrate this result with real data, let me just comment that if the actual population is a

probability histogram, then the actual probability of a correct prediction is greater than or equal

to—perhaps much greater than—the value in Formula 18.7.

Let’s revisit using the scores from Walt’s 216 losing games of mahjong to predict his score on

his next losing game. For our first method—assuming a Normal pdf—we obtained [2, 44] for the
95% prediction interval.

For the distribution-free method we need to figure out the value of k. A good starting point is

to compute

k′ = 217(0.025) = 5.425.

(If you want a probability other than 95%, replace 0.025 in this equation by one-half of: one minus

your desired probability.) This value of k′ suggests trying k = 5 or k = 6.

1. With k = 5 the prediction interval is

[x(5), x(212)] = [1, 45],

from the data in Table 17.6. The probability associated with this interval is

1− (10/217) = 0.9539.

2. With k = 6 the prediction interval is

[x(6), x(211)] = [2, 44],

which coincides with the Normal curve interval. The probability associated with this interval

is

1− (12/217) = 0.9447.

Of course, because Walt’s response is a count, the above probabilities, 0.9539 and 0.9447, might

be a bit smaller than the actual (unknowable) probabilities.

In summary, I would say that the Normal curve method and the distribution-free method give

similar results.
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18.3.3 Which Method Should be Used?

I performed a simulation experiment with m = 1,000 reps. For each rep I had Minitab generate

n = 999 i.i.d. observations from a Normal pdf. (It does not matter which Normal pdf I use; for

the work below, one experiment covers the entire family.) I then calculated two 95% prediction

intervals for observation number 1,000:

• I used the Normal pdf interval method given in Formula 18.3.

• I used the distribution-free method given in Result 18.6. (Note that k = 25 gives exactly

0.95 for the probability of a correct interval.)

It is fairly easy to compare these two methods because they both give exactly 95% for the proba-

bility of a correct interval. So, what do we compare? The idea is that the narrower the prediction

interval the more useful it is to the researcher. What I found in my simulation was pretty amazing:

The mean width of the Normal pdf prediction intervals was 0.4%—yes, this is not a typo; less

than one-half of one percent—narrower than the mean width of the distribution-free prediction

intervals!

Thus, my recommendation is that for n large, use the distribution-free prediction interval. The

Normal curve interval, however, might be preferred for small n. For example, if n = 24, from
Result 18.6 we see that the largest possible probability of a correct distribution-free interval is for

k = 1 and it equals

1− (2/25) = 0.92.

There are two difficulties with this answer. First, I might want a larger probability of obtaining a

correct interval. Second, I really hate to use k = 1 because it makes the prediction sensitive to

even one outlier!

Finally, a published source might provide the mean and standard deviation of a set of data, but

not a listing of the data. In this situation prediction assuming a Normal pdf can be used, but the

distribution-free method cannot be used.

18.4 Some Cautionary Tales

Chapters 17 and 18 have been pretty technical. Lots of formulas and—for my taste—perhaps too

much algebra. This section is a change-of-pace, but very important. I begin with a story from my

life. (I know you love these!)

18.4.1 You Need More Than a Random Sample

In view of the fact that nearly every inference method in nearly every introductory Statistics text

begins:

Assume you have a random sample from a population
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we should, perhaps, forgive novice researchers who seem to focus only on obtaining a random

sample. I don’t mean to be too blunt, but:

Having a random sample does not salvage a stupid study.

Below is the promised story from my past.

Several years ago, the student government at UW–Madison published a booklet with the ap-

proximate title The 100 Best Professors at UW–Madison. I was very impressed that a colleague

and friend of mine, Professor Wei-Yin Loh of Statistics, was included. Indeed, Wei-Yin was and is

a wonderful teacher: thorough, creative, demanding. I think he deserved such an honor; but I am

surprised he received it. Let me explain why.

The booklet proudly described the methodology. The student government selected a random

sample of undergraduate students and asked each one to list the three best professors from

whom he/she had taken a class at UW–Madison. The researchers compiled the results and the 100

professors whose names were mentioned most often were placed in the booklet.

Before you read further, think about this methodology. Can you spot its fatal flaws? I would

imagine that I have failed to spot all of the flaws, but here are two huge flaws.

1. Full-time students typically take four–five courses each semester. Thus, a first semester

freshman in the sample would have at most—many courses are taught by TAs and this was

a compilation of professors—five professors to choose from, compared to up to 40 or more

for a senior! Thus, a professor who teaches freshmen will have a huge advantage over a

professor who teaches seniors.

2. A teacher who teaches a class of size 300 obviously has an advantage over a professor who

teaches classes of size 15.

When I now tell you that my friend, Wei-Yin Loh, teaches smallish classes to juniors and seniors,

you see why I was amazed that he received the honor of being among the 100 Best Professors at

UW–Madison.

18.4.2 Cross-sectional Versus Longitudinal Studies

I searched the web looking for a good explanation of cross-sectional and longitudinal studies and

could not find one. If you know of one, please let me know. Lacking a better source, I will give

you two stories from my career.

Early in my career as a teacher of introductory Statistics, I followed whatever textbook the

course coordinator told me to use. After doing this a few years I noticed that many students

were giving essentially the same comment in my student evaluations; below is one example of this

collection of similar comments:

If Wardrop does one more example about dice or decks of cards, I am going to . . . .

(Note to reader: In an uncharacteristic display of restraint, I will delete the remainder

of the comment.)
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This surprised the math-person I was then; after all, when I was a student all of the examples

involved selecting balls out of an urn. I survived, even though I had never seen an urn, except in

an art museum; and those urns were too old and valuable to fill with balls!

Such experiences led me to decide to search the local newspaper for a real data set. As luck

would have, the first study I happened upon was monumentally bad! Let me describe it to you.

The headline read,

Men Reach Their Peak Weight Before Age 55, But Women Keep Growing Heav-

ier!

I might be mistaken in remembering an exclamation point, but the headline was oozing with judg-

ment. Oh, those virtuous men; those, well, the opposite-of-virtuous women. Let me now describe

the basis for this headline.

Data on age, height, weight and sex were available for 20,000 persons. The data were collected

over a brief period of time—as I recall, less than two years—during routine physical examinations

in a physician’s office.

First, the data were divided into two data sets: one for men and one for women. Within each

sex, the data sets were further divided based on height, to the nearest inch. Thus, for example,

there were data sets for men who were . . . 67, 68, 69, . . . inches tall and similarly for women. The

data for each sex-height combination was further divided into six age groups:

18–25, 25–34, 35–44, 45–54, 55–64, and 65–74.

Finally, for every combination of sex-height-age, the mean weight of the persons in the data set

was calculated. The first thing to note is that the patterns were not as consistent as the headline

implied; i.e., whoever wrote the headline was not being honest. Nevertheless, let me give you two

examples that do agree with headline.

For women who were five feet, four inches tall the means, by age group, were as follows:

Age: 18–24 25–34 35–44 45–54 55–64 65–74

Mean Wt.: 135 142 152 154 157 154

Indeed, if you read from left-to-right the means consistently increase before decreasing for the last

age group.

For men who were five feet, six inches tall the means, by age group, were as follows:

Age: 18–24 25–34 35–44 45–54 55–64 65–74

Mean Wt.: 150 160 163 164 163 160

Again, if you read from left-to-right the means increase until they begin to decrease in age group

55–64.

Think about this story and these data for a few moments. . . . Nothing in these data tell us

whether any particular person gained weight or lost weight or stayed the same weight throughout

his/her life. All that the data showed is that for people of a fixed sex and height, the mean weight

in one age group differs from the mean weight in an adjacent age group. What are some possible

explanations for this?
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1. The headline could be correct. And then everybody dies at age 75 when a meteor lands on

their head.

2. Perhaps everybody gains weight throughout their lives, but for men a heavier weight leads

to a larger mortality rate, beginning in their fifties. To put it bluntly, the dip in mean weight

for men might be due to the heavier ones dying.

In technical terms, the study reported in the newspaper is a cross-sectional study. It took a sample

of persons and measured them at a fixed point in time. By contrast, a longitudinal study would

select a sample of persons and recorded their weights over a period of years. To put it succinctly,

if you want to study the effect of time, you must study your units over time.

Here is a similar story. I read a study that sampled senior women and found that 75 year-old

women ate, on average, a healthier diet than 60 year-old women. The analyst wrote, “This shows

that as women age, their eating habits improve.” What do you think?

18.4.3 Another Common Difficulty

Consider the community described in Example 17.2 on page 429. To briefly summarize, there are

7,000 households in the community; and the response of interest is the number of children in a

households who attend public school. I defined the first population to be all 7,000 households and

the second population to be the 4,200 households with at least one child in public school. Consider

the following three possible ways to sample.

1. Researcher A selects n1 households at random (dumb sample) from population 1.

2. Researcher B selects n2 households at random (dumb sample) from population 2.

3. In the solution to Practice Problem 1 in Chapter 17, I showed that the total number of children

in public school in the community is 12,012. Researcher C selects n3 children in public

schools at random (dumb sample) from the community.

Now, I will discuss these three samples, ignoring the issue of nonresponse; i.e., I will assume that

every household or child sampled will supply the requested information (the number of children in

the household attending public school).

The data from Researcher A may be used to estimate the entire probability histogram of pop-

ulation 1 or estimate its mean with confidence. If Researcher A discards from the sample the

households that responded ‘0,’ then the remaining data may be viewed as a random sample from

population 2 and, hence, may be used to estimate the entire probability histogram of population 2

or estimate its mean with confidence.

The data from Researcher B may be used to estimate the entire probability histogram of popu-

lation 2 or estimate its mean with confidence. These data should not be used to make any estimates

of population 1 because it is biased in that it refuses to sample any household with the smallest

response, 0.

My recommendation is that neither Researcher A nor B should estimate ν, the population

median, even though the confidence levels will be exact for population 2. (Remember, the median
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for population 2 is ν = 2.5; thus, exactly one-half of the population responses are smaller [larger]

than ν.) My recommendation is based on my opinion that for so few possible responses, the median

is a poor way to summarize either population or sample.

The data from Researcher C should not be used to estimate any features of either population.

Let me explain why for population 2.

Going back to Chapter 1 or 10, the notion of the unit or population member seemed dull, even

by the standards of these notes! But it is important! In population 2, the population members—also

called sampling units—are households. When Researcher C collects data, it is not the case that all

households are equally likely to be selected because he/she is sampling children. In particular, on

any given selection a particular family with response 7 is seven times as likely to be sampled as a

particular family with response 1! (Do you see why?)

I opine that when the situation is described as I have done above—carefully specifying what

each researcher is doing—then most people will see the difficulty with the sampling method of

Researcher C. Real life, however, is not always so forthcoming. I will illustrate this idea with

an example shared with me by Professor Stephen Stigler of the Department of Statistics at the

University of Chicago. Any errors in the following are due to failings in my memory and not the

work of Steve. In particular, I do not remember the means reported by Steve, only that the first

mean was substantially smaller than the second mean.

Many years ago a survey of 50 prominent men was taken. Each man was asked two questions:

1. Question 1: How many children do you have? The 50 responses were combined and the

mean was found to be 1.8.

2. Question 2: Including yourself, how many children were in your family when you were a

child. The 50 responses were combined and the mean was found to be 3.3.

The conclusion of the study: This is a disaster! The size of families that produce prominent men is

shrinking! Something needs to be done! Take a moment. Can you see the flaw in the above study?

Of course, an obvious flaw is that these prominent men might have more children in the future;

thus, the mean of 1.8 is likely a bit small. Here is a hint: Think about the sampling units.

For question 1, the researcher is sampling households, by sampling the male head. For ques-

tion 2, the researcher is again collecting data on households, but is sampling children from the

households, much like Researcher C above. Thus, households with more children are more likely

to be sampled; this makes me opine that the mean of 3.3 is too large.

The above are sampling issues. Underlying the entire study is this notion that the children of

prominent men are more likely to be, if not prominent, at least extra-special. Is this true? I have

no idea. The interested reader is referred to, “Singapore’s Patrimony (and Matrimony)” in The

Flamingo’s Smile by Stephen Jay Gould. This wonderful essay describes and criticizes a recent

scheme in Singapore to encourage successful people to have more children and to reward those

who do have more children.

I will leave you with one more, admittedly vague, example that combines some of the ideas of

this section. I am sorry that I don’t have a specific reference for what follows. I am not unduly

troubled by this, because my goal is to encourage you to think about statistics you hear reported.

488



It is not my goal to critique America’s welfare system because, frankly, I am not at all qualified to

do so!

I heard the following exchange between two analysts. Analyst A stated:

Welfare works! Data show that 50% of welfare recipients receive benefits for three

months or less.

Analyst B stated:

Welfare is a disaster! Data show that 50% of people currently on welfare, have re-

ceived benefits for more than six months!

What do you think?

I can’t say that I am a big fan of Analyst A. Yes, it’s good that one-half of the recipients have

a short stay on welfare, but an honest analysis should not ignore the half of the data set that costs

the most to support.

As a statistician, I find myself to be more offended, however, by Analyst B who is taking

cross-sectional data and implying—without actually stating it—that it gives a valid picture of what

happens longitudinally. (A person on welfare one year will have a much higher chance of being in

a sample than one on welfare for a week.)

18.5 Summary

As in Chapter 17, we plan to observe n i.i.d. random variables, denoted by:

X1, X2, X3, . . . , Xn,

with summary random variables X̄ and S. These variables come from a population with mean µ
and standard deviation σ, both of which are unknown. After the data are collected, we have the

observed values of these random variables:

x1, x2, x3, . . . , xn,

with observed values of the summary statistics x̄ and s.
Section 18.1 presented the test of the null hypothesis that µ = µ0, where µ0 is a known number

specified by the researcher. There are three options for the alternative:

µ > µ0; µ < µ0; or µ 6= µ0.

The test statistic is given in Formula 18.1, reproduced below:

T =
X̄ − µ0

S/
√
n
.

After the data are collected, the observed value of T is denoted by t and is given in Formula 18.2,

reproduced below:

t =
x̄− µ0

s/
√
n
.

Result 18.1 presented the rules for using the value of t and the website:

489



http://stattrek.com/online-calculator/t-distribution.aspx

to obtain the P-value for each of the three possible alternatives.

If the population is actually a member of the family of Normal pdfs, then the P-value is exact.

As in Chapter 17, the approximate P-values are reasonable accurate if the population is symmetric

or has a small amount of skewness. For a skewed population, I recommend against using this test

with a one-sided alternative; the approximate P-values are very inaccurate, even for large values

of n.
Section 18.2 presented the confidence interval estimate of the median, ν, of a population. With

the assumption that the population is a pdf—and no assumption about its shape—the confidence

level is exact. For n > 20, I give an approximate method, but its level can be made exact by using

the website

http://stattrek.com/Tables/Binomial.aspx,

but we won’t worry about that in this course.

Subsection 18.2.2 examined the performance of the confidence interval for the median for a

count response.

Section 18.3 presented two methods for creating a prediction interval for the value of a future

trial Xn+1 from the same process that generated the data. The first method assumes that the pop-

ulation is a Normal pdf, with unknown mean and unknown standard deviation. The prediction

interval is given in Formula 18.3, reproduced below:

x̄± t∗s
√

1 + (1/n),

where t∗ is the same number we used for Gosset’s confidence interval.

The second method makes no assumptions about the population, other than it is a pdf. It is

called the distribution-free interval. The interval is given in Formula 18.6, reproduced below:

[X(k), X(n+1−k)].

The probability that this interval will contain the observed value of Xn+1 is equal to

1− 2k

n + 1
.

Finally, Section 18.4 presents a number of cautionary tales on the use of statistical methods.
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18.6 Practice Problems

1. I enjoy playing four-suit spider solitaire online. If you have ever played this game, you know

that a large proportion of the games end in losses. In fact, for most games you can tell from

the original display of cards that the game is essentially hopeless. Thus, I often quit a game

without even trying! As a result, I will not study my probability of winning a game; suffice

to say, it is small.

I do, however, win quite often. When I win, the website reports the time I needed to complete

the game, in seconds. Table 18.4 presents the sorted responses for n = 49 games that I won.

The summary statistics for these n = 49 numbers are x̄ = 1070.6 and s = 168.8, both
measured in seconds.

(a) Obtain Gosset’s approximate 95% confidence interval estimate of µ.

(b) Obtain the approximate P-value for testing the null hypothesis that the mean equals 19

minutes, versus all three possible alternatives.

(c) Obtain the approximate 95% confidence interval estimate of ν.

(d) Assuming that the pdf is a Normal curve, calculate the 92% prediction interval for the

time it takes to finish a future winning game. (When you do the homework, you will

see why I make the unusual choice of 92%.)

(e) Calculate the 92% distribution-free prediction interval for the time it takes to finish a

future winning game.

(f) Compare your answers to parts (d) and (e). Comment.

(g) In seven future winning games, my sorted times to finish are: 960, 1049, 1058, 1372,

1448, 1448 and 2160. Comment on your answers to parts (d) and (e).

2. Below is yet another version of the cat population.

x 0 1 2 3 Total

P (X = x) 0.100 0.400 0.300 0.200 1.000

(a) Verify that the median of the population, ν, equals 1.5 cats; i.e., describe the sorted

response values in the 100,000 households.

(b) For this version of the cat population, we have:

P (X < ν) = 0.50;P (X = ν) = 0; and P (X > ν) = 0.50.

Thus, the confidence levels in Table 18.1 are exact for this version of the cat population.

(c) In this course we have dealt with many kinds of uncertainty. We are especially good

at quantifying the uncertainty in the equally likely case. Now, I want your opinion on

uncertainty related to the behavior of the world, which is, admittedly, much trickier. In

particular, please comment on the following:
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Table 18.4: The sorted times, in seconds, required to win a game of four-suit spider solitaire.

775 776 804 827 898 899 909 914 919 923

934 935 941 944 958 976 996 1019 1019 1021

1023 1033 1037 1045 1048 1052 1073 1085 1089 1094

1108 1116 1117 1130 1133 1142 1154 1156 1174 1182

1206 1269 1269 1286 1321 1350 1443 1466 1472

How likely is it that exactly 50,000 households—not 49,999 and not 50,001—

give a count response smaller than ν? (And, by logical implication, that ex-

actly 50,000 households give a count response larger than ν?)

18.7 Solutions to Practice Problems

1. (a) This first question checks to see whether you remember what you learned in Chapter 17.

Following the method presented in Result 17.4 on page 448, we obtain t∗ = 2.011.
Thus, Gosset’s 95% confidence interval estimate of µ is:

1070.6± 2.011(168.8/
√
49) = 1070.6± 48.5 = [1022.1, 1119.1].

(b) First, remember to convert µ0 = 19minutes to µ0 = 1140 seconds. The observed value
of the test statistic is

t =
1070.6− 1140

168.8/
√
49

= −69.4/24.114 = −2.878.

Next, go to the website

http://stattrek.com/online-calculator/t-distribution.aspx

and follow the rules given in Result 18.1.

• For the alternative<, the approximate P-value is the area to the left of t = −2.878;
this area equals 0.0030.

• For the alternative>, the approximate P-value is the area to the left of−t = 2.878;
this area equals 0.9970.

• For the alternative 6=, the approximate P-value is twice the area to the left of−|t| =
−2.878. Thus, it is 2(0.0030) = 0.0060.

(c) For 95% confidence, z∗ = 1.96. Thus,

k′ =
49 + 1

2
− 1.96

√
49

2
= 25− 6.86 = 18.14,
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which gives k = 18. Thus, the confidence interval is

[x(18), x(32)] = [1019, 1116].

Note that this interval is almost identical to the interval for µ in part (a).

(d) Following the method in Result 18.3 on page 479, we to the website

http://stattrek.com/online-calculator/t-distribution.aspx;

enter 48 for the degrees of freedom; and place c = 1−0.08/2 = 0.96 in the Cumulative
probability box. Click on Calculate and obtain t∗ = 1.789. Thus, the 92% prediction

interval is:

1070.6± 1.789(168.8)
√

1 + (1/49) = 1070.6± 305.0 = [765.6, 1375.6].

Because the computer reports data to the nearest second, I will round-off these end-

points to obtain [766, 1376].

(e) First, I need to determine the value of k by solving:

1− 0.92 = 0.08 = 2k/50; this gives k = 2.

Thus, the 92% prediction interval is:

[x(2), x(48)] = [776, 1466].

(f) The distribution-free interval 690 seconds wide and the Normal curve interval is 610

seconds wide. The distribution-free interval is greatly influenced by the three large

outliers.

(g) The Normal curve prediction intervals contains only only four out of seven future

games; the distribution-free method does better, containing six out of seven. For

some unknown reason, my times increased dramatically after win number 49. In

particular, the very large outlier of 2160 exceeded my second largest response by

2160 − 1472 = 688 seconds! This trend—some very large observations—continued

in subsequent data. Paradoxically, I believe this happened because I became better at

playing the game. I am now able to win some particularly difficult games—which re-

quire much more time—whereas previously I would just quit (and lose) and the game

would never make it into the data set.

2. (a) Recall that the population consisted of 100,000 households. Based on the table, exactly

50,000 households had either 0 or 1 cats, and the remaining exactly 50,000 households

had either 2 or 3 cats. Thus, in the sorted list of population values, the value 1 is in

position 50,000 and the value 2 is in position 50,001. Thus, ν = (1 + 2)/2 = 1.5.

(b) Part (b) does not ask you to do anything.

(c) I would be amazed if this happened in real life!
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Table 18.5: The sorted times, in seconds, required to win a game of four-suit spider solitaire.

827 919 923 976 996 1021 1023 1033

1052 1085 1089 1108 1116 1117 1130 1156

1174 1206 1269 1269 1321 1350 1443 1472

18.8 Homework Problems

1. Refer to Practice Problem 1. Table 18.5 presents the sorted times of my first 24 winning

games. Essentially, I want you to mimic what we did in Practice Problem 1 for this new,

smaller, data set.

For the n = 24 numbers in Table 18.5, the summary statistics are x̄ = 1128.1 and s = 163.0

(a) Obtain Gosset’s approximate 95% confidence interval estimate of µ. Compare your

answer to the answer we obtained with n = 49 times.

(b) Obtain the approximate P-value for testing the null hypothesis that the mean equals 19

minutes, versus all three possible alternatives. Compare your answers to the answers

we obtained with n = 49 times.

(c) Obtain the approximate 95% confidence interval estimate of ν. Compare your answer

to the answer we obtained with n = 49 times.

2. Refer to Homework Problem 1. Do the following for the n = 24 numbers in Table 18.5.

(a) Assuming that the pdf is a Normal curve, calculate the 92% prediction interval for the

time it takes to finish a future winning game. Compare this answer to the interval we

obtained in Practice Problem 1.

(b) Calculate the 92% distribution-free prediction interval for the time it takes to finish

a future winning game. Compare this answer to the interval we obtained in Practice

Problem 1.

(c) Compare your answers to parts (a) and (b). Comment.

(d) The sorted times of victories 25–34 are:

899 935 958 1019 1045 1094 1142 1182 1286 1466

Use these data to evaluate your answers in (a) and (b). Comment.
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Chapter 19

Comparing Two Numerical Response

Populations: Independent Samples

Chapter 19 is very much like Chapter 15. The major—and obvious—difference is that in the

earlier chapter the response was a dichotomy, but in this chapter the response is a number. If

you revisit the material on the four types of studies in Section 15.2, you can see that the fact that

the response was a dichotomy is irrelevant. In other words, everything you learned earlier about

how the interpretation of an analysis depends on the type of study remains true in this chapter.

In particular, for an observational study, if you conclude that numerical populations differ, then

you don’t know—based on the statistical analysis—why they differ. On the other hand, for an

experimental study, if you conclude that numerical populations differ, then you may conclude that

there is a causal link between the treatment and response.

In addition, the meaning of independent random samples for the different types of studies

remains the same in the current chapter. There is even an extension of Simpson’s Paradox for a

numerical response, but time limitations will prevent me from covering this topic.

It is also true that Chapter 19 builds on the work of Chapters 17 and 18. In particular, recall

that in Chapter 17 you learned that the population for a numerical response is a picture and the

kind of picture depends on whether the response is a count or a measurement.

19.1 Notation and Assumptions

The researcher has two populations of interest. The methods of Chapters 17 and 18 may be used

to study the populations separately. In this chapter, you will learn how to compare the populations.

• Population 1 has mean µ1, variance σ
2
1 and standard deviation σ1.

• Population 2 has mean µ2, variance σ
2
2 and standard deviation σ2.

I realize that specifying both the variance and standard deviation is redundant, but it will prove

useful to have both for some of the formulas we develop.

We will consider procedures that compare the populations by comparing their means.
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• We assume that we will observe n1 i.i.d. random variables from population 1, denoted by:

X1, X2, X3, . . . , Xn1
.

These will be summarized by their mean X̄ , variance S2
1 and standard deviation S1. The

observed values of these various random variables are denoted by:

x1, x2, x3, . . . , xn1
, x̄, s21 and s1, respectively.

• We assume that we will observe n2 i.i.d. random variables from population 2, denoted by:

Y1, Y2, Y3, . . . , Yn2
.

These will be summarized by their mean Ȳ , variance S2
2 and standard deviation S2. The

observed values of these various random variables are denoted by:

y1, y2, y3, . . . , yn2
, ȳ, s22 and s2, respectively.

• We assume that the two samples are independent.

I apologize for the cumbersome and confusing notation. In particular, in my µ’s, σ2’s, n’s S2’s, and

so on, I use a subscript to denote the population, either 1 or 2; this is very user-friendly. You need

to remember, however, that the random variables, data and some summaries from population 1 are

denoted by x’s and the corresponding notions from population 2 are denoted by y’s. There is a long
tradition of doing things this way in introductory Statistics. While it is confusing, its one virtue is

that it allows you to avoid double subscripts until you take a more advanced Statistics class.

(Enrichment: Here is the problem with double subscripts—well, other than the obvious prob-

lem that they sound, and are, complicated. If I write x123 does it mean:

• Observation number 123 from one source of data?

• Observation 23 from population 1? or

• Observation 3 from population 12?

This could be made clear with commas; use x1,23 for the second answer above and x12,3 for the

third answer. The only problem is: In my experience, statisticians and mathematicians don’t want

to be bothered with commas!)

The methods introduced in this chapter involve comparing the populations by comparing their

means. For tests of hypotheses, this translates to the null hypothesis being µ1 = µ2, or, equiva-

lently, µ1 − µ2 = 0. For estimation, µ1 − µ2 is the feature that will be estimated with confidence.

Our point estimator of µ1 − µ2 is X̄ − Ȳ . There is a Central Limit Theorem for this problem,

just as there was in Chapter 17. First, it shows us how to standardize our estimator:

W =
(X̄ − Ȳ )− (µ1 − µ2)
√

(σ2
1/n1) + (σ2

2/n2)
. (19.1)
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Second, it states that we can approximate probabilities forW by using the N(0,1) curve and that in

the limit, as both sample sizes become larger and larger, the approximations are accurate.

In order to obtain formulas for estimation and testing, we need to eliminate the unknown pa-

rameters in the denominator of W, σ2
1 and σ2

2 . We also will need to decide what to use for our

reference curve: the N(0,1) curve of the Central Limit Theorem and Slutsky or one of the t-curves

of Gosset.

Statisticians suggest three methods for handling these two issues, which I refer to as Cases 1,

2 and 3. I won’t actually show you Case 3 because I believe that it nearly worthless to a scientist;

I will explain why I feel this way.

We will begin with Case 1; I will follow the popular terminology and call this the large sample

approximate method.

19.2 Case 1: The Slutsky (Large Sample) ApproximateMethod

This method comes from Slutsky’s Theorem. In Equation 19.1 for W , replace each population

variance by its sample variance. The resultant random variable is:

W1 =
(X̄ − Ȳ )− (µ1 − µ2)
√

(S2
1/n1) + (S2

2/n2)
. (19.2)

(Note that I have placed the subscript of ‘1’ on W to remind you that this is for Case 1.) It can

be shown that in the limit, as both sample sizes grow without bound, the N(0,1) pdf provides

accurate probabilities for W1. Thus, for finite values of n1 and n2, the N(0,1) pdf will be used to

obtain approximate probabilities for W1. As a general guideline, I recommend using Case 1 only

if n1 ≥ 30 and n2 ≥ 30.
The usual algebraic manipulation of the ratio that isW1 yields the following result.

Result 19.1 (Slutsky’s approximate confidence interval estimate of (µ1 − µ2).) With the nota-

tion and assumptions given in Section 19.1, Slutsky’s approximate confidence interval estimate of

(µ1 − µ2) is:

(x̄− ȳ)± z∗
√

(s21/n1) + (s22/n2). (19.3)

As always in these intervals, the value of z∗ is determined by the desired confidence level and can

be found in Table 12.1 on page 296.

Before I give you an example of the use of Formula 19.3, I will tell you about the test of

hypotheses for this section.

As I stated earlier in this chapter, the null hypothesis is µ1 = µ2 or, equivalently, µ1 − µ2 = 0.
There are three options for the alternative:

H1: µ1 > µ2; H1: µ1 < µ2; or H1: µ1 6= µ2.

I will abbreviate these as >, < and 6=; no confusion should result provided you remember that µ1

is to the left of the math symbol and µ2 is to its right.
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In order to obtain the formula for the test statistic, I look at Equation 19.2. I want to know how

this random variable behaves if the null hypothesis is true. Well, if the null hypothesis is true, then

µ1−µ2 = 0. Make this substitution into Equation 19.2 and we get our test statistic Z, given below.

Z =
(X̄ − Ȳ )

√

(S2
1/n1) + (S2

2/n2)
. (19.4)

Given the assumptions of this section, on the additional assumption that the null hypothesis is true,

the sampling distribution of Z is approximated by the N(0,1) curve. The observed value of the test

statistic Z is given by

z =
(x̄− ȳ)

√

(s21/n1) + (s22/n2)
. (19.5)

The rules for finding the P-value are given in the following result.

Result 19.2 In the formulas below, z is given in Equation 19.5 and areas are computed under the

N(0,1) curve.

1. For the alternative µ1 > µ2, the approximate P-value equals the area to the right of z.
Equivalently, the approximate P-value equals the area to the left of −z.

2. For the alternative µ1 < µ2, the approximate P-value equals the area to the left of z. Equiv-
alently, the approximate P-value equals the area to the right of −z.

3. For the alternative µ1 6= µ2, the approximate P-value equals twice the area to the right of |z|.
Equivalently, the approximate P-value equals twice the area to the left of −|z|.

In a later section of this chapter I will discuss the quality of the approximations behind Slutsky’s

confidence interval and Result 19.2.

I will end this section with illustrations of the estimation and testing methods of this section

with a real data set from a student project. Other examples are given in the Practice and Homework

Problems.

Luke performed a completely randomized design with a numerical response. A trial consisted

of Luke hitting a pitched baseball. In treatment 1, he used an aluminum bat and and in treatment 2

he used a wooden bat. The response is the distance, in feet, that the ball traveled. Luke assigned

40 hits to each treatment, by randomization.

Trials that resulted in Luke missing the ball or hitting a foul-tip were ‘done over.’ This made

the randomization a bit trickier (details not given), but I believe that Luke made the correct decision

in doing this, for the following reason: The purpose of the study is to compare distances the ball

travels to see whether wood or aluminum was superior. I can see no reason to blame the bat’s

material for a poor swing by Luke. (As I recall, Luke stated in his report that he had very few of

these do-overs.)

In order to analyze Luke’s data, we will assume that the data from each treatment are i.i.d. trials

from a population and that the two sets of trials are independent. Luke’s data yielded the following

summary statistics:

x̄ = 179.6, s1 = 62.1, n1 = 40, ȳ = 166.2, s2 = 54.2 and n2 = 40.
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Luke’s two sample standard deviations are similar in value; note that 62.1/54.2 = 1.146; i.e., the
standard deviation with the aluminum bat is about 15% larger than the standard deviation with the

wooden bat. I will return to this issue later in this chapter.

Slutsky’s 95% confidence interval estimate of (µ1 − µ2) (Formula 19.3) is:

(179.6− 166.2)± 1.96

√

(62.1)2

40
+

(54.2)2

40
= 13.4± 1.96(13.03) = 13.4± 25.5 = [−12.1, 38.9].

Note that I have explicitly written the value of the radical, 13.03, because we will need it soon. In

words, based on the confidence interval estimate, Luke’s data are inconclusive. The mean with the

aluminum bat is between 12.1 feet smaller and 38.9 feet larger than the mean with the wooden bat.

For his test of hypotheses, Luke chose the alternative > because the conventional wisdom in

baseball is that a ball hit with an aluminum bat travels farther than a ball hit with a wooden bat.

