Part I: Interval Mapping Basics

• observed measurements
 – \(Y \) = phenotypic trait
 – \(X \) = markers & linkage map
 • \(i \) = individual index 1,…,\(n \)
• missing data
 – missing marker data
 – \(Q \) = QT genotypes
 • alleles QQ, Qq, or qq at locus
• unknown quantities
 – \(\lambda \) = QT locus (or loci)
 – \(\theta \) = phenotype model parameters
• \(\text{pr}(Q|X,\lambda) \) recombination model
 – grounded by linkage map, experimental cross
 – recombination yields multinomial for \(Q \) given \(X \)
• \(\text{pr}(Y|Q,\theta) \) phenotype model
 – distribution shape (could be assumed normal)
 – unknown parameters \(\theta \) (could be non-parametric)

after Sen Churchill (2001)
recombination model components

\[\lambda \]

distance along chromosome

\[r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5 \]

recombination rates

\[X_1 \quad X_2 \quad Q? \quad X_3 \quad X_4 \quad X_5 \quad X_6 \]

markers

recombination model components
Recombination and Distance

- assume map and marker distances are known
- useful approximation for QTL linkage
 - Haldane map function: no crossover interference
 - independence implies crossover events are Poisson
- all computations consistent in approximation
 - rely on given map with known marker locations
 - 1-to-1 relation of distance to recombination
 - all map functions are approximate anyway

\[
\begin{align*}
 r &= \frac{1}{2} \left(1 - e^{-2\lambda} \right) \\
 \lambda &= -\frac{1}{2} \log(1 - 2r)
\end{align*}
\]
recombination model \(\text{pr}(Q|X, \lambda) \)

- locus \(\lambda \) is distance along linkage map
 - identifies flanking marker region
- flanking markers provide good approximation
 - map assumed known from earlier study
 - inaccuracy slight using only flanking markers
 - extend to next flanking markers if missing data
 - could consider more complicated relationship
 - but little change in results

\[
\text{pr}(Q|X, \lambda) = \text{pr}(\text{geno} | \text{map, locus}) \approx \text{pr}(\text{geno} | \text{flanking markers, locus})
\]
idealized phenotype model

- \text{trait} = \text{mean} + \text{additive} + \text{error}
- \text{trait} = \text{effect of geno} + \text{error}
- \text{pr} (\text{trait} | \text{geno, effects})

\[
Y = G_Q + E
\]

\[
\text{pr}(Y | Q, \theta) = \text{normal}(\hat{G}_Q, \sigma^2)
\]
Simulated Data with 1 QTL
Profile LOD for 1 QTL
What if data are far away from ideal?

- No QTL?
- Skewed?
- Dominance?
- Zeros?
What shape histograms by genotype?

WF/WF

WKy/WF

line = normal, + = semi-parametric, o = confidence interval
What QTL influence flowering time?
no vernalization: censored survival

- *Brassica napus*
 - Major female
 - needs vernalization
 - Stellar male
 - insensitive
 - 99 double haploids
- $Y = \log(\text{days to flower})$
 - over 50% Major at QTL never flowered
 - log not fully effective

grey = normal, red = non-parametric
What shape is flowering distribution?

B. napus Stellar

B. napus Major

line = normal, + = non-parametric, o = confidence interval
Who was Bayes?

• Reverend Thomas Bayes (1702-1761)
 – part-time mathematician
 – buried in Bunhill Cemetery, Moongate, London
 – famous paper in 1763 *Phil Trans Roy Soc London*
 • Barnard (1958 *Biometrika*), Press (1989) *Bayesian Statistics*
 • Stigler (1986) *History of Statistics*
 • Carlin Louis (1996); Gelman et al. (1995) books
 – Was Bayes the first with this idea? (Laplace)

• billiard balls on rectangular table
 – two balls tossed at random (uniform) on table
 – where is first ball if the second is to its right (left)?

first ball
Where is the first ball?

first ball

second ball

\[\theta \]

prior
\[\text{pr}(\theta) = 1 \]

likelihood
\[\text{pr}(Y|\theta) = \theta^Y (1 - \theta)^{1-Y} \]

posterior
\[\text{pr}(\theta|Y) = ? \]

\[\text{pr}(\theta|Y) = \frac{\text{pr}(Y|\theta)\text{pr}(\theta)}{\text{pr}(Y)} \]

\[\text{pr}(Y) = \int_0^1 \theta^Y (1 - \theta)^{1-Y} d\theta = \frac{1}{2} \]

\[\text{pr}(\theta|Y) = \begin{cases}
2\theta & Y = 1 \\
2(1 - \theta) & Y = 0
\end{cases} \]

(now throw second ball \(n \) times)
Likelihood and Posterior Example

data: \(Y = 1, 3, 8 \)

\[\text{parameter: } \theta = ? \]

\[\text{posterior} \]

\[pr(Y = y | \theta) = \frac{\theta^y e^{-\theta}}{y!} \]

(M. Newton, pers. comm.)
effect of prior variance on posterior

\[\kappa = 0.5 \]

\[\kappa = 1 \]

\[\kappa = 2 \]

normal prior, posterior for \(n = 1 \), posterior for \(n = 5 \), true mean
Bayesian Idea for QTLs

• key idea
 – sample missing genotypes Q
 • using recombination model
 – phenotype model given Q
 • see previous slides

• methods and philosophy
 – EM & MCMC
 – Frequentists & Bayesians

• review interval maps & profile LODs

• case study: simulated single QTL