
7.6.2 Appendix: Using R to Find Confidence Intervals
by EV Nordheim, MK Clayton & BS Yandell, October 30, 2003

The tinterval command of R is a useful one for finding confidence intervals for the mean
when the data are normally distributed with unknown variance. We illustrate the use of this
command for the lizard tail length data.

> lizard = c(6.2, 6.6, 7.1, 7.4, 7.6, 7.9, 8, 8.3, 8.4, 8.5, 8.6,

+ 8.8, 8.8, 9.1, 9.2, 9.4, 9.4, 9.7, 9.9, 10.2, 10.4, 10.8,

+ 11.3, 11.9)

If we use the t.test command listing only the data name, we get a 95% confidence
interval for the mean after the significance test.

> t.test(lizard)

One Sample t-test

data: lizard

t = 30.4769, df = 23, p-value = < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

8.292017 9.499649

sample estimates:

mean of x

8.895833

Note here that R reports the interval using more decimal places than was used in Sub-
section 7.1.2. Because the data were recorded to a single decimal, this extra precision is
unnecessary.

The t.test command can also be used to find confidence intervals with levels of confi-
dence different from 95%. We do so by specifying the desired level of confidence using the
conf.level option.

> t.test(lizard, conf.level = 0.9)

One Sample t-test

data: lizard

t = 30.4769, df = 23, p-value = < 2.2e-16

alternative hypothesis: true mean is not equal to 0

90 percent confidence interval:

8.395575 9.396092

sample estimates:

mean of x

8.895833

1

The R command prop.test can be used similarly to construct confidence intervals for
the normal approximation to the binomial.

> prop.test(83, 100, 0.75)

1-sample proportions test with continuity correction

data: 83 out of 100, null probability 0.75

X-squared = 3, df = 1, p-value = 0.08326

alternative hypothesis: true p is not equal to 0.75

95 percent confidence interval:

0.7389130 0.8950666

sample estimates:

p

0.83

R does not have a command to find confidence intervals for the mean of normal data
when the variance is known. Because this arises rarely in practice, we could skip this. For
those interested, the following command lines create a new command norm.interval based
on material from this chapter. We apply it to the lizard data, assuming we know ahead that
the variance is 2.

> norm.interval = function(data, variance = var(data), conf.level = 0.95) {

+ z = qnorm((1 - conf.level)/2, lower.tail = FALSE)

+ xbar = mean(data)

+ sdx = sqrt(variance/length(data))

+ c(xbar - z * sdx, xbar + z * sdx)

+ }

> norm.interval(lizard, 2)

[1] 8.330040 9.461626

Similar calculations, or a similar function, could be developed for confidence intervals for the
variance of a normal distribution. We illustrate this for the variance of the lizard data.

> var.interval = function(data, conf.level = 0.95) {

+ df = length(data) - 1

+ chilower = qchisq((1 - conf.level)/2, df)

+ chiupper = qchisq((1 - conf.level)/2, df, lower.tail = FALSE)

+ v = var(data)

+ c(df * v/chiupper, df * v/chilower)

+ }

> var.interval(lizard)

[1] 1.235162 4.023559

2

Sampling Confidence Intervals

Here is a way to see how confidence intervals are random. Based on the lizard data, we draw
100 random samples with mean 9 and SD the same as the lizards.

> n.draw = 100

> mu = 9

> n = 24

> SD = sd(lizard)

> SD

[1] 1.429953

> draws = matrix(rnorm(n.draw * n, mu, SD), n)

Now we construct 95% confidence intervals for each sample. The first line creates a local
command get.conf.int to extract the confidence interval (conf.int) from the t.test

command. The second line uses the apply command to apply get.conf.int to every column
of draws. Finally, we count the number of confidence intervals that cover µ = 9.

> get.conf.int = function(x) t.test(x)$conf.int

> conf.int = apply(draws, 2, get.conf.int)

> sum(conf.int[1,] <= mu & conf.int[2,] >= mu)

[1] 94

3

Here is a figure showing the 100 confidence intervals as horizontal lines, with a vertical
line at the population mean of 9.

> plot(range(conf.int), c(0, 1 + n.draw), type = "n", xlab = "mean tail length",

+ ylab = "sample run")

> for (i in 1:n.draw) lines(conf.int[, i], rep(i, 2), lwd = 2)

> abline(v = 9, lwd = 2, lty = 2)

8.0 8.5 9.0 9.5 10.0

0
20

40
60

80
10

0

mean tail length

sa
m

pl
e

ru
n

4