Luke’s observed value of the test statistic, Equation 19.5, is

z =
(x̄− ȳ)

√

(s21/n1) + (s22/n2)
=

13.4

13.03
= 1.028.

With the help of

http://stattrek.com/online-calculator/normal.aspx

I find that the area under the N(0,1) curve to the right of z = 1.028 equals 0.1520. There is

evidence in the data in support of Luke’s one-sided alternative, but Luke’s approximate P-value

does not meet the accepted standard for being convincing. Note, as an aside, that the approximate

P-value for < is 0.8480 and for 6= is 2(0.1520) = 0.3040.

19.3 Case 2: Congruent Normal Populations

In the previous section I gave you Slutsky’s (large sample) method for comparing populationmeans

via estimation and testing. The natural follow-up is for me to show you how to compare means

for the situation in which either or both of the sample sizes is small. I will do this in the current

section.

This section is very mathematical, but not in the sense of having lots of algebra. It is math-

ematical in the sense that I will be presenting methods for a very specific set of mathematical

assumptions. In this section, we will assume that the two populations being compared are congru-

ent Normal pdfs.

According to dictionary.com, congruent means:

Coinciding at all points when superimposed.

This implies that the two populations have identical spreads. For example, the N(µ1, σ) and

N(µ2, σ) curves are congruent for all real numbers µ1 and µ2 and all positive real numbers σ.
Thus, there are many pairs of Normal pdfs that satisfy the condition of being congruent; and, of

course, many that do not.

Recall the definition of a constant treatment effect, given in Definition 5.1 on page 91:
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In a clone-enhanced study, suppose that the response on treatment 1 minus the re-

sponse on treatment 2 equals the nonzero number c for every unit. In this situation

we say that the treatment has a constant treatment effect equal to c.

I argued in Part I that the constant treatment effect, if present, greatly simplifies the interpretation

of statistical analyses. In short, I would say that assuming a constant treatment effect is both helpful

and elegant.

Suppose we have an experimental comparative study. This means, recall, that there is one

superpopulation of units and the two populations we compare represent what would happen if all

of the units were assigned to the same treatment. Suppose that population 2 is the N(20,5) pdf. If

the constant treatment effect is c = 4, then population 1 is the N(24,5) pdf. In general, if there is a

constant treatment effect, then the two populations are congruent. In addition, if one population is

a Normal curve, then so is the other.

To reiterate: In this section we will assume that both populations are Normal pdfs, with the

added condition that they have the same variance. In our earlier notation, we assume that

σ2
1 = σ2

2 .

Because these variances are assumed to be the same, for convenience I will drop the subscripts

and write σ2 for the common value of the population variance and σ for the common value of the

population standard deviation.

We begin with the random variableW in Equation 19.1 on page 496. In this equation, replace

the two population variances with their common value σ2, yielding:

W =
(X̄ − Ȳ )− (µ1 − µ2)
√

(σ2/n1) + (σ2/n2)
=

(X̄ − Ȳ )− (µ1 − µ2)

σ
√

(1/n1) + (1/n2)
. (19.6)

In the last expression, I have moved σ2 outside the square root sign, which mathemagically makes

the exponent disappear! It can be shown that on the assumption of this subsection—Normal pdfs

with common variances—the distribution ofW is given exactly by the N(0,1) pdf. (I mention this

in passing; we won’t have any use for this fact.)

The remaining issue is the removal of the unknown σ from the formula for W . The proof of

the best way to estimate σ is complicated, so I won’t give it. In addition, I am unable to show you

a brief motivation of the formula; thus, I will just give you the result.

Definition 19.1 (The pooled variance.) With the notation of this chapter, our point estimate of σ2

is:

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
. (19.7)

We call s2p the pooled estimate of the variance σ2. The idea is that we combine, or pool, two

estimates of σ2 (s21 and s
2
2) to obtain a better estimate.

Note the following about this formula for s2p:
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1. Each sample variance appears in the numerator.

2. The coefficient of each sample variance is equal to its degrees of freedom.

3. The sum of the coefficients in the numerator equals the number in the denominator. Thus, s2p
is referred to as a weighted average (mean) of the two sample variances, with weights given

by degrees of freedom.

4. If n1 = n2, then s2p reduces to (s21 + s22)/2, a natural combination, which is the unweighted

average (mean) of of the two sample variances.

Below is the main result.

Result 19.3 Define the random variableW2 as follows:

W2 =
(X̄ − Ȳ )− (µ1 − µ2)

Sp

√

(1/n1) + (1/n2)
, (19.8)

where S2
p is the random variable that has observed value s2p given in Equation 19.7.

Given the assumptions of this subsection, the exact distribution of W is given by the t-curve

with df = n1 + n2 − 2.

The usual algebraic expansion of the ratio in Equation 19.8 yields a confidence interval estimate

of (µ1 − µ2), given below.

Result 19.4 (The Gosset confidence interval for (µ1 − µ2).) The Gosset confidence interval for

(µ1 − µ2) is given by:

(x̄− ȳ)± t∗sp
√

(1/n1) + (1/n2). (19.9)

The value of t∗ depends on the sample sizes and the desired confidence level, as described below.

1. Select the desired confidence level and write it as a decimal; e.g., 0.95 or 0.99.

2. Subtract the desired confidence level from one and call it the error rate. Divide the error

rate by two and subtract the result from one; call the final answer c; e.g., 0.95 gives c =
1− 0.05/2 = 0.975 and 0.99 gives c = 1− 0.01/2 = 0.995.

3. Go the website

http://stattrek.com/online-calculator/t-distribution.aspx.

Enter the value of n1 + n2 − 2 in the Degrees of freedom box; enter c in the Cumulative

probability box; and click on Calculate. The value t∗ will appear in the t score box.

For testing, we use the same hypotheses that we used in Section 19.2, reproduced below for

convenience. The null hypothesis is:

H0: µ1 = µ2.

There are three options for the alternative:
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H1: µ1 > µ2; H1: µ1 < µ2; or H1: µ1 6= µ2.

In order to obtain the formula for the test statistic, look at Equation 19.8. We want to know how

this random variable behaves if the null hypothesis is true. Well, if the null hypothesis is true, then

µ1−µ2 = 0. Make this substitution into Equation 19.8 and we get our test statistic T , given below.

T =
X̄ − Ȳ

Sp

√

(1/n1) + (1/n2)
, (19.10)

Given the assumptions of this section (congruent normal populations) and the assumption that the

null hypothesis is true, the exact distribution of T is given by the t-curve with df = n1 + n2 − 2.
The observed value of the test statistic T is given by

t =
x̄− ȳ

sp
√

(1/n1) + (1/n2)
. (19.11)

The rules for finding the P-value are given in the following result.

Result 19.5 In the rules below, t is given in Equation 19.11 and areas are computed under the

t-curve with df = n1 + n2 − 2.

1. For the alternative µ1 > µ2, the P-value equals the area to the right of t. Equivalently, the
P-value equals the area to the left of −t.

2. For the alternative µ1 < µ2, the P-value equals the area to the left of t. Equivalently, the

P-value equals the area to the right of −t.

3. For the alternative µ1 6= µ2, the P-value equals twice the area to the right of |t|. Equivalently,
the P-value equals twice the area to the left of −|t|.

I will illustrate the use of these rules with a student project performed by Sheryl. A trial

consisted of Sheryl performing a 1.5 mile sprint on her bicycle. In treatment 1, Sheryl loaded her

pannier with 20 pounds and in treatment 2 she removed her pannier from her bike. The response

is the time, in seconds, Sheryl required to complete the sprint. Sheryl assigned 5 trials to each

treatment by randomization.

In order to analyze Sheryl’s data, we will assume that we have independent i.i.d. trials from

two normal populations with a common variance. Sheryl’s data yielded the following summary

statistics:

x̄ = 383.2, s1 = 4.38, n1 = 5, ȳ = 355.2, s2 = 4.87, and n2 = 5.

Note that the ratio

s2/s1 = 4.87/4.38 = 1.11,

lends some support to the assumption of equal population variances.

We begin our analysis by computing s2p.

s2p =
4(4.38)2 + 4(4.87)2

5 + 5− 2
=

4(19.18) + 4(23.72)

8
= 21.45.
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Because n1 = n2 we could have computed:

s2p =
(4.38)2 + (4.87)2

2
= 21.45.

In any event, sp =
√
21.45 = 4.63.

You may verify that for df = 5 + 5 − 2 = 8 and 95%, t∗ = 2.306. Thus, the 95% confidence

interval estimate of (µ1 − µ2) is

(383.20− 355.20)± 2.306(4.63)
√

1/5 + 1/5 = 28.00± 2.306(2.928) =

28.00± 6.75 = [21.25, 34.75].

In words, I conclude that Sheryl’s mean time for completing her sprint increased by between

21.25 and 34.75 seconds when the weighted pannier is added to her bike.

I will also perform a test of hypotheses for Sheryl’s data. The obvious choice for the alternative

is > because all would agree that adding weight will slow the bicycle. (Sheryl was not biking

down a steep hill!)

The observed value of the test statistic is

t = 28.00/2.928 = 9.563.

With the help of the t-curve website, you can verify that the area under the t-curve with df = 8 to

the right of t = 9.563 is equal to 0.0000, rounded to the nearest ten-thousandth. Minitab gives a

more precise answer: 0.0000059, or slightly more than one in two-hundred thousand. In any event,

this is a really small P-value!

I believe that performing a test for Sheryl’s data is a bit, well, dumb. It is obvious that adding

weight will slow Sheryl’s biking. If you like to prove the obvious—which admittedly statisticians

do quite often—then you will often get really small P-values. By contrast, I do think it is very

interesting to estimate how much the weight increases her mean time to complete the sprint.

19.4 Case 3: Normal Populations with Different Spread

Case 2, presented above, is a nice piece of mathematics. Mathematically, it is a pretty general

result: the populations need to be normal pdfs, but that’s a big family; and the two population

variances need to be the same number. With these restrictions the probabilities—confidence levels

and P-values—are exact. Let me digress and explain the thought process of a mathematical statis-

tician. If this sounds too arrogant, let me explainmy view of the thought process of a mathematical

statistician.

Mathematical results have conditions that are necessary for their proof. In Case 2, the condi-

tions are normal populations and congruence (equal variances). Mathematical statisticians relax a

condition and then figure out what will happen mathematically. Case 3 is the result of mathemati-

cal statisticians weakening the Case 2 assumptions by dropping the assumption of congruence. In

other words, in Case 3, the first population is the N(µ1, σ1) pdf and the second population is the

N(µ2, σ2) pdf.

Below are the main features of the Case 3 solution.
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1. I won’t use Case 3 in these Course Notes. My reason is given below this list.

2. The Case 3 solution does not give exact probabilities. I don’t see this as a major problem,

but I believe that it should be mentioned.

3. Like the Case 2 method, the Case 3 method uses a Gosset’s t-curve as its reference, in this

case the Gosset’s t-curve is an approximation.

4. The main computational difficulty with Case 3 is that the formula for the degrees of freedom

for the approximating t-curve is very complicated. As a result, if one is restricted to using a

hand-held calculator, Case 3 is quite a mess. If, however, one takes advantage of living in the

information age, the formula for the degrees of freedom is not an issue. Both Minitab and the

multi-purpose vassarstats website allow one to obtain a Case 3 answer without calculating

the degrees of freedom by hand.

5. This is a key point. Everybody agrees that, in practice, we don’t need the variances to be

exactly equal in order for Case 2 to give useful and approximately exact answers. There is

some disagreement on how much they can differ before Case 2 answers become seriously

deficient. In my opinion they need to differ a great deal—which, for space limitations, I will

leave undefined—before I would discard Case 2 in favor of Case 3.

I will share with you two arguments for why I don’t like Case 3. Bear with me please, because

these arguments take some time to explain.

First, after you have finished this chapter, including the Practice Problems and Homework,

look again at all the real data examples that I have given you. In every case I report the values

of s1 and s2 and note that these values are reasonably close to each other. This has been my

experience with real data. Almost always with real data that I have seen, the values of s1 and s2
have been similar. Each time this happens, it suggests that for the phenomenon being studied, there

is, at most, weak evidence of a major difference between σ1 and σ2. Of course, one can imagine

or manufacture a situation in which σ1 and σ2 clearly differ by a great deal, but in my experience

these situations often—though not always—are examples of really stupid science! For example, let

population 1 be the heights of male college students and let population 2 be the lengths of newborn

male humans. (They can’t stand yet, so we use length, but it’s the same measure as height!) I

have no doubt that σ1 is much larger than σ2; but, really, who is dumb enough to compare these

two populations? Does one really need Statistics to know that college men are taller than newborn

males?

This leads me to my second reason. When a researcher decides to compare populations by

comparing means, then it is almost always the case that one is trying to find the population with

the larger [smaller] mean because, if larger [smaller] responses are preferred, that population will

be the better population, Let me introduce you to a hypothetical—and quite fanciful—example of

what I mean.

Let’s assume that we all agree that, Life is good: to die at age 50 is better than to die at age 40,

and so on. Thus, suppose that, as Nature, you can decide between two possible distributions for

the length of all persons’ lives. Your two options are both Normal curves; the first population has
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mean µ1 = 70 years and the second population has mean µ2 = 68 years. As Nature, you determine

which population is better and decide that it will be the distribution for all people. What should

you decide? Think about it.

Well, shame on you if you said, “Population 1 because it has a larger mean.” You are not fit for

the job of Nature! Your decision is too rash. Why do I say this? Because I have not told you the

standard deviations of the two populations!

Now, suppose I told you that population 1 is the N(70,30) pdf and that population 2 is the

N(68,1) pdf. Now, as Nature, which would you choose? I will now argue that the only sensible

choice is population 2.

Indeed, I believe that population 1 would be horrible. It might even have a catastrophic impact

on American society! With population 1, 16% of the people would die before age 40 and 16%

would live past 100! (You think Social Security has financial problems now; 2.5% of population 1

would live past the age of 130!) By contrast, with population 2, 95% of the people would die

between the ages of 66 and 70. (You have no doubt determined that I am old—64 at the time

of this typing. Shouldn’t my selfishness kick in and have me opt for population 1? No, for two

reasons. First, Nature must be immortal and I am taking the role of Nature. Second, even though

I enjoy being 64 much more than I imagined I would four decades ago, I really can’t imagine that

115 will be loads of fun! Ideally, we all become like the Rutger Hauer character at the end of Blade

Runner;

http://www.youtube.com/watch?v=a_saUN4j7Gw

and not like the character he played in The Hitcher—sorry, there is no appropriate link for this

movie!)

The moral above is not restricted to Normal populations. If two populations have wildly differ-

ent variances, then it might be the case that comparing means is not a good idea! Thus, in my mind,

Case 3 solves a problem that is mathematically interesting, but that is not important, and indeed

might be misleading, to a scientist. Note that this changes the way I want you to view Case 1.

As you recall, Case 1 does not require symmetric congruent populations, only large sample sizes.

But if—based on data or theory—you suspect that the two populations have very different spreads,

think hard about whether you want to compare populations by comparing means.

19.5 Miscellaneous Results

This last section before the Computing section briefly introduces some useful ideas and methods.

19.5.1 Accuracy of Case 2 Confidence Levels

In this subsection I will address my decision not to show you Case 3 for Normal pdfs.

I performed three simulation experiments; scan the results in Table 19.1 and then read my

description below of the experiments. For each rep, I had Minitab generate independent random

samples of sizes n1 = n2 = 20. The first population is a N(µ, σ) pdf and the second population

is a N(µ, kσ) pdf. In the first simulation, k = 2; in the second simulation, k = 4; and in the third
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Table 19.1: Results from three simulation experiments. Each simulation had 10,000 reps, with a

rep consisting independent samples of size n1 = n2 = 20 from two sequences of i.i.d. trials from

a Normal pdf. For each sample, the 95% confidence interval estimate of µ1 − µ2 for Case 2 is

computed and Nature classifies it as too small, too large or correct.

Number of Number of Number of

σ2/σ1 Too Small Intervals Too Large Intervals Incorrect Intervals

2 230 241 471

4 278 272 550

8 277 274 551

simulation, k = 8. In words, the two Normal pdfs being compared are not congruent. In fact,

the three simulations consider the situation in which the second population’s standard deviation is

two, four or eight times larger than the first population’s standard deviation. These simulations are

valid for any value of µ and any positive σ.
The simulation study shows that the actual confidence levels for Case 2 are equal or close to

the nominal confidence levels, even though the assumption of congruence is violated. Indeed,

for k = 8 the two populations are strongly not congruent, yet the Case 2 intervals perform as

advertised. In fairness, I must state that if the study is unbalanced, n1 6= n2, Case 2 might not

perform as well. Moral: Try for a balanced study if possible.

19.5.2 Slutsky; Skewness

Recall that my guide is to use Slutsky’s method, Case 1, if both sample sizes equal or exceed 30:

n1 ≥ 30 and n2 ≥ 30. If you wonder why there is no mention of population skewness, keep

reading.

I want to show you an important connection between Case 1 and Case 2. In Case 1, we replace

the denominator ofW in Equation 19.1 by:

√

(S2
1/n1) + (S2

2/n2).

In Case 2, we replace the denominator ofW by:

Sp

√

(1/n1) + (1/n2).

If the study is balanced, n1 = n2, then

S2
p = (S2

1 + S2
2)/2.

Some simple algebra (well, simple if one enjoys algebra; otherwise, it is tedious) shows that in the

case of balance (and, hence, replacing n2 by its equal, n1):

√

(S2
1/n1) + (S2

2/n1) = Sp

√

(1/n1) + (1/n1).
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Thus, in the case of balanced studies, the only difference between Cases 1 and 2 is that the former

uses the N(0,1) pdf as its reference curve and the latter uses the t-curve with df = n1 + n2 − 2.
Given my restriction on the use of Case 1, then we are comparing a N(0,1) pdf to a t-curve with at

least 58 degrees of freedom; these curves are not very different.

Next, I want to look briefly at the issue of skewed populations.

Suppose that both populations 1 and 2 are the log-normal pdf with parameters 5 and 1, pictured

in Figure 17.8 on page 449. In Table 17.10 you saw that Gosset’s 95% confidence interval estimate

of the mean performed very poorly by having too many incorrect intervals for this pdf and n ≤ 320.
I will give you the results of one simulation experiment to explore how skewness effects our

Case 2 inference. Note that while I don’t want to mislead you, this is only one simulation experi-

ment! We simply do not have time for a more in-depth study of this issue.

Each rep of my simulation experiment generated independent random samples of sizes n1 =
n2 = 20 from two populations, both of which are the log-normal pdf with parameters 5 and 1.

Because the populations are identical, µ1 = µ2 and a confidence interval for µ1−µ2 will be correct

if, and only if, it includes zero. Here are my results: 189 of the simulated 95% confidence intervals

were too large; and 193 of the simulated 95% confidence intervals were too small. Thus, a total of

189+193 = 382 intervals were incorrect; many fewer than the target of 500. Why did this happen?

By taking a difference, x̄ − ȳ, the effect of skewness on a balanced study largely disappears. The

too few incorrect intervals is the result of the intervals often being too wide, because the skewness

effects the individual standard deviations (remember Figure 17.10 on page 455).

My general recommendation is that for a balanced study, Case 2 gives pretty good answers

for populations that are not congruent Normal pdfs. The situation for unbalanced studies is much

more complicated and I don’t have time to present it to you. (Sorry.)

19.6 Computing

The vassarstats website that we have used previously is very helpful for this chapter.

19.6.1 Comparison of Means

Please go to:

http://vassarstats.net.

The left-side of the page lists a number of options; click on t-Tests & Procedures. This takes you

to a new set of options; click on the top one, Two-Sample t-Test for Independent or Correlated

Samples. This takes you to a new page. In the Setup section, click on Independent Samples. (If

you forget to do this, it’s no problem; Independent Samples is the default.) Next, enter the data, by

typing or pasting, and click on Calculate.

The above is getting pretty abstract, so let’s try this out with some real data. I will use Dawn’s

data on her cat Bob, which you learned about in Chapter 1. I entered:

1 3 4 5 5 6 6 6 7 8

507

http://vassarstats.net


(chicken responses) for Sample A and I entered

0 1 1 2 3 3 3 4 5 7

(tuna responses) for Sample B and clicked on Calculate. I will explain the output presented by

vassarstats:

1. Under Data Summary, we find the sample sizes—both 10—and the means, x̄ = 5.1 and

ȳ = 2.9. Sadly, the site gives us neither sample standard deviation, but we could obtain them

from the entries for SS. (If you don’t remember how, don’t worry.)

2. Under Results, we find the value of x̄ − ȳ = 2.2; the observed value of the test statistic,

t = 2.4, for Case 2; and the P-values for the alternative > and 6=. I know that the one-tailed

P-value is for the alternative that agrees with the data. Note that the P-value for < is one

minus the P-value for >.

3. You may safely ignore the information under F-Test for . . . , because we are not covering this

topic.

4. You may safely ignore the information under t-Test Assuming Unequal . . . , because we are

not covering this topic. If you can’t resist looking, I will note that this is the Case 3 analysis.

Note that the Case 3 analysis is nearly identical to the Case 2 analysis.

5. Finally, the bottom section presents the 95% and 99% confidence intervals for the separate

means (you learned about this topic in Chapter 17) as well as the Cases 2 and 3 95% and

99% confidence intervals for µ1 − µ2.

19.7 Summary

In this chapter, we consider the problem of comparing two populations with numerical responses.

We assume that we have i.i.d. random variables from each population and we assume that the

two samples are independent. First, I will consider the problem of estimating the difference of

population means, µ1 − µ2.

Case 1 is Slutsky’s (large sample) approximate method. The confidence interval estimate of

µ1 − µ2 is given in Formula 19.3, which is reproduced below:

(x̄− ȳ)± z∗
√

(s21/n1) + (s22/n2).

My advice is that this formula works well provided n1 ≥ 30 and n2 ≥ 30. In theory, Slutsky’s

confidence interval makes no assumptions about the two populations being compared, but note my

remarks in this chapter on the issue of populations with extremely different spreads.

Case 2 assumes that the two populations are congruent Normal pdfs. This case yields Gosset’s

confidence interval estimate of µ1 − µ2, given in Formula 19.9 and reproduced below:

(x̄− ȳ)± t∗sp
√

(1/n1) + (1/n2).
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Recall that s2p is defined in Equation 19.7 on page 500. If the Case 2 assumptions are true, then the

confidence level of this interval is exact. Otherwise, this formula works well for populations that

are not Normal curves unless the population variances are very different.

Case 3 is Case 2 without the assumption that the Normal curves are congruent. You are not

responsible for this case; indeed, I don’t even show it to you! I argue why this case is rarely useful

at best, and potentially misleading at worst.

Next, I will talk about tests of hypotheses for comparing the population means. The null

hypothesis is µ1 = µ2, and there are three options for the alternative:

H1: µ1 > µ2; H1: µ1 < µ2; or H1: µ1 6= µ2.

For Case 1, the observed value of the test statistic is given in Equation 19.5, and is reproduced

below:

z =
(x̄− ȳ)

√

(s21/n1) + (s22/n2)
.

The rules for using z to find the approximate P-value is given in Result 19.2.

For Case 2, the observed value of the test statistic is given in Equation 19.11, and is reproduced

below:

t =
x̄− ȳ

sp
√

(1/n1) + (1/n2)
.

The rules for using t to find the P-value is given in Result 19.5.

19.8 Practice Problems

1. Earlier in these notes I told you about my friends Bert and Walt playing mahjong. I men-

tioned that the version Bert plays is easier than the version Walt plays. In particular, with

Bert’s version the beginning arrangement of tiles is selected at random from arrangements

for which it is possible to win. By contrast, Walt’s version begins with a random arrangement

of tiles. (It is indisputable that for many arrangements, winning is impossible.) Thus, it is no

surprise that Bert has a higher probability of winning than Walt. I want, however, to explore

a different question: When they both lose, who does better, Bert or Walt?

Let population 1 denote Bert’s score and let population 2 denote Walt’s score. In Chapter 17,

I gave you the following summary statistics:

x̄ = 23.93, s1 = 11.33, n1 = 71, ȳ = 23.05, s2 = 10.74 and n2 = 216.

Making our usual assumption of independent samples from two sequences of i.i.d. trials,

perform the following analyses.

(a) Compare the values—by taking a ratio—of the two sample standard deviations. Com-

ment.

(b) Calculate Slutsky’s approximate 95% confidence interval estimate of µ1 − µ2. Com-

ment.
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(c) Obtain Slutsky’s approximate P-value for the alternative 6=. Comment.

2. I presented Reggie’s study of darts in the Chapter 1 Homework on page 25. Summary

statistics for Reggie’s data are below:

x̄ = 201.53, s1 = 11.199, ȳ = 188.00, s2 = 15.104 and n1 = n2 = 15.

Make the usual assumptions of this chapter to analyze Reggie’s data.

(a) Compare the values—by taking a ratio—of the two sample standard deviations. Com-

ment.

(b) Calculate the values of s2p and sp.

(c) Calculate the Case 2 (Gosset’s) 95% confidence interval estimate of µ1−µ2. Comment.

(d) Obtain the Case 2 P-value for the alternative >. Comment.

3. In this chapter, I showed you that if two the populations are identical and log-normal with

parameters 5 and 1, then Gosset’s confidence interval works reasonably well for n1 = n2 =
20. This example shows that if the populations are skewed and different, then Gosset might

not work so well. In particular, I let population 1 be the exponential pdf with rate equal to

0.1 (mean equal to 10) and I let population 2 be the exponential pdf with rate equal to 0.2

(mean equal to 5). Thus, the true value of µ1−µ2 is 10− 5 = 5. Also, in addition to the two
populations being strongly skewed, they have different variances: σ2

1 = 100 and σ2
2 = 25.

I performed a simulation experiment with 10,000 reps. Each rep consisted of:

• Selecting a random sample of size n1 = 20 from population 1.

• Selecting a random sample of size n2 = 20 from population 2.

• The two samples are independent.

• Gosset’s Case 2 95% confidence interval estimate of µ1 − µ2 is obtained.

• Nature (well, me) determines whether the interval estimate is too large, too small or

correct.

I obtained the following results: 107 intervals were too large; and 528 intervals were too

small. Comment on these results.

19.9 Solutions to Practice Problems

1. (a) The ratio of the larger to the smaller is

11.33/10.74 = 1.055.

The sample standard deviations are nearly identical.
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(b) The confidence interval is:

(23.93− 23.05)± 1.96
√

(11.33)2/71 + (10.74)2/216 = 0.88± 1.96(1.5304) =

0.88± 3.00 = [−2.12, 3.88].

The interval is inconclusive and quite wide compared to the point estimate of the dif-

ference of means.

(c) The observed value of the test statistic is

z =
0.88

1.5304
= 0.575.

The area under the N(0,1) pdf to the right of 0.575 is 0.2826. Thus, the approximate

P-value for the alternative 6= is 2(0.2826) = 0.5652. The evidence in support of the

alternative is weak.

2. (a) The ratio of the larger to the smaller is

15.104/11.199 = 1.349.

This is a the largest ratio we have seen, but it is still quite small.

(b) Because the study is balanced,

s2p =
(11.199)2 + (15.104)2

2
=

353.548

2
= 176.774.

Thus, sp =
√
176.774 = 13.296.

(c) You can verify that with df = 15 + 15 − 2 = 28, t∗ = 2.048. Thus, Gosset’s 95%

confidence interval estimate is

(201.53− 188.00)± 2.048(13.296)
√

2/15 = 13.53± 2.048(4.855) =

13.53± 9.94 = [4.59, 23.47].

This interval indicates that Reggie’s population mean score from 10 feet is between

4.59 and 23.47 points larger than his population mean score from 12 feet.

(d) The observed value of the test statistic is

t =
13.53

4.855
= 2.787.

The area under the t-curve with df = 28 to the right of 2.787 is 0.0047; this is the

P-value for the alternative >. It is exact if the populations are Normal pdfs; otherwise,

it is approximate.

The evidence in support of the alternative is strong.

3. There are two disappointing results. First, the number of incorrect intervals is 107 + 528 =
635 is clearly larger than the target value of 500. Not horribly larger, but quite a bit. Second,
I am always disappointed when one type of incorrect interval greatly outnumbers the other

type. Following the ideas from one population inference, I would not use Case 2 for a one-

sided alternative for this situation.
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19.10 Homework Problems

1. Recall Sara’s study of golf, introduced in Chapter 2. Let population 1 denote the distance, in

yards, Sara hit the ball with the 3-Wood and let population 2 denote the distance, in yards,

Sara hit the ball with the 3-Iron. I presented the following summary statistics in Chapter 2:

x̄ = 106.875, s1 = 29.87, n1 = 40, ȳ = 98.175, s2 = 28.33 and n2 = 40.

Making our usual assumption of independent samples from two sequences of i.i.d. trials,

perform the following analyses.

(a) Compare the values—by taking the ratio—of the two sample standard deviations. Com-

ment.

(b) Calculate Gosset’s approximate 95% confidence interval estimate of µ1−µ2. Comment.

(c) Obtain Gosset’s approximate P-value for the alternative 6=. Comment.

2. I introduced you to Dawn’s study of her cat Bob in Chapter 1. Below are summary statistics

for Dawn’s data:

x̄ = 5.1, s1 = 2.025, ȳ = 2.9, s2 = 2.079 and n1 = n2 = 10.

Make the usual assumptions of this chapter to analyze Dawn’s data.

(a) Compare the values—by taking a ratio—of the two sample standard deviations. Com-

ment.

(b) Calculate the values of s2p and sp.

(c) Calculate the Case 2 (Gosset’s) 95% confidence interval estimate of µ1−µ2. Comment.

(d) Obtain the Case 2 P-value for the alternative >; for the alternative 6=. Comment.

3. Please refer to Practice Problem 3. I did the same simulation experiment, but this time both

populations were exponential with mean equal to 5. Thus, a correct confidence interval

estimate will include 5− 5 = 0.

I obtained the following results: 225 intervals were too large; and 268 intervals were too

small. Comment on these results.
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Chapter 20

Comparing Two Numerical Response

Populations: Paired Data

This chapter is an extension of Chapter 16. In Chapter 16 we considered populations in which

each population member or trial yields two dichotomous responses. In the current chapter each

population member or trial yields two numbers. In other ways, however, this chapter also extends

the work we did in Chapters 17–19.

20.1 Subject Reuse

I will introduce you to the idea of subject reuse with an artificial study of drug therapy for tension

headaches. We will compare two different ways to design a study. I cannot use a real scientific

study to make my comparisons because, to my knowledge, medical researchers select a design and

use it. They do not investigate a medical issue twice, with two different designs, just to make me

happy!

I am interested in studying drug therapies for a fairly mild health ailment, tension headaches.

As you will see shortly, it is important that I have chosen an ailment that is both nonlethal and

recurrent. I want to compare two drug therapies for the treatment of a tension headache. I will

refer to the two therapies as drug A (treatment 1 and population 1) and drug B (treatment 2 and

population 2).

We need a response that is a number. Each subject is given the following instructions:

The next time you experience a tension headache, take the drug we have given to you.

Wait 20 minutes. Write down your assessment of your pain on a scale from 0 (no pain)

to 10 (worst pain ever).

How can I study this? Going all the way back to Chapter 1, I can use a completely randomized

design. Following Chapter 19, I can perform population-based inference on the data I obtain from

my completely randomized design. In particular, I can compare the mean of population 1 (drug A),

µ1, to the mean of population 2 (drug B), µ2. I can estimate µ1 − µ2 with confidence and test the

513



Table 20.1: Artificial data from a CRD on headache pain, sorted within each treatment.

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Drug A: 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Drug B: 0 1 2 2 3 3 3 4 4 4 5 5 6 7 7 8

null hypothesis that µ1 = µ2. In order to choose an alternative, we need more information about

the drugs. Three scenarios come to mind, listed below:

• Drug A is a placebo and drug B supposedly is beneficial. In this situation, remembering that

smaller responses are preferred to larger responses, my alternative would be >.

• Drug A is the extra-strength version of drug B. In this situation, my alternative would be <.

• Drugs A and B are different active drugs. In this situation, my alternative would be 6=.

Suppose now that I have 32 subjects available for study and I am willing to pretend that they

are a random sample from my superpopulation of interest. I decide to use a balanced design. Thus,

I will use the online randomizer to assign 16 subjects to each treatment.

The artificial data for my CRD on the 32 subjects is given in Table 20.1. The data have been

separated by treatments and sorted within each treatment. You can verify the following values of

summary statistics (or trust me if you don’t need additional practice on these computations):

x̄ = 5.500, s1 = 2.366, ȳ = 4.000, s2 = 2.251 and n1 = n2 = 16.

Next, I calculate

s2p =
(2.366)2 + (2.251)2

2
= 5.3325 and sp =

√
5.3325 = 2.309.

