Assignment 6 — Due October 24, 2003

1. The purpose of this problem is to illustrate the meaning of the probability of type I error (the probability of rejecting the null hypothesis when the null hypothesis is true) through simulation. Imagine performing a hypothesis test (using the \(T \)-test) with a type I error rate (i.e. \(\alpha \)) of 0.05. This means that out of every 100 tests performed when the null hypothesis is true, the null hypothesis will be rejected, on average 5 times.

 (a) In this problem you will simulate 200 samples of size 15 from a \(N(62, 9^2) \) distribution. If you perform a test of \(H_0 : \mu = 62 \) versus the two-sided alternative for each sample at the level \(\alpha = 0.10 \), on average how many times will \(H_0 \) be rejected? What if \(\alpha = 0.05 \)? What if \(\alpha = 0.01 \)? (Note that this is a “theoretical” question that should be answered prior to performing the simulations.)

 (b) Perform the simulations. By comparing the p-values (calculated by R) with each level of \(\alpha \), determine how many times \(H_0 \) is actually rejected for your simulated data at \(\alpha = 0.10 \), \(\alpha = 0.05 \), and \(\alpha = 0.01 \). Compare these realized results with the on average results from part (a). Comment briefly on the comparison. [Appendix 6.9.2 has some R code to conduct such simulations.]

2. Reconsider the data on stem volume propagated from healthy buds (Assignment #5 Problem 2). Test \(H_0 : \sigma^2 = 40000 \) versus the two-sided alternative. From this point on, when you are asked to test some hypothesis, you will be required to provide the null hypothesis, alternative hypothesis, test statistic, p-value, and an interpretation of the p-value, even though sometimes the question will not specifically indicate this requirement.

3. Lengths of 9 randomly sampled oak seedlings from a given plantation are listed below:

 2.58 2.43 1.98 2.62 2.40 2.96 2.36 2.77 2.54

 Assume that the population of oak seedling lengths follows a normal distribution; let \(\mu \) be the mean length for oak seedlings from this plantation and let \(\sigma^2 \) be the variance.

 (a) Construct 90\% and 95\% confidence intervals for \(\mu \) and interpret the confidence intervals.

 (b) Construct 90\% and 95\% confidence intervals for \(\sigma^2 \) and interpret the confidence intervals.

 (c) Suppose you obtained data on 36 seedlings. Suppose that the sample mean and variance are exactly the same as in (a). Construct a 95\% confidence interval for the mean lengths of oak seedlings in that case. How does it compare to your answer for part (a)?

4. (a) Consider the experiment testing a new drug on sheep from Assignment #5 Problem 4. Let \(p \) be the “true” effective rate of the drug. Using the data from part (a), find a 90\% CI for \(p \).

 (b) Using the data from part (b) of Assignment #5 Problem 4, find a 90\% CI for \(p \). Compare with (a).

5. (a) Suppose we are sampling from a \(N(\mu, 16) \) distribution. How large must \(n \) be so that a 90\% CI for \(\mu \) has length equal to 0.5?

 (b) Suppose you have a random sample from a \(N(\mu, \sigma^2) \) distribution with \(\sigma^2 \) unknown. Let \(n = 10 \). Consider testing \(H_0 : \mu = 22 \) versus \(H_A : \mu \neq 22 \). Suppose you observe \(\bar{x} = 20.7 \) and \(s^2 = 4.17 \). Consider testing this hypothesis by using confidence intervals. Do you reject \(H_0 \) at \(\alpha = 0.10 \)?, at \(\alpha = 0.05 \)?, at \(\alpha = 0.01 \)?

 (c) i. Using the data in part (b) of this problem, perform the \(T \)-test in the usual fashion. Use the \texttt{pt} command to find the exact p-value. Is this consistent with your results in part (b)?

 ii. Using the data in part (b) of this problem, use the \texttt{qt} command to find a 99.5\% confidence interval for \(\mu \). [See the R commands \texttt{pt} and \texttt{qt} described in Appendix 6.9.1.]

Readings:

- Week 7: Course Notes Chapter 7