The 95% confidence interval estimate of µ1 − µ2 is (see Formula 19.9 on page 501):

(5.50− 4.00)± 2.042(2.309)
√

2/16 = 1.50± 2.042(0.8164) = 1.50± 1.67 = [−0.17, 3.17].

This interval is inconclusive because it contains both positive and negative numbers. For future

reference, note that the half-width of this interval is 1.67.

For a test of hypotheses, from Equation 19.11 on page 502, the observed value of the test

statistic is

t = 1.50/0.8164 = 1.837.

With the help of our website calculator,

http://stattrek.com/online-calculator/t-distribution.aspx,
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we find that the area under the t-curve with df = 16+ 16− 2 = 30 to the right of 1.837 is equal to
0.0381. Thus, the approximate P-value for the alternative> is 0.0381 and the approximate P-value

for the alternative 6= is 2(0.0381) = 0.0762.

Let’s look at the data in Table 20.1 again. In the drug A row, two subjects gave a response of

2—not much pain—and two gave a response of 9—a great deal of pain. In words, for drug A there

is a large amount of subject-to-subject variation. The same is true for drug B. The idea behind the

randomized pairs design (RPD) is to attempt to reduce this subject-to-subject variation.

I mentioned above that it is important that tension headaches are nonlethal and recurrent. Re-

currence is important because if each subject has a headache (which is necessary in the CRD for

us to obtain a response from each subject) then the subject will have a second headache. The RPD

we learn about below will use responses from two headaches per subject, compared to the CRD

which looked at one headache per subject. Nonlethal is important because—and I don’t mean to

be insensitive—in order to have a second headache the subject must survive the first one.

Admittedly, I am ignoring studies that would involve looking at 3, 4, 5 or more headaches per

subject. I must draw the line somewhere!

You can now see the reason for the term subject reuse. We reuse each subject and, thus, obtain

two responses per subject. And, somewhat obviously, because our goal is to compare the two

treatments, for each subject we obtain a response from both treatments. Thus, for example, subject

Sally gives us two numbers: her pain with drug A and her pain with drug B.

My next step is to provide you with artificial headache pain data from an RPD. My goal is to

compare my RPD to my CRD for the artificial headache pain study. What is a fair way to do this?

Well, my CRD had 32 subjects, with one response per subject, yielding a total of 32 observations.

I could have 32 subjects in my RPD, but that would yield 32 × 2 = 64 observations. This strikes

me as an unfair comparison. Thus, instead, my RPD below has only 16 subjects; with each subject

giving two responses, I will have a total of 16×2 = 32 observations, the same as I had in my CRD.

In fact, my RPD has exactly the same 32 observations as my CRD did. The data for my RPD is

given in Table 20.2. Let’s take a moment to make sure we can read this table correctly.

I have 16 subjects in my RPD and they have been labeled, for ease of reference, in the first row.

If you compare the Drug A row of Table 20.2 with the Drug A row of Table 20.1, you can easily

verify (because of the sorting in both tables) that the 16 responses to drug A are the same for the

two data sets. You can also verify that the 16 responses to drug B are the same for the two data

sets, but it’s a lot easier to trust me on this! Let’s look at subjects labeled 1 and 16. Subject 1 gives

small responses (2 and 3) for both drugs, and subject 16 gives large responses (9 and 7) for both

drugs. In words, subjects 1 and 16 vary a great deal in their responses to drug A and they vary a

great deal in their responses to drug B.

Table 20.2 contains a row of numbers unlike any we have seen previously. For each subject

I have calculated the difference in the subject’s responses: response to A minus response to B.

In symbols, the difference d is equal to x − y for each subject. Let’s look at subjects 1 and 16

again, but now let’s look at their values of d. For subject 1, d = −1, and for subject 16, d = 2.
Remembering that smaller values of x and y are better, a negative value of d indicates that the

subject responded better to A than to B, whereas a positive value of d indicates that the subject

responded better to B than to A. The d’s for subjects 1 and 16 are much closer to each other (a
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Table 20.2: First set of artificial data from an RPD on headache pain.

Subject

Drug 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A(x) 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
B(y) 3 0 4 3 5 1 2 2 4 3 4 7 5 6 8 7
Difference(d) −1 2 −1 0 −1 3 3 3 2 3 3 0 3 2 1 2

difference of 3) than either their values on A (a difference of 7) or B (a difference of 4). Thus, at

least for these two subjects, there is less subject-to-subject variation on d than on both x and y. In
fact, I reported earlier that the standard deviations of the x’s and y’s are, respectively, 2.366 and

2.251. By comparison, you may verify that the standard deviation of the d’s is 1.592. Thus, by

examining the three standard deviations we arrive at the same conclusion we have from looking at

subjects 1 and 16: the subject-to-subject variation is smaller for the differences than it is for both

drugs.

Let’s gather together our various summary statistics:

Source Symbol Mean Standard deviation

Treatment 1 x 5.50 2.366

Treatment 2 y 4.00 2.251

Difference d 1.50 1.592

Notice that

x̄− ȳ = 5.50− 4.00 = 1.50 = d̄.

On reflection, we realize that this is true for any set of data; calculating two means and subtracting

gives the same answer as first subtracting then finding the mean of the differences. It is obvious

that this argument can be extended to an entire finite population. Let µd denote the mean of the

population of differences. Then:

µd = µ1 − µ2. (20.1)

Equation 20.1 is also true for populations for trials. (The argument is a bit trickier; I recommend

that you simply believe me.) This leads to the following very important realization:

• Inference for µ1 − µ2—estimation or testing—is equivalent to inference for µd.

In particular, if we are willing to assume that ourX’s are a random sample from a population, then

our Y ’s are also a random sample from the same population, although the two samples (the X’s

and the Y ’s) are not independent samples. If we let

D1, D2, D3 . . .Dm

denote the random variables that yield the observed values

d1, d2, d3 . . . dm,
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then it also follows that the D’s are a random sample from the population of differences. Because

theD’s are a random sample from a single population, the methods of Chapters 17 and 18 may be

used to analyze them.

In particular, Gosset’s confidence interval estimate of µ in Chapter 17, Formula 17.6, yields—

after we change the symbols—the following result.

Result 20.1 Gosset’s confidence interval estimate of µd = µ1 − µ2 is:

d̄± t∗(sd/
√
m). (20.2)

In this formula, d̄ and sd are the sample mean and standard deviation, respectively, of the differ-

ences. The number of pairs is denoted bym and the degrees of freedom for t∗ is (m− 1).

I will illustrate the use of Formula 20.2 for our first set of artificial data from an RPD on

headache pain, given in Table 20.2. For df = m− 1 = 16− 1 = 15, you can verify that t∗ for the
95% confidence level is 2.131. Thus, the 95% confidence interval estimate of µd = µ1 − µ2 is

1.50± 2.131(1.592/
√
16) = 1.50± 2.131(0.398) = 1.50± 0.85 = [0.65, 2.35].

This interval is conclusive; the mean pain on drug A is between 0.65 and 2.35 units larger the

mean pain on drug B.

Recall that when we had exactly the same data from a CRD, the confidence interval estimate

was:

1.50± 1.67.

Thus, the confidence interval is—approximately—one-half as wide for the RPD as it is for the

CRD. Subject reuse is effective! More accurately, I have given you artificial data that made subject

reuse effective.

Recall also that, as a very rough guide, we must quadruple the number of subjects to reduce

the half-width of a confidence interval by a factor of two. (This is rough because with more data

the value of t∗ will definitely be reduced and the various sample standard deviations will likely

change.) Thus, very roughly, I would need 4 × 32 = 128 subjects on a CRD to obtain the same

precision that I get from an RPD with 16 subjects! As the expression goes, “Work smarter, not

harder!”

We can also perform a test of hypotheses for data from an RPD. For the null hypothesis that

µd = 0, we rewrite the observed value of the test statistic—using the notation of this chapter—

given in Equation 18.2 on page 470:

t =
d̄

sd/
√
m

=
√
m(d̄/sd). (20.3)

The three rules for finding the P-value are summarized in the following result.

Result 20.2 For the null hypothesis that µd = 0, and t given in Equation 20.3, the rules for finding
the P-value are below. In these rules, areas are computed under the t-curve with df = m− 1.
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1. For the alternative µd > 0, the P-value equals the area to the right of t. Equivalently, the
P-value equals the area to the left of −t.

2. For the alternative µd < 0, the P-value equals the area to the left of t. Equivalently, the

P-value equals the area to the right of −t.

3. For the alternative µd 6= 0, the P-value equals twice the area to the right of |t|. Equivalently,
the P-value equals twice the area to the left of −|t|.

In the above result, if the population of differences is a Normal pdf, then the P-values are exact;

otherwise, they are approximations and the comments from Chapters 17 and 18 regarding their

accuracy are relevant.

For the data in Table 20.2, the observed value of the test statistic is

t =
√
16(1.50/1.592) = 3.769.

Using the website,

http://stattrek.com/online-calculator/t-distribution.aspx,

we find that the area under the t-curve with df = m − 1 = 16 − 1 = 15 to the right of 3.769

equals 0.0009. Thus, the approximate P-value for > is 0.0009 and the approximate P-value for 6=
is 2(0.0009) = 0.0018. For comparison, the P-value for > for a CRD with the same responses

was shown earlier to equal 0.0381. Thus, for alternative> or 6=, the approximate P-value from the

RPD value is more than 38 times smaller than the approximate P-value from the CRD!

Think about the question: Have I convinced you that an RPD is better than a CRD for a study

of headache pain? I hope not; all of my data are artificial. What I have shown you is that it is

possible that an RPD can be better than a CRD. In the name of basic fairness, I should show you

that the opposite also can be true.

Table 20.3 provides a second set of artificial data for an RPD on headache pain. As with

Table 20.2, the data in Table 20.3 are the same responses for both drugs as given in the original

CRD, Table 20.1. For these new data, it can be shown that d̄ = 1.50 and sd = 3.162. The first of
these summaries is no surprise; because the x’s and y’s have not changed, x̄ = 5.50, ȳ = 4.00 and,
perforce, d̄ = x̄− ȳ = 1.50. Note, however, that for these new data, sd is much larger than both s1
and s2 and, hence, sp too.

I will evaluate Formula 20.2 with these new data. Gosset’s 95% confidence interval estimate

of µd is:

1.50± 2.131(3.162/
√
16) = 1.50± 2.131(0.7905) = 1.50± 1.68 = [−0.18, 3.18].

Notice that the half-width of this new interval, 1.68, is larger, but only slightly larger, than the

half-width of the interval for the CRD data, 1.67.

We have seen that for the first set of artificial data, the RPD gives a much more sensitive

analysis than the CRD. For the second set of artificial data, however, the analysis is virtually the

same for the RPD and CRD. What is it about these data sets that is causing this difference? Well,
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Table 20.3: Second set of artificial data from an RPD on headache pain.

Subject

Drug 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A(x) 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
B(y) 8 3 2 4 2 4 7 0 5 5 3 1 3 7 6 4
Difference(d) −6 −1 1 −1 2 0 −2 5 1 1 4 6 5 1 3 5

the simple answer is that the second set has a much larger value of sd than the first data set. In

particular, the half-width of the confidence interval for µd is

t∗(sd/
√
m);

clearly, as sd increases, the half-width increases and the analysis becomes less sensitive.

I am not really satisfied with the above answer. The value of sd is somewhat of a mystery; what

makes it larger or smaller? It turns out that it is possible to understand better what is happening if

we draw a picture of the data.

20.2 The Scatterplot

I want to introduce you to a very important picture in Statistics, one I actually used—without much

explanation—in Figure 17.9 on page 454 and Figure 17.10 on page 455. Figure 20.1 presents two

scatterplots, one for each our sets of artificial data from an RPD. Let’s take a few minutes to

examine these pictures. Let’s look at the top picture, the scatterplot of y versus x for the first set of

artificial data from an RPD on headache pain.

The scatterplot begins with the familiar coordinate system from childhood, with the vertical

axis corresponding to y (response to Drug B in this plot) and the horizontal axis corresponding to

x (response to Drug A in this plot). We will refer to this as a plot of y versus x. Next, both axes

are given scales that are sufficient to include the entire plot, as described below. I have given each

axis the values 0 through 10.

At this point you may have noticed something untoward about my scatterplot: even though

both axes measure the same thing—subjective assessment of pain—I have used different scales on

the two axes. In particular, in my picture the x values are stretched out a bit compared to the y
values. Why did I do this? I give you two reasons.

1. Scatterplots are used extensively in Statistics, most notably in regression analysis, which

we will study in the next two chapters of these notes. Overwhelmingly the norm in these

applications, especially regression, is that the y and x features are like apples and oranges;

i.e. there is no natural relationship between the features. For example, if a unit is an adult

male human, then x could be his height in inches and y could be his weight in pounds. There
is neither a natural nor obvious way to choose the same scale for y and x. As a result, when
statisticians choose scales we mostly are concerned with the next item.
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Figure 20.1: Scatterplots of the response to drug B versus the response to drug A for the 16 Subjects

in the two artificial data sets from RPDs on headache pain.
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2. Statisticians generally prefer scatterplots for which the width is greater than its height. Such

a picture is deemed to be more aesthetically pleasing than a square. (If you are interested in

this topic, see the Wikipedian entry for the golden rectangle:

http://en.wikipedia.org/wiki/Golden_rectangle

or read The Da Vinci Code!)

My scatterplot displays the pair of values x and y for each of the 16 subjects in my RPD. For

example, consider subject 1; its values are x = 2 and y = 3. Subject 1 appears in the scatterplot

as an ‘O’ at the location (ordered pair) (x, y) = (2, 3). (Make sure that you can locate this ‘O.’)

Thus, because there are 16 subjects in my RPD, there are 16 O’s in Figure 20.1. Except that there

aren’t; there are actually only 14 O’s in the scatterplot and a numeral ‘2.’ The numeral 2 is located

at (x, y) = (5, 2); it indicates that there should be two O’s at this point because subjects 7 and 8

both had x = 5 and y = 2.
Now, look at the scatterplot. What do you see? We will look at many scatterplots when we

study regression, so I am going to keep this brief. First, the relationship between x and y is not

deterministic; it is not a mathematical function—the value of x does not determine the value

of y (nor does the value of y determine the value of x). I mention this because, I conjecture, you

have had a great deal of experience with deterministic relationships in your various mathematics

classes. In Statistics, however, we almost always study relationships that are not deterministic.

As a statistician I look at the scatterplot in Figure 20.1 and I see two main features: the rela-

tionship between x and y is increasing and it looks linear. Increasing is self-explanatory. But if

it’s not: as we move from unit to unit in a way in which the values of x are increasing—in every

day language, scan the scatterplot from left to right—the values of y tend to become larger. Linear

is my subjective assessment that the pattern in the scatterplot can be described reasonably well by

a straight line and does not require a curve to describe it. Again, let me remind you that we will

consider these issues in greater detail when we study regression later in these notes.

Whenever the relationship between x and y looks linear it is reasonable to summarize the

relationship by calculating the correlation coefficient, denoted by r. Figure 20.1 tells us that the

correlation coefficient of its first scatterplot is r = 0.763. We will learn a great deal about the

correlation coefficient when we study regression. Let me just say for now that the possible values

of the correlation coefficient fall between −1 and 1 inclusive: −1 ≤ r ≤ 1. Also, an increasing

[decreasing] relationship between x and y makes r positive [negative]. For the purpose of an RPD,
the correlation coefficient plays a role in a mathematical relationship that exists between our three

standard deviations (for the x’s, for the y’s and for the d’s), The relationship is

s2d = s21 + s22 − 2rs1s2. (20.4)

This equation can be illustrated with the values of the three standard deviations and r = 0.763:

s2d = (1.592)2 = 2.534464, and

s21 + s22 − 2rs1s2 = (2.366)2 + (2.251)2 − 2(0.763)(2.366)(2.251) =
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5.597956 + 5.067001− 8.127272 = 2.537685,

which are the same, except for round-off error.

We saw earlier that as the value of sd increases the half-width of the confidence interval for µd

also increases. As a result, as sd increases, subject reuse becomes less useful. We can see from

Equation 20.4 that as the value of r increases, the value of s2d and, hence sd, decreases. Thus, the
effectiveness of subject reuse grows with the value of r. This is important because as you learn

more about how r relates to a scatterplot, you will be better at deciding whether subject reuse is

effective.

For example, the second scatterplot in Figure 20.1 is for our second set of artificial data from

an RPD. In this picture I see only a very weak increasing relationship between x and y. My visual

assessment agrees with the value of r = 0.063 which is barely larger than 0. (Again, we will learn

more about this in the next chapter.)

Let’s now go back in time to before we collected our data. Imagine that I am a researcher

who knows a great deal about headache pain. I know that if my scatterplot of values of x and y
looks like the second scatterplot in Figure 20.1, then pairing won’t be any better than a CRD. If,

indeed, my scatterplot provides a smaller value of r—including negative values—then pairing is

less effective than a CRD. If, however, my scatterplot yields an r substantially larger than 0.063,

then pairing would be effective, possibly extremely effective. Based on my expertise as a headache

pain researcher, I am convinced that there will be an increasing relationship between x and y and

that the relationship will be substantially stronger than one that yields r = 0.063. (Does this make

sense to you medically? Why or why not?) Thus, given my expert opinion, I would definitely opt

for pairing over independent samples.

20.3 Putting the ‘R’ in RPD

I have talked (well, keyboarded) a great deal about the ‘P’ in an RPD, but have said nothing about

the ‘R;’ I will do so now.

Randomization occurs at each pair in an RPD. In general, let m denote the number of pairs in

an RPD. This means that the data will consist of m values each of x’s, y’s and d’s. For my two

headache RPDs, m = 16. At each pair there are two choices for the assignment of treatments to

members of the pair; they are:

• Assign the first member of the pair to treatment 1 and the second member of the pair to

treatment 2. We denote this possibility as 1.

• Assign the first member of the pair to treatment 2 and the second member of the pair to

treatment 1. We denote this possibility as 2.

Thus, at each pair our randomizer must give us either a 1 or a 2, with these options being equally

likely to occur. Also, the decisions at different pairs must be statistically independent.

There are a number of physical devises that will allow us to randomize for an RPD. Instead, I

will focus on an electronic method using the randomizer we learned about in Chapter 2. We begin

by going to the website
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http://www.randomizer.org/form.htm.

This site asks you to provide input information. I will walk you through the choices.

• The first question is: How many sets of numbers do you want to generate?

We want an assignment for one RPD; thus, leave it at the default value of 1.

• The second question is: How many numbers per set?

Enterm which equals 16 for our headache pain study.

• Next, you need to specify: Number range.

For an RPD, this will always be from 1 to 2.

• Next, we have another question: Do you wish each number in a set to remain unique?

Answer: No.

• Next, we have another question: Do you wish to sort the numbers that are generated?

Answer: No.

• You may ignore the final question; i.e. we are happy with the default response.

• You are now ready to click on the box: Randomize Now!

I operated our randomizer with the choices above and obtained:

Pairs

1–4 5–8 9–12 13–16

2,1,1,1 2,1,1,2 2,2,1,1 2,1,2,1

(I have added some headings and spacings above to make the string of 1’s and 2’s easier to read.)

In particular, we see that

• In pairs (subjects) 2, 3, 4, 6, 7, 11, 12, 14 and 16 treatment 1 (Drug A) is assigned to the first

headache and treatment 2 (Drug B) is assigned to the second headache.

• In pairs (subjects) 1, 5, 8, 9, 10, 13 and 15 treatment 2 (Drug B) is assigned to the first

headache and treatment 1 (Drug A) is assigned to the second headache.

Let me say a bit about why we randomize the order of the treatments within each pair. There are

two main reasons:

1. If we performed randomization-based inference—we won’t because of time limitations—the

process of randomization becomes the basis for our inference; in particular, the P-value is

obtained by looking at all possible assignments in an RPD.

2. For scientific validity.
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Regarding this second reason: As an honorable scientist you strive to learn things that are, indeed,

true. But you also want the scientific community to take your work seriously.

For example, you might decide that randomizing is silly and a waste of effort. Instead you

decide to have every subject take treatment 1 first and then treatment 2. At a personal level this

might lead you to conclusions that are false. As a global matter I would be amazed if the scientific

community paid much attention to your conclusions. The issue is that there might be an order

effect in your study. What do I mean by this?

Imagine a situation in which all, or nearly all, subjects would give a lower response to their

first headache than to their second headache, even if the pain levels were, indeed, identical. Or

imagine the opposite pattern, where responses are systematically lower on the second headache

compared to the first. In either of these situations, a decision to always give treatment 1 first would

bias the study. The possibility of such an order effect causes the scientific community to discount,

or even ignore, your findings.

Let’s look at the randomization I obtained above for the headache RPD. In nine pairs drug A is

taken before drug B, and in only seven pairs drug B is taken before drug A. Thus, if there is indeed

an order effect, one of the drugs (I can’t tell which one without knowing the direction of the order

effect) has a slight advantage over the other.

There is available to a researcher a design that is a bit more complicated than an RPD. It is

called the crossover design and it has two features that are not present in an RPD:

1. A crossover design forces balance between what I earlier called ‘1’ and ‘2.’ More precisely,

the number of pairs that have treatment 1 first (what I called ‘1’) is exactly equal to the

number of pairs that have treatment 2 first (what I called ‘2’). Thus, unlike my RPD above

which had nine 1’s and seven 2’s, the crossover design would, perforce, have eight of each.

This makes obvious a modest limitation on a crossover design: the number of pairs must be

an even number.

2. For a crossover design, the analysis of the data explicitly incorporates—and estimates—the

order effect, as compared to an RPD—the population-based method is given above—that

ignores a possible order effect in the analysis. As a result, the analysis of a crossover design

is more complicated than the analysis of an RPD. If, indeed, there is a large order effect

(admittedly, large is vague here) then a crossover design can be more powerful than the

corresponding RPD. Sadly, because these notes cannot cover every topic in Statistics, I will

not show you how to analyze data from a crossover design.

20.4 Other Ways to Form Pairs

Thus far, I have discussed subject reuse as the only way to obtain paired data. Other methods are

possible. I am going to be very cautious in my presentation of this material.

1. I will show you a situation other than subject reuse for which pairing is valid.

2. I will show you a situation other than subject reuse for which pairing gives wildly invalid

results.
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I will give you a rule that helps distinguish between these situations, but there will be holes in my

rule; i.e., my rule does not necessarily cover every situation that could arise in science. Why? My

standard reason: we cannot cover everything in a one semester course.

I begin with a situation in which pairing is valid.

20.4.1 Forming Pairs from Adjacent Trials

Let’s return to the game of Tetris. I want to focus (again) on an entire game as a trial. Many years

ago, I enjoyed playing Tetris My game had a feature that allowed the player to see or not see the

next shape while manipulating the current shape. (Seeing was the default.) It seemed to me that

selecting the default, preview, option would lead to much higher scores. So, I decided to collect

data to investigate this matter.

A game is a trial and the response is the number of lines I completed before the game ended. I

decided to perform 20 trials, with 10 on each setting. I was very worried that fatigue or boredom

would affect my later scores, so I formed pairs out of consecutive trials: 1 and 2; 3 and 4; and so

on. I will slow down and present these ideas carefully. Please refer to Table 20.4.

Find the rows that begin with Trial. The first such row lists trials 1–10 and the second such row

lists trials 11–20. I would prefer it if these 20 trials were physically all in the same row, but our

paper isn’t wide enough.

Find trials 1 and 2; in the row immediately above, these trials are identified as the trials that

form pair 1. Next, you see that trials 3 and 4 form pair 2; trials 5 and 6 form pair 3; and so on; and

trials 19 and 20 form pair 10.

Next, I went to the randomizer—details not shown—and it gave me the following assignment:

Pair: 1 2 3 4 5 6 7 8 9 10

Randomizer gives: 2 1 1 1 1 2 1 2 1 2

The randomizer gave ‘1’ to pairs 2–5, 7 and 9. This means that within these pairs, the first game

was played on treatment 1 (preview) and the second game was played on treatment 2 (no preview).

The randomizer gave ‘2’ to pairs 1, 6, 8 and 10. This means that within these pairs, the first game

was played on treatment 2 (no preview) and the second game was played on treatment 1 (preview).

This explanation I have just given can be seen in the Treatment rows of Table 20.4.

After all of this work, it was time for me to have fun! I finally was able to play my 20 games

of Tetris. In the first game, I set the machine to no preview—treatment 2—and obtained a score of

84. In the second game, I set the machine to preview—treatment 1—and obtained a score of 106.

And so on, as displayed in the Response rows of Table 20.4.

Table 20.4 provides an accurate description of how my data were collected, but it needs to be

rewritten to facilitate a statistical analysis. Table 20.5 rewrites my data in a form that is ready

for analysis. (You should check to make sure you understand how I used Table 20.4 to create

Table 20.5. You don’t need to check every entry, just make sure that you understand the process.)

Not surprisingly, and obviously from even a quick glance at the data, I was a much better player

with the preview option. It is not so clear that pairing was beneficial; we shall explore this issue

below.
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Table 20.4: The RPD to compare the preview and no preview options in Tetris.

Pair: 1 2 3 4 5

Trial: 1 2 3 4 5 6 7 8 9 10

Treatment: 2 1 1 2 1 2 1 2 1 2

Response: 84 106 112 93 118 86 102 86 112 94

Pair: 6 7 8 9 10

Trial: 11 12 13 14 15 16 17 18 19 20

Treatment: 2 1 1 2 2 1 1 2 2 1

Response: 88 110 130 108 91 110 127 79 91 138

Table 20.5: Paired data to compare the preview and no preview options in Tetris.
Pair

Treatment 1 2 3 4 5 6 7 8 9 10

1: Preview (x) 106 112 118 102 112 110 130 110 127 138

2: No preview (y) 84 93 86 86 94 88 108 91 79 91

Difference (d = x− y) 12 19 32 16 18 22 22 19 48 47

I calculated the following summary statistics:

x̄ = 116.5, s1 = 11.56, ȳ = 90.0, s2 = 7.77, d̄ = 26.5, sd = 11.87 and m = 10.

With df = 9, the value needed for the 95% confidence interval is t∗ = 2.262. Thus, the 95%

confidence interval for µd is

26.50± 2.262(11.87/
√
10) = 26.50± 2.262(3.754) = 26.50± 8.49 = [18.01, 34.99].

At the 95% confidence level, my population mean score with the preview feature is between 18

and 35 lines larger than my population mean score without the preview feature.

I can also perform a test of hypotheses on my Tetris data. Using the Inconceivable Paradigm,

I select µd > 0 as my alternative. The observed value of the test statistic is

t = 26.50/3.754 = 7.059.

The area under the t-curve with df = m−1 = 9 to the right of 7.059 is (using Minitab) 0.0000296,

just smaller than 3 in one-hundred-thousand. This is the approximate P-value for >. Note that if

the alternative had been 6=, then the approximate P-value would be twice as large, just smaller than

6 in one-hundred-thousand.

For comparison, we will now pretend that the data come from independent random samples.

First,

s2p = [(11.56)2 + (7.77)2]/2 = 97.00.
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Thus, sp =
√
97 = 9.85. Moreover, for df = 16+ 16− 2 = 30, we get t∗ = 2.101. Thus, the 95%

confidence interval for µ1 − µ2 is

(116.5− 90.0)± 2.101(9.85)
√

1/10 + 1/10 = 26.50± 9.25 = [17.25, 35.75].

The half-width for the RPD interval, 8.49, is 8.2% smaller than the half-width, 9.25, for the pretend

CRD. Thus, pairing seems to have been effective, but not as dramatically as it was in my first set

of artificial data on headache pain.

20.4.2 When is it Valid to do a Paired Data Analysis?

The methods given above—confidence intervals and tests of hypotheses using the differences as

data—are valid in the following situations. Of course, implicit is the notion that we are willing to

assume we have i.i.d. random variables.

1. It is valid if the units (subjects or trials) are reused. Scientifically, it is much better if one

is able to use randomization, but it’s not necessary for statistical validity. In my experience,

the most common type of unit reuse in an observational study is a before/after study.

2. If one forms pairs of units (trials or subjects) by matching different units based on some

feature—often prognosis in medicine, then the analysis is valid in two situations:

(a) Within each pair, units are assigned to treatments by randomization.

(b) For an observational study on two finite populations of subjects, pairs are formed at

the population level. If pairs are formed at the sample level, regardless of how, then a

paired data analysis is invalid and, indeed, can be grossly misleading. The notions of

population level and sample level are discussed below.

I will now provide some examples of the ideas listed above.

First, let’s look at an example of a before and after study. Suppose we have m = 50 subjects

who are interested in losing weight. A study might proceed as follows. Each person is weighed at

the beginning of the study. Each person then follows a rigorous program of diet and exercise for,

say, three months. at which time each person is weighed again. If x [y] is a subject’s weight at the
beginning [end] of the study, then d = x − y is the amount of weight the subject lost during the

study. (Keep in mind that d < 0 means that the subject’s weight increased.)

Is this weight loss study really paired data?

• Yes, because we get two numbers from each subject and it is meaningful to calculate their

difference.

• No, because we can view the data as one response, the difference in weights.

In my opinion, it does not matter which of these viewpoints you adopt, the data are analyzed the

same way and the scientific interpretation is unchanged.
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Too often in a before and after study, researchers forget the need for a control group, as illus-

trated in the following example. Full disclosure: I found this example years ago in a textbook on

designing experiments in the social sciences. I don’t have a reference; and I can’t swear that the

authors were being honest!

Anyways, in August, 1939, students at an American university were given a pre-test to measure

their attitudes towards the government of Nazi Germany. Then they took a four-week course that

presented that government in a positive light. At the end of the course, the students were given a

post-test to determine the extent to which the course influenced the students’ attitudes. There was,

however, an unforeseen difficulty: On September 1, 1939, while the course was still in session,

Germany invaded Poland, starting World War 2. As a result, I sincerely doubt that the differences

between pre-test and post-test scores were due to the course! A control group would have improved

this study greatly, but I suspect it was doomed in any event.

Regarding item 2(a) in our earlier list: forming pairs of different units and then randomizing the

assignment of unit to treatment within each pair. I advocate this method for trials—as I demonstrate

above for my Tetris study—but am not a fan of this method for subjects. For subjects, I believe it is

better to form blocks of subjects, as I describe in Chapter 4 of my textbook, Statistics: Learning in

the Presence of Variation. In addition, if you do form pairs this way, I believe that randomization-

based inference is valid, but not population-based inference. Not everybody, however, agrees with

me. Sadly, we have time for neither this topic nor a presentation on blocks.

The remainder of this subsection is devoted to item 2(b) in my list: forming pairs at the popu-

lation level and sample level.

Are husbands taller than their wives? Are husbands older than their wives? Personally, I have

never been interested in either of these questions, but I must admit that during my long life, I have

heard many people talk about them. More pragmatically, I can’t think of an example of pairing at

the population level other than one involving husbands and wives.

First, a disclaimer. At the time of my typing these words, I live in Wisconsin, a state in which

a legal marriage consists of exactly two people, one of each sex. The fact that my example is

restricted to such pairs should not be interpreted in any way politically, etc.

Let’s focus on height. There is a population of husbands in Wisconsin and there is a population

of wives in Wisconsin. Let µ1 denote the mean height of the husbands and µ2 denote the mean

height of the wives. My goal is to estimate µ1 −µ2. Here are two statistically valid ways for me to

sample these populations:

1. I could select a random sample of m men from the population of husbands. I could select

a random sample of m women from the population of wives. I would have my samples be

independent of each other. I would determine the height of each of the 2m persons in my

study.

2. I could select a random sample ofmwomen from the population of wives. I would determine

the height of each of them women in my study as well as the heights of their husbands.

With the first method, I would analyze the data with the methods of Chapter 19, independent

samples. For the second method, I would analyze the data with the methods of this chapter, paired

data. Based on my many years of observation of married couples in Wisconsin, I conjecture that
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there is a pretty strong positive correlation between the heights of husbands and wives; thus, I

would use the second method of sampling. If my conjecture is correct, my paired data analysis

will be more efficient than independent samples would have been. If my conjecture is wrong, my

paired data will still be valid, but it won’t be as efficient as independent samples would have been.

To summarize, I formed pairs of all members of the two populations—which, necessarily,

needed to have exactly the same number of members. This is what I mean by forming pairs at the

population level.

I end this material with an cautionary tale that, I hope, will convince you to never form pairs at

the sample level, but, first, a story from my career.

For part of my career at the University of Wisconsin–Madison, part of my job was to provide

statistical advice to graduate students from other departments. One day a student came to me with

her data. She was willing to assume that she had independent random samples of size n1 = n2 =
40 from two populations. (Her advisor said that) She needed to show that the two populations had

different means. She knew the methods of Chapter 19 and had applied them to her data. Sadly,

following standard statistical reasoning, she could not conclude that the population means were

different.

After she explained all of the above to me, we had the following conversation:

BW: So, why are you here?

Student: Somebody told me that if I had paired data I would get a smaller P-value and,

thus, be able to make my advisor happy.

BW: That might be true. Do you want to do a new study, one with paired data?

Student: No, I want you to pair my data.

BW: Huh? I don’t understand.

Student: (With exasperation) I want you to take my data, manipulate them into pairs

to give me the answer I need.

BW: Oh.

I have cited the above exchange many times in my teaching. I then point out that unlike physics,

chemistry and mathematics, there is no demon in Statistics. What do I mean by this? Well, if you

don’t believe in physics, gravity might kill you. If you don’t believe in chemistry, a mixture of

ammonia and bleach might kill you. If you don’t understand fractions, somebody might take all of

your money by continually forcing you to make change. You can, however, perform any number

of ridiculous statistical analyses and nothing bad will happen to you!

Suppose that you want to determine which university has taller men: UW–Madison or the

University of Minnesota–Twin Cities. (I realize that this is silly; bear with me please.) You select

independent random samples of sizes n1 = n2 = 40 from both populations. Denote your observed

data from Wisconsin by:

x1, x2, x3 . . . x40.

Similarly, denote your observed data from Minnesota by:

y1, y2, y3 . . . y40.
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Sort each set of data, yielding

x(1) ≤ x(2) ≤ x(3) ≤ . . . ≤ x(40) and

y(1) ≤ y(2) ≤ y(3) ≤ . . . ≤ y(40).

Thus, for example, x(1) [y(1)] is the height of the shortest of the 40 men in the Wisconsin [Min-

nesota] sample; x(40) [y(40)] is the height of the tallest of the 40 men the Wisconsin [Minnesota]

sample; and so on.

Next, we form pairs at the sample level: we match x(1) with y(1); x(2) with y(2); and so on;

and we match x(40) with y(40). In other words, we form pairs based on the value of the response.

Finally, I create 40 d’s for my data set:

d1 = x(1) − y(1); d2 = x(2) − y(2); . . . ; d40 = x(40) − y(40).

I summarize my 40 differences with d̄ and sd. Finally, I calculate Gosset’s 95% confidence interval

for µd = µ1 − µ2:

d̄± 2.023(sd/
√
40).

What happens if we do this? To answer this question, I need to involve Nature and computer

simulations.

Suppose, for example, Nature knows that the two populations are identical and both are the

Normal curve with µ = 69 inches and σ = 3 inches. Thus, a confidence interval for µd = µ1 − µ2

will be correct if, and only if, it contains zero. I performed a simulation experiment with 10,000

reps to investigate the actual performance of this confidence interval for paired data. The results

were:

• A total of 3,523 confidence intervals were too large;

• A total of 3,527 confidence intervals were too small; thus,

• A total of 7,050 confidence intervals were incorrect.

Note that there should be approximately 500 incorrect confidence intervals. Seven thousand fifty

is quite a bit larger than 500. This simulation study shows convincingly that forming pairs based

on the response is invalid! By the way, the above simulation applies to all pairs of Normal curves

that are congruent; i.e., the two population means don’t need to be the same number. Similar

results will be obtained for noncongruent Normal curves, but they will require a different simu-

lation experiment to discover just how horrible the method performs! Similar results are true for

populations that are not Normal curves. In short, this method is always bad!

I have never found a textbook that was shameless enough to propose the above method—sort

the data, form pairs, subtract, etc. Alarmingly, however, I did find several textbooks that advocated

the following form of experimental design. I will state their suggestion in terms of the above height

study.

They do not say, “Form pairs based on the response, height;” instead, they advocate forming

pairs based on another feature that is correlated with height, perhaps weight. This is also invalid!

If you do this the actual confidence level of your nominal 95% confidence interval will be much

smaller than 95%.
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20.5 An Extended Example

Pairing is a very exciting topic. (I know, exciting is like funny; if it’s really funny, do I need to tell

you?) It is exciting because it allows a researcher to use scientific knowledge to improve a study;

i.e., it’s not about math or algebra.

When I decide to investigate a topic statistically, after I have a general notion of the response,

I always ask myself the following two-part question:

1. What factor(s) do I suspect will cause variation in the responses from unit to unit?

2. Of the factors listed, can I deal with one or more of them by forming pairs?

Are you a fan of major league baseball? Well, sadly, this example will be more interesting if

you are. In any event, I will proceed.

One of the charms of major league baseball is that the dimensions of the 30 major league

ballparks are not constant. The most famous ballpark (some residents of New York and Chicago

might disagree) is Fenway Park in Boston. The distance from home plate to its left field fence is

the shortest in the major leagues, partly offset by the fact that said fench is the tallest, measuring

37 feet, two inches high. The second most famous ballpark (again, according to me) is Wrigley

Field in Chicago. Wrigley Field is the topic of this example.

Wrigley Field has a reputation for being hitter friendly; in particular, the conventional wisdom

is that it is easier to hit a home run in Wrigley Field than in an average ballpark. I will investigate

this issue. How might one investigate this issue?

Here is my first attempt. Take for my response the total number of home runs hit in a stadium

in a year. Think of this as a 30-population problem, with each year giving us another observation

for each of the 30 populations (ballparks).

For example, in the 2013 National League season, a total of 2,145 home runs were hit in its

15 ballparks, for a mean of 214/15 = 143 home runs per ballpark. The four largest responses

are: Milwaukee, 185; Cincinnati, 184; Philadelphia, 176; and Chicago, 175. The three smallest

responses are: Miami, 84; Pittsburgh 106; and St. Louis, 108. The Wrigley Field data support the

conventional wisdom; the number of home runs hit there was well above the mean.

Do you see a weakness in the above discussion? Here is one. To paraphrase the NRA, “Ball-

parks don’t hit home runs, players do.” It is inarguable that the management of a baseball team

considers its ballpark while building its roster of players. Thus, for example, part of the reason

there were more home runs hit in Milwaukee than in Miami is that the former’s roster contained

more power hitters.

Many years ago somebody—sorry, I don’t know who gets credit—had a clever idea. Let me

show you some data and then explain the idea. Look at Table 20.6. Let’s look at 1967. We see the

response value 160 for the Cubs’ (Chicago’s team) home games. This is the total number of home

runs hit in Wrigley Field in 1967. Thus, it is the same idea as the response values I gave you earlier

for the 2013 season. Here is the twist. We compare this value, 160, to the total number of home

runs hit by both teams in all of the Cubs’ away games, 110. By comparing all of the Cubs’ home

games with all of their away games, we have—for the most part—removed the effect of rosters.
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Table 20.6: Number of home runs, for both teams, in Cubs games, 1967–1987.

Season

Location 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976

Home 160 166 148 201 144 146 138 139 125 155

Away 110 102 112 121 116 99 107 93 100 73

Home−Away 50 64 36 80 28 47 31 46 25 82

Season

Location 1977 1978 1979 1980 1982 1983 1984 1985 1986 1987

Home 151 117 151 116 115 140 156 202 168 204

Away 88 80 111 100 112 117 79 104 130 164

Home−Away 63 57 40 16 3 23 77 98 38 40

By the way, here are two summary statistics for the data in Table 20.6:

d̄ = 46.20 and sd = 24.42.

If I view the 20 seasons of data as the result of observing 20 i.i.d. trials, then I can obtain a 95%

confidence interval estimate of µd:

46.20± 2.093(24.42/
√
20) = 46.20± 11.43.

In words, on average, Wrigley Field increases the mean number of home runs by at least 34.77 and

at most 57.63 per season.
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20.6 Computing

The extremely versatile and useful vassarstats website can be used to analyze paired data. I will

illustrate the method for my Tetris data in Table 20.5. Go to the website:

http://vassarstats.net.

The left-side of the page lists a number of options; click on t-Tests & Procedures. This takes you

to a new set of options; click on the top one, Two-Sample t-Test for Independent or Correlated

Samples. This takes you to a new page. In the Setup section, click on Correlated Samples. (If you

forget to do this, it’s a big problem because Independent Samples is the default.) Next, enter the

data, by typing or pasting, and click on Calculate.

The website gives me the following information:

m = nA = nB = 10; x̄ = 116.5; ȳ = 90.0; and d̄ = Meana − Meanb = 26.5.

It also reports that the observed value of the test statistic is t = 7.06 with approximate P-value

< 0.0001 for both of the alternatives > and 6=. The vassarstats testing output is all consistent,

though a bit less precise, than what I obtained earlier by hand. Finally, vassarstats reports a variety

of confidence intervals, including 26.5 ± 8.4846 as the 95% confidence interval estimate of µd.

This is the same answer I obtained, except for round-off error.

I have found a website that will create a scatterplot and compute the correlation coefficient:

http://www.wessa.net/rwasp_Pregnancy%20and%20cognition.wasp#output.

You are not responsible for using this site; I am very grateful that it exists, but it’s a bit tedious to

use. (For example, it requires a fair amount of time to delete the site’s default data before you can

enter your own data.) If you want to try it out; I suggest that you use my Tetris data. As a partial

check, you should obtain r = 0.2955 for the correlation coefficient. Or you could use either one of
my RPDs for headache pain to see whether your output matches the scatterplot in Figure 20.1.
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20.7 Summary

This chapter continues the theme of Chapter 19; namely, comparing the means of two populations.

Instead of independent samples, in this chapter we have paired data. Each pair gives: a response

from population 1, x; and a response from population 2, y. These two numbers can be used to

compute d = x− y, which can be viewed as a response from the population of differences.

Here’s another way to view this structure: We have random samples from both populations 1

and 2, but the random samples are not independent of each other. The result is that we have a

random sample from the population of differences.

In Chapter 19, when considering population means, we focused on estimating µ1 − µ2 with

confidence and testing the null hypothesis that µ1 = µ2. In the current chapter, these inference

problems become estimating µd with confidence and testing the null hypothesis that µd = 0.
Mathematically, Chapter 20 reduces to the problem of inference for a single population mean

(of the population of differences). This problem was studied in Chapters 17 and 18 and I recom-

mend using Gosset’s procedures, subject to the caveats mentioned in these earlier chapters.

A researcher needs to be careful to avoid misusing the formulas for paired data. In particular,

we found that the methods for paired data are appropriate for:

• Unit reuse, with or without randomization;

• Forming pairs of adjacent trials, using randomization to assign one trial of each pair to each

treatment; and

• Matching subjects at the population level, as described earlier.

I gave a simple and dramatic example illustrating that paired data methods should never be used

for pairing performed at the sample level, again, as described earlier.

Finally, you learned how to create and interpret a scatterplot of pairs of responses. Thinking

about the likely pattern in such a scatterplot can help a researcher decide whether to have a design

with independent samples or paired data.
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Table 20.7: Data for the RPDs described in Practice Problems 1 and 2.

Pair

Treatment 1 2 3 4 5 6 7 8 9 10

Smoking (x) 173 175 169 175 180 184 182 186 190 188

Not smoking (y) 163 160 157 165 167 159 170 155 153 164

Difference (d = x− y) 10 15 12 10 13 25 12 31 37 24

20.8 Practice Problems

1. Bascom Hill is a long, steep hill (by Wisconsin standards) in the center of the university

campus in Madison. A student in my class, Damion, wondered whether smoking a cigarette

affected his climbing of Bascom Hill. He performed an RPD with response equal to the time,

measured to the nearest second, he needed to walk from the bottom to the top of the hill. The

first treatment consisted of walking while smoking a cigarette and the second consisted of

walking while not smoking a cigarette. Damion formed pairs from his trials, exactly as I did

for the Tetris study described in this chapter.

Damion’s data are in Table 20.7. Below are various summary statistics for these data.

x̄ = 180.2, ȳ = 161.3, s1 = 6.99, s2 = 5.44 and sd = 9.67.

(a) Calculate Gosset’s 95% confidence interval estimate of µd. Write one sentence that

interprets your confidence interval.

(b) Find the approximate P-value for the alternative µd > 0.

(c) Pretend that the data came from a CRD instead of an RPD. Calculate Gosset’s 95%

confidence interval estimate of µ1 − µ2.

(d) Compare your answers to (a) and (c). In your opinion, which would have been a better

way to conduct the study; an RPD or a CRD? Explain your answer.

(e) Use Equation 20.4 to determine the value of the correlation coefficient for x and y.

2. Now suppose that Damion had ended his RPD after the first five pairs were completed.

Use the vassarstats website to redo problem 1. For part (e), to save time you may use the

following summary statistics, which I obtained from vassarstats:

s1 = s2 = 3.9749 and sd = 2.1213.

3. Alisa performed an RPD to compare bowling with one hand (the usual method) and bowling

two handed (‘granny style;’ her words, not mine). A trial consisted of a game of bowling

and the response was Alisa’s score. Below are the results of the study:
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Game Hands Score Game Hands Score

1 One 97 6 One 110

2 Two 85 7 One 123

3 Two 91 8 Two 96

4 One 108 9 One 125

5 Two 95 10 Two 94

(a) Present these data in a format similar to what I used in Table 20.7. Put one-handed

bowling in the first row; i.e., the x’s. Don’t analyze these data; I simply want you to

make sure you can transform one table into another.

(b) Assuming Alisa used our website randomizer, what output did it give her?

20.9 Solutions to Practice Problems

1. (a) First,

d̄ = x̄− ȳ = 180.2− 161.3 = 18.9.

Next, t∗ for df = 10−1 = 9 is 2.262. Thus, Gosset’s 95% confidence interval estimate

of µd is:

18.90± 2.262(9.67/
√
10) = 18.90± 2.262(3.058) = 18.90± 6.92 = [11.98, 25.82].

The mean time to walk up the hill while smoking is between 11.98 and 25.82 seconds

larger than the mean time to walk up the hill while not smoking.

(b) The observed value of the test statistic is

t = 18.90/3.058 = 6.1805.

The area under the t-curve with df = 9 to the right of 6.1805 equals (using Minitab)

0.00008. This is the approximate P-value.

(c) First,

s2p =
(6.99)2 + (5.44)2

2
= 39.227 and sp =

√
39.227 = 6.263.

Next, t∗ for df = 10 + 10 − 2 = 18 is 2.101. Thus, Gosset’s 95% confidence interval

estimate of µ1 − µ2 is:

18.90± 2.101(6.263)
√

2/10 = 18.90± 5.88 = [13.02, 24.78].

(d) The half-width from the pretend CRD, 5.88, is 15.0% narrower than the half-width

from the actual RPD, for the same data. This supports the notion that a CRD would

have been better, but we don’t really know what would have happened with a CRD.
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(e) First,

s2d = (9.67)2 = 93.5089.

Next,

s21 + s22 − 2rs1s2 = (6.99)2 + (5.44)2 − 2r(6.99)(5.44) = 78.4537− 76.0512r.

Setting these equal to each other, we get:

76.0512r = 78.4537− 93.5089 = −15.0552 or r = −0.198.

2. I entered the data into vassarstats, being careful to specify Correlated Samples and obtained

the following relevant summaries:

x̄ = 174.4, ȳ = 162.4 and d̄ = 12.0.

(a) The website tells me that the 95% confidence interval estimate of µd is 12.00 ± 2.64.
Notice that this interval is much narrower than the interval from all ten pairs!

(b) The website tells me that the observed value of the test statistic is t = 12.65with df = 4
and that the approximate P-value for > is 0.0001125.

(c) I enter the same data into the website, being careful to specify Independent Samples.

The site tells me that the 95% confidence interval estimate of µ1 − µ2 is 12.00± 5.81.

(d) The half-width of the confidence interval for the actual RPD, 2.64, is 54.6% narrower

than the half-width for the pretend CRD with the same data. This is a huge difference!

We don’t know for sure, however, what would have happened with a CRD, but the RPD

does look better.

(e) From Equation 20.4,

(2.1213)2 = (3.9749)2 + (3.9749)2 − 2r(3.9749)2.

This becomes:

4.499914 = 2(15.79983)−2r(15.79983); or 2r(15.79983) = 27.099746; or r = 0.858.

3. (a) Alisa’s table is below.

Pair

Treatment 1 2 3 4 5

One-handed (x) 97 108 110 123 125

Two-handed (y) 85 91 95 96 94

Difference (d = x− y) 12 17 15 27 31

(b) The site gave her: 1, 2, 2, 1, 1.
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20.10 Homework Problems

1. Martha and Lisa performed an RPD to investigate Martha’s juggling skills. The first treat-

ment was Martha juggling three tennis balls; the second treatment was Martha juggling three

large apples. The response is the length of time, measured to the nearest second, that the three

items where in what they called a regular cycle of juggling. Below are selected summary

statistics:

x̄ = 6.100, ȳ = 5.200, s1 = 3.888, s2 = 3.517, sd = 5.826 and m = 40.

(a) Calculate Gosset’s 95% confidence interval estimate of µd. Write one sentence that

interprets your confidence interval.

(b) Find the approximate P-value for the alternative µd > 0.

(c) Pretend that the data came from a CRD instead of an RPD. Calculate Gosset’s 95%

confidence interval estimate of µ1 − µ2.

(d) Compare your answers to (a) and (c). In your opinion, which would have been a better

way to conduct the study; an RPD or a CRD? Explain your answer.

(e) Use Equation 20.4 to determine the value of the correlation coefficient for x and y.

2. Deborah’s son Scotty is convinced that his Snowbie sled is slower than his friend Sam’s Sno-

Racer. An RPD was conducted to investigate this issue. A trial consisted of a slide down a

local hill. The response is the time, measured to the nearest tenth of a second, that Scotty

required to complete a slide. The first treatment consists of Scotty riding his Snowbie and

the second treatment is Scotty riding Sam’s Sno-Racer. Below are the results of the study.

Trial Treat. Time Trial Treat. Time Trial Treat. Time

1 2 11.3 7 2 9.0 13 2 10.1

2 1 12.0 8 1 12.1 14 1 8.8

3 2 11.3 9 1 8.9 15 2 9.9

4 1 11.1 10 2 10.7 16 1 10.5

5 2 10.1 11 2 10.6 17 1 12.2

6 1 8.4 12 1 9.8 18 2 12.1

(a) Present these data in a format similar to what I used in Table 20.7.

(b) Use the vassarstats website to obtain Gosset’s 95% confidence interval estimate of µd.

(c) Use the vassarstats website to obtain Gosset’s approximate P-value for the alternative

µd > 0.

(d) Assuming Deborah used our website randomizer, what output did it give her?
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Chapter 21

Simple Linear Regression

Linear regression analysis is one of most popular methodologies in all of Statistics. The Statistics

Department at UW–Madison offers a one-semester course, Statistics 333, devoted to it. In this

chapter and the next, I will introduce you to the subset of regression methods that fall under the

name simple linear regression.

In the current chapter I will present descriptivemethods of regression and in Chapter 22, I will

present methods of inference. As you will see, we will be looking at scientific problems in which

each unit (subject or trial) yields two numbers; one denoted by x and the other by y. To distinguish
between data from different cases— by the way, units are called cases in regression—we will use

subscripts. Thus, for example, our first case gives the pair of numbers (x1, y1); the second case

gives (x2, y2); and so on. Our general notation is that case ‘i’ gives (xi, yi). When I am being less

formal, I will sometimes refer to the x’s and the y’s, without subscripts.

In our first example below, the cases are individual spiders and the two variables determined

for each spider are its heart rate and body weight. One of the spiders, for example, has body weight

x = 0.045 grams and heart rate y = 60 beats per minute. Thus, for this spider the pair (x, y) is the
pair of numbers (0.045, 60). Obviously, we need to be careful to keep the order of these numbers

straight; the pair (60, 0.045)would denote a spider that weighs 60 grams and has a heart beat about

once every 1/0.045 = 22.2 minutes! A really big spider with, presumably, a very short life span.

Remember that we use lower case letters, x and y, to denote the numbers obtained for any

particular case. We will user upper case letters,X and Y , to denote the variables being determined.

For example, in our spiders example,X denotes body weight in grams and Y denotes heart rate in

beats per minute.

Also, please remember the following: In this chapter I make no probability assumptions about

the data

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn),

where n is the number of cases in the data set. In other words, in this chapter I will not assume

that these cases are a random sample—smart or dumb—from a finite population of cases nor will

I assume that they are the result of observing i.i.d. trials. Such assumptions will be considered in

Chapter 22.
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Table 21.1: Body weight, in grams, and heart rate, in beats per minute, for five categories of 48

spiders.

Primitive

Small Large Web Hunters and

Hunters Tarantulas Hunters Weavers Weavers

Weight Rate Weight Rate Weight Rate Weight Rate Weight Rate

0.045 60 10.75 11 0.980 27 0.422 27 0.050 13

0.031 61 11.10 13 0.623 43 0.387 44 0.090 15

0.105 90 8.01 14 0.483 15 0.324 48 0.104 19

0.093 125 13.80 10 0.431 19 0.234 55 0.108 9

0.139 100 12.60 11 0.324 22 0.439 36 0.132 10

0.050 108 11.40 12 0.289 27 0.357 42 0.117 12

0.161 82 1.135 19 0.325 68 0.095 17

0.146 98 0.906 23 0.106 54 0.127 22

0.140 105 0.591 23 0.325 63

0.570 25 0.287 75

1.152 34 0.404 45

1.363 36 0.540 63

0.506 68

21.1 The Scatterplot and Correlation Coefficient

You received a brief exposure to the scatterplot and correlation coefficient in Chapter 17 and a

more extended introduction in Chapter 20.

When I was writing a textbook, approximately 20 years ago, I found some interesting data on

spiders [1] that I present in Table 21.1. I am not an arachnologist—indeed, I can’t even spell it

without help; thus, I can’t really speak to why these data are important. Therefore, I will follow the

approach in the journal article. In addition, these spider data illustrate some interesting statistical

issues.

In this chapter, our focus will be on examining the association between two numbers; in the

current case, body weight and heart rate of spiders. First, however, it is useful to examine these

variables separately for our five categories of spiders. Various descriptive statistics are presented

in Table 21.2. Let me make a few brief comments about the means in this table.

1. Tarantulas are much heavier than the other types of spiders. At the other extreme, small

hunters and primitive hunters and weavers are quite tiny. It is reassuring to note that small

hunters are, indeed, smaller than large hunters!

2. The mean heart rate for small hunters is much larger than the other means. At the other

extreme are tarantulas and primitive hunters and weavers.

3. It is striking how the similarly sized small hunters and primitive hunters and weavers have
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Table 21.2: Summary statistics for body weight, in grams, and heart rate, in beats per minute, for

five categories of 48 spiders.

Body Weight Heart Rate

Category n Mean St. Dev. Mean St. Dev.

Tarantulas 6 11.3 1.96 11.8 1.47

Primitive hunters and weavers 8 0.103 0.026 14.6 4.50

Large hunters 12 0.737 0.357 26.1 8.03

Web weavers 13 0.358 0.114 52.9 14.1

Small hunters 9 0.101 0.049 92.1 21.5

such different heart rates. Also, tarantulas and primitive hunters and weavers, despite their

vastly different sizes, have similar mean heart rates.

For each spider, I have two numbers: heart rate and weight. It will be useful to view these two

variables in an asymmetrical fashion. In particular, I ponder the following question:

Which of the following perspectives makes more sense (scientifically)?

• A spider’s heart rate influences it body weight.

• A spider’s body weight influences it heart rate.

I choose the second of these perspectives. As you will see below, if you disagree with my choice,

some—but not all—of your analyses will differ from mine.

Anyways, given my chosen perspective, the language we use in Statistics is to refer to the heart

rate as the response and the body weight as the predictor. In the old days, heart rate was referred

to as the dependent variable and body rate was referred to as the independent variable; the

idea being that the former depended on the latter and the latter, well, didn’t depend on anything!

Fortunately, this older terminology is dying out; I say fortunately because this use of independent

is confusing because it does not match our earlier use of the term. Some social scientists’ appear

to prefer the words exogenous (for predictor) and endogenous (for response).

In any event, all agree to refer to the predictor with the symbol X and the response with the

symbol Y . (Thus, one way to keep the ex/end—ogenous terms straight: exogenous is X and

endogenous is nearer the end of the alphabet.)

Note the following. The implicit perspective in all regression analyses in these Course Notes

is:

A case’s value of X influences its value of Y .

In the current situation, we are interested in two numerical variables from each spider; its body

weight X and its heart rate Y . For any particular spider, these two variables take on numerical

values, denoted by lower case letters, x and y. Let’s look at the data in Table 21.1 for the small
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hunters. First, I note that there are data for nine small hunters; thus, I set the sample size at n = 9.
The data set for small hunters consists of n = 9 pairs of numbers, first symbolically as:

(x1, y1), (x2, y2), (x3, y3), . . . , (x9, y9),

and then, numerically as (reading down the table):

(0.045, 60), (0.031, 61), (0.105, 90), . . . , (0.140, 105).

We will now draw a picture of these nine pairs of numbers, called the scatterplot. (I told you

a bit about scatterplots in Chapters 17 and 20; forgive me the redundancies below.) I like to think

of a scatterplot as a dotplot in two dimensions, viewed from above. The scatterplot of heart rate

versus body weight for the n = 9 small hunter spiders is presented in the upper left picture in

Figure 21.1. First note that there are nine circles in this scatterplot, one for each pair of values

(x, y). Recall that our first observation from a small hunter is the pair x = 0.045 and y = 60.
Can you find this spider’s circle in the scatterplot? (Answer: Find the two circles in the southwest

corner of the scatterplot; the circle to the right in this twosome is the one we seek.) Locate a few

more of the (x, y) pairs in the scatterplot; you don’t necessarily need to find all nine pairs, just

enough to convince yourself that you understand the process.

After constructing a scatterplot we look for isolated cases. This brings me to one of the main

reasons I selected these spider data for an introduction to this material. I believe that with a small

value of n is is extremely difficult to decide whether cases are isolated. Moreover, any such deci-

sion tends to have big implications for how we interpret the data. I would label the two cases in the

southwest corner of the scatterplot as being isolated from the other seven cases. I will now argue

why this is important.

After considering the possibility of isolated cases, we look for a pattern in the scatterplot. The

first pattern we look for is the following.

As the value of x increases (i.e., moving our eyes left-to-right across the scatterplot)

what happens to y? Below are three possibilities:

• As x increases, y also increases—called an increasing relationship; or

• As x increases, y decreases—called a decreasing relationship; or

• Neither of the above (stay tuned for more details on this).

For the n = 9 small hunters, the relationship between x and y is increasing. If, however, we cover

up my two candidates for isolated cases and look at the remaining seven cases, I would say that

there is a clear and pretty strong decreasing relationship between x and y. The difference between
having an increasing relationship and having a decreasing relationship usually is huge in science.

Let memake one more comment about isolated cases for the small hunters. I am not advocating

that you discard the two isolated cases before analyzing the data. But neither am I advocating

that you keep them before analyzing the data. This decision should be made by a scientist, not

a statistician. I hope, of course, that the scientist will use solid knowledge—and not wishful

thinking—in making such a choice. My main goal is to encourage you to realize that with a
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Figure 21.1: Scatterplot and correlation coefficient, r, of heart rate (beats per minute) versus body

weight (grams) for each of four categories of spiders.
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Figure 21.2: Five scatterplots.
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slight change in the data, the analysis could change drastically. An obvious way to have a change

in the data is by having the researcher deliberately discard one or more cases. It is important,

however, to also remember that there is some chance involved in the data we have. I am not ready

to argue whether or not I am willing to pretend that these nine spiders are a random sample from

the population of all small hunters. (Try to imagine a way to obtain an actual random sample of

spiders!) It is, however, worth realizing that it is conceivable that our two isolated spiders might

not have ended up in our data set. (This is reminiscent of Kenny’s data on speeds of cars in which

we had to acknowledge the chance aspect of the large outlier even being in the data set.)

Briefly examine the other three scatterplots in Figure 21.1; what do you see? Regarding isolated

cases, I see two possibilities: the large hunter with the largest heart rate and the tarantula with the

smallest body weight. You, of course, may reasonably disagree with the possibilities I see.

Looking at the patterns in these three scatterplots I see: increasing for the larger hunters;

strongly decreasing for the tarantulas; and weakly decreasing for the web weavers. I see the same

patterns whether or not I exclude my two candidates for isolated cases.

Let’s briefly leave our study of spiders; I want to be a bit more general. Look at Figure 21.2.

This figure presents five scatterplots: two present increasing relationships; two present decreasing
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Figure 21.3: Scatterplot of heart rate (beats per minute) versus body weight (grams) for eight

spiders classified as primitive hunters and weavers.
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relationships; and the remaining scatterplot shows neither. Or both. Depends on how you look at

it. What I most want you to note is that two of the scatterplots reveal a linear relationship between

x and y and three of the scatterplots reveal a curved relationship between x and y. With the

exception of Section 22.4, in the remainder of these Course Notes we will restrict attention to

relationships that are linear. Regression analysis is very useful for studying curved relationships,

but we won’t have time to explore this topic.

I don’t want to mislead you with Figure 21.2. In science, it is not always so easy to decide

whether a relationship is curved or linear. In my opinion, the four scatterplots in Figure 21.1 all

reveal linear relationships. If you don’t agree, remember the following. Statisticians hope to find

a linear relationship because assuming a linear relationship provides some advantages—in ease of

the work and, especially, interpretation—over assuming a curved relationship. Thus, I am aware

that I might be too eager to see a linear relationship.

Figure 21.3 presents the scatterplot for the fifth category of spiders, the primitive hunters and

weavers. In this picture, I see: no isolated cases; and a linear relationship that is neither increasing

nor decreasing: As I move my eyes from left-to-right, the values of y jump around, but trend

neither up nor down.

Each of my five spider scatterplots includes a number r, which is called the correlation coeffi-

cient. Many of you may be familiar with the correlation coefficient. I will assume that you are not

familiar with it and will now explain it.

Following our notation from Chapter 19, denote the mean and standard deviation of the x’s
by x̄ and s1, respectively. Also, denote the mean and standard deviation of the y’s by ȳ and s2,
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respectively. Our only restriction on these values is:

s1 > 0 and s2 > 0. (21.1)

In words, the x’s [y’s] are not all the same number. Remember that our goal is to determine whether

the value of x influences the value of y. If all of the xi’s are the same number, how can we look

for influence? Or, if all of the yi’s are the same number, there can be no evidence of them being

influenced by anything!

Definition 21.1 (The correlation coefficient.) (Pearson’s product moment) correlation coeffi-

cient is denoted by r and given by the following equation:

r =

∑

(xi − x̄)(yi − ȳ)

(n− 1)s1s2
(21.2)

By the way, you can see why I restrict our attention to data sets that satisfy Condition 21.1; oth-

erwise, both the numerator and denominator in Equation 21.2 would equal zero. Note that I will

never ask you to compute r by hand. Our scatterplot website from Chapter 20 reports the value

of r, but I won’t make you use it. In this course, I will give you r or provide you with enough

information so that obtaining r is a matter of simple (according to me!) algebra.

There are several important properties of the correlation coefficient. For convenience, I list six

of them below under the heading of a result. When you read through these you will see that the first

property is not really a mathematical result; it is simply terminology. Also, the second property

is a bit imprecise. I trust that you will forgive these transgressions of mine. In any event, read

through these properties quickly; the list is followed by explanations. Also, the 12 scatterplots in

Figure 21.4 will illustrate my explanations.

Result 21.1 (Six properties of the correlation coefficient.) The following six properties will help

you develop some intuition for the value of the correlation coefficient, given in Equation 21.2.

1. If the correlation coefficient is greater than zero, the variables Y and X are said to have a

positive linear relationship; if it is less than zero, the variables are said to have a negative

linear relationship; if it equals zero, the variables are said to have no linear relationship,

or to be uncorrelated.

2. The correlation coefficient is not appropriate for summarizing a curved relationship be-

tween Y and X . Therefore, it is always necessary to examine a scatterplot of the data to

determine whether computation of the correlation coefficient is appropriate.

3. The value of the correlation coefficient is always between −1 and +1. It equals +1 if, and

only if, all data points lie on a straight line with positive slope; it equals −1 if, and only if,

all data points lie on a straight line with negative slope.

4. The farther the value of the correlation coefficient from zero, in either direction, the ‘stronger’

the linear relationship.
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5. The value of the correlation coefficient does not depend on the units of measurement chosen

by the experimenter. More precisely, if X is replaced by aX + b and/or Y is replaced

by cY + d, where a, b, c, and d are any numbers with a and c bigger than zero, then the

correlation coefficient of the new variables is equal to the correlation coefficient of X and

Y . The numbers a and c are required to be positive to avoid reversing the direction of the

relationship; a related result can be obtained if a and/or c are negative, but it will not be

needed in these Course Notes. Among many examples, this result shows that changing from

miles to inches, pounds to kilograms, degrees Celsius to degrees Fahrenheit, or seconds to

hours will not change the correlation coefficient.

6. The correlation coefficient is symmetric in X and Y . In other words, if the researcher

changes perspective and relabels the predictor and response, the correlation coefficient will

not change. In particular, if there is no natural assignment of the labels predictor and re-

sponse to the two numerical variables, the value of the correlation coefficient is not affected

by which assignment is chosen.

21.1.1 Explanations of the Six Properties of the Correlation Coefficient

In the explanations below, imagine that the 12 scatterplots in Figure 21.4 are labeled A,B, . . . , L
according to the following correspondence:

A B C

D E F

G H I

J K L

Below I explain—or at the least, expand upon—the six properties of the correlation coefficient that

are listed above. I suggest that before you read each explanation below, reread the statement of the

property above.

1. This first item is about terminology. Actually, it’s a bit more than terminology, but it’s easy to

miss the extra. Look at our earlier scatterplots for small hunters and large hunters. Visually,

we (well, me anyways, I am the one who controls the keyboard) agreed that both of these

scatterplots revealed increasing linear relationships. Sure enough; both correlation coeffi-

cients are positive numbers: 0.397 and 0.360. Also, visually, the scatterplots for tarantulas

and web weavers revealed decreasing linear relationships. Sure enough; both correlation

coefficients are negative numbers: −0.872 and −0.121. Have you spotted what’s extra?

Well, literally, the first item makes no mention of what we see visually. (Formulas, after all,

involve math and math doesn’t care very much about what we see. Math rarely asks our

opinion!) The first item tells us: If r > 0, then there is an increasing linear relationship; i.e.,

whether something is increasing or decreasing is no longer a matter of visual assessment, it

is the result of a computation. If you can’t see the increasing linear relationship, then that is

your problem; the correlation coefficient is not going to change to make you happy!
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Figure 21.4: Twelve scatterplots and their correlation coefficients.
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This issue comes into play with the scatterplot for the primitive hunters and weavers. The

correlation coefficient is r = 0.055 which is positive; thus, whether you see it or not, there

is an increasing linear relationship. As we will see soon and then more precisely later, it is a

very weak increasing linear relationship.

The twelve scatterplots are encouraging: plots G–K look increasing and each has a positive

correlation correlation coefficient; plots A–E look decreasing and each has a negative corre-

lation correlation coefficient; and plot F appears to have no linear trend and its r equals 0.

Plot L is an anomaly that I will consider in the next item.

2. I have always loved plots like our plot L. I think it’s because I am red-green colorblind. If

you need a break, go to

http://www.toledo-bend.com/colorblind/Ishihara.asp

to see how the world looks to those of us who are red-green colorblind. (I can definitely see

the 25; sort of can see the 56; and when I am told it’s a 29, I can almost see it; but the other

three numbers don’t seem to be there at all!)

Anyways, as plot L shows, the correlation coefficient is colorblind when it comes to seeing

curved patterns.

3. Property 3 is a simple consequence of some things we learn a bit later. I do, however, want

to say a few things about it. You will never obtain a correlation coefficient that is larger than

+1 or smaller than −1. In addition, these extremes are obtained only when all data points

fall exactly on a straight line, as mentioned in the property. The two extremes have led to

confusion among students, so I do want to comment on them.

(a) What is the value of r if all of the points lie on a line with slope equal to 0?

Answer: If all points lie on a horizontal line, then all cases have the same value for y,
making s2 = 0, which I do not allow for reasons stated earlier.

(b) What is the value of r if all of the points lie on a vertical line?

Answer: If all points lie on a vertical line, then all cases have the same value for x,
making s1 = 0, which I do not allow for reasons stated earlier.

(c) Why doesn’t the numerical value of the slope matter? In particular, shouldn’t a slope

equal to +2 imply a stronger relationship than a slope equal to +1?

Answer: This one is tricky. Think about my spider data with Y equal to heart rate, in

beats per minutes, and X equal to body weight, in grams. Suppose that we had a new

category of spiders for whom all points lie exactly on a straight line with slope equal to

+2. Note, however, that the slope being +2 is tied to my choice of units. If I changed

the units for Y to beats per hour, then:

• All of the y data values would increase by a factor of 60; and

• Thus, the slope would increase by a factor of 60 and become +120.
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Thus, the exact same data give a slope of +2 or +120 and in both cases the correlation
coefficient r would equal +1.

4. For positive values of the correlation coefficient, you can see this fact by moving your atten-

tion from F to G toH to I to J toK. For negative values of the correlation coefficient, you

can see this fact by moving your attention from F to E to D to C to B to A.

Also, note the symmetry in, say, scatterplots C and I. Scatterplot C gives r = −0.60 and I

gives r = +0.60. While one scatterplot shows a decreasing relationship and the other shows

an increasing relationship, if you look carefully you can see that the two patterns have exactly

the same strength. If you cannot see this, I offer two suggestions:

• If you hold a mirror up to scatterplot C, it becomes scatterplot I; or

• Wait until we learn about the coefficient of determination, denoted by R2.

5. In the optional Appendix near the end of this chapter, I will discuss briefly why—algebraically—

property 5 is true. For now, note that we can rewrite the correlation coefficient as follows:

r =

∑

(xi − x̄)(yi − ȳ)

(n− 1)s1s2
= (

1

n− 1
)
∑ (xi − x̄)

s1

(yi − ȳ)

s2
.

In this latter form, we are taking the product of the standardized version of x with the stan-

dardized version of y and then summing the results. If, for example, relative to some group,

your height is one standard deviation above the mean in inches, then it is one standard devi-

ation above the mean in centimeters, kilometers, miles or even light-years. In other words,

the correlation coefficient is not influenced by units.

This property is very important because if you read that for some collection of cases the cor-

relation coefficient for height and weight is some number r, then you know that the units—

inches, meters or light-years matched with grams, pounds or tons—don’t matter.

6. Please look at definition of the correlation coefficient in Equation 21.2. You will see that

if you change all the x symbols to y symbols and all the y symbols to x symbols, then the

formula remains the same; i.e. the correlation coefficient does not depend on which variable

is labeled X and which is labeled Y .

21.1.2 Exam Scores in Statistics 371

I end this section with data from n = 36 students who took my traditional section of Statistics 371

during a recent summer school term. Each students took two exams: the midterm and the final.

The maximum number of points on the exams was 60 for the midterm and 100 for the final. I

graded in half-point increments. The scatterplot of the final exam score, Y , versus the midterm

exam score, X , is given in Figure 21.5.

Following my own advice, I look for isolated cases. I see one: the student with the lowest score

on the midterm had a very high score on the final. Either including or excluding my one isolated

case, I see an increasing linear relationship. Including all 36 students, r = 0.353; excluding the

one isolated case, r = 0.464.
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Figure 21.5: Final exam score versus midterm exam score for 36 students. There is a ‘2’ in the

scatterplot because two subjects had (x, y)= (55.5, 96.0).
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r= 0.353

21.2 The Least Squares Regression Line

Look again at the scatterplot of final exam score versus midterm exam score in Figure 21.5, but

delete the one isolated case. If you are not happy—or, at least, are confused—about this deletion,

I will mimic the work below for all 36 students in the Practice Problems. Thus, you will see

precisely the effect on my analysis of deleting the one isolated case.

My goal is to find the equation of the line that best describes this scatterplot. This is a big task!

It will take some time simply to explain what I mean. The line that best describes the scatterplot is

called the least squares regression line, or the best line for short.

I am going to spoil the story for you; a bit like first reading the last 10 pages of a mystery novel.

I am going to give you the best line for these data—or this scatterplot; whichever way you prefer

to say it is fine.

The best line for my n = 35 pairs of exam scores has intercept b0 = 68.42 and slope b1 =
0.4516. I want to be able to write this as an equation and I do so as:

ŷ = b0 + b1x, which becomes ŷ = 68.42 + 0.4516x for my n = 35 exam scores.

I suspect that this equation looks a bit strange to you. To explore my hunch, I googled equation of

a line and the first item on the list gave the equation

y = mx+ b.

This is the form I learned as a child and that I taught during my brief career as a teaching assistant

in math. It is strangely comforting that some math equations are, if not timeless, long-lived. Our
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current equation,

ŷ = b0 + b1x

is notably different than y = mx + b and it will be useful for me to take a few minutes to explore

the differences.

First, let’s look at the left sides of these equations: ŷ versus y. In Statistics, we may not write

our line as y = . . . because our collection of (x, y) values do not, in general, fall on a line. Indeed,
they fail to fall on a line for all of our real data examples, past, present and future. For convenience,

we need to have a symbol for the values of b0 + b1x and we choose to use the symbol ŷ. You are

familiar with statisticians’ use of a hat to denote a point estimate, as in p̂ in Chapter 12. In other

settings, statisticians use a hat to denote prediction. Indeed, if I had taken the time to show you

point predictions in Chapter 14—recall we did prediction intervals only—I would have used ŷ
as my point prediction of the number of successes y. For the current data set, we will view the

quantity 68.42+ 0.4516x as the predicted final exam score given that the midterm score is x; thus,
the use of a hat is natural.

Next, let’s look at the right sides of these equations: b0 + b1x versus mx + b. I don’t presume

to speak for mathematicians, but I conjecture that they put the mx before the b because the slope
is the more important component of the equation of a line: it denotes the change in y for any unit

change in x, whereas the intercept is literally the value of y when x equals 0. Statisticians agree

that the slope is far more important than the intercept, yet we put the intercept, b0, before the slope,
b1, in our presentation of the equation. Why?

We are studying simple linear regression. Simple implies that there is exactly one predictor

variable. As you may already know, in many scientific problems one predictor is not enough to

obtain useful answers. (For example, models for climate change are not restricted to the single

predictor: concentration of carbon dioxide in the atmosphere.) When we use more than one pre-

dictor, the methodology is called multiple linear regression. Suppose, for example, that we have

two predictors. The first issue with two predictors is that we need to be able to distinguish between

them. We do this by calling one predictorX1 and the otherX2. In this situation, case i would yield

three numbers: its response, yi; its value on the first predictor, x1,i; and its value on the second

predictor, x2,i. Note that we would need to use the dreaded double subscripts!

Anyways, with two predictors, we write the regression line as

ŷ = b0 + b1x1 + b2x2.

You can now see why we have replaced b and m from math with b0 and b1: If we are allowing

for an arbitrary number of predictors, we need to distinguish coefficients via subscripts to avoid

running out of letters! Finally, statisticians put the intercept before the slope because if we later

add additional predictors to our analysis, we like to place them at the (right) end of the equation

rather than inserting them in the middle so that the intercept can maintain its lowly position at the

end.

Figure 21.6 presents the scatterplot of the 35 pairs of exam grades with the graph of the regres-

sion line. Looking at this picture, I opine that the regression line appears to describe the data well,

but best? In this course we will be happy simply to use the line; if you want to learn why it is the
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Figure 21.6: Scatterplot of final exam score versus midterm exam score for n = 35 students, with
the graph of the regression line ŷ = 68.42 + 0.4516x.
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best line—based on the Principle of Least Squares—then you should read the optional Appendix

near the end of this chapter.

We need to look more carefully at how the line describes the data. Go to the scatterplot and

locate the case that has x = 44.5 and y = 82.0. For ease of presentation, I will call the student with
these scores Sally—not his/her real name. Next, I substitute (plug-in) Sally’s value of x = 44.5
into the regression line and obtain her value of ŷ:

ŷ = 68.42 + 0.4516(44.5) = 68.42 + 20.10 = 88.52.

We now have three numbers for Sally:

Her midterm score: x = 44.5; her actual final exam score: y = 82.0; and her predicted
final exam score: ŷ = 88.52.

Thus, her actual final exam score was 6.52 points lower than its prediction based on Sally’s midterm

exam score and the regression line. Looking at Figure 21.6, we see that Sally’s ‘O’ is 6.52 points

below the regression line. Sally’s ‘O’ is quite far from the line, which tells us that the line does

not describe Sally’s data very well; or, if you prefer, this tells us that the prediction of Sally’s final

exam score is quite different from her actual score.

We now create a fourth number for Sally, to supplement her values of x, y and ŷ. We denote

this new number by e and call it Sally’s residual; its formula is below.

e = y − ŷ, which for Sally is e = 82.0− 88.52 = −6.52.

Sally’s residual compares, via subtraction, her actual final score and her predicted final score.
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Persons who are new to regression often wonder why statisticians define the residual as the

difference (y − ŷ) instead of its negation, (ŷ − y). One reason can be seen from Figure 21.6.

When I view this figure, I naturally look at how the data points (the O’s) are placed relative to the

regression line. Sally’s ‘O’ is below the line; down is the direction of smaller numbers, hence of the

negative numbers. Thus, I want Sally’s residual to be negative because it is below the regression

line. Similarly, for any circle above the line, the residual is positive. If a circle is exactly on the

regression line, then its residual is zero.

My extended discussion of Sally’s data point can be modified for each of the other 34 students

in my data set. With all this additional work, I will call upon my computer to help me. Table 21.3

presents output from Minitab for our current data set. I need to take a few minutes to walk you

through this output; it contains a great deal of information!

Minitab begins by telling us:

The regression equation is: Final = 68.4 + 0.452 Midterm

This is Minitab’s way of saying that the regression line is:

ŷ = 68.4 + 0.452x.

Each term in this equation has one fewer significant digit than I gave you earlier, but as we will

see soon, Minitab also gives more precise values of the intercept and slope. Minitab’s presentation

is quaint, some might say anachronistic; it was created for an age, circa 1970, when a computer

printer behaved like a typewriter that does not have a backspace key. Minitab could print a y or it

could print a hat, but it could not print both. On the brighter side, Minitab does allow me to name

my variables to make the output more user-friendly; I made the natural choices of Midterm for X
and Final for Y .

Farther down the output, Minitab presents:

Predictor Coef SE Coef T P

Constant 68.420 7.963 8.59 0.000

Midterm 0.4516 0.1501 3.01 0.005

S = 4.635 R-Sq = 21.5%

We will ignore most of this until Chapter 22, but note that the Coef (short for coefficient) for the

constant predictor is 68.42 and for the midterm is 0.4516, agreeing with my earlier reported values

of the intercept and slope.

The remainder of the output is a listing for all 35 cases in the data set. The headings for all

columns should make sense to you, excepting column 4; by Fit Minitab means the value of ŷ.
You should note that Obs(ervation) 4 is Sally and Minitab reports the same values we determined

earlier by hand. Well, except that Minitab gives one more digit of precision in columns 4 and 5.

Take a couple of minutes to peruse the information in the output. Note that the entries for

observations 21 and 22 are identical; these are the two students who both scored x = 55.5 and

y = 96.0. With the same value of x, they necessarily have the same value of ŷ; and with the same

values of both ŷ and y, they have the same residual.
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Table 21.3: Edited Minitab output for the regression of final exam score on midterm exam score

for 35 students.

The regression equation is: Final = 68.4 + 0.452 Midterm

Predictor Coef SE Coef T P

Constant 68.420 7.963 8.59 0.000

Midterm 0.4516 0.1501 3.01 0.005

S = 4.635 R-Sq = 21.5%

Obs Midterm Final Fit Residual

1 39.0 83.5 86.032 -2.532

2 43.0 89.0 87.838 1.162

3 44.0 92.0 88.290 3.710

4 44.5 82.0 88.515 -6.515

5 46.0 93.0 89.193 3.807

6 48.0 87.0 90.096 -3.096

7 48.5 91.5 90.322 1.178

8 49.0 99.5 90.548 8.952

9 49.0 88.0 90.548 -2.548

10 49.0 81.0 90.548 -9.548

11 49.5 91.0 90.773 0.227

12 49.5 95.0 90.773 4.227

13 50.0 97.5 90.999 6.501

14 53.0 83.0 92.354 -9.354

15 53.0 93.0 92.354 0.646

16 53.5 97.0 92.580 4.420

17 53.5 99.0 92.580 6.420

18 54.5 95.5 93.031 2.469

19 54.5 83.0 93.031 -10.031

20 55.0 94.5 93.257 1.243

21,22 55.5 96.0 93.483 2.517

23 55.5 92.5 93.483 -0.983

23 55.5 92.5 93.483 -0.983

24 56.5 93.5 93.934 -0.434

25 56.5 89.5 93.934 -4.434

26 56.5 90.5 93.934 -3.434

27 57.0 92.0 94.160 -2.160

28 57.5 97.5 94.386 3.114

29 58.5 99.0 94.838 4.162

30 58.5 95.0 94.838 0.162

31 58.5 91.0 94.838 -3.838

32 58.5 97.5 94.838 2.662

33 59.0 91.5 95.063 -3.563

34 59.0 98.5 95.063 3.437

35 59.0 94.0 95.063 -1.063
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I think that it is time that I told you how I obtained the equation of the regression line. Again,

if you want to see the algebra behind this, you should read the optional Appendix near the end of

this chapter.

Result 21.2 (The equation of the regression line.) The equation of the regression line is

ŷ = b0 + b1x, (21.3)

where b0 and b1 are given by:

b1 = r(s2/s1) and b0 = ȳ − b1x̄, (21.4)

where r is the correlation coefficient defined in Equation 21.2.

Notice that we need five summary statistics to obtain the regression line:

x̄, s1, ȳ, s2 and r.

The first two of these summaries are for the x values—i.e., they ignore the y’s—and the next

two are for the y values. Only the last one, r, looks at how the x and y values are associated.

This provides an example of why the correlation coefficient is important: The regression line is

a function of: how the x’s behave by themselves; how the y’s behave by themselves; and the

correlation coefficient. In other words, all we need to know about how the x’s and y’s influence
each other (vary together) is contained in the value of r.

I will never ask you to obtain the regression line from a set of data by hand. In these Course

Notes, I have shown you a site that will compute

x̄, s1, ȳ and s2,

and another site that will compute r. Also, I have shown you a site that will compute simply the

regression line. I will not ask you to use these sites on the final exam and, hence, am not bothering

to list them again.

Another, better, option is to use a statistical software package and a computer to obtain the

regression line, as I do above with Minitab. I will show you more about how to interpret output

from Minitab in Chapter 22. In the current chapter—and on the final—I will give you the five

summary statistics you require to obtain the regression line by hand. Let me give you a couple of

examples of the method.

Example 21.1 (The regression line for the exam scores data.) After deleting the isolated case,

for the 35 students pictured in Figure 21.5, I computed:

x̄ = 52.786, s1 = 5.295, ȳ = 92.257 and s2 = 5.154.

Recall that I previously told you that r = 0.464. We can now evaluate Equation 21.4:

b1 = 0.464(5.154/5.295) = 0.4516 and b0 = 92.257− 0.4516(52.786) = 68.4188.

Thus, the regression line is

ŷ = 68.42 + 0.4516x,

as stated earlier.
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Example 21.2 (The regression lines for the tarantula and small hunter data sets.) Please refer

to the scatterplot of heart rate versus body weight for the n = 6 tarantulas in Figure 21.1. Recall

that I previously told you:

x̄ = 11.277, s1 = 1.955, ȳ = 11.833, s2 = 1.472 and r = −0.872.

We can now evaluate Equation 21.4:

b1 = −0.872(1.472/1.955) = −0.6566 and b0 = 11.833 + 0.6566(11.277) = 19.24.

Thus, the regression line is

ŷ = 19.24− 0.6566x.

With a similar argument, for the small hunters we have:

x̄ = 0.101, s1 = 0.049, ȳ = 92.1, s2 = 21.5 and r = 0.397.

We can now evaluate Equation 21.4:

b1 = 0.397(21.5/0.049) = 174.2 and b0 = 92.1− 174.2(0.101) = 74.51.

Thus, the regression line is

ŷ = 74.51 + 174.2x.

Figure 21.7 presents the scatterplot for the tarantulas and for the small hunters with their regression

lines. Don’t worry about being able to draw lines on a scatterplot; if you ever get a job doing

regression analysis, (I hope) you will have computer software to help!

Now that you have three examples of regression lines—exam scores and two categories of

spiders—I want to make some general comments about the regression line.

First, take the equation of the regression line,

ŷ = b0 + b1x,

and replace the symbols b0 and b1 by the expressions in Equation 21.4; we get:

ŷ = ȳ + r(s2/s1)(x− x̄). (21.5)

Let’s suppose that we have a case for which x = x̄; in words, this case is average—one might say

mediocre—on its value of the predictor. What is its predicted response? Well, substituting x̄ for x
into Equation 21.5 we obtain:

ŷ = ȳ + b1(x̄− x̄) = ȳ + 0 = ȳ.

Thus, if a case is mediocre on x then the regression line predicts that it will be mediocre (i.e., equal

ȳ) on y. I have suggested that this result be labeled The Law of the Preservation of Mediocrity,

but, so far, without success.

Visually, the Law tells us that the regression line must pass through the point (x̄, ȳ).
Actually, my Law of the Preservation of Mediocrity has some merit. Let me explain. As

presented in these notes, the regression line is the result of applying the Principle of Least Squares.

But this principle is, at least in part, motivated by mathematical convenience. (Stop shouting all

you Ph.D.’s in Math!) The obvious practical question is:
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Figure 21.7: Scatterplot and the regression line of heart rate (beats per minute) versus body weight

(grams) for small hunters and for tarantulas.
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Does this mathematical convenience yield sensible answers?

Based on the Preservation of Mediocrity, I can state, “Perhaps.” Here is why. If the Preserva-

tion of Mediocrity were not true for the regression line, that would seem stupid! After all, how

could it make sense with a linear relationship to predict that a mediocre x yields an above [below]

average y!

21.3 The Regression Effect and the Regression Fallacy

I will introduce these ideas with a real data set. This is a large data set; I have pairs of numbers

for n = 124 cases. Having a large amount of data is useful for this section. Another good feature

is that the values of x̄ and ȳ are almost identical and the standard deviations s1 and s2 are similar.

As you will see, the material in this section is easier to understand if x̄ = ȳ and s1 = s2, but such
exact agreement is rare in real data.

Alas, these data have some bad features. First, they are data from Major League Baseball.

Thus, it is not classically a biology example, but baseball is played by human animals! Second, if

you are a baseball fan, you will probably be annoyed when you learn that the data are more than

25 years old!

Thus, you might wonder: Why am I using these very old sports data? To be honest, any such

example is a lot of work, I am running out of time to complete these notes and I performed the

analysis of these data many years ago.

558



I will refer to my data set as the Batting Averages Study. Its cases are the 124 baseball players

who had 200 or more official at bats during both the 1985 and 1986 American League seasons.

Each player’s two variables are his batting averages (number of hits divided by official number of

at bats) for the two seasons [2]. I will let Y [X] denote the 1986 [1985] batting average. In short,

I want to use a player’s 1985 batting average to predict his 1986 batting average.

If you are not a baseball fan, there are three things you should realize:

1. A batting average is a proportion of successes, not a mean. (Note to literal math-types: yes,

every proportion is in a sense a mean, but if we were happy with that name, we would never

use the word proportion.)

2. When comparing two batting averages, the larger one is better.

3. A batting average of say, 0.325, is never read literally as 325 thousandths; it is read 325, as

in, “He batted 325.” (What did you expect from people who call a proportion an average?)

Figure 21.8 presents a scatterplot of the 124 cases and the regression line: ŷ = 0.095 + 0.633x.
When I look at the scatterplot I see one definite isolated case and two possibilities. The definite

isolated case is Floyd Rayford who batted x = 0.306 in 1985 and y = 0.176 in 1986; going from

the ninth largest batting average in 1985 to the lowest in 1986 is unusual! (In 1987, Mr. Rayford

batted 0.220 in only 50 at bats and his Major League career was over. He went on to have a

long career as a minor league coach; those who can’t . . . .) The two possible isolated cases are:

Wade Boggs, (0.368, 0.357), who had the highest batting average both years and Don Mattingly,

(0.324, 0.352), who had the third highest batting average in 1985 and the second highest in 1986.

In short, the data points for Boggs and Mattingly are isolated because they were great both years.

I will include all 124 cases in my analysis, although one might argue that Floyd Rayford should

be deleted.

The five summary statistics for the data are:

x̄ = 0.266, s1 = 0.028, ȳ = 0.264, s2 = 0.032 and r = 0.554.

As I stated earlier, the means are nearly identical and the standard deviations are similar; the mean

of the batting averages went down a bit and the standard deviation of the batting averages went up

a bit, both comparisons from 1985 to 1986.

Please forgive me the briefest of digressions. Let me tell you about a group of people I find

very annoying. I call them the naive predictors. A naive predictor believes that the future should

be exactly the same as the past. For example, if today I make 58 out of 100 free throws, a naive

predictor thinks that tomorrow I should make exactly 58 out of 100 free throws and if I fail to do

so, then something is wrong! To a naive predictor, if I make 59 out of 100 free throws tomorrow,

then there must be a reason why. It must be very frustrating to be a naive predictor!

Batting 300 (or higher) is considered to be quite good in baseball. The 12 players who batted

300 or higher in 1985 are listed in Table 21.4. A naive predictor would expect y to equal x for these

12 players (indeed for all players). Notice, however, that for 10 of the 12 players the 1986 batting

average was lower than the 1985 batting average. And not just a little bit lower: 67 points lower

for Salas, 53 for Iorg, 51 for Henderson and the massive 130 for Rayford. The mean decrease for
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Figure 21.8: Scatterplot of 1986 versus 1985 American League batting average with regression

line: ŷ = 0.095 + 0.633x.
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Table 21.4: 1985 and 1986 batting averages for the 12 players who batted 300 or more in 1985.

1985 1986 Change Residual

Name x y y − x ŷ e
Floyd Rayford 0.306 0.176 −0.130 0.289 −0.113
Mark Salas 0.300 0.233 −0.067 0.285 −0.052
Garth Iorg 0.313 0.260 −0.053 0.293 −0.033
Rickey Henderson 0.314 0.263 −0.051 0.294 −0.031
Wayne Tolleson 0.313 0.265 −0.048 0.293 −0.028
George Brett 0.335 0.290 −0.045 0.307 −0.017
Brett Butler 0.311 0.278 −0.033 0.292 −0.014
Harold Baines 0.309 0.296 −0.013 0.291 0.005

Wade Boggs 0.368 0.357 −0.011 0.328 0.029

Juan Beniquez 0.304 0.300 −0.004 0.287 0.013

Phil Bradley 0.300 0.310 0.010 0.285 0.025

Don Mattingly 0.324 0.352 0.028 0.300 0.052

Mean: −0.035 −0.014
Mean without Rayford: −0.026 −0.005

these 12 players is 35 points, a huge amount for a batting average. Even deleting Rayford, the

mean decline is 26 points.

Why did this happen? First, let’s look at some obvious possibilities.

1. Perhaps batting averages were simply much lower in 1986 than they were in 1985. No.

As we saw, the mean batting average in 1986, 0.264, is only two points less than the mean

batting average in 1985, 0.266. A two point drop overall does not explain a 35 point drop

for the top 12 hitters of 1985!

2. Perhaps the spread in the batting averages decreased dramatically from 1985 to 1986. The

consequences of this declining spread would include that the most extreme values in 1985

would shrink towards the mean in 1986. No. As we saw, the standard deviation of the batting

averages in 1986, 0.032, is actually larger than the standard deviation of the batting averages

in 1985, 0.028.

Before I explain why these changes occurred, let’s look at the nine worst hitters—based on batting

average—in 1985 and see how they did in 1986. The data are presented in Table 21.5. While the

changes in this new table are less dramatic than what we had earlier—there is no anti-Rayford or

anti-Salas in this group—there is still a notable pattern: seven of the nine hitters improved in 1986

and the mean change for the nine hitters is an improvement of 14 points.

To summarize, the naive predictors are too optimistic about good hitters and too pessimistic

about bad hitters.

How do the regression line predictions perform for these 21 extreme (in 1985) hitters?
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Table 21.5: 1985 and 1986 batting averages for the nine players who batted 228 or lower in 1985.

1985 1986 Change Residual

Name x y y − x ŷ e
Rick Manning 0.218 0.254 0.036 0.233 0.021

Dick Schofield 0.219 0.249 0.030 0.234 0.015

Rob Wilfong 0.189 0.219 0.030 0.215 0.004

Greg Gagne 0.225 0.250 0.025 0.237 0.013

Steve Buechele 0.219 0.243 0.024 0.234 0.009

Julio Cruz 0.197 0.215 0.018 0.220 −0.005
Pat Sheridan 0.228 0.237 0.009 0.239 −0.002
Darryl Motley 0.222 0.203 −0.019 0.236 −0.033
Gorman Thomas 0.215 0.187 −0.028 0.231 −0.044
Mean: 0.014 −0.002

• For the 12 best hitters in 1985, the regression prediction, ŷ, was too large—the residual is

negative—for seven players and too too small—the residual is positive—for five players.

The mean of these 12 residuals is−0.014 and, if we exclude Floyd Rayford, the mean of the

remaining residuals is −0.005.

Clearly, the least squares line is much better than the naive predictors for the players in

Table 21.4.

• For the nine worst hitters in 1985, the regression prediction, ŷ, was too large—the residual

is negative—for four players and too small—the residual is positive—for five players. The

mean of these nine residuals is nearly zero, −0.002.

Clearly, the least squares line is much better than the naive predictors for the players in

Table 21.5.

Here is what generalizes about the above example on baseball players and batting averages.

The following is not a mathematical result, although, as you will see soon, there is a math result

that supports it. The following is an empirical result; it is true for real data. Indeed, if you can

find data, real or pretend, that satisfies my conditions, but violates my conclusion, let me know

right away! Who knows, this could result in an

insert-your-name-here Paradox, similar to the Simpson’s Paradox you learned about

earlier.

• Conditions:

– There is a linear relationship in the data between X and Y .
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– The means and approximately equal, x̄ ≈ ȳ, and the standard deviations are approxi-

mately equal, s1/s2 ≈ 1. The correlation coefficient is positive, but smaller than 1. (A

similar result is true if the correlation coefficient is negative, but larger than −1, but I
want to keep this simple.)

• Conclusion:

– For cases with an x larger than the mean x̄, the values of y tend to be smaller than x
but larger than the mean ȳ.

– For cases with an x smaller than the mean x̄, the values of y tend to be larger than x
but smaller than the mean ȳ.

As best I can tell, this result first appeared in a 1886 paper by (later Sir) Francis Galton, [3]. Here

is what Galton did.

A case for Galton consisted of a pair of men, an adult father and his adult first born son. He

took X to be the height of the father and Y to be the height of the son. (In Galton’s day what we

call height was called stature.) My conditions above are met by Galton’s data and my conclusion

is true for his data too. Namely, Galton noted that the sons of extremely tall fathers also tended to

be tall, but shorter than their fathers. Also, he noted that the sons of extremely short fathers also

tended to be short, but taller than their fathers. Galton’s conclusion? I think that the title of his

paper says it all:

Regression Towards Mediocrity in Hereditary Stature.

Apparently, Galton thought that eventually all Englishmen would be the same height; after all,

if tall fathers beget shorter sons and short fathers beget taller sons, what else can one conclude?

Galton’s error was in failing to note that s2 was approximately equal to s1. If, indeed, men were re-

gressing to the same height, then s2 should be noticeably smaller than s1. (Also, if the phenomenon

of regression of heights was actually occurring from generation to generation, why weren’t all men

the same height by 1886?) In any event, Galton’s use of the word regression has persisted to this

day; hence, the name of this chapter.

This leaves the question: If the son’s of tall men are becoming shorter, but not too much

shorter; and the son’s of short men are becoming taller, but not too much taller; how is it that

s2 is not smaller than s1? The answer is quite simple: while the extremes are collapsing to the

mean this is counteracted by the fact that the son’s of average height fathers show more spread;

some are much taller than average dad; some are much shorter than average dad; and some are

approximately the same height as average dad.

Historical Note: Please do not construe the above as a criticism of Galton or his work. I

am unqualified for either task, but do note that he was a giant in the field of quantitative social

sciences. Stephen Jay Gould has written eloquently on the difficulty with judging scientists from

another era; if you are interested in this topic, read his book The Mismeasure of Man [4], which

is on my list of the five best books I have ever read. (I have read nearly 2,000 books.) Not only

is the above tale not a criticism, I cannot swear to its accuracy. As with FDR and Ronald Reagan,

supporters and detractors of Galton have very different views of his errors, if any. In particular, my
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statement that Galton believed all Englishmen would eventually be the same height is disputed. I

personally would be surprised if he believed this at his death in 1911, but in 1886? Who knows?

As Muhammad Ali once said,

A man who views the world the same at fifty as he did at twenty has wasted thirty

years of his life.

Even if part of my tale is above is historically inaccurate, I believe it is a good way to introduce

you to the topic of the regression effect. I am open to suggestions for a better story.

I will now show you the math behind the earlier result, as promised.

It is insightful to rewrite Equation 21.5 as follows:

ŷ = ȳ + r(s2/s1)(x− x̄) becomes

ŷ − ȳ = r(s2/s1)(x− x̄) becomes

ŷ − ȳ

s2
= r(

x− x̄

s1
). (21.6)

This last is equation is not designed for “Plugging in x to obtain ŷ.” It is designed to help us

understand the regression line better. This improved understanding requires a fair amount of work.

It will help if we use a specific value of r, say r = 0.554 from our batting average data. Let’s

suppose that we have a hitter whose 1985 batting average is

x = x̄+ s1 = 0.266 + 0.028 = 0.294.

Actually, none of the 124 players in my data set had x = 0.294, but I don’t mind because I simply

am trying to explore Equation 21.6.

As discussed earlier, a naive predictor would predict 0.294—i.e., no change—for the 1986

batting average of this player. A somewhat more sophisticated naive predictor might reason as

follows:

This player achieved one standard deviation above the mean on x; thus, I predict that
he will achieve one standard deviation above the mean on y.

Thus, the more sophisticated naive predictor would obtain

ȳ + s2 = 0.264 + 0.032 = 0.296.

The regression line disagrees with both versions of the naive predictor. The regression line says

that the predicted value of y, i.e., ŷ, equals only r = 0.554—not one—standard deviations more

than the mean:

ŷ − ȳ

s2
= r or ŷ = ȳ + rs2 = 0.264 + 0.554(0.032) = 0.264 + 0.018 = 0.282.

Let me share with you my picturesque interpretation of Equation 21.6. I will give it in terms of

the batting average study and its r = 0.554; I trust that you will be able to extend my interpretation

to other studies and other values of r that are strictly between 0 and 1.
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Consider again the (fictitious) player who had x = 0.294. This is a good batting average for

1985; it is one standard deviation larger than the mean 1985 batting average of the 124 players.

I anticipate that this man will also be good in 1986; good but not as good as he was in 1985. In

particular, I predict that only 55.4% (the percentage version of r = 0.554) of whatever made him

better than average in 1985 will persist to 1986. My view of the world is: skill persists, luck does

not. Thus, my picturesque interpretation is that 55.4% of what made him special in 1985 was skill,

the other 44.6% must have been luck. As a statistician, by luck I mean what most people mean

plus I include all factors that are not included in my analysis. An obvious factor that I left out of

my batting average study was the age of the player. For example, George Brett was a great Hall-

of-Fame baseball player, but the drop in his batting average from x = 0.335 to y = 0.290 was—in

my opinion—in part due to his turning 33 years-old during the 1986 season. Brett had some good

seasons after 1985, but nothing compared to his performance before 1986.

The consequences on predictions of the presence of r in Equation 21.6 is called the regression
effect. (Remember if r was not there, or was equal to one, then the least squares predictions would
be the sophisticated naive predictions.) The regression fallacy is the mistake of believing that the

regression effect must be due to something other than simply the fact that r is smaller than 1.

21.4 Some Comments on the Regression Line

In this section I will gather together and present several loose ends that I failed to mention earlier

in this chapter. Sorry, but I could not find a way to mention these earlier without disrupting the

flow of ideas.

21.4.1 Don’t Round the Predictions!

Do you remember that in Chapter 14, I showed you how to predict the total number of successes

in future Bernoulli trials or future observation of a Poisson Process? At that time, I recommended

that you round your answers; for example, predicting that the total number of successes would

be between 53.7 and 81.2 seemed silly because the number of successes would be, perforce, an

integer.

Now, fast forward to the exam scores example of this chapter. Recall that the final exam was

graded in one-half point increments; as a result, for example, 92.0 was a possible score on the final

and 92.5 was a possible score on the final, but any number between these two was impossible.

Thus, if, say, you obtained ŷ = 92.3 it would seem that my advice would be to round this to

92.5. Wrong! In regression we do not round our value of ŷ, we are happy to leave it equal to an

impossible value. Why? There are two reasons:

1. First, a minor reason: We obtain the ŷ’s by applying the Principle of Least Squares. If we go
rounding these off, we are no longer following the principle.

2. Now the more important reason: If we round off the values of ŷ to possible values, then the

regression line is no longer a line; for my exams example, it will look like a staircase.
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Of course, anytime we deal with measurements, there will be rounding. Usually, with complicated

computations there will be rounding. Either of these is fine; just don’t round in order to obtain a

possible response. Nobody cares about that.

21.4.2 We Call it the Regression Line, but . . .

Lines in mathematics are infinite, they go on forever. Lines in Statistics don’t. More accurately,

statisticians should refer to the regression line as the regression line segment.

For every set of data we have examined, there is a limited range of x values. For two examples:

• In the exam scores data set, the midterm scores range from a low of 39.0 to a high of 59.0.

• In the batting averages study, the 1985 batting averages range from a low of 0.189 to a high

of 0.368.

For the spiders, the exams and the batting averages, I looked at a scatterplot and declared the

relationship to be linear. Obviously, I have no empirical evidence on whether the relationship is

linear outside the range of the x’s in my data set. The following example makes this point quite

well, but please don’t call me sadistic for showing it to you. Paraphrasing President Nixon, “I

would never do this experiment; it would be wrong.”

Example 21.3 (Fish activity and water temperature.) These data are from a student’s project

many years ago. Sadly, I don’t remember the student’s name; if you are out there and read this, let

me know!

My student was a biology major and she reported that she had read in a textbook,

As water temperature increases, fish activity increases.

My student owned an aquarium with a water temperature control and she decided to collect data

on her fish to investigate the textbook’s claim. She let Y denote fish activity and X denote water

temperature in degrees Fahrenheit. One of the most interesting things she learned in her study was

the difficulty in measuring fish activity! She did, however, manage to obtain a good set of valid

data, a scatterplot of which is presented in Figure 21.9.

Look at the scatterplot for a moment; what do you see? Well, I see no isolated cases. I see an

increasing linear relationship between x and y and I can almost see the graph of the regression

line superimposed on the scatterplot. It appears that for water temperature in the range of 69 to 81

degrees, the textbook is correct.

Here is my question for you:

Do you believe that it is scientifically valid to extend the regression line to temperatures

above 81 degrees? To 83 degrees? To 90 degrees? To 212 degrees?

Well, obviously, at 212 degrees there won’t be any fish activity! Similarly, there won’t be any fish

activity at 32 degrees.
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Figure 21.9: Scatterplot of fish activity versus water temperature (degrees F).
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21.4.3 The Regression of X on Y

In math, suppose you have the equation y = mx+ b form 6= 0. You can then solve for x in terms

of y and obtain x = (y − b)/m = (1/m)y − b/m. Note that the product of the slopes of these two

lines ism(1/m) = 1.
In Statistics, the situation is a bit more complicated. First, let me note that in many scientific

problems, it is reasonable to consider using Y to predict X . For example, on exams it is possible

that a student will miss a midterm and the teacher and student decides to use the final to predict the

midterm score. For the batting averages study, one might want to use the 1986 batting average to

predict the 1985 batting average. To this end, let’s look at the representation of the regression line

given in Equation 21.5:

ŷ = ȳ + r(s2/s1)(x− x̄).

To obtain the regression line for using y to predict x, we simply interchange the roles of y and

x—which includes interchanging the roles of s1 and s2—in the above and obtain the following

result. (Recall that changing the roles of x and y has no effect on the correlation coefficient r.)

Result 21.3 (The regression line for using y to predict x.) The regression line for using y to pre-
dict x is

x̂ = x̄+ r(s1/s2)(y − ȳ). (21.7)

This new regression line is not just obtained by taking the old regression line (y on x) and solving

for x. The easiest way to see this—i.e., that avoids messy algebra—is to note that the product of

the slopes of these two regression lines is:

r(s2/s1)× r(s1/s2) = r2,
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which is smaller than 1 unless r equals +1 or −1; in other words, unless all data points lie exactly

on a straight line. If the lines are mathematically equivalent, then the product of these slopes must

equal 1, as shown at the beginning of this subsection.

21.5 Summary

In this chapter, we consider scientific problems for which each unit—called a case now—yields

two numbers. Data from n cases are represented by

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn).

Usually the variables, X and Y , are viewed asymmetrically by the researcher. In particular, Y is

viewed as the response and X as the predictor. These labels convey two features:

• That the researcher has a greater interest in Y than inX; and/or

• The value of X is obtained primarily to help one better understand Y .

If the researcher truly views the variables symmetrically—for example, if the two numbers are

the adult IQs of first versus second born identical twins—then the researcher should assign the

labels—for my example, say,X for the first born—in any arbitrary manner. In this situation, how-

ever, remember that each assignment gives a different regression line. (The value of the correlation

coefficient, however, is not affected by the assignment.)

Following what we did in Chapter 1, begin by drawing a picture of the data. In Chapter 1 with

one variable, our first picture was the dot plot. The scatterplot of this chapter is an extension of the

idea of a dot plot. I will not ask you to draw a scatterplot by hand, but if I give you a particular pair

(x, y) from a data set, you need to be able to locate it in the scatterplot.

Given a scatterplot for a set of data, the first thing to do is to look for one or more isolated

cases. Next, look at the scatterplot—perhaps the new scatterplot after deleting one or more isolated

cases—and determine whether the pattern it reveals is linear. In Chapter 21 and most of Chapter 22,

we only consider data sets that possess a linear relationship between X and Y .

The correlation coefficient, defined in Equation 21.2, tells us the direction and strength of the

linear relationship in the data. Make sure that you understand the six properties of the correlation

coefficient that are given in Result 21.1 on page 546. Note the 12 prototypical scatterplots and

their correlation coefficients given in Figure 21.4 on page 548. In particular, if given a scatterplot,

you should be able to determine its approximate correlation coefficient.

The correlation coefficient, r, along with the means and standard deviations of the x’s and the

y’s—i.e., five numbers in total—allow us to find the line that best describes the data set. This best

line is determined by an application of the Principle of Least Squares. You are not responsible for

either understanding or applying the Principle of Least Squares, but if you are interested in these

issues, see the Appendix near the end of this chapter.

The best line is called the regression line and it is given in Result 21.2 on page 556. I prefer

the following representation of it, given in Equation 21.5:

ŷ = ȳ + r(s2/s1)(x− x̄).
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This expression allows us to see easily the Law of the Preservation of Mediocrity, namely that if a

case has x = x̄, then the case’s ŷ = ȳ. In other words, the regression line passes through the point

(x̄, ȳ).
In the data set, case i has two numbers: xi and yi. By substituting xi into the regression line

for x, we get a third number for the case, its predicted value:

ŷi = b0 + b1xi.

Each case also has a residual:

ei = yi − ŷi,

giving each case a fourth number.

The residual equals 0 if, and only if, the prediction is perfect; i.e., ŷi = yi. A positive [negative]

residual means that the actual yi is larger [smaller] than the predicted value ŷi. In terms of the

scatterplot, a case is exactly on the line if, and only if the prediction is perfect. A case is above

[below] the regression line if its residual is positive [negative].

Another way to write the regression line is given in Equation 21.6:

ŷ − ȳ

s2
= r(

x− x̄

s1
).

For r strictly between 0 and 1, this equation shows the regression effect:

For any c > 0 [c < 0] and any case with x equal to x̄ + cs1—in words, the value of x
is c standard deviations larger [smaller] than the mean of the x’s—the predicted value

of y is only r × c standard deviations larger [smaller] than mean of the y’s.

In 1886, Francis Galton discovered this phenomenon and termed it regression towards mediocrity

and the term regression stuck. The regression fallacy is to believe that the regression effect has a

cause other than the fact that r is smaller than one.

Finally, the chapter ends with a few unconnected remarks, with examples:

1. Report the value of ŷ without regard to whether it is a possible value of y.

2. The regression line does not extend infinitely.

3. It is mathematically possible to regressX on Y ; whether this makes sense scientifically will

depend on the problem. An important feature of the two regression lines is that the product

of their respective slopes is r2.

21.6 Practice Problems

1. Refer to the exam data on 36 students, presented in Figure 21.5. In this chapter, I found the

regression line for the 35 cases that remained after I deleted the isolated case with x = 35.5
and y = 95.5. You are given the following summary statistics for the entire set of 36 cases:

x̄ = 52.31, s1 = 5.961, ȳ = 92.35, s2 = 5.109 and r = 0.353.
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(a) Obtain the regression line using the midterm exam score to predict the final exam score

for the 36 cases.

(b) Use the regression line to obtain the predicted value of y for the following four values of
x: 46.0, 50.0, 55.0 and 59.0. Compare your four predictions to the values in Table 21.3.

Comment.

2. Figure 21.10 presents a scatterplot of the public’s rating of a movie versus the rating given

by a panel of movie critics for n = 20 movies, circa 1991. The worst possible rating is one

star and the best possible rating is four stars. Compare this scatterplot to the 12 scatterplots

presented in Figure 21.4. One of the following numbers is the correlation coefficient for

these data; which one is it?

−0.83,−0.36, 0.00, 0.36, 0.83.

3. Figure 21.11 is a scatterplot of the number of victories (in 82 games) in 1991–92 versus

the number of victories (again, in 82 games) in 1990–91 for the n = 27 NBA (National

Basketball Association) teams.

One of the following numbers is the correlation coefficient for these data; which one is it?

0.000, 0.052, 0.302, 0.724, 1.000.

4. Sometimes we don’t need to use fancy statistics to learn from a scatterplot. We simply need

to avoid dumb ideas, as this example shows.

The data and details of this example are taken from [5] which provides additional information

for the interested reader. On January 28, 1986, shortly after lift-off one of the rocket boosters

on the space shuttle Challenger exploded resulting in the death of the seven crew members.

A Presidential Commission concluded that the disaster was caused by the failure of an O-

ring in a field joint on the rocket booster. The Commission further concluded that the failure

was due to a faulty design which made the O-ring unacceptably sensitive to a number of

factors, including temperature. The O-rings had been damaged on several of the 24 previous

shuttle program flights. Figure 21.12 is the scatterplot of the number of incidents of thermal

distress to field joint O-rings versus the launch temperature for 23 shuttle flights before the

Challenger disaster. (The hardware from the fourth shuttle flight was lost at sea.)

(a) Write a few sentences that describe what the scatterplot reveals.

(b) Based on the scatterplot (and not hindsight) criticize the decision to launch the Chal-

lenger when the temperature was 31 degrees.

(c) Unfortunately, the night before the Challenger launch when managers discussed the

effect of temperature on field joint O-rings, they decided the launches that yielded

y = 0 were irrelevant. Look at the seven cases in Figure 21.12 that have y > 0; is there
a convincing relationship between Y andX?
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Figure 21.10: Scatterplot of the public’s versus critics’ rating of 20 movies, circa 1991.
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5. (See Practice Problem 3 above.) For the data in Figure 21.11:

x̄ = ȳ = 41.00, s1 = 12.96, s2 = 13.08 and r = 0.724.

(a) Explain why it is no surprise that x̄ = ȳ = 41.00.

(b) Find the equation of the regression line. Use the form

ŷ = ȳ + r(s2/s1)(x− x̄).

Explain this equation to a basketball fan who has not read this chapter.

(c) In the 1990–91 season: Chicago won 61 games; Seattle won 41 games; and Miami won

24 games. Calculate the value of ŷ for each of these teams.

(d) In the 1991–92 season: Chicago won 67 games; Seattle won 47 games; and Miami won

38 games. Calculate the value of the residual e for each of these teams.
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Figure 21.11: Scatterplot of the number of victories in the 1991–92 season versus the number of

victories in the 1990-91 season for 27 National Basketball Association (NBA) teams.
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Figure 21.12: Scatterplot of the number of incidents of thermal distress to field joint O-rings versus

launch temperature for 23 space shuttle flights before the Challenger accident.

50 55 60 65 70 75 80 85

0

1

2

3

Number of Incidents

Launch Temperature (F)

O OO3 OO2

O O 2

O

O

O O2 O

O

O

21.7 Solutions to Practice Problems

1. (a) The slope and intercept of the regression line are:

b1 = r(s2/s1) = 0.353(5.109/5.961) = 0.3025 and

b0 = ȳ − b1x̄ = 92.35− 0.3025(52.31) = 76.526.

Thus, the regression line is:

ŷ = 76.526 + 0.3025x.

(b) For x = 46.0, I get

ŷ = 76.526 + 0.3025(46.0) = 90.444 the old ŷ is 89.19.

For x = 50.0, I get

ŷ = 76.526 + 0.3025(50.0) = 91.654; the old ŷ is 91.00.

For x = 55.0, I get

ŷ = 76.526 + 0.3025(55.0) = 93.166; the old ŷ is 93.26.

For x = 59.0, I get

ŷ = 76.526 + 0.3025(59.0) = 94.376; the old ŷ is 95.06.
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2. The relationship is clearly increasing and linear; thus, we may eliminate r = −0.83, r =
−0.36 and r = 0.00. The relationship is weaker than our prototype for r = 0.80; thus, we
may eliminate r = 0.83. By process of elimination, r = 0.36.

3. The relationship is clearly increasing and linear; thus, we may eliminate r = 0.00. The

relationship is not perfect; thus, we may eliminate r = 1.00. The relationship is stronger

than our prototype for r = 0.40; thus, we may eliminate r = 0.052 and r = 0.302. By

process of elimination, r = 0.724.

4. (a) The relationship is definitely strong and decreasing. In my opinion, with a count re-

sponse that takes on very few values, the idea of linear is somewhat meaningless. Ex-

cepting the three cases with x > 65 and y ≥ 1, the pattern for the remaining 20 cases is

perfectly monotonic and deterministic: for x = 53, y = 3; for 57 ≤ x ≤ 63, y = 1;
and for x ≥ 66, y = 0. Looking at these 20 cases, it’s hard to imagine that anyone

would think that temperature doesn’t matter!

I conjecture that the case with x = 75 and y = 2 had a big role in the disaster. To me,

this suggests that some O-rings had defects. It amazes me (not in a good way) that the

observation that a warm temperature cannot fix a bad O-ring, could ever lead anyone to

ignore the evidence a that cold temperature could damage a good O-ring!

(b) As with my example of fish activity and water temperature, I don’t see a data-based

reason to worry about a launch at 31 degrees, simply because there are no data for any

temperature remotely close to 31 degrees. I have tried throughout these notes to en-

courage you to use Statistics to supplement your scientific knowledge. As I understand

it, simple physics suggests rather strongly that as temperature falls, the O-rings pre-

dictably will perform worse. (Sadly, my understanding of physics falls between none

and simple.) Limitations of statistical methods should never be used as an excuse for

ignoring scientific knowledge!

(c) With only the seven cases with y ≥ 1 and no knowledge of physics, I cannot argue

with the decision. I am amazed (again not in a good way), however, that anyone would

ever think that the cases with y = 0 were irrelevant.

5. (a) Every team played 82 games. Every game has a winner and a loser. Hence, the mean

number of victories is 82/2 = 41 each year.

(b) First, the slope is

r(s2/s1) = 0.724(13.08/12.96) = 0.7307.

Thus, the equation of the regression line is:

ŷ = 41 + 0.7307(x− 41).

Here is my description. Every team plays 82 games. Thus, winningmore than 41 games

in 1990–91 is an above average performance. Thus, (x−41), if positive, measures how
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many games above average a team was in 1990–91. The regression line predicts that

only 73% (more precisely, 73.07%) of the skill exhibited in x is inherited by y. Thus,
for example, a team that was 10 games better than average in 1990–91 is predicted to

be only 7.3 games better than average in 1991–92.

Similarly, if (x−41) is negative, we predict the team will win more games in 1991–92.

Lest you go all Galton on me and predict that eventually every team will win one-half

of its games, note that s2 is slightly larger than s1.

(c) First, Seattle is easy; because its x equals x̄, its ŷ = ȳ = 41. The Law of the Preserva-

tion of Mediocrity at work!

For Chicago: ŷ = 41 + 0.7307(61− 41) = 41 + 14.6 = 55.6.

For Miami: ŷ = 41 + 0.7307(24− 41) = 41− 12.4 = 28.6.

(d) The residuals are e = y − ŷ = 47 − 41 = 6 for Seattle; e = 67 − 55.6 = 11.4 for

Chicago; and e = 38− 28.6 = 9.4 for Miami.

21.8 Appendix: Optional Material

21.8.1 Properties 3 and 5 of the Correlation Coefficient

I will begin with property 3, which I will state again for convenience:

3. The value of the correlation coefficient is always between −1 and +1. It equals +1 if, and

only if, all data points lie on a straight line with positive slope; it equals −1 if, and only if,

all data points lie on a straight line with negative slope.

In particular, let’s suppose that for all cases,

yi = a+ bxi, with b > 0.

In words, all of the data lie exactly on a straight line with positive slope. We need the following

useful facts about means and standard deviations, which I could have proven in Chapter 1, but they

are not much fun to prove; thus, it is optional for you to view it.

ȳ = a+ bx̄ and s2 = bs1.

The proof, described below, is not intellectually challenging, but is a bit messy algebraically.

First, I note that
∑

yi =
∑

(a + bxi) = na + b
∑

xi.

Dividing both sides by n, we obtain
ȳ = a + bx̄,
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the first of our results. Next, we look at the deviations for the y’s:

yi − ȳ = a+ bxi − a− bx̄ = b(xi − x̄).

Thus,
∑

(yi − ȳ)2 =
∑

[b(xi − x̄)]2 = b2
∑

(xi − x̄)2.

Thus, dividing both sides by the degrees of freedom, (n− 1), we find

s22 = b2s21.

Taking square roots of both sides we get the desired result.

Now, we are ready to revisit the definition of the correlation coefficient for the current situation:

r =

∑

(xi − x̄)(yi − ȳ)

(n− 1)s1s2
=

∑

(xi − x̄)(a+ bxi − a− bx̄)

(n− 1)s1bs1
=

∑

b(xi − x̄)(xi − x̄)

b(n− 1)s1s1
=

s21
s1s1

= 1.

If, instead, let’s suppose that for all cases,

yi = a+ bxi, with b < 0.

The above proof works with the following change. The relationship between standard deviations

becomes

s2 = |b|s1 = −bs1 because b < 0.

This changes the denominator of my earlier proof. The numerator is unaffected and eventually,

after much rewriting and canceling, we have r = b/(−b) = −1.
Although I will not provide details, a slight modification of the algebra above will prove prop-

erty 5 of the correlation coefficient in Result 21.1.

21.8.2 The Principle of Least Squares

My goal is to find the best line for describing my exam score data. Stating the obvious, there are

two ways for us to go about this task:

• We can specify a way to measure how good each possible line is. Which ever line has the

most goodness, is the best line.

• We can specify a way to measure how bad each possible line is. Which ever line has the

least badness, is the best line.

It turns out that it is more fruitful to measure how bad a line is and then find the line with the least

amount of badness. The particular method we use to do this is obtained by adopting the Principle

of Least Squares. Take a moment and look at this name; in particular, note the word principle.

This word reminds us that in the work below we are making a value judgment; with a different

value judgment, an analyst would likely find a different best line.

Using the Principle of Least Squares to find the best line for a set of bivariate data is a big task.

I will ease you into it in the following subsection.
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21.8.3 The Principle of Least Squares for One Variable

Suppose that we have n = 5 numbers that, after sorting, are:

0, 1, 2, 7, 10.

In Chapter 1 you learned two ways to summarize these numbers: by their mean x̄ = 4 or by their

median x̃ = 2. We are now going to spend a few minutes looking at these five numbers and their

two summaries in the context of this section.

Let me pose the following question:

Which number c is best at describing these five numbers?

Of course, this question is meaningless until we decide how to measure badness. To be concrete,

let me start by guessing c = 4. I want to know how badly c = 4 does, overall, at describing my

five numbers. I decide that when I describe a number x by c = 4, I incur a loss of magnitude:

|x− c| = |x− 4|.

This loss (function) is called absolute error loss. It tells us, for example, that when I describe

x = 1 by c = 4, I incur a loss of |x− c| = |1− 4| = 3; when I describe x = 10 by c = 4, I incur a
loss of |x− c| = |10− 4| = 6; and so on. I measure the overall badness of c = 4 by summing the

errors over all five data points:

|0− 4|+ |1− 4|+ |2− 4|+ |7− 4|+ |10− 4| = 4 + 3 + 2 + 3 + 6 = 18.

For comparison, the overall badness of c = 2 is:

|0− 2|+ |1− 2|+ |2− 2|+ |7− 2|+ |10− 2| = 2 + 1 + 0 + 5 + 8 = 16.

We see that for these data, the median, 2, is better than the mean, 4, at describing these data. Well,

more precisely, the median is better than the mean if we use absolute error to measure badness.

It can be shown that for any set of data, when we use absolute error to measure badness, then

the best descriptor of the numbers in the data set is the median. For an odd sample size, the median

is the unique best descriptor; for an even sample size, there can be an interval of best descriptors.

The interested reader may prove this fact.

I could argue that absolute error is the natural choice for measuring loss, but I don’t want to

be so restrictive; after all, many great discoveries in science were considered unnatural, at least at

first.

There is another popular way to measure loss; it is called squared error. As the name suggests,

when the data point x is described by the number c, then the loss incurred is

(x− c)2.

For this choice of loss the overall badness in a set of data is

∑

(xi − c)2.
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Our goal is to find the number c that minimizes this overall badness. I will show you two ways to

obtain the value of c, one way uses algebra and the other calculus. Obviously, if you have never

studied calculus, you are free to ignore my calculus argument and it won’t affect your performance

on the final.

First, I will do algebra. We rewrite our overall badness as follows:

∑

(xi − c)2 =
∑

(xi − x̄+ x̄− c)2 =
∑

[(xi − x̄) + (x̄− c)]2 =

∑

(xi − x̄)2 + 2
∑

(xi − x̄)(x̄− c) +
∑

(x̄− c)2 = d1 + d2 + d3, respectively.

Let’s look at these three pieces separately. Remember: Our goal is to determine the value of c that
minimizes d1 + d2 + d3. First, we can ignore d1 because it is unaffected by the value of c. Next,

d2 = +2
∑

(xi − x̄)(x̄− c) = 2(x̄− c)
∑

(xi − x̄) = 2(x̄− c)× 0 = 0;

first, because the term (x̄ − c) can be factored outside the summation because its value does not

depend on i and, second, because the sum of the deviations always equals zero. Thus, d1 is un-
affected by c and d2 = 0 regardless of the value of c. Thus, we minimize the overall badness by

minimizing d3. Obviously, d3 ≥ 0 is minimized when by c = x̄ which makes it equal to 0.

The calculus argument is much easier. Define the function

f(c) =
∑

(xi − c)2.

Take the derivative of f with respect to c and set it equal to 0:

−2
∑

(xi − c) = 0.

Solving this equation for c gives c = x̄. The second derivative of f is the constant 2, which means

that c = x̄ minimizes f . (We don’t really need to find the second derivative; it is obvious that the

function f has no maximum.)

To summarize, for a single set of data, the median is the best descriptor for absolute error and

the mean is the best descriptor for squared error.

21.8.4 Back to Finding the Best Line

I want to generalize the above ideas relating the mean and median to two different loss functions

to the problem of finding the best line for describing a scatterplot.

Our first principle is that if a particular case in a scatterplot lies exactly on a line, then the line’s

description of that point is perfect and no loss is incurred. (This is analogous to the idea that if a

particular xi is equal to the describer c, then with either absolute error or squared error loss, no loss
is incurred.) The obvious question is: How do we measure the badness of the line for a point that

does not lie on it?

To this end, please look at Figure 21.13. This figure shows just one case from our data set on

exam scores, namely the student who scored x = 44.5 and y = 82.0. This figure also shows the

regression line from Figure 21.6 and various dashed lines.
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Figure 21.13: The regression line for the final exam score versus midterm exam score for n = 35
students, with the case x = 44.5 and y = 82.0.
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Look at the graph of the regression line above the value x = 44.5. The height of the line above
x = 44.5 is the value of

ŷ = 68.42 + 0.4516(44.5) = 88.52,

because this is what the graph presents: all pairs (x, ŷ) that satisfy the equation of the regression

line. By contrast, the height of the circle above x = 44.5 is that student’s actual final exam score,

y = 82.0. In words, the actual y does not agree very well with the predicted y. We measure this lack

of agreement by calculating the residual, e = (y−ŷ)which for this case is (82.0−88.52) = −6.52.
The Principle of Least Squares tells us to measure the badness in this value by squaring it:

(−6.52)2 = 42.5104.

Thus, the squared residual, usually called squared error, suffered (statisticians like to be a bit dra-

matic, at times) by using the regression line to predict the final for the student we have been

considering is equal to 42.5104.

It would be incredibly tedious, but we could repeat the above argument to the other 34 cases

in the data set. This would give us 35 squared errors. The Principle of Least Squares says to

sum these 35 squared errors. We call this sum of squared errors, rather noncreatively, the sum of

squared errors for the regression line. With the help of Minitab, I find that for the regression line,

these 35 squared errors sum to 708.9464.

Why am I so enamored of our regression line? Answer: For the following mathematical fact

that I will prove shortly:

Suppose that I use any line other than

ŷ = 68.42 + 0.4516x.
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For this new line, for every case I calculate the predicted value of y, call it ẏ. Then I

calculate the squared error of the difference between the actual and predicted response:

(y − ẏ)2. I sum all of these squared errors. I will obtain a total of squared errors

that is larger than 708.9464. In words, the regression line is the best line because it

minimizes the sum of the squared errors; i.e., using the Principle of Least Squares, it

is the winner!

Using calculus, the proof of this fact is quite simple. I will briefly give the details below.

Define the function f with two arguments by:

f(a0, a1) =
∑

(yi − a0 − a1xi)
2.

Take two partial derivatives of f , one with respect to a0 and one with respect to a1. Solve for

the values b0 and b1 of a0 and a1, respectively, that make both equations equal 0. The resultant

equations are:
∑

(yi − b0 − b1xi) = 0 and
∑

xi(yi − b0 − b1xi) = 0. (21.8)

Look at the first of these equations. Rewriting it, we obtain

∑

yi = nb0 + b1
∑

xi.

Divide both sides by n to obtain

ȳ = b0 + b1x̄ or b0 = ȳ − b1x̄;

our familiar result in Equation 21.4.

This turns our second equation into

∑

xi(yi − ȳ + b1x̄− b1xi) = 0 or

∑

xi(yi − ȳ) = b1
∑

xi(xi − x̄). (21.9)

Note that

∑

(xi − x̄)(yi − ȳ) =
∑

xi(yi − ȳ)− x̄
∑

(yi − ȳ) =
∑

xi(yi − ȳ),

because deviations sum to zero. Similarly,

∑

(xi − x̄)(xi − x̄) =
∑

xi(xi − x̄)− x̄
∑

(xi − x̄) =
∑

xi(xi − x̄),

Thus, Equation 21.9 can be written as

∑

(xi − x̄)(yi − ȳ) = b1(n− 1)s21.

Divide both sides by (n− 1)s1s2 and obtain:

r = b1(s1/s2) or, our familiar b1 = r(s2/s1).
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Thus, the regression line given in these Course Notes is, indeed, the best line according to the

Principle of Least Squares.

If you are still reading—no mean task given the messiness of the above algebra—you might

wonder: What line do we get if we use the principle of absolute error? After all, for univariate

data, the Principle of Least Squares gives us the mean as the best descriptor and the principle of

minimizing total absolute error gave any median as the best descriptor.

The answer? Sadly, there is no closed-form representation of the best line unless we square

errors. This is not interpreted, however, as a major disappointment because, as you will see in

Chapter 22, the best line according to the Principle of Least Squares is very useful in science.
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Chapter 22

Simple Linear Regression: Continued

Chapter 21 presented quite a few methods for describing bivariate numerical data. Section 1 below

presents a few more descriptive methods. (This material should have been in Chapter 21, but I

decided that chapter was already too long!) Beginning with Section 2, this chapter will present

methods of inference.

22.1 Is the Regression Line Any Good?

George Edward Pelham Box (1919–2013) was a great statistician and founded the Department of

Statistics at the University of Wisconsin–Madison in 1960. He was my friend and taught me a

great deal about what’s important in Statistics. Being both famous and brilliant, George was often

asked for pithy statements; one of my favorites of his is:

Just because something is optimal, it doesn’t mean it’s any good!

George would especially direct this remark at mathematical statisticians who were solving prob-

lems that were not useful to scientists.

In the present context, we have found that the regression line is the best line for describing our

data; but is it any good? I will explore this question in detail.

As stated in the previous chapter, each case enters the data set with two numbers: xi and yi, its
values of the predictor and the response. After the regression line is determined, the case has two

additional numbers associated with it: its predicted response ŷi and its residual ei = yi − ŷi.
I want to examine the residuals. Each case has a residual; thus, there are n residuals:

e1, e2, e3, . . . , en.

With this one set of numbers, we are back in the realm of Chapters 1 and 2. We could draw a

picture of them: a dot plot, a histogram or, perhaps, a kernel density histogram. Also, we could

calculate their mean and their standard deviation.

To make this easier to follow, I will focus on two data sets from Chapter 21:

• The data on midterm and final exam scores for n = 35 students; and
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Figure 22.1: Frequency histogram of the n = 35 residuals for the regression of final exam score

on midterm exam score.
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Figure 22.2: Frequency Histogram of the Residuals for the Batting Averages Data.
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• The batting averages data for n = 124 American League baseball players.

Figure 22.1 presents a frequency histogram of the residuals for the exam scores and Figure 22.2

presents a frequency histogram of the residuals for the batting averages data. Let me make a few

comments about these histograms.

1. For the exam scores’ residuals, there are no outliers—the dot plot, not shown here, also

revealed no outliers. Otherwise, the shape of the histogram is not recognizable to me. If

I combine adjacent class intervals and have six class intervals instead of 12 (12 is a large

number of intervals for n = 35) the histogram becomes a bit smoother.

2. For the batting averages data, I note one small outlier, a residual equal to approximately

−0.120. Do you remember who this is?

Answer: A negative residual means that the ‘O’ for the case is below the regression line.

The fact that it’s an outlier means that its distance below the regression line is much larger

than any other case’s distance below the regression line. It’s Floyd Rayford!

Excluding Mr. Rayford, the remainder of the histogram is approximately bell-shaped and

symmetric.

3. Each histogram gives us a picture of the sizes of the residuals. For example:
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(a) For the exam scores, 69% (7 + 3 + 6 + 8 = 24 of 35) of the residuals are between

−4 and +4. Remembering what a residual measures, this means that by using the

midterm score to predict the final score via the regression line, the predicted final is

within four points of the actual final for 69% of the students. I view this as a glass half

full statement. As a glass half empty guy, I prefer to say that for 31% of the students,

the actual final deviates from the predicted final by more than four points.

(b) For the batting averages data, with the exception of Mr. Rayford, all predictions are

within 60 points (remember, this is baseball speak for 0.060) of the actual value of the

corresponding y. Although you cannot verify the following from Figure 22.2:

• 77% (95 of 124) residuals are between −30 and +30 points;

• 68% (84 of 124) residuals are between −25 and +25 points;

• 57% (71 of 124) residuals are between −20 and +20 points; and

• 30% (37 of 124) residuals are between −10 and +10 points;

Given that I always perform a regression analysis by using a computer software package, the

counts illustrated in item 3 above are easy to obtain. They are very helpful for the researcher who is

trying to decide whether the regression line is of value to the scientific problem being considered.

Regarding the batting averages study, as a baseball fan I am disappointed with the residuals. It

seems to me that predicting a batting average within 20 points is not particularly accurate and it is

disappointing to learn that for 43% of the players the prediction fails to meet this modest goal. If

you are a baseball fan, form your own opinion; you need not agree with me. Regarding the exams

scores, I conjecture that as a student you have stronger feelings about exam scores than I do. Thus,

I will leave it to you to decide whether predicting within four points for 69% of the students is a

noteworthy achievement.

Let me make one more comment about the above; this is an issue that sometimes causes con-

fusion. In Chapter 21, when I examined the scatterplot for the batting averages data, I labeled

three players as being isolated cases. They are isolated in comparison to the other cases in the

scatterplot. Now, we see that one case is an outlier. Thus, my first remark is to note that being

isolated and being an outlier are two different notions. Thus, be careful about your use of these

terms; sadly, many persons are careless and use them interchangeably, which leads to confusion.

Below are some comments on how to keep these ideas separate.

1. We use the term isolated when considering two (or more) variables simultaneously; we use

the term outlier for one variable. Note that we will not consider more than two variables

simultaneously in these Course Notes.

2. A case is isolated if it is far away from other cases (with the possible exception that it could

be close to another isolated case or cases). A case’s residual is an outlier if it is unusually far

away—in terms of vertical deviation—from the regression line. Often people are lazy and

say a case is an outlier instead of the more accurate a case’s residual is an outlier. Do not

interpret lazy as a pejorative; if I am talking with a statistician—or if I simply forget—I will

call a case an outlier.
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3. If you think about the previous item, you will note that if a case’s residual is an outlier, then

it is an isolated case, but a case can be isolated without its residual being an outlier. For

example, the residual for Wade Boggs [Don Mattingly] is 29 [52] points. They are far from

other cases, but close to the line. Well, Boggs is reasonably close to the line; Mattingly had

the second largest residual (third largest absolute residual) among the 124 players; thus, he

is almost an outlier.

22.1.1 The Mean and Standard Deviation of the Residuals

It can be shown that for every set of data, there are two restrictions on the values of the residuals.
∑

ei = 0 and
∑

xiei = 0. (22.1)

(If you read the optional Appendix in Chapter 21, the above is simply Equation 21.8.) From the

first of these equations, we see that the mean of the residuals, ē, equals 0 for every set of data. In

symbols,

ē = 0, for every set of data.

Let’s not rush on to the next topic; this is a very important equation. Similar to my feelings about

the Law of the Preservation of Mediocrity in Chapter 21, I would not like the regression line very

much if this equation were not true. Here is why.

The fact that
∑

ei = 0 means that the regression line passes through the center of the data in

the sense that: some cases are above the line and some are below, but the sum of the distances

above the line cancel exactly the sum of the distances below the line.

Now that we know the center—mean—of the distribution of the residuals, as in Chapter 1 we

turn to the determination of the amount of spread. In Chapter 1, for each xi in the data set, we

compared it, via subtraction, to its mean in order to obtain its deviation: (xi − x̄). Residual ei is its
own deviation because ē = 0. Thus, the sum of squared deviations of the residuals is simply the

sum of squared residuals, which we denote by SSE:

SSE =
∑

e2i =
∑

(yi − ŷi)
2 =

∑

(yi − b0 − b1xi)
2. (22.2)

Enrichment: Note that statisticians are a bit confused about their usage of the letters ‘e’
and ‘r.’ Why do I say this?

• We use r to denote the correlation coefficient and, hence, cannot use it for residuals. We

use e for residuals, that, historically, were also called errors. Hence, the sum of the squared

residuals is denoted SSE, where the E is for the word error. One reason statisticians replaced

the name errorwith residual is we got tired of the following exchanges between a statistician

(S) and a client (C):

S: Let’s look at a list of your errors.

C: I didn’t make any errors!

or

S: Here is a list of the errors from our regression analysis.

C: Fix those errors, then get back to me!

588



Also, we use SSE for sum of squared residuals because SSR—see below—is reserved for

the sum of squares due to regression.

Back in Chapter 1, I remarked that statisticians and mathematicians disagree on what to do

with the sum of squared deviations: the mathematicians divide it by n and the statisticians divide

it by the degrees of freedom, (n − 1). Recall, also, that there are (n − 1) degrees of freedom for

the deviations because they are subject to one constraint: they must sum to zero. As stated above

in Equation 22.1, the residuals have two constraints; hence, they have (n− 2) degrees of freedom.

As a result, statisticians define the variance and standard deviation of the residuals as follows.

Definition 22.1 (The variance and standard deviation of the residuals.) The variance of the resid-

uals is

s2 =
SSE

n− 2
, (22.3)

where SSE is defined in Equation 22.2.

The standard deviation of the residuals is

s =
√
s2 =

√

SSE

n− 2
. (22.4)

We now have three standard deviations associated with a regression analysis:

• The standard deviation of the values of x, denoted by s1.

• The standard deviation of the values of y, denoted by s2.

• The standard deviation of the residuals, denoted by s.

Note that it wouldmake sense to denote the last of these by se with the subscript e to remind us that

we are measuring the spread in the residuals. Statisticians don’t do this, for at least two reasons:

1. We are lazy and want to save the effort of typing a subscript whenever possible.

2. The lack of a subscript honors the standard deviation of the residuals as being the most

important of the three standard deviations. This is analogous to how certain pop stars—

and numerous Brazilian soccer players—have only one name—Cher, Prince, Pelé, etc. (I

apologize for my pop culture references being so dated. Also, of course, Prince became the

favorite of all math-ophiles when he replaced his name with a symbol!)

For the exam scores data, s = 4.635. Because ē = 0, the Empirical Rule from Chapter 2 (Re-

sult 2.2) tells us that approximately 68% of the residuals are between −4.635 and +4.635; i.e.,
approximately 68% of the predicted values are within 4.635 of the actual response.

The Empirical Rule is actually a pretty bad approximation for the exam scores data. As we saw

above, 69% of the residuals are between −4 and +4. Here’s another way to see that it is bad; by

actual count—details not given— fully 80% (28 of 35) residuals are between −4.635 and +4.635.
As noted, in Chapter 2, the Empirical Rule is unreliable for small values of n or for distributions

that are not bell-shaped; and the exam scores’ residuals suffer both of these maladies.

By the way, if you prefer pictures to counting, please refer to Figure 22.3. This figure presents

the scatterplot of the 35 pairs of exams scores with three parallel lines superimposed:
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Figure 22.3: Final Exam Score Versus Midterm Exam Score for 35 Students.
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• The regression line ŷ = 68.42 + 0.4516x, drawn as a solid line.

• The line ŷ + s, drawn as a dotted line.

• The line ŷ − s, drawn as a dotted line.

A quick examination of this picture shows that four cases fall below the line ŷ − s and three cases

fall above the line ŷ + s; thus, the remaining 28 cases fall between the dotted lines. In words, 28

cases have a residual between the value −s and +s, as I reported earlier.

For the batting averages data, s = 0.0268, just under 27 points. By actual count—details not

given—slightly more than 72% (87 of 124) of the residuals are between −0.0268 and +0.0268.
Here, n is pretty large and, excepting the outlier, the residuals have a bell-shaped distribution. The

72% is larger than the Empirical Rule’s 68% because Mr. Rayford’s residual inflates the value of s.
In particular, if one deletes Mr. Rayford from the data set, and runs the regression program again, s
becomes 0.0248, a reduction of 7.5% from the earlier s = 0.0268. Sadly, however, for the new

data set with n = 123, only 65% (80 of 123) of the residuals are between −0.0248 and +0.0248;
approximations can be so annoying! To further confuse matters, if we round s to 25 points, then

67% (82 of 123) of the residuals fall between −s and +s. The moral: The Empirical Rule is a

useful guide, but it’s not exact; if you want exact, look at the list of residuals and count!

To summarize the above, for the exam scores and batting average data sets, we look at the value

of s and, using the Empirical Rule, can make a subjective assessment as to whether the predictions

from the regression line are scientifically useful.

Another popular approach is to measure how well the regression line predictions—which are

obtained from the best line for usingX to predict Y—compare to predictions that ignoreX .
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Well, if we ignore X , then our data set becomes a collection of n values of Y . Based on the

Principle of Least Squares the best predictor of each yi using only the values of

y1, y2, y3, . . . , yn,

is ȳ. (Allow me to casually call ȳ the best predictor. As I show in the optional Appendix to

Chapter 21, for data on one variable, according to the Principle of Least Squares the mean is the

best predictor/describer of the data. If you did not read this material, that is fine, but you will need

to take my use of ȳ on faith.)

If I predict yi by ȳ, the difference is (yi − ȳ). Squaring these differences and summing them,

we get

SSTO =
∑

(yi − ȳ)2, (22.5)

where the symbol SSTO is called the total sum of squares. (In very old textbooks, our SSTO is

called the adjusted total sum of squares.) From Chapter 2 we know that

s22 = SSTO/(n− 1) and s2 =
√

SSTO/(n− 1).

Recall that for the exam scores data, s2 = 5.154 and for the batting averages data, s2 = 0.0320.
Also, as discussed above, for the exam scores data, s = 4.635 and for the batting averages data,

s = 0.0268. For the exam scores data:

s/s2 = 4.635/5.154 = 0.899;

thus, using the midterm to predict the final reduces the standard deviations of the errors in the

predictions by 10.1%. For the batting averages data:

s/s2 = 0.0268/0.0320 = 0.838;

thus, using the 1985 batting average to predict the 1986 batting average reduces the standard devi-

ations of the errors in the predictions by 16.2%.

In my opinion, comparing s to s2, as I have done above, is a good way to measure the relative

usefulness of using X versus not using X . I need to mention, however, that this is not the only

comparison that scientists make. Indeed, I must admit that my personal evidence is overwhelming

that the comparison below is more popular than my favored comparison of s versus s2. First,

however, we must make a side trip into the next subsection.

22.1.2 The Analysis of Variance Table

In Table 21.3 in Chapter 21 I presented edited Minitab output for the regression analysis of the

exam scores data for n = 35 students. This table, with an additional column added—SE(Fit)—is

reproduced in Table 22.1 because we will need it often later in this chapter. In both of these tables

I deleted the Analysis of Variance Table given in the Minitab output. By the way, we abbreviate

the Analysis of Variance Table as the ANOVA table. We could get through this chapter without
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Table 22.1: Edited Minitab output for the regression of final exam score on midterm exam score

for 35 students.

The regression equation is: Final = 68.4 + 0.452 Midterm

Predictor Coef SE(Coef) T P

Constant 68.420 7.963 8.59 0.000

Midterm 0.4516 0.1501 3.01 0.005

S = 4.635 R-Sq = 21.5%

Obs Midterm Final Fit SE(Fit) Residual

1 39.0 83.5 86.032 2.213 -2.532

2 43.0 89.0 87.838 1.665 1.162

3 44.0 92.0 88.290 1.534 3.710

4 44.5 82.0 88.515 1.470 -6.515

5 46.0 93.0 89.193 1.285 3.807

6 48.0 87.0 90.096 1.063 -3.096

7 48.5 91.5 90.322 1.014 1.178

8 49.0 99.5 90.548 0.968 8.952

9 49.0 88.0 90.548 0.968 -2.548

10 49.0 81.0 90.548 0.968 -9.548

11 49.5 91.0 90.773 0.926 0.227

12 49.5 95.0 90.773 0.926 4.227

13 50.0 97.5 90.999 0.888 6.501

14 53.0 83.0 92.354 0.784 -9.354

15 53.0 93.0 92.354 0.784 0.646

16 53.5 97.0 92.580 0.791 4.420

17 53.5 99.0 92.580 0.791 6.420

18 54.5 95.5 93.031 0.825 2.469

19 54.5 83.0 93.031 0.825 -10.031

20 55.0 94.5 93.257 0.851 1.243

21,22 55.5 96.0 93.483 0.883 2.517

23 55.5 92.5 93.483 0.883 -0.983

24 56.5 93.5 93.934 0.962 -0.434

25 56.5 89.5 93.934 0.962 -4.434

26 56.5 90.5 93.934 0.962 -3.434

27 57.0 92.0 94.160 1.007 -2.160

28 57.5 97.5 94.386 1.056 3.114

29 58.5 99.0 94.838 1.162 4.162

30 58.5 95.0 94.838 1.162 0.162

31 58.5 91.0 94.838 1.162 -3.838

32 58.5 97.5 94.838 1.162 2.662

33 59.0 91.5 95.063 1.218 -3.563

34 59.0 98.5 95.063 1.218 3.437

35 59.0 94.0 95.063 1.218 -1.063
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Table 22.2: Analysis of Variance table from the Minitab analysis of the regression of final exam

score on midterm exam score for 35 students.

Analysis of Variance

Source DF SS MS F P

Regression 1 194.38 194.38 9.05 0.005

Residual Error 33 708.81 21.48

Total 34 903.19

mentioning ANOVA tables, but if you do any statistical analyses beyond this chapter, you may

well run into them.

Table 22.2 is the ANOVA table from Minitab’s regression analysis of the exam scores data. All

statistical software packages I have seen give a similar ANOVA table for regression. Let me take a

few minutes to explain the connection between this table and our current work.

First, ignore the last three columns—those headed MS, F and P. The DF column presents

degrees of freedom and the SS column presents various sum of squares, both identified with the

feature in the Source column. If you recall that n = 35, you see that the degrees of freedom for

the total sum of squares (SSTO) is indeed (n − 1) = (35 − 1) = 34, as Minitab states. Also, the

degrees of freedom for the error sum of squares, SSE, is (n − 2) = (35 − 2) = 33, as Minitab

states. This table leads to some obvious questions:

1. What is the regression sum of squares? Why does it have one degree of freedom?

2. Why do the first two sums of squares sum to the third? (194.38 + 708.81 = 903.19.)

To answer these questions, I must go back to the beginning. We start with an arbitrary case ‘i’ in
our data set and look at the deviation of its response yi from the mean response, ȳ:

(yi − ȳ).

We rewrite this as

(yi − ȳ) = (yi − ŷi) + (ŷi − ȳ). (22.6)

In words, this equation states:

The deviation of a response from its mean is the sum of two terms: The deviation of

the response from its predicted value and the predicted value minus the (overall) mean

response.

This equation is so important that I want to illustrate it with two cases from our exam scores data:

• Consider the case with x = 57.5 and y = 97.5. You may verify that for this case, ŷ = 94.386.
(You may verify this by plugging x = 57.5 into the equation of the regression line, or, more
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easily, locate this case as observation 28 in Table 22.1.) Also, recall that ȳ = 92.257. For
this case, Equation 22.6 becomes:

(97.5− 92.257) = (97.5− 94.386) + (94.386− 92.257) or

5.243 = 3.114 + 2.129 = 5.243.

• Consider the case with x = 56.5 and y = 89.5. You may verify that for this case, ŷ = 93.934.
(This case is observation 25 in Table 22.1.) For this case, Equation 22.6 becomes:

(89.5− 92.257) = (89.5− 93.934) + (93.934− 92.257) or

−2.757 = −4.434 + 1.677 = −2.757.

If you take Equation 22.6 and sum both sides over all values of i, then obviously the equality

is preserved:
∑

(yi − ȳ) =
∑

(yi − ŷi) +
∑

(ŷi − ȳ).

If we square the three terms in Equation 22.6 we on longer get equality; in my cases above:

(5.243)2 = 27.489 does not equal (3.114)2 + (2.129)2 = 14.230 and

(−2.757)2 = 7.601 does not equal (−4.434)2 + (1.677)2 = 22.473.

If, however, we square the three terms and then sum over all cases, the equality is preserved:

∑

(yi − ȳ)2 =
∑

(yi − ŷi)
2 +

∑

(ŷi − ȳ)2. (22.7)

This seems to be a magical result, but it is simply the n dimensional version of the Pythagorean

Theorem. You should recognize two of the terms in Equation 22.7; it becomes:

SSTO = SSE +
∑

(ŷi − ȳ)2.

I name this last term the sum of squares due to regression and write it as SSR. Thus, we see that

the identity

SSTO = SSE + SSR

in Table 22.2 is not an accident; this equation will be true for every regression analysis.

By the way, I will ask you to take it on faith that the degrees of freedom for SSR is 1. It’s easy

to remember: both sum of squares and degrees of freedom sum in an ANOVA table.

For any regression analysis, all three of our sums of squares must be nonnegative numbers. In

addition:

• SSTO is positive, because s2 > 0.

• SSE is zero if, and only if, all points lie on a straight line which happens if, and only if

r = ±1.
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• SSR is zero if, and only if, the regression line has slope equal to zero which happens if, and

only if, r = 0.

Thus, for example,

SSE ≤ SSTO .

We can also see this result by applying logic, as follows. SSE minimizes the sum of squared

errors around all lines; thus, it cannot exceed SSTO, which is the sum of squared errors around a

particular line, namely, the horizontal line with intercept equal to ȳ.
The above considerations lead to the following definition.

Definition 22.2 (The coefficient of determination, R2.) The coefficient of determination is de-

noted by R2 and is given by:

R2 = (
SSTO − SSE

SSTO
) which also equals (

SSR

SSTO
) or (1− SSE

SSTO
). (22.8)

Let’s look at the first expression for R2. The numerator is the total squared error when ignoringX
(SSTO) minus the the total squared error when using X via the best possible line (SSE). Various

picturesque ways to describe this difference include:

• SSTO minus SSE measures the amount of squared error in the y’s that can be

(Choose one): explained, removed, accounted for, explained, . . .

by a linear relationship with the x’s.

Thus, for example if you have regression data and obtain SSTO = 100 and SSE = 20, then 80

of the 100 total squared error is explained (my choice of verb) by a linear relationship between y
and x. But 80 what? How do we interpret this number? Answer: Look at the denominator of R2.

We compare, by dividing, the squared error removed with the original amount of squared error.

Thus, for my current fictional numerical example,

R2 =
SSTO − SSE

SSTO
=

100− 20

100
=

80

100
= 0.80.

Usually, R2 is reported as a percentage, for a reason you will see in a moment. Thus, instead of

saying R2 = 0.80 it is standard to say R2 = 80%. Returning to my picturesque statement for this

value, we get:

Eighty percent of the squared error in the y’s can be explained by x.

Let’s return to real data. Using the sums of squares in Table 22.2 we obtain

R2 = SSR/SSTO = 194.38/903.19 = 0.215.

Recall that for the exam scores data, the correlation coefficient equals 0.464. Thus, r2 = (0.464)2 =
0.215, rounded to three digits. Is this agreement between r2 and R2 an accident? No.
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Result 22.1 For every regression analysis,

r2 = R2. (22.9)

Be careful with this result. Its main benefit is that it gives us another interpretation of the correlation

coefficient r; namely, the square of correlation coefficient has the same interpretation as R2 in

terms of explaining squared errors. This helps us see the validity of property four of the correlation

coefficient given in Result 21.1. Among other things, this property said that r = +0.60 reflects the
same strength of a linear relationship as r = −0.60; we can see that this is true in the sense they

both give the same value, 36%, of R2.

There is a bizarre misinterpretation of Result 22.1 and I must comment on it. Let me illustrate

this with a fictional conversation between Researchers A and B.

A: I published my regression analysis; now all the world knows that my r is 60%.

B: You are a bad person!

A: Huh?

B: You deliberately deceive people. It would be more honest to report that R2 equals

36%. You are trying to trick people into believing you have somehow accounted for

60% when, in fact, you have accounted for only 36%. Shame, shame on you!

If you haven’t guessed my position, Researcher B is misguided. I disagree with Researcher B for

two reasons:

1. There is nothing natural about squaring errors. Indeed, when we squared deviations in

Chapters 1 and 2 to obtain the variance, we quickly found that to get a summary that has

meaning we need to take the square root to obtain the standard deviation. Thus, arguably,

R2 is not a natural measure.

2. When we discussed the regression effect in Chapter 21, we found that Equation 21.6 justifies

referring to r = 0.60 as 60%; because 60% of the advantage in x is inherited by ŷ.

Don’t get me wrong; I think that R2 is an interesting summary of a regression, but it is not the

whole story. If you decide that you prefer R2 to r, that is fine; just don’t use a questionable

argument to bully people!

One final comment on this section. I have shown you two ways to decide whether usingX via

the regression line is better than not using it. The first was to compare s to s2; and the second was

to compute R2. You may have noticed that these ways are mathematically equivalent. I will spare

you the algebra, but note that

(s/s2)
2 = [(n− 1)/(n− 2)](1− R2).

For the exam scores data,

(s/s2)
2 = (4.635/5.154)2 = 0.815057 and

[(n− 1)/(n− 2)](1− R2) = (34/33)(1− (194.38/903.19)2 = 0.808566,

which are the same, except for my round-off error. (Sorry.)

596



22.2 The Simple Linear Regression Model

We now turn to inference for simple linear regression. As you might imagine, inference will require

us to make one of the following three assumptions:

• We have a smart random sample from a finite population;

• We have a dumb random sample from a finite population; or

• We assume that we have i.i.d. trials.

Indeed, our approach in Part II of these notes always has been to make one of these assumptions

in order to perform inference. Recall also that:

• Having a dumb random sample yields i.i.d. trials;

• Provided the sample size, n, is 5% or fewer of the population size,N , probabilities for dumb

sampling are a good approximation to probabilities for smart sampling; and

• Literal random samples are very rare in science. Usually, the best we can do is feel comfort-

able in making the WTP (Willing to Pretend) assumption of Chapter 10 (Definition 10.3) on

page 240.

Before I talk about random sample assumptions, however, there is another feature of regression

that I need to introduce. This feature is similar to the observational study versus experimental study

dichotomy of Chapter 15.

In the three main studies of Chapter 21—spiders, baseball players and Statistics 371 students—

each case entered the study with two numerical features that the researcher measured/determined.

In the vernacular, both X and Y are random. While Y is always random in regression analysis, in

many studies the n values of X are selected by the researcher and assigned by randomization to

the n cases available for study. Let me give you an example:

Example 22.1 (A hypothetical study on crop yield.) A researcher has n one-acre plots of land

available for study. The goal is to investigate the effect of a particular fertilizer on the yield of a

particular crop. Before conducting the study, the researcher selects n values of the concentration

of the fertilizer for study. The concentration values need not be distinct. The n concentration

values are assigned to plots by randomization. Let xi denote the concentration assigned to plot

number i and let yi be the yield—say, in bushels or pounds—of the crop from the plot.

To summarize, there are n cases (one-acre plots) and each case yields two numbers: the con-

centration of the fertilizer, x, and the crop yield, y. In other words, we have regression data with Y
random and X not random.

I am now ready to show you the simple linear regression model. We assume the following

relationship between X and Y :

Yi = β0 + β1Xi + ǫi, for i = 1, 2, 3, . . . n. (22.10)

Note the following features of this equation.
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1. I use upper case letters—i.e., Yi andXi—to emphasize that we write down this model before

we collect any data. This means, in particular, that we will consider probabilities for the

values taken on by

Y1, Y2, Y3, . . . , Yn.

2. Note that even though we use upper case letters for the values of the predictor, we do not

consider probabilities for the values taken on by

X1, X2, X3, . . . , Xn,

for one of the following two reasons:

(a) In the non-randomX case introduced above, it makes no sense to calculate probabilities

for the values of the predictor; they are deliberately (i.e., non-randomly) selected by the

researcher.

(b) In the random X case, our inference conditions on the n values of X in the data set.

A thorough exploration of why statisticians and scientists condition on the values ofX in the

randomX situation is beyond the scope of these notes. I will remark, however, that while the

reasons include mathematical necessity—some of the formulas later in this chapter become

invalid for random X without conditioning—they also include scientific usefulness. For

example, in most scientific applications the main interest is on the behavior of the response,

conditional on the value of the predictor. Suppose that you want to use height (X) to predict

weight (Y ) for a particular randomly selected man of interest then you want to condition

on (i.e., use) his height to make your prediction; i.e., you want to condition on his being 76

inches tall or 66 inches tall rather than have an unconditional prediction over all possible

heights!

Let me note that the idea of conditioning is familiar to the reader of these notes. The Skeptic’s

Argument in Part I has the effect of conditioning on the response values actually obtained.

Even statisticians who don’t like randomization-based inference condition on the marginal

totals in the 2 × 2 contingency table in order to perform Fisher’s Test. I could list more

examples of conditioning, but I prefer to stick to our task.

3. After collecting data, the researcher will have the n observed pairs of values of the predictor

and response.

4. The values β0 and β1 are parameters of the model; this means, of course, that they are

numbers and by changing either or both of their values we get a different model. The actual

numerical values of β0 and β1 are known by Nature and unknown to the researcher; thus,

the researcher will want to estimate both of these parameters and, perhaps, test hypotheses

about them.

5. The ǫi’s are random variables with the following properties. They are i.i.d. with mean 0

and variance σ2. Thus, σ2 is the third parameter of the model. Again, its value is known
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by Nature but unknown to the researcher. It is very important to note that we assume these

ǫi’s, which are called errors, are statistically independent. In addition, we assume that every

case’s error has the same variance.

Oh, and by the way, not only is σ2 unknown to the researcher, the researcher does not get to

observe the ǫi’s. Remember this: all that the researcher observes are the n pairs of values of

(X, Y ).

6. Our inference procedures below are based on the assumption that the simple linear regression

model is true or correct. A scientist won’t know whether the model is correct. Indeed,

another of George Box’s pithy statements is:

All models are wrong, but some are useful.

This reflects the belief that we should be careful about using the simple linear regression

model, as well as more complicated models. If you study regression beyond this chapter, I

hope that a good amount of time is spent on how to check whether the assumptions of the

model are close enough to being correct for the model to be useful.

Now, we look at some consequences of our model. The results below follow quite easily from

the rules of means and variances familiar to the undergraduate Statistics major. In these notes, I

have made only vague references to these rules; thus, don’t worry if the algebra below is confusing.

Remember, the Yi’s are random variables; the Xi’s are viewed as constants. The mean of Yi

givenXi is denoted by µYi|Xi
. First, we note that

µYi|Xi
= β0 + β1Xi + µǫi,

because the mean of a constant (β0 + β1Xi) is the constant. Finally, remembering the mean of the

error term, ǫi equals 0, we get:

µYi|Xi
= β0 + β1Xi. (22.11)

The variance of Yi is

σ2
Yi

= σ2
ǫi
= σ2, (22.12)

because the variance of a constant (β0 + β1Xi) is 0.

The important facts for you to know are:

• The relationship betweenX and Y is such that the mean of Y given the value ofX is a linear

function of X with y-intercept given by β0 and slope given by β1.

• The variance of the Y ’s around their means (remember the mean depends on X) is σ2, for

every case regardless of its value of X .
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22.2.1 Point Estimates of the Slope, Intercept and Variance

The first issue we turn to is: How do we use data to estimate the values of β1, β0 and σ2? This

turns out to be quite easy.

First, I will refer to Equation 22.11 as the equation of the population regression line. We

estimate the slope, β1, and intercept, β0, by using the Principle of Least Squares, as we did in

Chapter 21. In particular, the point estimate of β1 is

b1 = r(s2/s1), (22.13)

and the point estimate of β0 is

b0 = ȳ − b1x̄. (22.14)

The point estimate of σ2 is a bit trickier. First, by rewriting Equation 22.10 we obtain:

ǫi = Yi − β0 − β1Xi. (22.15)

If we were Nature, then we could calculate the n observed values of ǫ and calculate their variance.
Sadly, we are not Nature and must proceed as follows. Replace Yi andXi by their observed values

and replace the unknown β0 and β1 by their point estimates. After these four replacements, the

right side of Equation 22.15 becomes:

yi − b0 − b1xi = yi − ŷi = ei.

Thus, in a sense, the residual, ei, is the sample version of the error, ǫi. Thus, it makes sense to use

the variance of the residuals to estimate the variance of ǫi. We do this and our result is that the

point estimate of σ2 is

s2 =
SSE

n− 2
.

22.3 Three Confidence Intervals, a Prediction Interval and a

Test

It is possible to estimate β1, β0 and σ
2 with confidence. In this section I will address these problems

along with two closely related problems. Finally, I will present a test of hypotheses for the slope

of the population regression line.

First, let’s deal with σ2. There is a confidence interval formula for σ2, but I will not present it,

for a variety of reasons that (sadly?) I have no time to discuss.

There exist algebraic formulas for confidence intervals for both β1 and β0, but, frankly, they

are no fun and nobody uses them by hand. Instead, I will show you how to obtain these confidence

intervals from Minitab output.

Table 22.1 on page 592 presents our familiar Minitab output for the regression of final exam

score on midterm exam score for n = 35 students. I will use this output to illustrate the following

result.
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Result 22.2 (Confidence interval estimates of the slope and intercept.) The confidence interval

estimates of the slope β1, and intercept, β0, of the population regression line are

b1 ± t∗(SE(b1)) and (22.16)

b0 ± t∗(SE(b0)) (22.17)

respectively.

In these formulas, t∗ is obtained from the t-curve with df = (n − 2), with our usual method,

first introduced for the t-curve in Chapter 17. The expression “SE(b1)” [“SE(b0)”] is the estimated
standard error of b1 [b0] and its value must be obtained from computer output.

Based on our earlier work in these notes, it is reasonable to wonder whether the confidence

level in the above result is exact or an approximation. For all of the inference procedures in

this chapter, including the above result, the confidence levels, prediction probabilities and

P-values are exact with the additional assumption that the error terms, ǫi, have a Normal

curve for their pdf. Without this assumption, the results are approximations. Sadly, we do not

have time to explore the quality of these approximations.

Suppose that I choose 95% for my confidence level; because df = n − 2 = 35− 2 = 33, you
may verify by using our t-curve website that t∗ = 2.035. For the slope, using Table 22.1, we find

that the estimated standard error of the estimated slope is 0.1501; it’s in the SE(Coef) column in

theMidterm row. Thus, the 95% confidence interval estimate of β1, the population slope, is:

0.4516± 2.035(0.1501) = 0.4516± 0.3055 = [0.1461, 0.7571].

First, I conclude, qualitatively, that the population slope is a positive number. Recalling that the

slope measures the change in the mean of Y for a unit change in X , this qualitative result is

unsurprising; it states that a higher midterm score yields a higher mean score on the final. How

much higher? This is where the endpoints of the confidence interval come into play: if the score

on the midterm increases by one point, then the mean score on the final increases by at least 0.1461

and at most 0.7571 points. Subjectively, I consider this interval to be very wide; perhaps not very

useful.

Next, let’s consider the intercept, β0. Minitab presents the relevant output in the Constant row,

with Constant falling under the heading Predictor; admittedly, the terminology is a bit confusing.

Anyways, for expediency, I will stick to 95% for my confidence level; thus, t∗ remains equal to

2.035. Therefore, the 95% confidence interval estimate of β0, the y-intercept of the population

regression line, is:

68.42± 2.035(7.963) = 68.42± 16.20 = [52.22, 84.62].

I conjecture that I know what you are thinking: Bob is going to interpret this interval. Well, I am

not. Here is why.

Literally, the population intercept is the mean value of Y givenX = 0. The smallest midterm

score in the data set is X = 39.0; thus, we have no idea whether the linear relationship in the data

set extends down to X = 0. (Sound familiar? We talked about this idea in the Fish Activity study
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in Chapter 21.) Also, as a teacher, I am not particularly interested in predicting a final exam score

for a student who scores 0 on my midterm! (Nobody has ever scored 0 on any of my tests!) In

particular, if a student said,

Yeah, I scored 0 on the midterm. The final is inconvenient for me, so why not give me

my predicted score, b0 = 68.42?

Even though the gift of 68.42 would not save the student from an F in the course, as a matter of

principle I would never seriously consider such a request! (And I have no evidence any student

would make this request; my students are serious about their educations.)

To summarize the above, if X = 0 is outside the range of the data and/or not of scientific

interest, then, even though it is possible to calculate a confidence interval estimate of β0, I don’t do

it.

Be careful in your reading of the previous paragraph. I am not saying that estimating β0 is

unimportant. It is important because it is part of the population regression line. What I am saying

is that unlessX = 0 is both in the range of the data and of scientific interest to the researcher, then

β0, by itself, it is not important. If this distinction is confusing, I hope that the next confidence

interval formula will help.

22.3.1 Confidence Interval for the Mean Response for a Given Value of the

Predictor

Let us consider a specific possible value ofX , call it x0. Now given thatX = x0, the mean of Y is

β0 + β1x0; call this µ0. We can use the computer output to obtain a point estimate and confidence

interval estimate of µ0.

For example, suppose we select x0 = 49.0. Then, the point estimate is

b0 + b1(49.0) = 68.42 + 0.4516(49.0) = 90.548

If, however, you look at the output in Table 22.1, you will find this value, 90.548, in the column

Fit and the row Midterm = 49.0. (This is observation 8, 9 or 10.) Of course, this is not a huge aid

because, frankly, the above computation of 90.548 was pretty easy. But it’s the next entry in the

output that is useful. Just to the right of Fit is SE(Fit), where, as before, SE is the abbreviation for

estimated standard error. Thus, we are able to calculate a confidence interval estimate of µ0:

Fit ± t∗(SE(Fit)). (22.18)

For the current example, the 95% confidence interval estimate of the mean of Y givenX = 49.0 is

90.548± 2.035(0.968) = 90.548± 1.970 = [88.578, 92.518].

The obvious question is: We were pretty lucky that X = x0 = 49.0 was in our computer

output; what do we do if our x0 isn’t there? It turns out that the answer is easy: trick the computer.

Here is how.

602



Suppose we want to estimate the mean of Y given X = 51.0. An inspection of the Midterm

column in the computer output in Table 22.1 reveals that there is no row forX = 51.0. Go back to
the data set and add a 36th student. For this student, enter 51.0 for Midterm and a missing value

for Final. (For Minitab, my software package, this means you enter a *.) Then rerun the regression

analysis. In all of the computations the computer will ignore the 36th student because it has no

value for Y and therefore cannot be used in all of the needed computations. Thus, it is not used

in any computations. As a result, the computer output is unchanged by the addition of this extra

student. But, and this is the key point, the computer output includes observation 36 in the last

section of the output, creating the row:

Obs Midterm Final Fit SE(Fit) Residual

36 51.0 * 91.451 0.828 *

From this we see that the point estimate of the mean of Y given X = 51.0 is 91.451. (This, of

course, is easy to verify.) But now we also have the SE(Fit), so we can obtain the 95% confidence

interval estimate of the mean of Y givenX = 51.0:

91.451± 2.035(0.828) = 91.451± 1.685 = [89.766, 93.136].

22.3.2 Prediction of the Response for a Given Value of the Predictor.

Suppose that beyond our n cases for which we have data, we have an additional case. For this new

case, we know that X = xn+1, for a known number xn+1, and we want to predict the value of

Yn+1. Now, of course,

Yn+1 = β0 + β1xn+1 + ǫn+1.

We assume that ǫn+1 is independent of all previous ǫ’s, and, like the previous errors, has mean 0

and variance σ2.

The natural prediction of Yn+1 is obtained by replacing the β’s by their estimates and ǫn+1 by

its mean, 0. The result is

ŷn+1 = b0 + b1xn+1.

We recognize this as the Fit for X = xn+1; as such, its value and its SE are both presented in (or

can be made to be presented in) our computer output.

Following our approach to prediction in Chapter 14, we compare the actual response to the

predicted response via subtraction, giving us:

W = Yn+1 − ŷn+1.

Our Result 14.1 tells us that the estimated variance ofW is

s2 + [SE(Fit)]2.

(It is ok if you don’t bother with verifying that this result applies here; it’s late in the semester!

This variance, however, has a nice interpretation. The estimated variance of the prediction is the

sum of two terms: The estimated variance of an observation around the population regression line:

603



s2; and the estimated variance due to the population regression line being estimated at the point

xn+1: [SE(Fit)]
2.)

The prediction interval for Yn+1 is:

Fit ± t∗
√

s2 + [SE(Fit)]2. (22.19)

For example, suppose that xn+1 = 49.0. From our computer output, and our earlier work, the

point prediction of yn+1 is ‘Fit,’ which is 90.548. The estimated variance ofW is

(4.635)2 + (0.968)2 = 22.4202;

thus, the estimated standard error is
√
22.4202 = 4.735. Thus, the 95% prediction interval for

Yn+1 is

90.548± 2.035(4.735) = 90.548± 9.636 = [80.912, 100.184].

In words, for an additional student who scores 49.0 on the midterm, at the 95% probability level,

we predict that this student’s final exam score will be between, roughly, 81.0 and 100 points,

inclusive. This is not a particularly useful prediction interval.

22.3.3 A Test of Hypotheses

The results of this short subsection are similar to the results we had in Section 18.1.

In many regression analyses, a key question is whether a regression is needed. In particular,

researchers often want to test the null hypothesis that the slope of the population regression line,

β1, equals zero:

H0 : β1 = 0.

There are, as usual, three possible alternatives:

H1 : β1 > 0;H1 : β1 < 0; and H1 : β1 6= 0.

I recommend using the Inconceivable Paradigm to select the appropriate alternative.

The obvious starting point for the test statistic is the point estimator of β1, denoted, when

viewed as a random variable, by B1, which has observed value b1. As in our earlier work, the

standardized version of B1 is:
B1 − β1

√

Variance(B1)
.

To obtain our test statistic we replace β1 by its hypothesized value, 0, and estimate the variance in

the denominator. The result is our test statistic, denoted by T with observed value t:

T =
B1

SE(B1)
and

t =
b1

SE(b1)
. (22.20)

In the formulas below, t is given above (Equation 22.20) and areas are computed under the t-curve

with df = (n− 2).
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1. For the alternative >, the P-value equals the area to the right of t.

2. For the alternative <, the approximate P-value equals the area to the left of t.

3. For the alternative 6=, the approximate P-value equals twice the area to the right of |t|.

The Minitab output anticipates that you will want to do this test. Let’s look at part of the output

again for the exam scores’ data:

Predictor Coef SE(Coef) T P

Constant 68.420 7.963 8.59 0.000

Midterm 0.4516 0.1501 3.01 0.005

The observed value of the test statistic

t = 0.4516/0.1501 = 3.01,

is given in the fourth column (headed ‘T’). The P-value for the alternative 6= is given in the

fifth column (headed ‘P’) and is equal to 0.005. Thus, for the alternative >, the P-value equals

0.005/2 = 0.0025. More precisely, using our t-curve website, the area under the t-curve with

df = 33 to the right of 3.01 is 0.00249.
Often in regression, the researcher has a special possible value of interest for the population

slope, denoted by β10 and read as beta-one-zero or beta-one-naught, but never as beta-ten. In this

situation the null hypothesis becomes:

H0 : β1 = β10.

The three possible alternatives are:

H1 : β1 > β10;H1 : β1 < β10; and β1 6= β10.

(Obviously, if β10 = 0 this new problem reduces to the problem we solved above.)

For this more general situation, the test statistic is

T =
B1 − β10

SE(B1)

with observed value

t =
b1 − β10

SE(b1)
. (22.21)

The earlier rules for the P-value apply to this new situation.

For this course—and our final exam—the above is the only test you are required to learn. Let

me mention in passing that a researcher could adapt the above method to test a null hypothesis on

the value of the intercept, β0, or on the mean value of the response for a given value of the predictor.

Indeed, the Minitab output gives the observed value of the test statistic and the two-sided P-value

for the test of the null hypothesis that the intercept equals 0.
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22.4 Extensions

The simple linear regression model begins with Equation 22.10, reproduced below:

Yi = β0 + β1Xi + ǫi,

for i = 1, 2, 3, . . . n. The model includes the assumptions about the sequence of ǫ’s given earlier;

namely, they are independent, mean equal to zero and variance equal to the unknown σ2.

The word simple signifies that there is only one predictor. Also—although this fact often causes

confusion—linear refers to the model being linear in the parameters β0 and β1 and not to the fact

that the mean of Y is a linear function of X . This leads to the first generalization of our model.

Suppose that for some reason, you believe that the relationship between a nonnegative response

Y and a nonnegative predictor X is

Yi = β0 + β1X
2
i + ǫi. (22.22)

Literally, this is not the same as the simple linear regression model, but it can be transformed into

the simple linear regression model quite easily. All we do is define a new predictor X∗
i to equal

X2
i . With this substitution, Equation 22.22 becomes

Yi = β0 + β1X
∗
i + ǫi,

which is the simple linear regression model with predictor denoted byX∗
i .

In Chapter 13 you learned about the family of Poisson distributions. Recall that for a Poisson

distribution the mean equals the variance. In many applications to science the variance of the

response will increase with the mean, although they won’t necessarily be equal. In particular,

consider the following modification of the simple linear regression model for a predictor that must

be positive.

Yi = β0 + β1Xi + ǫi. (22.23)

In this equation, conditional on the value of Xi, the error term, ǫi, has mean 0 and variance σ2X2
i .

Thus, this is not the simple linear regression model because the error terms do not have constant

variance. How can we fix this? The answer is quite simple. Divide both sides of Equation 22.23

by Xi (remember, it must be positive), to get:

Yi/Xi = β0/Xi + β1 + ǫi/Xi.

Next, make the following definitions:

Y ∗
i = Yi/Xi;X

∗
i = 1/Xi; β

∗
0 = β1; β

∗
1 = β0; and ǫ∗i = ǫi/Xi.

Thus, Equation 22.23 becomes

Y ∗
i = β∗

0 + β∗
1X

∗
i + ǫ∗i ,

the simple linear regression model for response Y ∗
i and predictor X∗

i because the errors ǫ∗i are

independent, mean 0 with constant variance σ2.
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Sometimes, researchers assume a multiplicative error rather than the additive error in the simple

linear regression model. In particular, define ǫ∗i = exp(ǫi), where the ǫi’s satisfy the assumptions

of the simple linear regression model. Consider the new model:

Yi = exp(β0 + β1Xi)× ǫ∗i . (22.24)

If we take the natural logarithm (ln) of both sides of this equation, we get:

ln(Yi) = β0 + β1Xi + ǫi,

which is the simple linear regression model for response Y ∗
i = ln(Yi).

Finally, with the definition of ǫ∗i in the previous paragraph, consider the model with β0 > 0 and
the predictor and response both constrained to be positive:

Yi = β0X
β1

i × ǫ∗i . (22.25)

If we take the natural logarithm (ln) of both sides of this equation, we get:

ln(Yi) = ln(β0) + β1 ln(Xi) + ǫi,

which is the simple linear regression model for:

Y ∗
i = ln(Yi);X

∗
i = ln(Xi); β

∗
0 = ln(β0); and β∗

1 = β1.

Let me end with two comments about the above list of examples.

1. Rather obviously, the list above is not an exhaustive list of models that can be easily trans-

formed to the simple linear regression model.

2. Each example began with an equation relating the original response to the original predictor.

A scientist typically obtains such an equation in one of two ways:

• Empirically: By looking at a scatterplot of the data.

• Theoretically: Some scientific theory leads to the belief that the relationship between

Y andX should have the form given in the equation.

Note that for either of these methods, not only should you focus on how Y varies with X ,

but on how the error terms enter the relationship: additive or multiplicative; constant or

nonconstant variance.
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22.5 Summary

In a regression analysis, each case has four numbers associated with it:

x, y, ŷ = b0 + b1x and e = y − ŷ.

In words, its predictor, response, predicted response and residual, respectively.

The researcher should draw a picture—dot plot or histogram—of the residuals. Note that a

case’s residual being an outlier is a different notion than a case being isolated, although the former

implies the latter.

For any regression analysis, the mean of the residuals equals zero: ē = 0. The sum of squared

residuals is denoted by SSE:

SSE =
∑

e2i =
∑

(yi − ŷi)
2.

The residuals have (n− 2) degrees of freedom and the variance of the residuals is

s2 =
SSE

n− 2
.

The standard deviation of the residuals is, of course, s =
√
s2.

For each individual case, the residual tells us how well the regression line performed, in the

following sense.

• If the residual equals 0, then y = ŷ and the regression line’s prediction is perfect.

• If the residual is greater than 0, then y > ŷ and the regression line’s prediction is too small.

• If the residual is less than 0, then y < ŷ and the regression line’s prediction is too large.

• The farther the value of the residual is from 0, in either direction (positive or negative), the

worse the regression line predicts the actual response.

• In short, a residual that is close to zero, positive or negative, indicates that the regression line

did a good job predicting the response. A residual that is far from zero, positive or negative,

indicates that the regression line did a bad job predicting the response. The distinction

between being close to zero or far from zero should be based on the scientific goals of the

study.

The bulleted items above are concerned with evaluating the regression line for individual cases.

We also want an overall evaluation of the quality of the regression line.

If a scientist has a specific number that distinguishes between close to zero and far from zero,

then the regression line can be evaluated with simple counting: count the number of cases for

which the prediction is good and compare it to the number of cases for which the prediction is bad.

I did this earlier in the chapter where I (subjectively) decided that the boundary between a good

and bad prediction of a batting average was 20 points (0.020). I found that with this boundary,

(only) 57% of the cases were predicted well.
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Table 22.3: The ANOVA table for simple linear regression.

Source DF SS

Regression 1 SSR

Residual Error n− 2 SSE

Total n− 1 SSTO

However useful it is for a scientist in a particular study to specify the boundary between good

and bad predictions, this activity does not lend itself to mathematical analysis of a general nature.

Instead, we focus on the value of s, the standard deviation of the residuals, and use the Empirical

Rule for interpreting s to measure the effectiveness of the regression line. For example, according

to the Empirical Rule approximately 68% of the residuals will be between −s and s; in other

words, for approximately 68% of the cases, the actual response will be within s of the predicted

response.

I recommend comparing the standard deviation of the residuals, s, to the standard deviation of

the responses, s2. This amounts to comparing the best predictions usingX with the best predictions

that ignore X .

Mostly in work beyond this chapter, the Analysis of Variance Table is useful. It is presented in

Table 22.3. The various sum of squares are defined by:

SSR =
∑

(ŷi − ȳ)2; SSE =
∑

(yi − ŷi)
2; and SSTO =

∑

(yi − ȳ)2.

Note that in this table, both the degrees of freedom and sums of squares sum, in the sense that:

1 + (n− 2) = (n− 1); and SSR + SSE = SSTO.

The coefficient of determination, R2 is a popular summary statistic for a regression analysis:

R2 =
SSTO − SSE

SSTO
.

The denominator ofR2 equals the total squared error in the responses. The numerator ofR2 equals

the amount of squared error that is removed by usingX to predict Y via the regression line. Thus,

the ratio of R2 equals the proportion (usually reported as a percentage) of the total squared error in

the response that can be explained by a linear relationship with the predictor.

For every regression analysis, R2 equals the square of the correlation coefficient:

R2 = r2.

This identity gives us another interpretation of the correlation coefficient, r.
For inference, we assume that the simple linear regression model is true:

Yi = β0 + β1Xi + ǫi, for i = 1, 2, 3, . . . n.
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In this equation, β0 and β1 are parameters whose values are known to Nature, but unknown to the

researcher. The error terms,

ǫ1, ǫ2, ǫ3, . . . , ǫn,

are assumed to be independent random variables, each with mean equal to 0 and variance equal to

σ2, the third unknown parameter of the model. Statistical inference for this model conditions on

the values of the predictor.

A consequence of this model is that the mean value of Y for a given value of X = x is equal

to:

β0 + β1x.

The point estimates of β1 and β0 are obtained by applying the Principle of Least Squares, as

we did in Chapter 21, yielding

b1 = r(s2/s1); and b0 = ȳ − b1x̄, respectively.

The point estimate of σ2 is the variance of the residuals, s2 = SSE/(n− 2).
I do not give you algebraic formulas for confidence intervals, prediction intervals and test-

ing. Instead, I show you how to obtain answers—intervals and P-values—from Minitab computer

output. In particular, confidence intervals for β1 and β0 are given in Result 22.2 on page 601.

For a specified value of the predictor, call it x0, the mean value of the response is

µ0 = β0 + β1x0.

The point estimate of µ0 is

b0 + b1x0,

which Minitab denotes as Fit. The estimated standard error of the Fit is denoted by SE(Fit). The

confidence interval for µ0 is

Fit ± t∗(SE(Fit)).

Suppose that beyond our n cases for which we have data, we have an additional case. For this

new case, we know that X = xn+1, for a known number xn+1, and we want to predict the value of

Yn+1. The point prediction is:

ŷn+1 = b0 + b1xn+1.

We recognize this as the Fit for X = xn+1; as such, its value and SE(Fit) are both presented in (or

can be made to be presented in) our computer output. The prediction interval for Yn+1 is:

Fit ± t∗
√

s2 + [SE(Fit)]2.

Tests of hypotheses also are possible for the simple linear regression model. Sometimes the

researcher has a special possible value of interest for the population slope, denoted by β10. The

null hypothesis is:

H0 : β1 = β10.

The three possible alternatives are:

H1 : β1 > β10;H1 : β1 < β10; and β1 6= β10.
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The test statistic is

T =
B1 − β10

SE(B1)

with observed value

t =
b1 − β10

SE(b1)
.

The rules for obtaining the P-value are given on page 605.

Finally, Section 22.4 presents several models that can be transformed easily into the simple

linear regression model.
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22.6 Practice Problems

1. A simple linear regression analysis with n = 5 yields the numbers in the following table.

x: −2 −1 0 1 2

e: 1 −2 +2 b c

Determine the values of b and c. (Hint: Use Equation 22.1.)

2. A simple linear regression analysis with n = 10 yields the following (partial) ANOVA table.

Source DF SS

Regression a 496

Residual Error b 800

Total c d

(a) Determine the values of a–d in the ANOVA table.

(b) Calculate the values of s and s2. Explain what you have found.

(c) Calculate the value of R2; interpret the number you obtain.

(d) What can you say about the value of the correlation coefficient, r?

3. A simple linear regression analysis yields the following (partial) ANOVA table.

Source DF SS

Regression a b
Residual Error 20 c
Total d 2000

In addition, R2 = 0.800.

(a) Determine the values of a–d in the ANOVA table.

(b) Calculate the values of s and s2. Explain what you have found.

4. Table 22.4 presents edited Minitab regression output for the exam scores data for all n = 36
students; i.e., it includes the isolated case (35.5, 95.5).

(a) Calculate the 95% confidence interval estimate of the slope of the regression line. Com-

pare your answer to the answer earlier in this chapter for n = 35 students and comment.

(b) Calculate the P-value for the alternative β1 > 0. Compare your answer to the answer

earlier in this chapter for n = 35 students and comment.

(c) Calculate the P-value for the alternative β1 < 0.75.
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(d) Calculate the 95% confidence interval estimate of the mean response for X = 49.0.
Compare your answer to the answer earlier in this chapter for n = 35 students and

comment.

(e) Calculate the 95% prediction interval for a future response for X = 49.0. Compare

your answer to the answer earlier in this chapter for n = 35 students and comment.

(f) Determine the ANOVA table for this analysis.

5. Table 22.5 presents edited Minitab regression output for the batting averages data for n =
123 players, after Floyd Rayford has been deleted from the data set. Note also that for

arithmetic convenience (for me!) I have multiplied all batting averages by 1000 that, for

example, converts x = 0.269 to x = 269.

(a) Calculate the 95% confidence interval estimate of the slope of the regression line.

(b) Calculate the P-value for the alternative β1 > 0.

(c) Calculate the P-value for the alternative β1 < 1.

(d) Calculate the 95% confidence interval estimate of the mean response for X = 309.

(e) Calculate the 95% prediction interval for a future response for X = 309.
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Table 22.4: Edited Minitab output for the regression of final exam score on midterm exam score

for 36 students.

The regression equation is: Final = 76.5 + 0.302 Midterm

Predictor Coef SE(Coef) T P

Constant 76.536 7.239 10.57 0.000

Midterm 0.3023 0.1375 2.20 0.035

S = 4.850 R-Sq = 12.4%

Obs Midterm Final Fit SE(Fit) Residual

1 39.0 83.5 88.325 2.000 -4.825

2 43.0 89.0 89.534 1.514 -0.534

3 44.0 92.0 89.837 1.399 2.163

4 44.5 82.0 89.988 1.344 -7.988

5 46.0 93.0 90.441 1.186 2.559

6 48.0 87.0 91.046 1.002 -4.046

7 48.5 91.5 91.197 0.963 0.303

10 49.0 81.0 91.348 0.927 -10.348

12 49.5 95.0 91.499 0.896 3.501

13 50.0 97.5 91.650 0.868 5.850

15 53.0 93.0 92.557 0.814 0.443

17 53.5 99.0 92.708 0.825 6.292

19 54.5 83.0 93.011 0.863 -10.011

20 55.0 94.5 93.162 0.889 1.338

23 55.5 92.5 93.313 0.920 -0.813

26 56.5 90.5 93.615 0.993 -3.115

27 57.0 92.0 93.766 1.035 -1.766

28 57.5 97.5 93.917 1.079 3.583

32 58.5 97.5 94.220 1.174 3.280

35 59.0 94.0 94.371 1.225 -0.371

36 35.5 95.5 87.267 2.449 8.233
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Table 22.5: Edited Minitab output for the regression of 1986 batting average multiplied by 1000

on 1985 batting average multiplied by 1000 for 123 baseball players. Note the Floyd Rayford has

been deleted from the data set.

The regression equation is: 1986BA = 83.0 + 0.681 1985BA

Predictor Coef SE(Coef) T P

Constant 83.03 21.55 3.85 0.000

1985BA 0.68114 0.08055 8.46 0.000

S = 24.82 R-Sq = 37.1%

Analysis of Variance

Source DF SS

Regression 1 44060

Residual Error 121 74562

Total 122 118621

Obs 1985BA 1986BA Fit SE(Fit) Residual

1 265 264 263.53 2.24 0.47

2 309 296 293.50 4.12 2.50

3 268 240 265.57 2.24 -25.57

4 243 229 248.54 2.91 -19.54

5 289 289 279.88 2.90 9.12

6 266 286 264.21 2.24 21.79

7 231 238 240.37 3.61 -2.37

8 275 309 270.34 2.35 38.66

9 304 300 290.09 3.78 9.91
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22.7 Solutions to Practice Problems

1. Let’s expand the given table:

x: −2 −1 0 1 2 Total

e: 1 −2 2 b c 0

xe: −2 2 0 b 2c 0

Thus,

1 + b+ c = 0 and b+ 2c = 0.

Rewrite the first of these equations as b = −c− 1 and substitute it into the second equation:

−c− 1 + 2c = 0 or c = 1; which yields 1 + b+ 1 = 0 or b = −2.

2. (a) We know that a always equals 1; b = (n− 2) = (10− 2) = 8; c = a + b = 1 + 8 = 9
or c = (n− 1) = (10− 1) = 9; and d = 496 + 800 = 1296.

(b) First, s2 = 800/b = 800/8 = 100; thus, s = 10. Next, s22 = 1296/9 = 144; thus, s2 =
12. Finally, s/s2 = 10/12 = 0.833; thus, the standard deviation of prediction errors

using the regression line is 16.7% smaller than the standard deviation of prediction

errors not using the regression line.

(c) R2 = 496/1296 = 0.383. In words, 38.3% of the squared error in the response is

explained by a linear relationship with the predictor.

(d) The correlation coefficient r = ±
√
0.383 = ±0.619.

3. (a) We know that a = 1, thus d = 1 + 20 = 21.

We know that R2 = 0.800; thus:

0.800 = SSR/SSTO = SSR/2000; which gives SSR = b = 1600.

By subtraction, c = 2000− 1600 = 400.

(b) We know that

s2 = 400/20 = 20; and s22 = 2000/21 = 95.24.

Thus, s = 4.472, s2 = 9.759 and s/s2 = 4.472/9.759 = 0.458. Thus, the stan-

dard deviation of predictions using X is 54.2% smaller than the standard deviation of

predictions without usingX .

4. First, note that in order to obtain 95% confidence (for the estimates) or probability (for

prediction), we have t∗ = 2.033 for df = (n− 2) = (36− 2) = 34.

(a) Using the computer output, the 95% confidence interval estimate of β1 is:

0.3023± 2.033(0.1375) = 0.3023± 0.2795 = [0.0228, 0.5818].

This interval is narrower than the earlier interval (half-width is 0.2795 versus 0.3055),

but is much closer to zero (center is 0.3023 versus 0.4516).

616



(b) The easiest way to obtain the P-value is to realize that it equals one-half of the two-

sided P-value given by Minitab: 0.035/2 = 0.018.

Alternatively, the observed value of the test statistic is

t = 0.3023/0.1375 = 2.1985.

With the help of the website the area under the t-curve with df = 34 to the right of

2.1985 is 0.0174. (Paraphrasing Shakespeare, “Much ado about not much.”)

For the earlier analysis with n = 35, the P-value is much smaller, 0.0025.

(c) The observed value of the test statistic is

t =
0.3023− 0.75

0.1375
= −0.4477/0.1375 = −3.256.

With the help of the website the area under the t-curve with df = 34 to the left of

−3.256 is 0.0013.

(d) Using the computer output for observation 10, the 95% confidence interval estimate the

mean of Y givenX = 49 is

91.348± 2.033(0.927) = 91.348± 1.885 = [89.463, 93.233].

This point prediction is almost one point larger (91.348 − 90.548 = 0.800) than the

earlier point prediction and this interval is narrower than the earlier interval (half-width

is 1.885 versus 1.970).

(e) Again using the computer output for observation 10, we find that the estimated variance

of the predicted value is:

(4.850)2 + (0.927)2 = 24.3818.

Thus, the estimated standard error of the predicted value is:

√
24.3818 = 4.938.

Thus, the 95% prediction interval is:

91.348± 2.033(4.938) = 91.348± 10.039 = [81.309, 101.387].

This interval is slightly narrower than the earlier one, but both intervals have little

practical value because they are so wide. A score of 81.5 on the final is very different

than a score of 100.

(f) First, the easy part of the ANOVA table:

Source DF SS

Regression 1

Residual Error 34

Total 35
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Next,

(4.85)2 = 23.5225 = s2 = SSE/34; or SSE = 34(23.5225) = 799.765.

Next,

0.124 = R2 = 1− (799.765/SSTO) or SSTO = 799.765/0.876 = 912.974.

Thus, the ANOVA table is:

Source DF SS

Regression 1 113.209

Residual Error 34 799.765

Total 35 912.974

5. First note that for df = 123− 2 = 121, for 95% confidence or probability, t∗ = 1.980.

(a) The 95% confidence interval estimate of the slope is:

0.6811± 1.980(0.08055) = 0.6811± 0.1595 = [0.5216, 0.8406].

(b) The P-value equals one-half of the value in the table, which is one-half of 0.000, or

0.000. More precisely, using Minitab for t = 8.46 I obtain 3.62 × 10−14. This is a

really small P-value!

(c) The observed value of the test statistic is

t =
0.6811− 1

0.08055
= −3.959.

The area under the t-curve with df = 121 to the left of −3.959 is equal to—with the

help of Minitab—0.0000368; or approximately 37 in one million. This is a very small

P-value.

(d) The 95% confidence interval estimate of the mean response givenX = 309 is

293.50± 1.980(4.12) = 293.50± 8.16 = [285.34, 301.66].

(e) Again using the computer output for observation 2, we find that the estimated variance

of the predicted value is:

(24.82)2 + (4.12)2 = 633.0068.

Thus, the estimated standard error of the predicted value is:
√
633.0068 = 25.16.

Thus, the 95% prediction interval is:

293.50± 1.980(25.16) = 293.50± 49.82 = [243.68, 343.32].

This interval is very wide. As a baseball fan, I consider it to be almost totally worthless;

343 is a great batting average and 243 is—while not horrible—pretty poor.
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22.8 Homework Problems for Chapter 21

1. (Hypothetical data.) Fifty students in a Statistics class take midterm and final exams. Below

are selected summary statistics for these data.

Exam Mean Stand. Dev.

Midterm 50.00 10.00

Final 70.00 15.00

Also, the correlation coefficient of the the two exam scores is r = 0.48.

(a) Determine the equation of the regression line for using the score on the midterm exam

to predict the score on the final exam.

(b) Determine the equation of the regression line for using the score on the final exam to

predict the score on the midterm exam.

(c) Sally scores 60 on the midterm exam. Use your equation from (a) to obtain her pre-

dicted score on the final exam.

(d) Tom scores 80 on the final exam. Use your equation from (b) to obtain his predicted

score on the midterm exam.

(e) Refer to (c). Given that Sally actually scored 82 on the final exam, calculate her resid-

ual.

(f) Refer to (d). Given that Tom actually scored 47 on the midterm exam, calculate his

residual.

2. (Hypothetical data.) We have two measurements, x and y, on each of 500 children. We use

these data to obtain the regression line for using x to predict y.

The means for the 500 children are: 110 for x and 190 for y.

Ron’s value for x is 10 less than the mean of the x values. In addition, Ron’s y is 20 less

than predicted from his x.

Given that Ron’s y = 140, calculate the regression line.
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22.9 Homework Problems for Chapter 22

Below is edited output from a study on the heights and weights of 10 members of the WNBA

Chicago Sky team. For the purpose of the following questions, we will view these 10 women as a

random sample from the population of all female professional basketball players.

The regression equation is

Weight = - 304 + 6.57 Height

Predictor Coef SE Coef

Height 6.57 0.9256

S = 12.36 R-Sq = 86.3%

Ht Wt Fit SE Fit

75.0 184.00 188.47 4.59

69.0 162.00 149.08 5.02

74.0 162.00 181.91 4.18

78.0 200.00 208.17 6.49

80.0 240.00 221.30 8.05

1. Briefly explain (this means in words) the meaning of the regression equation. Make sure you

interpret the number 6.57.

2. Bert looks at the regression equation and states, “This is ridiculous! A woman cannot have

a negative weight!”

(a) Can you guess why Bert made this statement? If yes, explain.

(b) Do you agree or disagree with Bert? Explain your answer.

3. Calculate the 95% confidence interval for the slope of the simple linear regression model.

4. Calculate the 95% confidence interval for the mean weight of women in the population who

are 69 inches tall.

5. Calculate the 95% confidence interval for the mean weight of women in the population who

are 78 inches tall.

6. I select a woman at random from the population and note that she is 74 inches tall. Given

this information, obtain the 95% prediction interval for her weight.

7. I select a woman at random from the population and note that she is 80 inches tall. Given

this information, obtain the 95% prediction interval for her weight.

8. Calculate the value of the correlation coefficient r.

9. (Tricky.) Calculate the slope of the regression line for using weight to predict height.
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